ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-12-18
    Description: The pathogenesis of asthma reflects, in part, the activity of T cell cytokines. Murine models support participation of interleukin-4 (IL-4) and the IL-4 receptor in asthma. Selective neutralization of IL-13, a cytokine related to IL-4 that also binds to the alpha chain of the IL-4 receptor, ameliorated the asthma phenotype, including airway hyperresponsiveness, eosinophil recruitment, and mucus overproduction. Administration of either IL-13 or IL-4 conferred an asthma-like phenotype to nonimmunized T cell-deficient mice by an IL-4 receptor alpha chain-dependent pathway. This pathway may underlie the genetic associations of asthma with both the human 5q31 locus and the IL-4 receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897229/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897229/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grunig, G -- Warnock, M -- Wakil, A E -- Venkayya, R -- Brombacher, F -- Rennick, D M -- Sheppard, D -- Mohrs, M -- Donaldson, D D -- Locksley, R M -- Corry, D B -- 03344/PHS HHS/ -- 47412/PHS HHS/ -- K08 HL003344/HL/NHLBI NIH HHS/ -- T32 HL07185/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2261-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856950" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Allergens/immunology ; Animals ; Asthma/genetics/*immunology/pathology/physiopathology ; Bronchial Hyperreactivity ; Bronchoalveolar Lavage Fluid/cytology ; Chromosomes, Human, Pair 5 ; Goblet Cells/pathology ; Humans ; Immunoglobulin Fc Fragments ; Interleukin-13/antagonists & inhibitors/genetics/pharmacology/*physiology ; Interleukin-13 Receptor alpha1 Subunit ; Interleukin-4/genetics/pharmacology/*physiology ; Mice ; Mice, Inbred BALB C ; Ovalbumin/immunology ; Phenotype ; Receptors, Interleukin/genetics/immunology/physiology ; Receptors, Interleukin-13 ; Receptors, Interleukin-4/genetics/physiology ; Recombinant Fusion Proteins/pharmacology ; Th2 Cells/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-21
    Description: Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millien, Valentine Ongeri -- Lu, Wen -- Shaw, Joanne -- Yuan, Xiaoyi -- Mak, Garbo -- Roberts, Luz -- Song, Li-Zhen -- Knight, J Morgan -- Creighton, Chad J -- Luong, Amber -- Kheradmand, Farrah -- Corry, David B -- AI057696/AI/NIAID NIH HHS/ -- AI070973/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- HL75243/HL/NHLBI NIH HHS/ -- K02 HL075243/HL/NHLBI NIH HHS/ -- R01 AI057696/AI/NIAID NIH HHS/ -- R01 HL095382/HL/NHLBI NIH HHS/ -- R01 HL117181/HL/NHLBI NIH HHS/ -- R25GM56929/GM/NIGMS NIH HHS/ -- T32 GM088129/GM/NIGMS NIH HHS/ -- T32GM088129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):792-6. doi: 10.1126/science.1240342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus niger/growth & development/*immunology ; Aspergillus oryzae/enzymology ; Bronchoalveolar Lavage Fluid/cytology ; Epithelial Cells/immunology/metabolism ; Fibrinogen/*metabolism ; Immunity, Innate ; Ligands ; Macrophage Activation ; Macrophages/immunology/metabolism/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peptide Hydrolases/immunology/*metabolism ; Respiratory Hypersensitivity/*immunology/*metabolism ; Respiratory Mucosa/cytology/immunology/metabolism ; Th2 Cells/immunology ; Toll-Like Receptor 4/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2013-01-20
    Description: RNA interference mediated through antisense transcripts is a fundamentally important mechanism regulating gene expression that remains incompletely understood. Here, we have used next-generation sequencing to determine from mouse CD4+ T cells the functional implications of antisense transcripts binding to argonaute (AGO) proteins that mediate RNA interference and post-transcriptional gene silencing. This effort identified 90 new microRNAs (miRNAs) and six endogenous hairpin RNA-derived small interfering RNAs (siRNAs) mapping to distinct introns. Unexpectedly, 69 miRNAs were expressed as non-canonical isomiRs as the dominant AGO-binding transcript, with extensive 3' terminal nucleotide modifications. Furthermore, differential expression analysis between AGO1- and AGO2-bound miRNAs suggested preferential binding of isomiRs ending with 3' adenine residues to AGO1 and 3' uridine residues to AGO2. Analysis of the putative targets of all miRNAs suggested a striking preference for regulating transcription and transcription factors with additional evidence of a functional division of labor between AGO proteins in this regard. We further provide evidence that multiple mitochondrial genomic loci serve as the source of endogenous cis -natural antisense transcripts. These findings imply diversity in AGO protein function based on differential miRNA binding and indicate that RNA interference-based gene regulation is more complex than previously recognized.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...