ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-25
    Description: This study integrates available surface-based and satellite observations of solar radiation at the surface and the top of the atmosphere (TOA) with a comprehensive set of satellite observations of atmospheric and surface optical properties and a Monte Carlo Aerosol-Cloud-Radiation (MACR) model to estimate the three fundamental components of the planetary solar radiation budget: Albedo at the TOA; atmospheric solar absorption; and surface solar absorption. The MACR incorporates most if not all of our current understanding of the theory of solar radiation physics including modern spectroscopic water vapor data, minor trace gases, absorbing aerosols including its effects inside cloud drops, 3-D cloud scattering effects. The model is subject to a severe test by comparing the simulated solar radiation budget with data from 34 globally distributed state-of-the art BSRN (Baseline Surface Radiation Network) land stations which began data collection in the mid 1990s. The TOA over these sites were obtained from the CERES (Cloud and Earth's Radiant Energy System) satellites. The simulated radiation budget was within 2 Wm−2 for all three components over the BSRN sites. On the other hand, over these same sites, the IPCC-2007 simulation of atmospheric absorption is smaller by 7–8 Wm−2. MACR was then used with a comprehensive set of model input from satellites to simulate global solar radiation budget. The simulated planetary albedo of 29.0% confirms the value (28.6%) observed by CERES. We estimate the atmospheric absorption to be 82 ± 8 Wm−2 to be compared with the 67 Wm−2 by IPCC models as of 2001 and updated to 76 Wm−2 by IPCC-2007. The primary reasons for the 6 Wm−2 larger solar absorption in our estimates are: updated water vapor spectroscopic database (∼1 Wm−2), inclusion of minor gases (∼0.5 Wm−2), black and brown carbon aerosols (∼4 Wm−2), the inclusion of black carbon in clouds (∼1 Wm−2) and 3-D effect of clouds (∼1 Wm−2). The fundamental deduction from our study is the remarkable consistency between satellite measurements of the radiation budget and the parameters (aerosols, clouds and surface reflectivity) which determine the radiation budget. Because of this consistency we can account for and explain the global solar radiation budget of the planet within few Wm−2.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-24
    Description: Langmuir DOI: 10.1021/acs.langmuir.5b02327
    Print ISSN: 0743-7463
    Electronic ISSN: 1520-5827
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract During recent decades, there has been dramatic Arctic sea ice retreat. This has reduced the top‐of‐atmosphere albedo, adding more solar energy to the climate system. There is substantial uncertainty regarding how much ice retreat and associated solar heating will occur in the future. This is relevant to future climate projections, including the timescale for reaching global warming stabilization targets. Here we use satellite observations to estimate the amount of solar energy that would be added in the worst‐case scenario of a complete disappearance of Arctic sea ice throughout the sunlit part of the year. Assuming constant cloudiness, we calculate a global radiative heating of 0.71 W/m2 relative to the 1979 baseline state. This is equivalent to the effect of one trillion tons of CO2 emissions. These results suggest that the additional heating due to complete Arctic sea ice loss would hasten global warming by an estimated 25 years.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-01
    Print ISSN: 1386-1425
    Electronic ISSN: 1873-3557
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-05-12
    Description: Measurements and models show that enhanced aerosol concentrations can augment cloud albedo not only by increasing total droplet cross-sectional area, but also by reducing precipitation and thereby increasing cloud water content and cloud coverage. Aerosol pollution is expected to exert a net cooling influence on the global climate through these conventional mechanisms. Here, we demonstrate an opposite mechanism through which aerosols can reduce cloud cover and thus significantly offset aerosol-induced radiative cooling at the top of the atmosphere on a regional scale. In model simulations, the daytime clearing of trade cumulus is hastened and intensified by solar heating in dark haze (as found over much of the northern Indian Ocean during the northeast monsoon).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ackerman -- Toon -- Stevens -- Heymsfield -- Ramanathan V -- Welton -- New York, N.Y. -- Science. 2000 May 12;288(5468):1042-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, CA 94035, USA. University of Colorado, Boulder, CO 80309, USA. Lawrence Livermore National Laboratory, Livermore, CA 94551, USA. National Center for Atmospheric Research, Boulder, CO 80301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10807573" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-02-13
    Description: The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6 degrees S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Crutzen, P J -- Ramanathan, V -- Andreae, M O -- Brenninkmeijer, C M -- Campos, T -- Cass, G R -- Dickerson, R R -- Fischer, H -- de Gouw, J A -- Hansel, A -- Jefferson, A -- Kley, D -- de Laat, A T -- Lal, S -- Lawrence, M G -- Lobert, J M -- Mayol-Bracero, O L -- Mitra, A P -- Novakov, T -- Oltmans, S J -- Prather, K A -- Reiner, T -- Rodhe, H -- Scheeren, H A -- Sikka, D -- Williams, J -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1031-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Chemistry, Post Office Box 3060, D-55020 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161214" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols ; Agriculture ; *Air Pollution ; Asia ; Asia, Southeastern ; Atmosphere ; Biomass ; Carbon ; Carbon Monoxide ; Coal Ash ; Fossil Fuels ; Industrial Waste ; Nitrogen Oxides ; Oceans and Seas ; Ozone ; Particulate Matter ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-12-12
    Description: Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramanathan, V -- Crutzen, P J -- Kiehl, J T -- Rosenfeld, D -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2119-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California at San Diego, CA 92093, USA. ram@fiji.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739947" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-10-26
    Description: The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. Aerosol particles also reduce solar radiation penetration to the surface, which can suppress precipitation. In the middle troposphere, Asian and to a lesser extent North American pollution is transported from the west. Additional Asian pollution from the east, transported from the monsoon in the upper troposphere, crosses the Mediterranean tropopause, which pollutes the lower stratosphere at middle latitudes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Berresheim, H -- Borrmann, S -- Crutzen, P J -- Dentener, F J -- Fischer, H -- Feichter, J -- Flatau, P J -- Heland, J -- Holzinger, R -- Korrmann, R -- Lawrence, M G -- Levin, Z -- Markowicz, K M -- Mihalopoulos, N -- Minikin, A -- Ramanathan, V -- De Reus, M -- Roelofs, G J -- Scheeren, H A -- Sciare, J -- Schlager, H -- Schultz, M -- Siegmund, P -- Steil, B -- Stephanou, E G -- Stier, P -- Traub, M -- Warneke, C -- Williams, J -- Ziereis, H -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):794-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Chemistry, Post Office Box 3060, 55020 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399583" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols ; *Air Pollutants ; *Air Pollution ; Asia ; Atmosphere ; *Carbon Monoxide ; Climate ; Europe ; Mediterranean Region ; North America ; Ozone ; Weather
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Victor, David G -- Ramanathan, V -- Zaelke, Durwood -- England -- Nature. 2015 Jan 1;517(7532):21. doi: 10.1038/517021b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California San Diego, California, USA. ; Institute for Governance and Sustainable Development, Washington DC, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25557706" target="_blank"〉PubMed〈/a〉
    Keywords: Air Pollution/*prevention & control ; Environmental Policy/*trends ; Global Warming/*prevention & control ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-01-06
    Description: The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in 1984. For the April 1985 period, the global shortwave cloud forcing [-44.5 watts per square meter (W/m(2))] due to the enhancement of planetary albedo, exceeded in magnitude the longwave cloud forcing (31.3 W/m(2)) resulting from the greenhouse effect of clouds. Thus, clouds had a net cooling effect on the earth. This cooling effect is large over the mid-and high-latitude oceans, with values reaching -100 W/m(2). The monthly averaged longwave cloud forcing reached maximum values of 50 to 100 W/m(2) over the convectively disturbed regions of the tropics. However, this heating effect is nearly canceled by a correspondingly large negative shortwave cloud forcing, which indicates the delicately balanced state of the tropics. The size of the observed net cloud forcing is about four times as large as the expected value of radiative forcing from a doubling of CO(2). The shortwave and longwave components of cloud forcing are about ten times as large as those for a CO(2) doubling. Hence, small changes in the cloud-radiative forcing fields can play a significant role as a climate feedback mechanism. For example, during past glaciations a migration toward the equator of the field of strong, negative cloud-radiative forcing, in response to a similar migration of cooler waters, could have significantly amplified oceanic cooling and continental glaciation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramanathan, V -- Cess, R D -- Harrison, E F -- Minnis, P -- Barkstrom, B R -- Ahmad, E -- Hartmann, D -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):57-63.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17780422" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...