ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-02
    Description: Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)-beta pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Min -- Bardia, Aditya -- Wittner, Ben S -- Stott, Shannon L -- Smas, Malgorzata E -- Ting, David T -- Isakoff, Steven J -- Ciciliano, Jordan C -- Wells, Marissa N -- Shah, Ajay M -- Concannon, Kyle F -- Donaldson, Maria C -- Sequist, Lecia V -- Brachtel, Elena -- Sgroi, Dennis -- Baselga, Jose -- Ramaswamy, Sridhar -- Toner, Mehmet -- Haber, Daniel A -- Maheswaran, Shyamala -- EB008047/EB/NIBIB NIH HHS/ -- K12 CA087723/CA/NCI NIH HHS/ -- NCI CA129933/CA/NCI NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- U01 EB012493/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):580-4. doi: 10.1126/science.1228522.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/genetics/metabolism ; Breast Neoplasms/blood/genetics/*pathology ; Cell Count ; Cell Movement ; Epithelial Cells/pathology ; *Epithelial-Mesenchymal Transition ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Mesoderm/pathology ; Mice ; Neoplasm Transplantation ; Neoplastic Cells, Circulating/metabolism/*pathology ; RNA, Neoplasm/chemistry/genetics ; Transcription, Genetic ; Transforming Growth Factor beta/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-08
    Description: Swi2/Snf2-type ATPases regulate genome-associated processes such as transcription, replication and repair by catalysing the disruption, assembly or remodelling of nucleosomes or other protein-DNA complexes. It has been suggested that ATP-driven motor activity along DNA disrupts target protein-DNA interactions in the remodelling reaction. However, the complex and highly specific remodelling reactions are poorly understood, mostly because of a lack of high-resolution structural information about how remodellers bind to their substrate proteins. Mot1 (modifier of transcription 1 in Saccharomyces cerevisiae, denoted BTAF1 in humans) is a Swi2/Snf2 enzyme that specifically displaces the TATA box binding protein (TBP) from the promoter DNA and regulates transcription globally by generating a highly dynamic TBP pool in the cell. As a Swi2/Snf2 enzyme that functions as a single polypeptide and interacts with a relatively simple substrate, Mot1 offers an ideal system from which to gain a better understanding of this important enzyme family. To reveal how Mot1 specifically disrupts TBP-DNA complexes, we combined crystal and electron microscopy structures of Mot1-TBP from Encephalitozoon cuniculi with biochemical studies. Here we show that Mot1 wraps around TBP and seems to act like a bottle opener: a spring-like array of 16 HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats grips the DNA-distal side of TBP via loop insertions, and the Swi2/Snf2 domain binds to upstream DNA, positioned to weaken the TBP-DNA interaction by DNA translocation. A 'latch' subsequently blocks the DNA-binding groove of TBP, acting as a chaperone to prevent DNA re-association and ensure efficient promoter clearance. This work shows how a remodelling enzyme can combine both motor and chaperone activities to achieve functional specificity using a conserved Swi2/Snf2 translocase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wollmann, Petra -- Cui, Sheng -- Viswanathan, Ramya -- Berninghausen, Otto -- Wells, Melissa N -- Moldt, Manuela -- Witte, Gregor -- Butryn, Agata -- Wendler, Petra -- Beckmann, Roland -- Auble, David T -- Hopfner, Karl-Peter -- GM55763/GM/NIGMS NIH HHS/ -- R01 GM055763/GM/NIGMS NIH HHS/ -- R01 GM055763-13/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jul 6;475(7356):403-7. doi: 10.1038/nature10215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Ludwig-Maximilians University, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21734658" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism/ultrastructure ; Encephalitozoon cuniculi/*chemistry ; Fungal Proteins/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Promoter Regions, Genetic/genetics ; Protein Conformation ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Substrate Specificity ; TATA-Box Binding Protein/*chemistry/*metabolism/ultrastructure ; Transcription Factor TFIIB/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...