ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (161)
  • *Conservation of Natural Resources  (48)
  • Cell & Developmental Biology
  • Chemical Engineering
  • Inorganic Chemistry
  • SPACE SCIENCES
  • American Association for the Advancement of Science (AAAS)  (209)
  • 2010-2014  (209)
  • 2013  (209)
Collection
Keywords
Publisher
Years
  • 2010-2014  (209)
Year
  • 1
    Publication Date: 2013-08-31
    Description: Invasion of microbial DNA into the cytoplasm of animal cells triggers a cascade of host immune reactions that help clear the infection; however, self DNA in the cytoplasm can cause autoimmune diseases. Biochemical approaches led to the identification of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) as a cytosolic DNA sensor that triggers innate immune responses. Here, we show that cells from cGAS-deficient (cGas(-/-)) mice, including fibroblasts, macrophages, and dendritic cells, failed to produce type I interferons and other cytokines in response to DNA transfection or DNA virus infection. cGas(-/-) mice were more susceptible to lethal infection with herpes simplex virus 1 (HSV1) than wild-type mice. We also show that cGAMP is an adjuvant that boosts antigen-specific T cell activation and antibody production in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xiao-Dong -- Wu, Jiaxi -- Gao, Daxing -- Wang, Hua -- Sun, Lijun -- Chen, Zhijian J -- 5T32AI070116/AI/NIAID NIH HHS/ -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1390-4. doi: 10.1126/science.1244040. Epub 2013 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23989956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/biosynthesis ; DNA, Viral/genetics/immunology ; Dendritic Cells/immunology ; Fibroblasts/immunology ; Herpes Simplex/*immunology ; *Herpesvirus 1, Human ; Interferon Regulatory Factor-3/genetics ; Interferon-beta/*biosynthesis/genetics ; Lymphocyte Activation ; Macrophages/immunology ; Mice ; Mice, Knockout ; Nucleotidyltransferases/genetics/*immunology ; Signal Transduction ; T-Lymphocytes/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-10
    Description: Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roukos, Vassilis -- Voss, Ty C -- Schmidt, Christine K -- Lee, Seungtaek -- Wangsa, Darawalee -- Misteli, Tom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):660-4. doi: 10.1126/science.1237150.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929981" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics ; Carrier Proteins/genetics ; Cell Cycle ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Activated Protein Kinase/antagonists & inhibitors ; DNA-Binding Proteins/antagonists & inhibitors ; Green Fluorescent Proteins/genetics ; High-Throughput Screening Assays ; Lac Operon ; Lac Repressors/genetics ; Mice ; Microscopy/methods ; NIH 3T3 Cells ; Neoplasms/genetics ; Nuclear Proteins/antagonists & inhibitors ; *Time-Lapse Imaging ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-26
    Description: Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na(+) channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na(+) currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172297/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172297/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowe, Ashlee H -- Xiao, Yucheng -- Rowe, Matthew P -- Cummins, Theodore R -- Zakon, Harold H -- NS 053422/NS/NINDS NIH HHS/ -- R01 NS053422/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):441-6. doi: 10.1126/science.1236451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159039" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects/physiology ; Amino Acid Sequence ; Animals ; Arvicolinae/*metabolism ; *Food Chain ; Formaldehyde/pharmacology ; Mice ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/chemistry/genetics/*metabolism ; NAV1.8 Voltage-Gated Sodium Channel/chemistry/genetics/*metabolism ; Pain/chemically induced/*metabolism ; *Predatory Behavior ; Protein Structure, Tertiary ; Scorpion Venoms
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-12
    Description: Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang -- Lu, Jinfeng -- Han, Yanhong -- Fan, Xiaoxu -- Ding, Shou-Wei -- AI52447/AI/NIAID NIH HHS/ -- GM94396/GM/NIGMS NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):231-4. doi: 10.1126/science.1241911.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Mice ; Nodaviridae/genetics/*pathogenicity ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Small Interfering/*immunology ; RNA, Viral/genetics/*immunology ; Viral Nonstructural Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1442. doi: 10.1126/science.342.6165.1442-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357294" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior ; Brain/physiology/*ultrastructure ; Electrical Synapses/physiology/ultrastructure ; Humans ; Immunotherapy/*methods ; Mice ; Neoplasms/*therapy ; Sequence Analysis, DNA/*trends ; Single-Cell Analysis/*trends
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-07
    Description: The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/beta-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Xinhong -- Tan, Si Hui -- Koh, Winston Lian Chye -- Chau, Rosanna Man Wah -- Yan, Kelley S -- Kuo, Calvin J -- van Amerongen, Renee -- Klein, Allon Moshe -- Nusse, Roel -- 1R01DK085720/DK/NIDDK NIH HHS/ -- 1U01DK085527/DK/NIDDK NIH HHS/ -- 5K08DK096048/DK/NIDDK NIH HHS/ -- K08 DK096048/DK/NIDDK NIH HHS/ -- P30 DK026743/DK/NIDDK NIH HHS/ -- R01 DK085720/DK/NIDDK NIH HHS/ -- U01 DK085527/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1226-30. doi: 10.1126/science.1239730.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autocrine Communication ; Axin Protein/genetics/metabolism ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epidermis/*cytology/injuries/metabolism ; Epithelial Cells/cytology/metabolism ; Gene Expression ; Homeostasis ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/cytology/metabolism ; Mice ; Regeneration ; Skin/injuries ; Stem Cell Niche ; Stem Cells/cytology/*physiology ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Wound Healing ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-03
    Description: An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpenter, Susan -- Aiello, Daniel -- Atianand, Maninjay K -- Ricci, Emiliano P -- Gandhi, Pallavi -- Hall, Lisa L -- Byron, Meg -- Monks, Brian -- Henry-Bezy, Meabh -- Lawrence, Jeanne B -- O'Neill, Luke A J -- Moore, Melissa J -- Caffrey, Daniel R -- Fitzgerald, Katherine A -- AI067497/AI/NIAID NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 AI067497/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):789-92. doi: 10.1126/science.1240925. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Cyclooxygenase 2/genetics ; Cytokines/genetics/metabolism ; Cytosol/metabolism ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/metabolism ; Immunity, Innate/*genetics ; Inflammation/*genetics ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Mice ; Models, Immunological ; RNA Interference ; RNA, Long Noncoding/*genetics/metabolism ; Toll-Like Receptors/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1440. doi: 10.1126/science.342.6165.1440-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357291" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid beta-Peptides/metabolism ; Animals ; Biological Transport ; Brain/*metabolism ; Coloring Agents/analysis/pharmacokinetics ; Mice ; Sleep/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-21
    Description: The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear. Using fluid and flexible membrane substrates to mimic antigen-presenting cells, we showed that B cells acquire antigen by dynamic myosin IIa-mediated contractions that pull out and invaginate the presenting membranes. The forces generated by myosin IIa contractions ruptured most individual BCR-antigen bonds and promoted internalization of only high-affinity, multivalent BCR microclusters. Thus, B cell contractility contributes to affinity discrimination by mechanically testing the strength of antigen binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natkanski, Elizabeth -- Lee, Wing-Yiu -- Mistry, Bhakti -- Casal, Antonio -- Molloy, Justin E -- Tolar, Pavel -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117597138/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117597138/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1587-90. doi: 10.1126/science.1237572. Epub 2013 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23686338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; *Antigen Presentation ; Antigens/*immunology ; B-Lymphocytes/*immunology ; Cells, Cultured ; Mechanical Processes ; Mice ; Mice, Inbred C57BL ; Microscopy, Atomic Force ; Nonmuscle Myosin Type IIA/*physiology ; Receptors, Antigen, B-Cell/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-27
    Description: Secondary bacterial pneumonia leads to increased morbidity and mortality from influenza virus infections. What causes this increased susceptibility, however, is not well defined. Host defense from infection relies not only on immune resistance mechanisms but also on the ability to tolerate a given level of pathogen burden. Failure of either resistance or tolerance can contribute to disease severity, making it hard to distinguish their relative contribution. We employ a coinfection mouse model of influenza virus and Legionella pneumophila in which we can separate resistance and tolerance. We demonstrate that influenza virus can promote susceptibility to lethal bacterial coinfection, even when bacterial infection is controlled by the immune system. We propose that this failure of host defense is due to impaired ability to tolerate tissue damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jamieson, Amanda M -- Pasman, Lesley -- Yu, Shuang -- Gamradt, Pia -- Homer, Robert J -- Decker, Thomas -- Medzhitov, Ruslan -- AI R01 055502/AI/NIAID NIH HHS/ -- R01 046688/PHS HHS/ -- R01 AI046688/AI/NIAID NIH HHS/ -- R01 AI055502/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1230-4. doi: 10.1126/science.1233632. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. amanda_jamieson@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618765" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspase 1 ; Coinfection/*immunology/pathology ; Disease Models, Animal ; Host-Pathogen Interactions/immunology ; Interleukin-1beta/metabolism ; *Legionella pneumophila ; Legionnaires' Disease/*immunology/pathology ; Lung/microbiology/pathology/virology ; Mice ; Mice, Inbred C57BL ; *Orthomyxoviridae ; Orthomyxoviridae Infections/*immunology/pathology ; Pneumonia, Bacterial/*immunology/pathology ; Toll-Like Receptor 2/metabolism ; Toll-Like Receptor 3/metabolism ; Toll-Like Receptor 4/metabolism ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-11-23
    Description: Cancer is a disease in which cells accumulate genetic aberrations that are believed to confer a clonal advantage over cells in the surrounding tissue. However, the quantitative benefit of frequently occurring mutations during tumor development remains unknown. We quantified the competitive advantage of Apc loss, Kras activation, and P53 mutations in the mouse intestine. Our findings indicate that the fate conferred by these mutations is not deterministic, and many mutated stem cells are replaced by wild-type stem cells after biased, but still stochastic events. Furthermore, P53 mutations display a condition-dependent advantage, and especially in colitis-affected intestines, clones harboring mutations in this gene are favored. Our work confirms the previously theoretical notion that the tissue architecture of the intestine suppresses the accumulation of mutated lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vermeulen, Louis -- Morrissey, Edward -- van der Heijden, Maartje -- Nicholson, Anna M -- Sottoriva, Andrea -- Buczacki, Simon -- Kemp, Richard -- Tavare, Simon -- Winton, Douglas J -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):995-8. doi: 10.1126/science.1243148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264992" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/genetics ; Animals ; Cell Transformation, Neoplastic/*genetics/*pathology ; *Gene Expression Regulation, Neoplastic ; Intestinal Neoplasms/*genetics/*pathology ; Mice ; Mice, Mutant Strains ; Models, Biological ; Mutation ; Neoplastic Stem Cells/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics ; Transcriptional Activation ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-28
    Description: The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, Joshua H -- Rizzi, Giorgio -- Stamatakis, Alice M -- Ung, Randall L -- Stuber, Garret D -- AA011605/AA/NIAAA NIH HHS/ -- AA022234/AA/NIAAA NIH HHS/ -- DA032750/DA/NIDA NIH HHS/ -- DA034472/DA/NIDA NIH HHS/ -- F31 DA034472/DA/NIDA NIH HHS/ -- NS007431/NS/NINDS NIH HHS/ -- P30 NS045892/NS/NINDS NIH HHS/ -- P50 AA011605/AA/NIAAA NIH HHS/ -- R01 DA032750/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1517-21. doi: 10.1126/science.1241812.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072922" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amygdala/physiology ; Animals ; Bacterial Proteins/genetics/metabolism ; Eating/*physiology ; Feeding Behavior/*physiology ; GABAergic Neurons/*physiology ; Hypothalamus/*physiology ; Luminescent Proteins/genetics/metabolism ; Male ; Mice ; Mice, Mutant Strains ; Obesity/physiopathology ; Rhodopsin/genetics/metabolism ; Septal Nuclei/physiology ; Synapses/physiology ; gamma-Aminobutyric Acid/metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-11-02
    Description: Central nervous system injuries are accompanied by scar formation. It has been difficult to delineate the precise role of the scar, as it is made by several different cell types, which may limit the damage but also inhibit axonal regrowth. We show that scarring by neural stem cell-derived astrocytes is required to restrict secondary enlargement of the lesion and further axonal loss after spinal cord injury. Moreover, neural stem cell progeny exerts a neurotrophic effect required for survival of neurons adjacent to the lesion. One distinct component of the glial scar, deriving from resident neural stem cells, is required for maintaining the integrity of the injured spinal cord.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabelstrom, Hanna -- Stenudd, Moa -- Reu, Pedro -- Dias, David O -- Elfineh, Marta -- Zdunek, Sofia -- Damberg, Peter -- Goritz, Christian -- Frisen, Jonas -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):637-40. doi: 10.1126/science.1242576.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Astrocytes/physiology ; Axons/*physiology ; Cell Survival ; Cicatrix/*pathology ; Forkhead Transcription Factors/genetics ; Genes, ras ; Mice ; Mice, Mutant Strains ; Neural Stem Cells/*physiology ; Spinal Cord Injuries/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-11-30
    Description: Hypercholesterolemia is a risk factor for estrogen receptor (ER)-positive breast cancers and is associated with a decreased response of tumors to endocrine therapies. Here, we show that 27-hydroxycholesterol (27HC), a primary metabolite of cholesterol and an ER and liver X receptor (LXR) ligand, increases ER-dependent growth and LXR-dependent metastasis in mouse models of breast cancer. The effects of cholesterol on tumor pathology required its conversion to 27HC by the cytochrome P450 oxidase CYP27A1 and were attenuated by treatment with CYP27A1 inhibitors. In human breast cancer specimens, CYP27A1 expression levels correlated with tumor grade. In high-grade tumors, both tumor cells and tumor-associated macrophages exhibited high expression levels of the enzyme. Thus, lowering circulating cholesterol levels or interfering with its conversion to 27HC may be a useful strategy to prevent and/or treat breast cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899689/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899689/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Erik R -- Wardell, Suzanne E -- Jasper, Jeff S -- Park, Sunghee -- Suchindran, Sunil -- Howe, Matthew K -- Carver, Nicole J -- Pillai, Ruchita V -- Sullivan, Patrick M -- Sondhi, Varun -- Umetani, Michihisa -- Geradts, Joseph -- McDonnell, Donald P -- K99CA172357/CA/NCI NIH HHS/ -- R37 DK048807/DK/NIDDK NIH HHS/ -- R37DK048807/DK/NIDDK NIH HHS/ -- T32 CA059365/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1094-8. doi: 10.1126/science.1241908.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288332" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/blood/*metabolism/*pathology ; Cell Line, Tumor ; Cholestanetriol 26-Monooxygenase/antagonists & inhibitors/metabolism ; Disease Models, Animal ; Female ; Humans ; Hydroxycholesterols/antagonists & inhibitors/blood/*metabolism ; Hypercholesterolemia/blood/*metabolism ; Lung Neoplasms/secondary ; Mice ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1434-5. doi: 10.1126/science.342.6165.1434-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357286" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*ultrastructure ; Cell Count/methods ; Cell Membrane/chemistry ; Humans ; Imaging, Three-Dimensional/*methods ; Membrane Lipids/*chemistry ; Mice ; Neurons/chemistry/*ultrastructure ; Staining and Labeling/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-04-20
    Description: Recovery of overexploited marine populations has been slow, and most remain below target biomass levels. A key question is whether this is due to insufficient reductions in harvest rates or the erosion of population resilience. Using a global meta-analysis of overfished stocks, we find that resilience of those stocks subjected to moderate levels of overfishing is enhanced, not compromised, offering the possibility of swift recovery. However, prolonged intense overexploitation, especially for collapsed stocks, not only delays rebuilding but also substantially increases the uncertainty in recovery times, despite predictable influences of fishing and life history. Timely and decisive reductions in harvest rates could mitigate this uncertainty. Instead, current harvest and low biomass levels render recovery improbable for the majority of the world's depleted stocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neubauer, Philipp -- Jensen, Olaf P -- Hutchings, Jeffrey A -- Baum, Julia K -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):347-9. doi: 10.1126/science.1230441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA. neubauer.phil@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomass ; *Conservation of Natural Resources ; *Fisheries ; Fishes/*growth & development/physiology ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Victora, Gabriel D -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1186. doi: 10.1126/science.1247567.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics/*immunology ; Antibody Affinity ; Antibody Formation ; Awards and Prizes ; B-Lymphocytes/*immunology ; Cell Movement ; Cell Proliferation ; *Evolution, Molecular ; Germinal Center/cytology/*immunology ; History, 21st Century ; Mice ; Mice, Transgenic ; Somatic Hypermutation, Immunoglobulin ; T-Lymphocytes, Helper-Inducer/immunology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1434-5. doi: 10.1126/science.342.6165.1434-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; DNA/genetics ; Genetic Diseases, Inborn/*surgery ; Genetic Therapy/*methods ; Humans ; Mice ; Microsurgery/*methods ; *RNA Editing ; RNA, Guide/genetics/metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-11-23
    Description: Cyclophosphamide is one of several clinically important cancer drugs whose therapeutic efficacy is due in part to their ability to stimulate antitumor immune responses. Studying mouse models, we demonstrate that cyclophosphamide alters the composition of microbiota in the small intestine and induces the translocation of selected species of Gram-positive bacteria into secondary lymphoid organs. There, these bacteria stimulate the generation of a specific subset of "pathogenic" T helper 17 (pT(H)17) cells and memory T(H)1 immune responses. Tumor-bearing mice that were germ-free or that had been treated with antibiotics to kill Gram-positive bacteria showed a reduction in pT(H)17 responses, and their tumors were resistant to cyclophosphamide. Adoptive transfer of pT(H)17 cells partially restored the antitumor efficacy of cyclophosphamide. These results suggest that the gut microbiota help shape the anticancer immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048947/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048947/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viaud, Sophie -- Saccheri, Fabiana -- Mignot, Gregoire -- Yamazaki, Takahiro -- Daillere, Romain -- Hannani, Dalil -- Enot, David P -- Pfirschke, Christina -- Engblom, Camilla -- Pittet, Mikael J -- Schlitzer, Andreas -- Ginhoux, Florent -- Apetoh, Lionel -- Chachaty, Elisabeth -- Woerther, Paul-Louis -- Eberl, Gerard -- Berard, Marion -- Ecobichon, Chantal -- Clermont, Dominique -- Bizet, Chantal -- Gaboriau-Routhiau, Valerie -- Cerf-Bensussan, Nadine -- Opolon, Paule -- Yessaad, Nadia -- Vivier, Eric -- Ryffel, Bernhard -- Elson, Charles O -- Dore, Joel -- Kroemer, Guido -- Lepage, Patricia -- Boneca, Ivo Gomperts -- Ghiringhelli, Francois -- Zitvogel, Laurence -- P01 DK071176/DK/NIDDK NIH HHS/ -- P01DK071176/DK/NIDDK NIH HHS/ -- P50 CA086355/CA/NCI NIH HHS/ -- R01 AI084880/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):971-6. doi: 10.1126/science.1240537.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale, U1015, Equipe labellisee Ligue Nationale Contre le Cancer, Institut Gustave Roussy, Villejuif, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264990" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Anti-Bacterial Agents/administration & dosage ; Antineoplastic Agents/*therapeutic use ; Bacterial Translocation/*drug effects ; Cyclophosphamide/*therapeutic use ; Germ-Free Life ; Gram-Positive Bacteria/drug effects/physiology ; Immunologic Memory ; Immunosuppressive Agents/*therapeutic use ; Intestine, Small/*microbiology ; Lymphoid Tissue/immunology/microbiology ; Mice ; Microbiota/drug effects/*physiology ; Neoplasms/*drug therapy/*immunology ; Th17 Cells/immunology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-11
    Description: The possibility that market interaction may erode moral values is a long-standing, but controversial, hypothesis in the social sciences, ethics, and philosophy. To date, empirical evidence on decay of moral values through market interaction has been scarce. We present controlled experimental evidence on how market interaction changes how human subjects value harm and damage done to third parties. In the experiment, subjects decide between either saving the life of a mouse or receiving money. We compare individual decisions to those made in a bilateral and a multilateral market. In both markets, the willingness to kill the mouse is substantially higher than in individual decisions. Furthermore, in the multilateral market, prices for life deteriorate tremendously. In contrast, for morally neutral consumption choices, differences between institutions are small.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falk, Armin -- Szech, Nora -- New York, N.Y. -- Science. 2013 May 10;340(6133):707-11. doi: 10.1126/science.1231566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Economics and Neuroscience, University of Bonn, Bonn, Germany. armin.falk@uni-bonn.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661753" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Commerce/*ethics ; Decision Making ; Humans ; Mice ; *Morals
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-10-05
    Description: Dominant mutations in sarcomere proteins such as the myosin heavy chains (MHC) are the leading genetic causes of human hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy. We found that expression of the HCM-causing cardiac MHC gene (Myh6) R403Q mutation in mice can be selectively silenced by an RNA interference (RNAi) cassette delivered by an adeno-associated virus vector. RNAi-transduced MHC(403/+) mice developed neither hypertrophy nor myocardial fibrosis, the pathologic manifestations of HCM, for at least 6 months. Because inhibition of HCM was achieved by only a 25% reduction in the levels of the mutant transcripts, we suggest that the variable clinical phenotype in HCM patients reflects allele-specific expression and that partial silencing of mutant transcripts may have therapeutic benefit.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Jianming -- Wakimoto, Hiroko -- Seidman, J G -- Seidman, Christine E -- R01 HL084553/HL/NHLBI NIH HHS/ -- R01HL084553/HL/NHLBI NIH HHS/ -- U01 HL066582/HL/NHLBI NIH HHS/ -- U01 HL098166/HL/NHLBI NIH HHS/ -- U01HL098166/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):111-4. doi: 10.1126/science.1236921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092743" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cardiomyopathy, Hypertrophic/*diagnosis/genetics/pathology ; Dependovirus ; Fibrosis ; Gene Silencing ; *Genetic Therapy ; HEK293 Cells ; Humans ; Mice ; Mutation ; Myosin Heavy Chains/*genetics ; *RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sale, Julian E -- Patel, Ketan J -- Batista, Facundo D -- MC_U105178808/Medical Research Council/United Kingdom -- MC_U105178811/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1335. doi: 10.1126/science.1248808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337288" target="_blank"〉PubMed〈/a〉
    Keywords: Allergy and Immunology/*history ; Animals ; Antibodies, Monoclonal, Humanized/*history ; *Antibody Diversity ; Biomedical Engineering/*history ; Great Britain ; History, 20th Century ; History, 21st Century ; Humans ; Mice ; Molecular Biology/*history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-01-26
    Description: Caspases are either apoptotic or inflammatory. Among inflammatory caspases, caspase-1 and -11 trigger pyroptosis, a form of programmed cell death. Whereas both can be detrimental in inflammatory disease, only caspase-1 has an established protective role during infection. Here, we report that caspase-11 is required for innate immunity to cytosolic, but not vacuolar, bacteria. Although Salmonella typhimurium and Legionella pneumophila normally reside in the vacuole, specific mutants (sifA and sdhA, respectively) aberrantly enter the cytosol. These mutants triggered caspase-11, which enhanced clearance of S. typhimurium sifA in vivo. This response did not require NLRP3, NLRC4, or ASC inflammasome pathways. Burkholderia species that naturally invade the cytosol also triggered caspase-11, which protected mice from lethal challenge with B. thailandensis and B. pseudomallei. Thus, caspase-11 is critical for surviving exposure to ubiquitous environmental pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697099/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697099/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aachoui, Youssef -- Leaf, Irina A -- Hagar, Jon A -- Fontana, Mary F -- Campos, Cristine G -- Zak, Daniel E -- Tan, Michael H -- Cotter, Peggy A -- Vance, Russell E -- Aderem, Alan -- Miao, Edward A -- AI057141/AI/NIAID NIH HHS/ -- AI063302/AI/NIAID NIH HHS/ -- AI065359/AI/NIAID NIH HHS/ -- AI075039/AI/NIAID NIH HHS/ -- AI080749/AI/NIAID NIH HHS/ -- AI097518/AI/NIAID NIH HHS/ -- P01 AI063302/AI/NIAID NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 AI075039/AI/NIAID NIH HHS/ -- R01 AI080749/AI/NIAID NIH HHS/ -- R01 AI097518/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- U54 AI065359/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):975-8. doi: 10.1126/science.1230751. Epub 2013 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23348507" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Burkholderia/pathogenicity/physiology ; Burkholderia Infections/enzymology/immunology/metabolism ; Burkholderia pseudomallei/pathogenicity/physiology ; Caspases/*metabolism ; *Cell Death ; Cytosol/*microbiology ; Gram-Negative Bacterial Infections/enzymology/*immunology/microbiology ; Immunity, Innate ; Inflammasomes/metabolism ; Macrophages/immunology/*microbiology ; Mice ; Mice, Inbred C57BL ; Phagosomes/microbiology ; Salmonella Infections, Animal/enzymology/immunology/microbiology ; Salmonella typhimurium/pathogenicity/physiology ; Vacuoles/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-28
    Description: Tropical forests continue to be felled and fragmented around the world. A key question is how rapidly species disappear from forest fragments and how quickly humans must restore forest connectivity to minimize extinctions. We surveyed small mammals on forest islands in Chiew Larn Reservoir in Thailand 5 to 7 and 25 to 26 years after isolation and observed the near-total loss of native small mammals within 5 years from 〈10-hectare (ha) fragments and within 25 years from 10- to 56-ha fragments. Based on our results, we developed an island biogeographic model and estimated mean extinction half-life (50% of resident species disappearing) to be 13.9 years. These catastrophic extinctions were probably partly driven by an invasive rat species; such biotic invasions are becoming increasingly common in human-modified landscapes. Our results are thus particularly relevant to other fragmented forest landscapes and suggest that small fragments are potentially even more vulnerable to biodiversity loss than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Luke -- Lynam, Antony J -- Bradshaw, Corey J A -- He, Fangliang -- Bickford, David P -- Woodruff, David S -- Bumrungsri, Sara -- Laurance, William F -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1508-10. doi: 10.1126/science.1240495.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore. lggibson@nus.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072921" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Conservation of Natural Resources ; *Extinction, Biological ; Humans ; Islands ; Mammals/*classification ; Thailand ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-07-23
    Description: Melanocortin receptor accessory proteins (MRAPs) modulate signaling of melanocortin receptors in vitro. To investigate the physiological role of brain-expressed melanocortin 2 receptor accessory protein 2 (MRAP2), we characterized mice with whole-body and brain-specific targeted deletion of Mrap2, both of which develop severe obesity at a young age. Mrap2 interacts directly with melanocortin 4 receptor (Mc4r), a protein previously implicated in mammalian obesity, and it enhances Mc4r-mediated generation of the second messenger cyclic adenosine monophosphate, suggesting that alterations in Mc4r signaling may be one mechanism underlying the association between Mrap2 disruption and obesity. In a study of humans with severe, early-onset obesity, we found four rare, potentially pathogenic genetic variants in MRAP2, suggesting that the gene may also contribute to body weight regulation in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788688/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788688/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asai, Masato -- Ramachandrappa, Shwetha -- Joachim, Maria -- Shen, Yuan -- Zhang, Rong -- Nuthalapati, Nikhil -- Ramanathan, Visali -- Strochlic, David E -- Ferket, Peter -- Linhart, Kirsten -- Ho, Caroline -- Novoselova, Tatiana V -- Garg, Sumedha -- Ridderstrale, Martin -- Marcus, Claude -- Hirschhorn, Joel N -- Keogh, Julia M -- O'Rahilly, Stephen -- Chan, Li F -- Clark, Adrian J -- Farooqi, I Sadaf -- Majzoub, Joseph A -- 098497/Wellcome Trust/United Kingdom -- G0802796/Medical Research Council/United Kingdom -- G0900554/Medical Research Council/United Kingdom -- G9824984/Medical Research Council/United Kingdom -- P30-HD18655/HD/NICHD NIH HHS/ -- R01 DK075787/DK/NIDDK NIH HHS/ -- R01DK075787/DK/NIDDK NIH HHS/ -- T32 DK007699/DK/NIDDK NIH HHS/ -- T32 MH020017/MH/NIMH NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):275-8. doi: 10.1126/science.1233000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869016" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Body Mass Index ; Body Weight/*genetics ; Carrier Proteins/*genetics ; Child ; Child, Preschool ; Energy Metabolism/genetics ; Female ; Gene Deletion ; Humans ; Male ; Mice ; Mice, Knockout ; Obesity/*genetics/metabolism ; Receptor Activity-Modifying Proteins/genetics/*metabolism ; Receptor, Melanocortin, Type 4/genetics/*metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-03-02
    Description: Prenatal infection and exposure to traumatizing experiences during peripuberty have each been associated with increased risk for neuropsychiatric disorders. Evidence is lacking for the cumulative impact of such prenatal and postnatal environmental challenges on brain functions and vulnerability to psychiatric disease. Here, we show in a translational mouse model that combined exposure to prenatal immune challenge and peripubertal stress induces synergistic pathological effects on adult behavioral functions and neurochemistry. We further demonstrate that the prenatal insult markedly increases the vulnerability of the pubescent offspring to brain immune changes in response to stress. Our findings reveal interactions between two adverse environmental factors that have individually been associated with neuropsychiatric disease and support theories that mental illnesses with delayed onsets involve multiple environmental hits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giovanoli, Sandra -- Engler, Harald -- Engler, Andrea -- Richetto, Juliet -- Voget, Mareike -- Willi, Roman -- Winter, Christine -- Riva, Marco A -- Mortensen, Preben B -- Feldon, Joram -- Schedlowski, Manfred -- Meyer, Urs -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1095-9. doi: 10.1126/science.1228261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/immunology ; Disease Models, Animal ; Female ; Humans ; Mental Disorders/*immunology ; Mice ; Mice, Inbred C57BL ; Poly I-C/immunology/pharmacology ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology/virology ; Puberty/*immunology ; Stress, Physiological/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-01-19
    Description: Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, Michele -- Hauschild, Robert -- Schwarz, Jan -- Moussion, Christine -- de Vries, Ingrid -- Legler, Daniel F -- Luther, Sanjiv A -- Bollenbach, Tobias -- Sixt, Michael -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):328-32. doi: 10.1126/science.1228456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemokine CCL19/metabolism ; Chemokine CCL21/chemistry/*immunology ; Chemotaxis/*immunology ; Dendritic Cells/*immunology ; Heparitin Sulfate/chemistry ; Immobilized Proteins/chemistry/immunology ; Lymphatic Vessels/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Receptors, CCR7/genetics ; Skin/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aspinall, Richard -- Gregory, Peter -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):421. doi: 10.1126/science.342.6157.421-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159029" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Climate Change ; *Conservation of Natural Resources ; *Decision Support Techniques ; *Ecosystem ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-26
    Description: The shape of the human face and skull is largely genetically determined. However, the genomic basis of craniofacial morphology is incompletely understood and hypothesized to involve protein-coding genes, as well as gene regulatory sequences. We used a combination of epigenomic profiling, in vivo characterization of candidate enhancer sequences in transgenic mice, and targeted deletion experiments to examine the role of distant-acting enhancers in craniofacial development. We identified complex regulatory landscapes consisting of enhancers that drive spatially complex developmental expression patterns. Analysis of mouse lines in which individual craniofacial enhancers had been deleted revealed significant alterations of craniofacial shape, demonstrating the functional importance of enhancers in defining face and skull morphology. These results demonstrate that enhancers are involved in craniofacial development and suggest that enhancer sequence variation contributes to the diversity of human facial morphology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Attanasio, Catia -- Nord, Alex S -- Zhu, Yiwen -- Blow, Matthew J -- Li, Zirong -- Liberton, Denise K -- Morrison, Harris -- Plajzer-Frick, Ingrid -- Holt, Amy -- Hosseini, Roya -- Phouanenavong, Sengthavy -- Akiyama, Jennifer A -- Shoukry, Malak -- Afzal, Veena -- Rubin, Edward M -- FitzPatrick, David R -- Ren, Bing -- Hallgrimsson, Benedikt -- Pennacchio, Len A -- Visel, Axel -- 1R01DE01963/DE/NIDCR NIH HHS/ -- 1R01DE021708/DE/NIDCR NIH HHS/ -- 1U01DE020054/DE/NIDCR NIH HHS/ -- F32 GM105202/GM/NIGMS NIH HHS/ -- MC_PC_U127561093/Medical Research Council/United Kingdom -- MC_U127561093/Medical Research Council/United Kingdom -- R01 DE019638/DE/NIDCR NIH HHS/ -- R01 DE021708/DE/NIDCR NIH HHS/ -- R01 HG003988/HG/NHGRI NIH HHS/ -- R01 HG003991/HG/NHGRI NIH HHS/ -- R01HG003988/HG/NHGRI NIH HHS/ -- R01HG003991/HG/NHGRI NIH HHS/ -- U01 DE020054/DE/NIDCR NIH HHS/ -- U01 DE020060/DE/NIDCR NIH HHS/ -- U01DE020060/DE/NIDCR NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- U54HG006997/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):1241006. doi: 10.1126/science.1241006.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Craniofacial Abnormalities/genetics/pathology ; Enhancer Elements, Genetic/genetics/*physiology ; Epigenesis, Genetic ; Face/abnormalities/*anatomy & histology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Gene Targeting ; Maxillofacial Development/*genetics ; Mice ; Mice, Transgenic ; Sequence Deletion ; Skull/abnormalities/anatomy & histology/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-04-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Austin, A T -- Bustamante, M M C -- Nardoto, G B -- Mitre, S K -- Perez, T -- Ometto, J P H B -- Ascarrunz, N L -- Forti, M C -- Longo, K -- Gavito, M E -- Enrich-Prast, A -- Martinelli, L A -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):149. doi: 10.1126/science.1231679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universidad de Buenos Aires, IFEVA-CONICET, Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580515" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Biomass ; *Conservation of Natural Resources ; *Ecosystem ; *Environment ; Human Activities ; Humans ; Latin America ; Nitrogen ; *Nitrogen Cycle ; Politics ; Public Health ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aerts, Raf -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):904. doi: 10.1126/science.339.6122.904-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430632" target="_blank"〉PubMed〈/a〉
    Keywords: *Conservation of Natural Resources ; *Endangered Species ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-04-06
    Description: Formins are potent activators of actin filament assembly in the cytoplasm. In turn, cytoplasmic actin polymerization can promote release of actin from megakaryocytic acute leukemia (MAL) protein for serum response factor (SRF) transcriptional activity. We found that formins polymerized actin inside the mammalian nucleus to drive serum-dependent MAL-SRF activity. Serum stimulated rapid assembly of actin filaments within the nucleus in a formin-dependent manner. The endogenous formin mDia was regulated with an optogenetic tool, which allowed for photoreactive release of nuclear formin autoinhibition. Activated mDia promoted rapid and reversible nuclear actin network assembly, subsequent MAL nuclear accumulation, and SRF activity. Thus, a dynamic polymeric actin structure within the nucleus is part of the serum response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baarlink, Christian -- Wang, Haicui -- Grosse, Robert -- New York, N.Y. -- Science. 2013 May 17;340(6134):864-7. doi: 10.1126/science.1235038. Epub 2013 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23558171" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Carrier Proteins/*metabolism ; Cell Nucleus/*metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/*metabolism ; *Metabolic Networks and Pathways ; Mice ; Microtubule-Associated Proteins/*metabolism ; NADPH Dehydrogenase/*metabolism ; NIH 3T3 Cells ; Nuclear Localization Signals/metabolism ; Polymerization ; Serum/metabolism ; Serum Response Factor/*agonists
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-21
    Description: Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peek, Clara Bien -- Affinati, Alison H -- Ramsey, Kathryn Moynihan -- Kuo, Hsin-Yu -- Yu, Wei -- Sena, Laura A -- Ilkayeva, Olga -- Marcheva, Biliana -- Kobayashi, Yumiko -- Omura, Chiaki -- Levine, Daniel C -- Bacsik, David J -- Gius, David -- Newgard, Christopher B -- Goetzman, Eric -- Chandel, Navdeep S -- Denu, John M -- Mrksich, Milan -- Bass, Joseph -- 5P01HL071643-10/HL/NHLBI NIH HHS/ -- 5P30AR057216-05/AR/NIAMS NIH HHS/ -- F30 DK085936/DK/NIDDK NIH HHS/ -- F30 ES019815/ES/NIEHS NIH HHS/ -- F32 DK092034/DK/NIDDK NIH HHS/ -- P01 AG011412/AG/NIA NIH HHS/ -- P01AG011412-16/AG/NIA NIH HHS/ -- P01DK58398/DK/NIDDK NIH HHS/ -- P30 CA014520/CA/NCI NIH HHS/ -- R01 AG038679/AG/NIA NIH HHS/ -- R01 CA152601-01/CA/NCI NIH HHS/ -- R01 CA152799-01A1/CA/NCI NIH HHS/ -- R01 CA16383801A1/CA/NCI NIH HHS/ -- R01 CA168292/CA/NCI NIH HHS/ -- R01 CA168292-01A1/CA/NCI NIH HHS/ -- R01 DK090242/DK/NIDDK NIH HHS/ -- R01 DK090625/DK/NIDDK NIH HHS/ -- R01 GM065386/GM/NIGMS NIH HHS/ -- R01 HL097817/HL/NHLBI NIH HHS/ -- R01DK090242-03/DK/NIDDK NIH HHS/ -- R01DK090625-01A1/DK/NIDDK NIH HHS/ -- R01HL097817-01/HL/NHLBI NIH HHS/ -- R37 GM059785/GM/NIGMS NIH HHS/ -- T32 DK007169/DK/NIDDK NIH HHS/ -- T32 GM008152/GM/NIGMS NIH HHS/ -- T32 HL007909/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):1243417. doi: 10.1126/science.1243417. Epub 2013 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24051248" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/genetics/metabolism ; Acetylation ; Animals ; Circadian Clocks/genetics/*physiology ; *Energy Metabolism ; Fasting ; Lipid Metabolism ; Liver/metabolism ; Mice ; Mice, Knockout ; Mitochondria, Liver/*metabolism ; NAD/*metabolism ; Oxidation-Reduction ; Oxygen Consumption ; Sirtuin 3/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-06-08
    Description: Although cortico-striato-thalamo-cortical (CSTC) circuit dysregulation is correlated with obsessive compulsive disorder (OCD), causation cannot be tested in humans. We used optogenetics in mice to simulate CSTC hyperactivation observed in OCD patients. Whereas acute orbitofrontal cortex (OFC)-ventromedial striatum (VMS) stimulation did not produce repetitive behaviors, repeated hyperactivation over multiple days generated a progressive increase in grooming, a mouse behavior related to OCD. Increased grooming persisted for 2 weeks after stimulation cessation. The grooming increase was temporally coupled with a progressive increase in light-evoked firing of postsynaptic VMS cells. Both increased grooming and evoked firing were reversed by chronic fluoxetine, a first-line OCD treatment. Brief but repeated episodes of abnormal circuit activity may thus set the stage for the development of persistent psychopathology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahmari, Susanne E -- Spellman, Timothy -- Douglass, Neria L -- Kheirbek, Mazen A -- Simpson, H Blair -- Deisseroth, Karl -- Gordon, Joshua A -- Hen, Rene -- K01 MH099371/MH/NIMH NIH HHS/ -- K01MH099371/MH/NIMH NIH HHS/ -- K08 MH087718/MH/NIMH NIH HHS/ -- K08MH087718/MH/NIMH NIH HHS/ -- K24 MH091555/MH/NIMH NIH HHS/ -- R01 MH096274/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1234-9. doi: 10.1126/science.1234733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA. sea2103@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744948" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae ; Animals ; Artificial Gene Fusion ; Bacterial Proteins/genetics ; Behavior, Animal ; Corpus Striatum/drug effects/*physiopathology ; Electric Stimulation ; Fluoxetine/pharmacology ; Frontal Lobe/drug effects/*physiopathology ; Luminescent Proteins/genetics ; Male ; Mice ; Obsessive-Compulsive Disorder/*physiopathology/*psychology ; Optogenetics ; Rhodopsin/biosynthesis/genetics ; Serotonin Uptake Inhibitors/pharmacology ; Thalamus/drug effects/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-04-27
    Description: Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson's disease factors, the mitochondrial kinase PINK1 (PTEN-induced putative kinase protein 1; PTEN is phosphatase and tensin homolog) and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and the identity of key factors directing Parkin to damaged mitochondria are unknown. We show that the mitochondrial outer membrane guanosine triphosphatase mitofusin (Mfn) 2 mediates Parkin recruitment to damaged mitochondria. Parkin bound to Mfn2 in a PINK1-dependent manner; PINK1 phosphorylated Mfn2 and promoted its Parkin-mediated ubiqitination. Ablation of Mfn2 in mouse cardiac myocytes prevented depolarization-induced translocation of Parkin to the mitochondria and suppressed mitophagy. Accumulation of morphologically and functionally abnormal mitochondria induced respiratory dysfunction in Mfn2-deficient mouse embryonic fibroblasts and cardiomyocytes and in Parkin-deficient Drosophila heart tubes, causing dilated cardiomyopathy. Thus, Mfn2 functions as a mitochondrial receptor for Parkin and is required for quality control of cardiac mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yun -- Dorn, Gerald W 2nd -- R01 HL059888/HL/NHLBI NIH HHS/ -- R21 HL107276/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):471-5. doi: 10.1126/science.1231031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620051" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autophagy ; Cardiomyopathies/enzymology ; Drosophila melanogaster ; Fibroblasts/ultrastructure ; GTP Phosphohydrolases/genetics/*metabolism ; HEK293 Cells ; Humans ; Mice ; Mice, Mutant Strains ; Mitochondria/enzymology ; Mitochondria, Heart/*enzymology ; Molecular Sequence Data ; Myocytes, Cardiac/*enzymology/ultrastructure ; Phosphorylation ; Protein Kinases/*metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Charles -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1517-9. doi: 10.1126/science.339.6127.1517.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539577" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Anthozoa/genetics/*growth & development ; *Conservation of Natural Resources ; Ecosystem ; *Heat-Shock Response/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):413. doi: 10.1126/science.342.6157.413.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159023" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/chemistry/*immunology ; CD8-Positive T-Lymphocytes/immunology ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*immunology ; Humans ; Immunologic Memory/drug effects ; Immunosuppressive Agents/*administration & dosage/adverse effects ; Influenza A Virus, H5N1 Subtype/*immunology ; Influenza Vaccines/*immunology ; Mice ; Sirolimus/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-06-22
    Description: Adult stem cells are essential for tissue homeostasis and wound repair. Their proliferative capacity must be tightly regulated to prevent the emergence of unwanted and potentially dangerous cells, such as cancer cells. We found that mice deficient for the proapoptotic Sept4/ARTS gene have elevated numbers of hair follicle stem cells (HFSCs) that are protected against apoptosis. Sept4/ARTS(-/-) mice display marked improvement in wound healing and regeneration of hair follicles. These phenotypes depend on HFSCs, as indicated by lineage tracing. Inactivation of XIAP, a direct target of ARTS, abrogated these phenotypes and impaired wound healing. Our results indicate that apoptosis plays an important role in regulating stem cell-dependent regeneration and suggest that this pathway may be a target for regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuchs, Yaron -- Brown, Samara -- Gorenc, Travis -- Rodriguez, Joe -- Fuchs, Elaine -- Steller, Hermann -- R01 AR050452/AR/NIAMS NIH HHS/ -- R01-AR050452/AR/NIAMS NIH HHS/ -- R01GM60124/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):286-9. doi: 10.1126/science.1233029. Epub 2013 Jun 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23788729" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/*physiology ; Animals ; Apoptosis/genetics/*physiology ; Hair Follicle/cytology/*physiology ; Inhibitor of Apoptosis Proteins/genetics ; Mice ; Mice, Mutant Strains ; Septins/genetics/*physiology ; Wound Healing/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-05-11
    Description: gamma-aminobutyric acid-mediated (GABAergic) inhibition plays a critical role in shaping neuronal activity in the neocortex. Numerous experimental investigations have examined perisomatic inhibitory synapses, which control action potential output from pyramidal neurons. However, most inhibitory synapses in the neocortex are formed onto pyramidal cell dendrites, where theoretical studies suggest they may focally regulate cellular activity. The precision of GABAergic control over dendritic electrical and biochemical signaling is unknown. By using cell type-specific optical stimulation in combination with two-photon calcium (Ca(2+)) imaging, we show that somatostatin-expressing interneurons exert compartmentalized control over postsynaptic Ca(2+) signals within individual dendritic spines. This highly focal inhibitory action is mediated by a subset of GABAergic synapses that directly target spine heads. GABAergic inhibition thus participates in localized control of dendritic electrical and biochemical signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiu, Chiayu Q -- Lur, Gyorgy -- Morse, Thomas M -- Carnevale, Nicholas T -- Ellis-Davies, Graham C R -- Higley, Michael J -- DC009977/DC/NIDCD NIH HHS/ -- GM053395/GM/NIGMS NIH HHS/ -- K01 MH097961/MH/NIMH NIH HHS/ -- MH099045/MH/NIMH NIH HHS/ -- NS011613/NS/NINDS NIH HHS/ -- NS069720/NS/NINDS NIH HHS/ -- R01 DC009977/DC/NIDCD NIH HHS/ -- R01 GM053395/GM/NIGMS NIH HHS/ -- R01 MH099045/MH/NIMH NIH HHS/ -- R01 NS011613/NS/NINDS NIH HHS/ -- R01 NS069720/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 10;340(6133):759-62. doi: 10.1126/science.1234274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661763" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Computer Simulation ; Dendritic Spines/*physiology ; Female ; Glutamic Acid/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neocortex/*physiology ; *Neural Inhibition ; Photic Stimulation ; Pyramidal Cells/*physiology ; Rhodopsin/metabolism ; Synapses/physiology ; gamma-Aminobutyric Acid/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obst, Carl -- Edens, Bram -- Hein, Lars -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):420. doi: 10.1126/science.342.6157.420-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Melbourne Sustainable Society Institute, University of Melbourne, Victoria, 3010 Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159027" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Climate Change ; *Conservation of Natural Resources ; *Decision Support Techniques ; *Ecosystem ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-23
    Description: In many mammalian tissues, mature differentiated cells are replaced by self-renewing stem cells, either continuously during homeostasis or in response to challenge and injury. For example, hematopoietic stem cells generate all mature blood cells, including monocytes, which have long been thought to be the major source of tissue macrophages. Recently, however, major macrophage populations were found to be derived from embryonic progenitors and to renew independently of hematopoietic stem cells. This process may not require progenitors, as mature macrophages can proliferate in response to specific stimuli indefinitely and without transformation or loss of functional differentiation. These findings suggest that macrophages are mature differentiated cells that may have a self-renewal potential similar to that of stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sieweke, Michael H -- Allen, Judith E -- MR/J001929/1/Medical Research Council/United Kingdom -- MR/K01207X1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):1242974. doi: 10.1126/science.1242974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Universite, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cytokines/metabolism ; Embryonic Stem Cells/cytology ; Humans ; Macrophages/*cytology ; Mice ; Monocytes/cytology ; Rats ; Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1159-60. doi: 10.1126/science.340.6137.1159.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744921" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacterial Physiological Phenomena ; Bacteroides fragilis/metabolism ; Brain/growth & development ; Cell Differentiation/genetics ; Decapodiformes/growth & development/microbiology ; Gastrointestinal Tract/microbiology ; Germ-Free Life ; *Growth and Development ; Metagenome/*physiology ; Mice ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-11-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galetti, Mauro -- Eizirik, Eduardo -- Beisiegel, Beatriz -- Ferraz, Katia -- Cavalcanti, Sandra -- Srbek-Araujo, Ana Carolina -- Crawshaw, Peter -- Paviolo, Agustin -- Galetti, Pedro Manoel Jr -- Jorge, Maria Luisa -- Marinho-Filho, Jader -- Vercillo, Ugo -- Morato, Ronaldo -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):930. doi: 10.1126/science.342.6161.930-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Ecologia, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264975" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; *Biota ; *Conservation of Natural Resources ; *Food Chain ; Humans ; *Predatory Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-10
    Description: Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 x 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seder, Robert A -- Chang, Lee-Jah -- Enama, Mary E -- Zephir, Kathryn L -- Sarwar, Uzma N -- Gordon, Ingelise J -- Holman, LaSonji A -- James, Eric R -- Billingsley, Peter F -- Gunasekera, Anusha -- Richman, Adam -- Chakravarty, Sumana -- Manoj, Anita -- Velmurugan, Soundarapandian -- Li, MingLin -- Ruben, Adam J -- Li, Tao -- Eappen, Abraham G -- Stafford, Richard E -- Plummer, Sarah H -- Hendel, Cynthia S -- Novik, Laura -- Costner, Pamela J M -- Mendoza, Floreliz H -- Saunders, Jamie G -- Nason, Martha C -- Richardson, Jason H -- Murphy, Jittawadee -- Davidson, Silas A -- Richie, Thomas L -- Sedegah, Martha -- Sutamihardja, Awalludin -- Fahle, Gary A -- Lyke, Kirsten E -- Laurens, Matthew B -- Roederer, Mario -- Tewari, Kavita -- Epstein, Judith E -- Sim, B Kim Lee -- Ledgerwood, Julie E -- Graham, Barney S -- Hoffman, Stephen L -- VRC 312 Study Team -- 3R44AI055229-06S1/AI/NIAID NIH HHS/ -- 4R44AI055229-08/AI/NIAID NIH HHS/ -- 5R44AI058499-05/AI/NIAID NIH HHS/ -- N01-AI-40096/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1359-65. doi: 10.1126/science.1241800. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA. rseder@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929949" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Intravenous ; Adult ; Animals ; Cytokines/immunology ; Female ; Humans ; Immunity, Cellular ; Malaria Vaccines/*administration & dosage/adverse effects/*immunology ; Malaria, Falciparum/*prevention & control ; Male ; Mice ; Plasmodium falciparum/*immunology ; Sporozoites/immunology ; T-Lymphocytes/immunology ; Vaccination/adverse effects/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Alan -- Fraser, Gavin -- Snowball, Jen -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1167. doi: 10.1126/science.340.6137.1167-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744925" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Extinction, Biological ; *Horns ; *Perissodactyla
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-10
    Description: Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-beta induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Daxing -- Wu, Jiaxi -- Wu, You-Tong -- Du, Fenghe -- Aroh, Chukwuemika -- Yan, Nan -- Sun, Lijun -- Chen, Zhijian J -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 AI098569/AI/NIAID NIH HHS/ -- R01-AI093967/AI/NIAID NIH HHS/ -- R01-AI098569/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):903-6. doi: 10.1126/science.1240933. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Knockdown Techniques ; HEK293 Cells ; HIV/drug effects/enzymology/*immunology ; HIV Infections/enzymology/*immunology/virology ; HIV Reverse Transcriptase/antagonists & inhibitors ; Humans ; *Immunity, Innate ; Interferon-beta/biosynthesis ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/genetics/*metabolism ; Retroviridae/immunology ; Retroviridae Infections/enzymology/immunology/virology ; Reverse Transcriptase Inhibitors/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-02-01
    Description: Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Michelle I -- Yatsunenko, Tanya -- Manary, Mark J -- Trehan, Indi -- Mkakosya, Rajhab -- Cheng, Jiye -- Kau, Andrew L -- Rich, Stephen S -- Concannon, Patrick -- Mychaleckyj, Josyf C -- Liu, Jie -- Houpt, Eric -- Li, Jia V -- Holmes, Elaine -- Nicholson, Jeremy -- Knights, Dan -- Ursell, Luke K -- Knight, Rob -- Gordon, Jeffrey I -- DK078669/DK/NIDDK NIH HHS/ -- DK30292/DK/NIDDK NIH HHS/ -- F32 DK091044/DK/NIDDK NIH HHS/ -- P01 DK078669/DK/NIDDK NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- T32 HD049338/HD/NICHD NIH HHS/ -- T32-HD049338/HD/NICHD NIH HHS/ -- T35 DK074375/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):548-54. doi: 10.1126/science.1229000. Epub 2013 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23363771" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Arachis ; Carbohydrate Metabolism ; Child, Preschool ; Diseases in Twins/*microbiology ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Germ-Free Life ; Humans ; Infant ; Kwashiorkor/diet therapy/epidemiology/*microbiology ; Longitudinal Studies ; Malawi/epidemiology ; Male ; *Metagenome ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-05
    Description: Mitochondrial morphology is crucial for tissue homeostasis, but its role in cell differentiation is unclear. We found that mitochondrial fusion was required for proper cardiomyocyte development. Ablation of mitochondrial fusion proteins Mitofusin 1 and 2 in the embryonic mouse heart, or gene-trapping of Mitofusin 2 or Optic atrophy 1 in mouse embryonic stem cells (ESCs), arrested mouse heart development and impaired differentiation of ESCs into cardiomyocytes. Gene expression profiling revealed decreased levels of transcription factors transforming growth factor-beta/bone morphogenetic protein, serum response factor, GATA4, and myocyte enhancer factor 2, linked to increased Ca(2+)-dependent calcineurin activity and Notch1 signaling that impaired ESC differentiation. Orchestration of cardiomyocyte differentiation by mitochondrial morphology reveals how mitochondria, Ca(2+), and calcineurin interact to regulate Notch1 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasahara, Atsuko -- Cipolat, Sara -- Chen, Yun -- Dorn, Gerald W 2nd -- Scorrano, Luca -- GPP10005/Telethon/Italy -- R01 HL059888/HL/NHLBI NIH HHS/ -- R01 HL59888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):734-7. doi: 10.1126/science.1241359. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Differentiation/genetics/*physiology ; GTP Phosphohydrolases/genetics/metabolism ; Gene Expression Profiling ; Heart/embryology ; Mice ; Mice, Knockout ; Mitochondrial Dynamics/genetics/*physiology ; Myocytes, Cardiac/*cytology/ultrastructure ; Receptor, Notch1/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-07-13
    Description: Nerves are a common feature of the microenvironment, but their role in tumor growth and progression remains unclear. We found that the formation of autonomic nerve fibers in the prostate gland regulates prostate cancer development and dissemination in mouse models. The early phases of tumor development were prevented by chemical or surgical sympathectomy and by genetic deletion of stromal beta2- and beta3-adrenergic receptors. Tumors were also infiltrated by parasympathetic cholinergic fibers that promoted cancer dissemination. Cholinergic-induced tumor invasion and metastasis were inhibited by pharmacological blockade or genetic disruption of the stromal type 1 muscarinic receptor, leading to improved survival of the mice. A retrospective blinded analysis of prostate adenocarcinoma specimens from 43 patients revealed that the densities of sympathetic and parasympathetic nerve fibers in tumor and surrounding normal tissue, respectively, were associated with poor clinical outcomes. These findings may lead to novel therapeutic approaches for prostate cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magnon, Claire -- Hall, Simon J -- Lin, Juan -- Xue, Xiaonan -- Gerber, Leah -- Freedland, Stephen J -- Frenette, Paul S -- DK056638/DK/NIDDK NIH HHS/ -- HL069438/HL/NHLBI NIH HHS/ -- HL097819/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):1236361. doi: 10.1126/science.1236361.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA. clairemagnon@free.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846904" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*pathology ; Adrenergic Fibers/physiology ; Animals ; Autonomic Nervous System/*growth & development ; Cell Line, Tumor ; Cell Transformation, Neoplastic/pathology ; Cholinergic Fibers/physiology ; Disease Progression ; Genes, myc/genetics ; Humans ; Male ; Mice ; Mice, Transgenic ; Neoplasm Invasiveness ; Neoplasm Transplantation ; Nerve Net/pathology/physiology ; *Neurogenesis ; Parasympathetic Nervous System/growth & development ; Promoter Regions, Genetic ; Prostate/*innervation/*pathology ; Prostatic Neoplasms/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-12-18
    Description: The central nervous system rapidly learns that particular stimuli predict imminent danger. This learning is thought to involve associations between neutral and harmful stimuli in cortical and limbic brain regions, though associative neuroplasticity in sensory structures is increasingly appreciated. We observed the synaptic output of olfactory sensory neurons (OSNs) in individual mice before and after they learned that a particular odor indicated an impending foot shock. OSNs are the first cells in the olfactory system, physically contacting the odor molecules in the nose and projecting their axons to the brain's olfactory bulb. OSN output evoked by the shock-predictive odor was selectively facilitated after fear conditioning. These results indicate that affective information about a stimulus can be encoded in its very earliest representation in the nervous system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kass, Marley D -- Rosenthal, Michelle C -- Pottackal, Joseph -- McGann, John P -- DC009442/DC/NIDCD NIH HHS/ -- DC013090/DC/NIDCD NIH HHS/ -- MH101293/MH/NIMH NIH HHS/ -- R00 DC009442/DC/NIDCD NIH HHS/ -- R01 DC013090/DC/NIDCD NIH HHS/ -- R01 MH101293/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1389-92. doi: 10.1126/science.1244916.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conditioning, Classical/physiology ; Fear/*psychology ; Learning/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity ; *Odors ; Olfactory Receptor Neurons/*physiology ; Smell/*physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chown, S L -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):141. doi: 10.1126/science.339.6116.141-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-12-18
    Description: Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping -- Dong, Suwei -- Shieh, Jae-Hung -- Peguero, Elizabeth -- Hendrickson, Ronald -- Moore, Malcolm A S -- Danishefsky, Samuel J -- HL025848/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM109760/GM/NIGMS NIH HHS/ -- R01 HL025848/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1357-60. doi: 10.1126/science.1245095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Cells, Cultured ; Consensus Sequence ; Dose-Response Relationship, Drug ; Erythrocyte Count ; Erythropoietin/*administration & dosage/*chemical synthesis/chemistry ; Glycophorin/chemistry ; Glycosylation ; Injections, Subcutaneous ; Mannose/chemistry ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; N-Acetylneuraminic Acid/chemistry ; Oligosaccharides/chemistry ; Reticulocytes/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-07-28
    Description: Gram-negative bacteria including Escherichia coli, Citrobacter rodentium, Salmonella typhimurium, and Shigella flexneri are sensed in an ill-defined manner by an intracellular inflammasome complex that activates caspase-11. We show that macrophages loaded with synthetic lipid A, E. coli lipopolysaccharide (LPS), or S. typhimurium LPS activate caspase-11 independently of the LPS receptor Toll-like receptor 4 (TLR4). Consistent with lipid A triggering the noncanonical inflammasome, LPS containing a divergent lipid A structure antagonized caspase-11 activation in response to E. coli LPS or Gram-negative bacteria. Moreover, LPS-mutant E. coli failed to activate caspase-11. Tlr4(-/-) mice primed with TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)] to induce pro-caspase-11 expression were as susceptible as wild-type mice were to sepsis induced by E. coli LPS. These data unveil a TLR4-independent mechanism for innate immune recognition of LPS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Wong, Michael T -- Stowe, Irma B -- Ramani, Sree Ranjani -- Gonzalez, Lino C -- Akashi-Takamura, Sachiko -- Miyake, Kensuke -- Zhang, Juan -- Lee, Wyne P -- Muszynski, Artur -- Forsberg, Lennart S -- Carlson, Russell W -- Dixit, Vishva M -- New York, N.Y. -- Science. 2013 Sep 13;341(6151):1246-9. doi: 10.1126/science.1240248. Epub 2013 Jul 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA. kayagaki@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23887873" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspases/biosynthesis ; Cholera Toxin/immunology ; Disease Models, Animal ; Escherichia coli/immunology ; Escherichia coli Infections/genetics/immunology ; *Immunity, Innate ; Inflammasomes/*immunology ; Lipid A/genetics/*immunology ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Mutation ; Salmonella Infections/immunology ; Salmonella typhimurium/immunology ; Sepsis/immunology ; Toll-Like Receptor 4/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geng, Yong -- Sarkis, Joseph -- Ulgiati, Sergio -- Zhang, Pan -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1526-7. doi: 10.1126/science.1227059.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory on Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China. gengyong@iae.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539584" target="_blank"〉PubMed〈/a〉
    Keywords: China ; *Conservation of Natural Resources ; *Economic Development ; *Environmental Monitoring ; Industry/*trends ; Laboratories ; *Waste Management
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-05-25
    Description: Cell-cell and cell-matrix mechanical interactions through membrane receptors direct a wide range of cellular functions and orchestrate the development of multicellular organisms. To define the single molecular forces required to activate signaling through a ligand-receptor bond, we developed the tension gauge tether (TGT) approach in which the ligand is immobilized to a surface through a rupturable tether before receptor engagement. TGT serves as an autonomous gauge to restrict the receptor-ligand tension. Using a range of tethers with tunable tension tolerances, we show that cells apply a universal peak tension of about 40 piconewtons (pN) to single integrin-ligand bonds during initial adhesion. We find that less than 12 pN is required to activate Notch receptors. TGT can also provide a defined molecular mechanical cue to regulate cellular functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710701/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710701/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xuefeng -- Ha, Taekjip -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 24;340(6135):991-4. doi: 10.1126/science.1231041.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Adhesion ; *Cell Communication ; Cricetinae ; Cricetulus ; DNA/chemistry ; HEK293 Cells ; Humans ; Integrins/*agonists ; Ligands ; *Mechanotransduction, Cellular ; Mice ; NIH 3T3 Cells ; Receptors, Notch/*agonists ; Shear Strength ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-10-19
    Description: The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of beta-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, Lulu -- Kang, Hongyi -- Xu, Qiwu -- Chen, Michael J -- Liao, Yonghong -- Thiyagarajan, Meenakshisundaram -- O'Donnell, John -- Christensen, Daniel J -- Nicholson, Charles -- Iliff, Jeffrey J -- Takano, Takahiro -- Deane, Rashid -- Nedergaard, Maiken -- NS028642/NS/NINDS NIH HHS/ -- NS078167/NS/NINDS NIH HHS/ -- NS078304/NS/NINDS NIH HHS/ -- R01 DE022743/DE/NIDCR NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136970" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic Antagonists/administration & dosage ; Amyloid beta-Peptides/*metabolism ; Animals ; Brain/*metabolism/physiology ; Cerebral Cortex/metabolism/physiology ; Cerebrospinal Fluid/metabolism ; Diffusion ; Electroencephalography ; Extracellular Space ; Intracellular Space ; Male ; Mice ; Mice, Inbred C57BL ; Neurodegenerative Diseases/*metabolism ; Quaternary Ammonium Compounds/chemistry ; Receptors, Adrenergic/metabolism ; Sleep/*physiology ; Wakefulness/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-07-23
    Description: Despite numerous examples of the effects of the human gastrointestinal microbiome on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the cardiac drug digoxin by the gut Actinobacterium Eggerthella lenta. Transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, inhibited by arginine, absent in nonmetabolizing E. lenta strains, and predictive of digoxin inactivation by the human gut microbiome. Pharmacokinetic studies using gnotobiotic mice revealed that dietary protein reduces the in vivo microbial metabolism of digoxin, with significant changes to drug concentration in the serum and urine. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736355/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736355/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haiser, Henry J -- Gootenberg, David B -- Chatman, Kelly -- Sirasani, Gopal -- Balskus, Emily P -- Turnbaugh, Peter J -- 2P30DK034854-26/DK/NIDDK NIH HHS/ -- MFE-112991/Canadian Institutes of Health Research/Canada -- P30 DK034854/DK/NIDDK NIH HHS/ -- P50 GM068763/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):295-8. doi: 10.1126/science.1235872.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869020" target="_blank"〉PubMed〈/a〉
    Keywords: Actinobacteria/drug effects/genetics/*metabolism ; Animals ; Arginine/pharmacology ; Cytochromes/genetics ; Dietary Proteins/pharmacology ; Digoxin/blood/*pharmacokinetics/urine ; Feces/microbiology ; Gastrointestinal Tract/*microbiology ; Gene Expression Regulation, Bacterial/*drug effects ; Germ-Free Life ; Humans ; *Metagenome ; Mice ; Mice, Inbred Strains ; Operon/drug effects/genetics ; Transcriptome/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-24
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893057/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893057/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCann, Kathleen L -- Baserga, Susan J -- GM 52581/GM/NIGMS NIH HHS/ -- R01 GM052581/GM/NIGMS NIH HHS/ -- R29 GM052581/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):849-50. doi: 10.1126/science.1244156.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23970686" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Diamond-Blackfan/genetics ; Anemia, Macrocytic/genetics ; Animals ; Chromosome Deletion ; Chromosomes, Human, Pair 5/genetics ; Genetic Diseases, Inborn/*genetics ; Humans ; Mice ; Mutation ; Organ Specificity/genetics ; Ribosomal Proteins/*genetics ; Ribosomes/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-01-19
    Description: A paper by Wearn et al. (Reports, 13 July 2012, p. 228) yields new insights on extinction debt. However, it leaves out the area dependence of the relaxation process. We show that this is not warranted on theoretical or observational grounds and that it may lead to erroneous conservation recommendations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halley, John M -- Iwasa, Yoh -- Vokou, Despoina -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):271. doi: 10.1126/science.1231438.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece. jhalley@cc.uoi.gr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; *Extinction, Biological ; *Trees ; *Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-10-12
    Description: Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the beta-hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, Daniel E -- Kamran, Sophia C -- Lessard, Samuel -- Xu, Jian -- Fujiwara, Yuko -- Lin, Carrie -- Shao, Zhen -- Canver, Matthew C -- Smith, Elenoe C -- Pinello, Luca -- Sabo, Peter J -- Vierstra, Jeff -- Voit, Richard A -- Yuan, Guo-Cheng -- Porteus, Matthew H -- Stamatoyannopoulos, John A -- Lettre, Guillaume -- Orkin, Stuart H -- 123382/Canadian Institutes of Health Research/Canada -- K08 DK093705/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30 DK049216/DK/NIDDK NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 HG005085/HG/NHGRI NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HL032259/HL/NHLBI NIH HHS/ -- U54HG004594/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics ; Cell Line, Tumor ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosome Mapping ; *Enhancer Elements, Genetic ; Erythroid Cells/*metabolism ; Fetal Hemoglobin/*biosynthesis/genetics ; *Gene Expression Regulation ; Gene Targeting ; Genetic Engineering ; Genetic Variation ; Genome-Wide Association Study ; Hemoglobinopathies/*genetics/therapy ; Humans ; Mice ; Nuclear Proteins/*genetics ; Precursor Cells, B-Lymphoid/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-03-23
    Description: Kinesin-mediated cargo transport is required for many cellular functions and plays a key role in pathological processes. Structural information on how kinesins recognize their cargoes is required for a molecular understanding of this fundamental and ubiquitous process. Here, we present the crystal structure of the tetratricopeptide repeat domain of kinesin light chain 2 in complex with a cargo peptide harboring a "tryptophan-acidic" motif derived from SKIP (SifA-kinesin interacting protein), a critical host determinant in Salmonella pathogenesis and a regulator of lysosomal positioning. Structural data together with biophysical, biochemical, and cellular assays allow us to propose a framework for intracellular transport based on the binding by kinesin-1 of W-acidic cargo motifs through a combination of electrostatic interactions and sequence-specific elements, providing direct molecular evidence of the mechanisms for kinesin-1:cargo recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pernigo, Stefano -- Lamprecht, Anneri -- Steiner, Roberto A -- Dodding, Mark P -- 097316/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):356-9. doi: 10.1126/science.1234264. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519214" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Glycoproteins/*chemistry/metabolism ; HeLa Cells ; Humans ; Mice ; Microtubule-Associated Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Tryptophan/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kintisch, Eli -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):480-1. doi: 10.1126/science.341.6145.480.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908219" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; *Climate Change ; *Conservation of Natural Resources ; Rhode Island ; *Seawater ; *Wetlands
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-04-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, C Guilherme -- Rodriguez, David -- Zamudio, Kelly R -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):428. doi: 10.1126/science.340.6131.428-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620033" target="_blank"〉PubMed〈/a〉
    Keywords: Brazil ; *Conservation of Natural Resources ; *Forestry ; Mining ; New York City
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):922-3, 925. doi: 10.1126/science.342.6161.922.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264972" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Experimentation/*standards/*statistics & numerical data ; Animals ; Bias (Epidemiology) ; Double-Blind Method ; Humans ; Mice ; Random Allocation ; Sample Size
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-16
    Description: Increased fear memory generalization is associated with posttraumatic stress disorder, but the circuit mechanisms that regulate memory specificity remain unclear. Here, we define a neural circuit-composed of the medial prefrontal cortex, the nucleus reuniens (NR), and the hippocampus-that controls fear memory generalization. Inactivation of prefrontal inputs into the NR or direct silencing of NR projections enhanced fear memory generalization, whereas constitutive activation of NR neurons decreased memory generalization. Direct optogenetic activation of phasic and tonic action-potential firing of NR neurons during memory acquisition enhanced or reduced memory generalization, respectively. We propose that the NR determines the specificity and generalization of memory attributes for a particular context by processing information from the medial prefrontal cortex en route to the hippocampus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Wei -- Sudhof, Thomas C -- K99 MH099153/MH/NIMH NIH HHS/ -- NS077906/NS/NINDS NIH HHS/ -- P50 MH086403/MH/NIMH NIH HHS/ -- R01 NS077906/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1290-5. doi: 10.1126/science.1229534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304-5453, USA. weixu@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493706" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Dependovirus ; Fear/*physiology ; *Generalization (Psychology) ; Green Fluorescent Proteins/genetics/metabolism ; Hippocampus/physiology ; Male ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Midline Thalamic Nuclei/physiology ; Neural Pathways ; Prefrontal Cortex/*physiology ; Synapses/physiology ; Vesicle-Associated Membrane Protein 2/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-11-16
    Description: Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, M C -- Potapov, P V -- Moore, R -- Hancher, M -- Turubanova, S A -- Tyukavina, A -- Thau, D -- Stehman, S V -- Goetz, S J -- Loveland, T R -- Kommareddy, A -- Egorov, A -- Chini, L -- Justice, C O -- Townshend, J R G -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):850-3. doi: 10.1126/science.1244693.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233722" target="_blank"〉PubMed〈/a〉
    Keywords: Brazil ; *Conservation of Natural Resources ; *Geographic Mapping ; Indonesia ; *Maps as Topic ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-11-02
    Description: Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site O, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site O when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site O-stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Joyce, M Gordon -- Sastry, Mallika -- Stewart-Jones, Guillaume B E -- Yang, Yongping -- Zhang, Baoshan -- Chen, Lei -- Srivatsan, Sanjay -- Zheng, Anqi -- Zhou, Tongqing -- Graepel, Kevin W -- Kumar, Azad -- Moin, Syed -- Boyington, Jeffrey C -- Chuang, Gwo-Yu -- Soto, Cinque -- Baxa, Ulrich -- Bakker, Arjen Q -- Spits, Hergen -- Beaumont, Tim -- Zheng, Zizheng -- Xia, Ningshao -- Ko, Sung-Youl -- Todd, John-Paul -- Rao, Srinivas -- Graham, Barney S -- Kwong, Peter D -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):592-8. doi: 10.1126/science.1243283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179220" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antigens, Viral/*chemistry/genetics/immunology ; Crystallography, X-Ray ; Cysteine/chemistry/genetics ; Glycoproteins/*chemistry/genetics/immunology ; Humans ; Macaca ; Mice ; Protein Engineering ; Protein Multimerization ; Protein Stability ; Protein Structure, Tertiary ; Respiratory Syncytial Virus Infections/*prevention & control ; Respiratory Syncytial Virus Vaccines/*chemistry ; Vaccination ; Viral Fusion Proteins/*chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-10-05
    Description: Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a(-/-)V1b(-/-)). Nevertheless, the behavior of V1a(-/-)V1b(-/-) mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Yoshiaki -- Suzuki, Toru -- Mizoro, Yasutaka -- Kori, Hiroshi -- Okada, Kazuki -- Chen, Yulin -- Fustin, Jean-Michel -- Yamazaki, Fumiyoshi -- Mizuguchi, Naoki -- Zhang, Jing -- Dong, Xin -- Tsujimoto, Gozoh -- Okuno, Yasushi -- Doi, Masao -- Okamura, Hitoshi -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):85-90. doi: 10.1126/science.1238599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidiuretic Hormone Receptor Antagonists ; Body Temperature/genetics ; CLOCK Proteins/genetics ; Cell Communication/drug effects/genetics ; Cells, Cultured ; Circadian Rhythm/genetics ; Gene Expression Regulation ; Jet Lag Syndrome/*genetics/physiopathology ; Mice ; Mice, Knockout ; Motor Activity/genetics ; Receptors, Vasopressin/*genetics ; Suprachiasmatic Nucleus/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-06-08
    Description: Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor and an antagonist of the phosphoinositide-3 kinase (PI3K) pathway. We identified a 576-amino acid translational variant of PTEN, termed PTEN-Long, that arises from an alternative translation start site 519 base pairs upstream of the ATG initiation sequence, adding 173 N-terminal amino acids to the normal PTEN open reading frame. PTEN-Long is a membrane-permeable lipid phosphatase that is secreted from cells and can enter other cells. As an exogenous agent, PTEN-Long antagonized PI3K signaling and induced tumor cell death in vitro and in vivo. By providing a means to restore a functional tumor-suppressor protein to tumor cells, PTEN-Long may have therapeutic uses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935617/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935617/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopkins, Benjamin D -- Fine, Barry -- Steinbach, Nicole -- Dendy, Meaghan -- Rapp, Zachary -- Shaw, Jacquelyn -- Pappas, Kyrie -- Yu, Jennifer S -- Hodakoski, Cindy -- Mense, Sarah -- Klein, Joshua -- Pegno, Sarah -- Sulis, Maria-Luisa -- Goldstein, Hannah -- Amendolara, Benjamin -- Lei, Liang -- Maurer, Matthew -- Bruce, Jeffrey -- Canoll, Peter -- Hibshoosh, Hanina -- Parsons, Ramon -- 2T32 CA09503/CA/NCI NIH HHS/ -- CA082783/CA/NCI NIH HHS/ -- CA097403/CA/NCI NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- R01 CA082783/CA/NCI NIH HHS/ -- R01 CA155117/CA/NCI NIH HHS/ -- R01 NS066955/NS/NINDS NIH HHS/ -- R01 NS073610/NS/NINDS NIH HHS/ -- R01NS066955/NS/NINDS NIH HHS/ -- T32 CA009503/CA/NCI NIH HHS/ -- T32 GM008224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):399-402. doi: 10.1126/science.1234907. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line, Tumor ; *Cell Survival ; Embryonic Stem Cells ; Glioblastoma/drug therapy/metabolism/pathology ; HEK293 Cells ; Humans ; Mice ; Mice, Nude ; Molecular Sequence Data ; Mutation ; PTEN Phosphohydrolase/*chemistry/genetics/*metabolism/pharmacology ; Peptide Chain Initiation, Translational ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; RNA, Messenger/genetics/metabolism ; *Signal Transduction/drug effects ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-12-07
    Description: The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy and movement disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Chan Lek -- Plotkin, Joshua L -- Veno, Morten T -- von Schimmelmann, Melanie -- Feinberg, Philip -- Mann, Silas -- Handler, Annie -- Kjems, Jorgen -- Surmeier, D James -- O'Carroll, Donal -- Greengard, Paul -- Schaefer, Anne -- 1DP2MH100012-01/DP/NCCDPHP CDC HHS/ -- DA025962/DA/NIDA NIH HHS/ -- DA10044/DA/NIDA NIH HHS/ -- DP2 MH100012/MH/NIMH NIH HHS/ -- NS34696/NS/NINDS NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- P50 MH090963/MH/NIMH NIH HHS/ -- P50MH090963/MH/NIMH NIH HHS/ -- R01 NS034696/NS/NINDS NIH HHS/ -- R03 DA025962/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1254-8. doi: 10.1126/science.1244193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311694" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Corpus Striatum/cytology ; Dendrites/physiology ; Epilepsy/metabolism ; Hyperkinesis/metabolism ; MAP Kinase Signaling System ; Mice ; MicroRNAs/genetics/*metabolism ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/metabolism ; *Motor Activity ; Neurons/*physiology ; Parkinsonian Disorders/metabolism/physiopathology ; Prosencephalon/cytology/*physiology ; RNA, Messenger/genetics/metabolism ; RNA-Induced Silencing Complex/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-01-12
    Description: The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we identify Rif1 as the main factor used by 53BP1 to impair 5' end resection. Rif1 inhibits resection involving CtIP, BLM, and Exo1; limits accumulation of BRCA1/BARD1 complexes at sites of DNA damage; and defines one of the mechanisms by which 53BP1 causes chromosomal abnormalities in Brca1-deficient cells. These data establish Rif1 as an important contributor to the control of DSB repair by 53BP1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Michal -- Lottersberger, Francisca -- Buonomo, Sara B -- Sfeir, Agnel -- de Lange, Titia -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):700-4. doi: 10.1126/science.1231573. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; DNA/metabolism ; *DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; *DNA Repair ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Mice ; Replication Protein A/metabolism ; Telomere/*metabolism ; Telomere-Binding Proteins/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-09-07
    Description: Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status, including histone modification. Although several transcription factors play crucial roles in mammalian sex determination, how epigenetic regulation contributes to this process remains unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a and found that Jmjd1a regulates expression of the mammalian Y chromosome sex-determining gene Sry. Jmjd1a directly and positively controls Sry expression by regulating H3K9me2 marks. These studies reveal a pivotal role of histone demethylation in mammalian sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroki, Shunsuke -- Matoba, Shogo -- Akiyoshi, Mika -- Matsumura, Yasuko -- Miyachi, Hitoshi -- Mise, Nathan -- Abe, Kuniya -- Ogura, Atsuo -- Wilhelm, Dagmar -- Koopman, Peter -- Nozaki, Masami -- Kanai, Yoshiakira -- Shinkai, Yoichi -- Tachibana, Makoto -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1106-9. doi: 10.1126/science.1239864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Epididymis/abnormalities ; *Epigenesis, Genetic ; Female ; *Gene Expression Regulation, Developmental ; Histones/*metabolism ; Jumonji Domain-Containing Histone Demethylases/genetics/*metabolism ; Male ; Methylation ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Ovary/abnormalities/enzymology ; *Protein Processing, Post-Translational ; Sex Determination Processes/*genetics ; Testis/abnormalities/enzymology ; Uterus/abnormalities
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-01-12
    Description: We investigated the role of histone methyltransferase Ezh2 in tangential migration of mouse precerebellar pontine nuclei, the main relay between neocortex and cerebellum. By counteracting the sonic hedgehog pathway, Ezh2 represses Netrin1 in dorsal hindbrain, which allows normal pontine neuron migration. In Ezh2 mutants, ectopic Netrin1 derepression results in abnormal migration and supernumerary nuclei integrating in brain circuitry. Moreover, intrinsic topographic organization of pontine nuclei according to rostrocaudal progenitor origin is maintained throughout migration and correlates with patterned cortical input. Ezh2 maintains spatially restricted Hox expression, which, in turn, regulates differential expression of the repulsive receptor Unc5b in migrating neurons; together, they generate subsets with distinct responsiveness to environmental Netrin1. Thus, Ezh2-dependent epigenetic regulation of intrinsic and extrinsic transcriptional programs controls topographic neuronal guidance and connectivity in the cortico-ponto-cerebellar pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Meglio, Thomas -- Kratochwil, Claudius F -- Vilain, Nathalie -- Loche, Alberto -- Vitobello, Antonio -- Yonehara, Keisuke -- Hrycaj, Steven M -- Roska, Botond -- Peters, Antoine H F M -- Eichmann, Anne -- Wellik, Deneen -- Ducret, Sebastien -- Rijli, Filippo M -- T32 DK071212/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):204-7. doi: 10.1126/science.1229326.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Cerebellum/cytology/*embryology/metabolism ; Cerebral Cortex/embryology/physiology ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Genes, Homeobox ; Homeodomain Proteins/metabolism ; Metencephalon/embryology ; Mice ; Mice, Transgenic ; Nerve Growth Factors/genetics/metabolism ; Neural Pathways/*embryology/physiology ; Neurons/*physiology ; Polycomb Repressive Complex 2/genetics/*metabolism ; Pons/cytology/*embryology/metabolism ; Receptors, Cell Surface/genetics/metabolism ; Transcription, Genetic ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1166-7. doi: 10.1126/science.342.6163.1166.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; *Colubridae/physiology ; *Ecosystem ; Female ; Guam ; *Introduced Species ; Male ; Mice ; Pest Control ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-02-23
    Description: Cellular growth signals stimulate anabolic processes. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase that senses growth signals to regulate anabolic growth and proliferation. Activation of mTORC1 led to the acute stimulation of metabolic flux through the de novo pyrimidine synthesis pathway. mTORC1 signaling posttranslationally regulated this metabolic pathway via its downstream target ribosomal protein S6 kinase 1 (S6K1), which directly phosphorylates S1859 on CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase), the enzyme that catalyzes the first three steps of de novo pyrimidine synthesis. Growth signaling through mTORC1 thus stimulates the production of new nucleotides to accommodate an increase in RNA and DNA synthesis needed for ribosome biogenesis and anabolic growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Sahra, Issam -- Howell, Jessica J -- Asara, John M -- Manning, Brendan D -- F32 DK095508/DK/NIDDK NIH HHS/ -- F32-DK095508/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01-CA120964/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30-CA006516/CA/NCI NIH HHS/ -- R01 CA122617/CA/NCI NIH HHS/ -- R01-CA122617/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1323-8. doi: 10.1126/science.1228792. Epub 2013 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23429703" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Animals ; Aspartate Carbamoyltransferase/*metabolism ; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/*metabolism ; Dihydroorotase/*metabolism ; HeLa Cells ; Humans ; Mice ; Multiprotein Complexes/*metabolism ; Pyrimidines/*biosynthesis ; Ribosomal Protein S6 Kinases/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-01-12
    Description: DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5'-3' DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G(1) and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Virgilio, Michela -- Callen, Elsa -- Yamane, Arito -- Zhang, Wenzhu -- Jankovic, Mila -- Gitlin, Alexander D -- Feldhahn, Niklas -- Resch, Wolfgang -- Oliveira, Thiago Y -- Chait, Brian T -- Nussenzweig, Andre -- Casellas, Rafael -- Robbiani, Davide F -- Nussenzweig, Michel C -- AI037526/AI/NIAID NIH HHS/ -- GM007739/GM/NIGMS NIH HHS/ -- GM103314/GM/NIGMS NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):711-5. doi: 10.1126/science.1230624. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/immunology/metabolism ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; G1 Phase ; G2 Phase ; Genomic Instability ; *Immunoglobulin Class Switching ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; S Phase ; Telomere-Binding Proteins/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doulatov, Sergei -- Daley, George Q -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):700-2. doi: 10.1126/science.1238363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Broad Institute; Harvard Stem Cell Institute; Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24202165" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Engineering/*methods ; *Embryonic Stem Cells ; Humans ; *Induced Pluripotent Stem Cells ; Mice ; *Stem Cell Research ; *Stem Cell Transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regalado, Antonio -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):450-2. doi: 10.1126/science.341.6145.450.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908201" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biology/*trends ; Birds ; Colombia ; *Conservation of Natural Resources ; Mammals ; Plants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-13
    Description: During persistent viral infections, chronic immune activation, negative immune regulator expression, an elevated interferon signature, and lymphoid tissue destruction correlate with disease progression. We demonstrated that blockade of type I interferon (IFN-I) signaling using an IFN-I receptor neutralizing antibody reduced immune system activation, decreased expression of negative immune regulatory molecules, and restored lymphoid architecture in mice persistently infected with lymphocytic choriomeningitis virus. IFN-I blockade before and after establishment of persistent virus infection resulted in enhanced virus clearance and was CD4 T cell-dependent. Hence, we demonstrate a direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence. Our results suggest that therapies targeting IFN-I may help control persistent virus infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640797/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640797/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teijaro, John R -- Ng, Cherie -- Lee, Andrew M -- Sullivan, Brian M -- Sheehan, Kathleen C F -- Welch, Megan -- Schreiber, Robert D -- de la Torre, Juan Carlos -- Oldstone, Michael B A -- AI007354/AI/NIAID NIH HHS/ -- AI047140/AI/NIAID NIH HHS/ -- AI077719/AI/NIAID NIH HHS/ -- AI09484/AI/NIAID NIH HHS/ -- CA43059/CA/NCI NIH HHS/ -- HL007195/HL/NHLBI NIH HHS/ -- NS041219/NS/NINDS NIH HHS/ -- R01 AI009484/AI/NIAID NIH HHS/ -- R01 AI047140/AI/NIAID NIH HHS/ -- R01 AI077719/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- U54AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):207-11. doi: 10.1126/science.1235214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580529" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/blood ; Antigens, CD274/metabolism ; Arenaviridae Infections/*immunology/pathology/*virology ; CD4-Positive T-Lymphocytes/immunology ; Cytokines/metabolism ; Dendritic Cells/immunology/virology ; Female ; Immune Tolerance ; Interferon Type I/immunology/*metabolism ; Interleukin-10/metabolism ; Lymphocytes/immunology/virology ; Lymphocytic choriomeningitis virus/*immunology/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Receptor, Interferon alpha-beta/immunology/metabolism ; *Signal Transduction ; Spleen/immunology/pathology ; Viremia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-12-21
    Description: The duration of a woman's reproductive period is determined by the size and persistence of a dormant oocyte pool. Specific oocyte genes are essential for follicle maintenance and female fertility. The mechanisms that regulate the expression of these genes are poorly understood. We found that a cullin-ring finger ligase-4 (CRL4) complex was crucial in this process. Oocyte-specific deletion of the CRL4 linker protein DDB1 or its substrate adaptor VPRBP (also known as DCAF1) caused rapid oocyte loss, premature ovarian insufficiency, and silencing of fertility maintaining genes. CRL4(VPRBP) activates the TET methylcytosine dioxygenases, which are involved in female germ cell development and zygote genome reprogramming. Hence, CRL4(VPRBP) ubiquitin ligase is a guardian of female reproductive life in germ cells and a maternal reprogramming factor after fertilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Chao -- Zhang, Yin-Li -- Pan, Wei-Wei -- Li, Xiao-Meng -- Wang, Zhong-Wei -- Ge, Zhao-Jia -- Zhou, Jian-Jie -- Cang, Yong -- Tong, Chao -- Sun, Qing-Yuan -- Fan, Heng-Yu -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1518-21. doi: 10.1126/science.1244587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357321" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/genetics/*metabolism ; Cell Survival/genetics/physiology ; Cellular Reprogramming/*genetics ; Cullin Proteins/genetics/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Dioxygenases/genetics/*metabolism ; Female ; Fertility/*genetics ; Gene Silencing ; Gonadal Dysgenesis/genetics ; HeLa Cells ; Humans ; Mice ; Mice, Knockout ; Oocytes/*physiology ; Ovary/physiopathology ; Proto-Oncogene Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-06-15
    Description: Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important alpha-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zehan -- Yan, Chuangye -- Liu, Peiyuan -- Huang, Zhiwei -- Ma, Rui -- Zhang, Chenlu -- Wang, Ruiyong -- Zhang, Yueteng -- Martinon, Fabio -- Miao, Di -- Deng, Haiteng -- Wang, Jiawei -- Chang, Junbiao -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):172-5. doi: 10.1126/science.1236381. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765277" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Animals ; Apoptosis Regulatory Proteins/*antagonists & inhibitors/*chemistry ; Calcium-Binding Proteins/*antagonists & inhibitors/*chemistry ; Crystallography, X-Ray ; Mice ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-11-10
    Description: Circadian clocks regulate numerous physiological processes that vary across the day-night (diurnal) cycle, but if and how the circadian clock regulates the adaptive immune system is mostly unclear. Interleukin-17-producing CD4(+) T helper (T(H)17) cells are proinflammatory immune cells that protect against bacterial and fungal infections at mucosal surfaces. Their lineage specification is regulated by the orphan nuclear receptor RORgammat. We show that the transcription factor NFIL3 suppresses T(H)17 cell development by directly binding and repressing the Rorgammat promoter. NFIL3 links T(H)17 cell development to the circadian clock network through the transcription factor REV-ERBalpha. Accordingly, TH17 lineage specification varies diurnally and is altered in Rev-erbalpha(-/-) mice. Light-cycle disruption elevated intestinal T(H)17 cell frequencies and increased susceptibility to inflammatory disease. Thus, lineage specification of a key immune cell is under direct circadian control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaofei -- Rollins, Darcy -- Ruhn, Kelly A -- Stubblefield, Jeremy J -- Green, Carla B -- Kashiwada, Masaki -- Rothman, Paul B -- Takahashi, Joseph S -- Hooper, Lora V -- R01 DK070855/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):727-30. doi: 10.1126/science.1243884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24202171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic-Leucine Zipper Transcription Factors/genetics/*metabolism ; CLOCK Proteins/genetics ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Circadian Clocks/genetics/*immunology ; *Gene Expression Regulation ; Germ-Free Life ; HEK293 Cells ; Humans ; Intestine, Small/immunology/microbiology ; Jurkat Cells ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Promoter Regions, Genetic ; Th17 Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-02-02
    Description: Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)-beta pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Min -- Bardia, Aditya -- Wittner, Ben S -- Stott, Shannon L -- Smas, Malgorzata E -- Ting, David T -- Isakoff, Steven J -- Ciciliano, Jordan C -- Wells, Marissa N -- Shah, Ajay M -- Concannon, Kyle F -- Donaldson, Maria C -- Sequist, Lecia V -- Brachtel, Elena -- Sgroi, Dennis -- Baselga, Jose -- Ramaswamy, Sridhar -- Toner, Mehmet -- Haber, Daniel A -- Maheswaran, Shyamala -- EB008047/EB/NIBIB NIH HHS/ -- K12 CA087723/CA/NCI NIH HHS/ -- NCI CA129933/CA/NCI NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- U01 EB012493/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):580-4. doi: 10.1126/science.1228522.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/genetics/metabolism ; Breast Neoplasms/blood/genetics/*pathology ; Cell Count ; Cell Movement ; Epithelial Cells/pathology ; *Epithelial-Mesenchymal Transition ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Mesoderm/pathology ; Mice ; Neoplasm Transplantation ; Neoplastic Cells, Circulating/metabolism/*pathology ; RNA, Neoplasm/chemistry/genetics ; Transcription, Genetic ; Transforming Growth Factor beta/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-03-09
    Description: A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1alpha and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, Basil P -- Gomes, Ana P -- Dai, Han -- Li, Jun -- Case, April W -- Considine, Thomas -- Riera, Thomas V -- Lee, Jessica E -- E, Sook Yen -- Lamming, Dudley W -- Pentelute, Bradley L -- Schuman, Eli R -- Stevens, Linda A -- Ling, Alvin J Y -- Armour, Sean M -- Michan, Shaday -- Zhao, Huizhen -- Jiang, Yong -- Sweitzer, Sharon M -- Blum, Charles A -- Disch, Jeremy S -- Ng, Pui Yee -- Howitz, Konrad T -- Rolo, Anabela P -- Hamuro, Yoshitomo -- Moss, Joel -- Perni, Robert B -- Ellis, James L -- Vlasuk, George P -- Sinclair, David A -- P01 AG027916/AG/NIA NIH HHS/ -- R01 AG019719/AG/NIA NIH HHS/ -- R01 AG028730/AG/NIA NIH HHS/ -- R37 AG028730/AG/NIA NIH HHS/ -- ZIA HL000659-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23471411" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Enzyme Activation ; Forkhead Transcription Factors/chemistry/genetics ; Glutamic Acid/chemistry/genetics ; Heterocyclic Compounds with 4 or More Rings/chemistry/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Myoblasts/drug effects/enzymology ; Protein Structure, Tertiary ; Sirtuin 1/*chemistry/genetics/*metabolism ; Stilbenes/chemistry/*pharmacology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-21
    Description: Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millien, Valentine Ongeri -- Lu, Wen -- Shaw, Joanne -- Yuan, Xiaoyi -- Mak, Garbo -- Roberts, Luz -- Song, Li-Zhen -- Knight, J Morgan -- Creighton, Chad J -- Luong, Amber -- Kheradmand, Farrah -- Corry, David B -- AI057696/AI/NIAID NIH HHS/ -- AI070973/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- HL75243/HL/NHLBI NIH HHS/ -- K02 HL075243/HL/NHLBI NIH HHS/ -- R01 AI057696/AI/NIAID NIH HHS/ -- R01 HL095382/HL/NHLBI NIH HHS/ -- R01 HL117181/HL/NHLBI NIH HHS/ -- R25GM56929/GM/NIGMS NIH HHS/ -- T32 GM088129/GM/NIGMS NIH HHS/ -- T32GM088129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):792-6. doi: 10.1126/science.1240342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus niger/growth & development/*immunology ; Aspergillus oryzae/enzymology ; Bronchoalveolar Lavage Fluid/cytology ; Epithelial Cells/immunology/metabolism ; Fibrinogen/*metabolism ; Immunity, Innate ; Ligands ; Macrophage Activation ; Macrophages/immunology/metabolism/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peptide Hydrolases/immunology/*metabolism ; Respiratory Hypersensitivity/*immunology/*metabolism ; Respiratory Mucosa/cytology/immunology/metabolism ; Th2 Cells/immunology ; Toll-Like Receptor 4/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-07-23
    Description: Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle-coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kueh, Hao Yuan -- Champhekar, Ameya -- Nutt, Stephen L -- Elowitz, Michael B -- Rothenberg, Ellen V -- R01 AI083514/AI/NIAID NIH HHS/ -- R01 CA090233/CA/NCI NIH HHS/ -- R01 CA90233/CA/NCI NIH HHS/ -- R33 HL089123/HL/NHLBI NIH HHS/ -- RC2 CA148278/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):670-3. doi: 10.1126/science.1240831. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA, USA. kueh@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868921" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/*genetics ; Cell Differentiation/*genetics ; Cells, Cultured ; Feedback, Physiological ; *Gene Expression Regulation ; *Gene Regulatory Networks ; Macrophages/cytology ; Mice ; Mice, Inbred Strains ; Myeloid Cells/*cytology ; Precursor Cells, B-Lymphoid/*cytology ; Proto-Oncogene Proteins/genetics/*physiology ; Trans-Activators/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-12-21
    Description: The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Vivek -- Kim, Kyungin -- Joseph, Chryshanthi -- Kourrich, Said -- Yoo, Seung-Hee -- Huang, Hung Chung -- Vitaterna, Martha H -- de Villena, Fernando Pardo-Manuel -- Churchill, Gary -- Bonci, Antonello -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- F32DA024556/DA/NIDA NIH HHS/ -- U01 MH061915/MH/NIMH NIH HHS/ -- U01MH61915/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1508-12. doi: 10.1126/science.1245503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Central Nervous System Stimulants/administration & dosage ; Cocaine/*administration & dosage ; Cocaine-Related Disorders/*genetics/*psychology ; *Drug-Seeking Behavior ; Methamphetamine/administration & dosage ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity/drug effects ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Phenylalanine/genetics ; Polymorphism, Single Nucleotide ; Psychomotor Performance/drug effects ; Quantitative Trait Loci ; Serine/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-07-23
    Description: A newly emerged H7N9 virus has caused 132 human infections with 37 deaths in China since 18 February 2013. Control measures in H7N9 virus-positive live poultry markets have reduced the number of infections; however, the character of the virus, including its pandemic potential, remains largely unknown. We systematically analyzed H7N9 viruses isolated from birds and humans. The viruses were genetically closely related and bound to human airway receptors; some also maintained the ability to bind to avian airway receptors. The viruses isolated from birds were nonpathogenic in chickens, ducks, and mice; however, the viruses isolated from humans caused up to 30% body weight loss in mice. Most importantly, one virus isolated from humans was highly transmissible in ferrets by respiratory droplet. Our findings indicate nothing to reduce the concern that these viruses can transmit between humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qianyi -- Shi, Jianzhong -- Deng, Guohua -- Guo, Jing -- Zeng, Xianying -- He, Xijun -- Kong, Huihui -- Gu, Chunyang -- Li, Xuyong -- Liu, Jinxiong -- Wang, Guojun -- Chen, Yan -- Liu, Liling -- Liang, Libin -- Li, Yuanyuan -- Fan, Jun -- Wang, Jinliang -- Li, Wenhui -- Guan, Lizheng -- Li, Qimeng -- Yang, Huanliang -- Chen, Pucheng -- Jiang, Li -- Guan, Yuntao -- Xin, Xiaoguang -- Jiang, Yongping -- Tian, Guobin -- Wang, Xiurong -- Qiao, Chuanling -- Li, Chengjun -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):410-4. doi: 10.1126/science.1240532. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868922" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens/virology ; Columbidae/virology ; Ducks/virology ; Ferrets/*virology ; Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/metabolism ; Humans ; Influenza A virus/genetics/isolation & purification/*pathogenicity/physiology ; Influenza in Birds/virology ; Influenza, Human/*transmission/*virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biggs, Duan -- Courchamp, Franck -- Martin, Rowan -- Possingham, Hugh P -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1168-9. doi: 10.1126/science.340.6137.1168-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Extinction, Biological ; *Horns ; *Perissodactyla
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-01-12
    Description: An extensive literature shows that astrocytes exhibit metabotropic glutamate receptor 5 (mGluR5)-dependent increases in cytosolic calcium ions (Ca(2+)) in response to glutamatergic transmission and, in turn, modulate neuronal activity by their Ca(2+)-dependent release of gliotransmitters. These findings, based on studies of young rodents, have led to the concept of the tripartite synapse, in which astrocytes actively participate in neurotransmission. Using genomic analysis, immunoelectron microscopy, and two-photon microscopy of astrocytic Ca(2+) signaling in vivo, we found that astrocytic expression of mGluR5 is developmentally regulated and is undetectable after postnatal week 3. In contrast, mGluR3, whose activation inhibits adenylate cyclase but not calcium signaling, was expressed in astrocytes at all developmental stages. Neuroglial signaling in the adult brain may therefore occur in a manner fundamentally distinct from that exhibited during development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569008/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569008/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Wei -- McConnell, Evan -- Pare, Jean-Francois -- Xu, Qiwu -- Chen, Michael -- Peng, Weiguo -- Lovatt, Ditte -- Han, Xiaoning -- Smith, Yoland -- Nedergaard, Maiken -- NS075177/NS/NINDS NIH HHS/ -- NS078304/NS/NINDS NIH HHS/ -- P51OD011132/OD/NIH HHS/ -- P51RR000165/RR/NCRR NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):197-200. doi: 10.1126/science.1226740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307741" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; *Aging ; Animals ; Astrocytes/*metabolism ; Calcium/metabolism ; *Calcium Signaling ; Cerebral Cortex/cytology/*metabolism/ultrastructure ; Female ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism/ultrastructure ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate/agonists/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deichmann, Jessica L -- Alonso, Alfonso -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1316-7. doi: 10.1126/science.342.6164.1316-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Smithsonian Conservation Biology Institute, Washington, DC 20013-7012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337277" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Conservation of Natural Resources ; *Fossil Fuels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Sandra -- Zarin, Daniel -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):805-7. doi: 10.1126/science.1241277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecosystem Services Unit, Winrock International, Arlington, VA 22202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233710" target="_blank"〉PubMed〈/a〉
    Keywords: Climate Change ; *Conservation of Natural Resources ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-07-28
    Description: Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramirez, Steve -- Liu, Xu -- Lin, Pei-Ann -- Suh, Junghyup -- Pignatelli, Michele -- Redondo, Roger L -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):387-91. doi: 10.1126/science.1239073.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-Massachusetts Institute of Technology Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology, MIT, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888038" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Association ; CA1 Region, Hippocampal/cytology/*physiology ; *Conditioning (Psychology) ; Dentate Gyrus/cytology/*physiology ; Dependovirus/genetics ; Doxycycline/administration & dosage ; Fear ; Genes, fos ; Light ; Memory/*physiology ; Mental Recall/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurons/*physiology ; Optogenetics ; Rhodopsin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-09-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morell, Virginia -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1332-5. doi: 10.1126/science.341.6152.1332.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24052284" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; *Biota ; *Conservation of Natural Resources ; Coyotes ; Endangered Species ; *Food Chain ; Geese ; Humans ; Population ; *Predatory Behavior ; Puma ; United States ; Ursidae ; Wolves
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...