ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-16
    Description: Contractile actomyosin rings drive various fundamental morphogenetic processes ranging from cytokinesis to wound healing. Actomyosin rings are generally thought to function by circumferential contraction. Here, we show that the spreading of the enveloping cell layer (EVL) over the yolk cell during zebrafish gastrulation is driven by a contractile actomyosin ring. In contrast to previous suggestions, we find that this ring functions not only by circumferential contraction but also by a flow-friction mechanism. This generates a pulling force through resistance against retrograde actomyosin flow. EVL spreading proceeds normally in situations where circumferential contraction is unproductive, indicating that the flow-friction mechanism is sufficient. Thus, actomyosin rings can function in epithelial morphogenesis through a combination of cable-constriction and flow-friction mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behrndt, Martin -- Salbreux, Guillaume -- Campinho, Pedro -- Hauschild, Robert -- Oswald, Felix -- Roensch, Julia -- Grill, Stephan W -- Heisenberg, Carl-Philipp -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):257-60. doi: 10.1126/science.1224143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066079" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*physiology ; Animals ; Constriction ; Epithelial Cells/cytology/*physiology ; Friction ; *Gastrulation ; Yolk Sac/*cytology ; Zebrafish/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-19
    Description: Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, Michele -- Hauschild, Robert -- Schwarz, Jan -- Moussion, Christine -- de Vries, Ingrid -- Legler, Daniel F -- Luther, Sanjiv A -- Bollenbach, Tobias -- Sixt, Michael -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):328-32. doi: 10.1126/science.1228456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemokine CCL19/metabolism ; Chemokine CCL21/chemistry/*immunology ; Chemotaxis/*immunology ; Dendritic Cells/*immunology ; Heparitin Sulfate/chemistry ; Immobilized Proteins/chemistry/immunology ; Lymphatic Vessels/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Receptors, CCR7/genetics ; Skin/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-20
    Description: The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xu -- Grandont, Laurie -- Li, Hongjiang -- Hauschild, Robert -- Paque, Sebastien -- Abuzeineh, Anas -- Rakusova, Hana -- Benkova, Eva -- Perrot-Rechenmann, Catherine -- Friml, Jiri -- 282300/European Research Council/International -- England -- Nature. 2014 Dec 4;516(7529):90-3. doi: 10.1038/nature13889. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria [2] Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, B-9052 Gent, Belgium [3] Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium. ; Institut des Sciences du Vegetal, UPR2355 CNRS, Saclay Plant Sciences LabEx, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, Cedex, France. ; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria. ; 1] Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, B-9052 Gent, Belgium [2] Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409144" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/metabolism ; Cell Proliferation ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Hypocotyl/cytology/metabolism ; Indoleacetic Acids/*metabolism ; Microtubules/*metabolism ; Plant Proteins/genetics/*metabolism ; Plant Roots/cytology/metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0014-5793
    Keywords: Arabidopsis thaliana ; Cysteine synthesis ; O-Acetylserine (thiol) lyase ; Sulfate assimilation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-08-15
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-21
    Description: The molecular mechanisms underlying phenotypic variation in isogenic bacterial populations remain poorly understood. We report that AcrAB-TolC, the main multidrug efflux pump of Escherichia coli, exhibits a strong partitioning bias for old cell poles by a segregation mechanism that is mediated by ternary AcrAB-TolC complex formation. Mother cells inheriting old poles are phenotypically distinct and display increased drug efflux activity relative to daughters. Consequently, we find systematic and long-lived growth differences between mother and daughter cells in the presence of subinhibitory drug concentrations. A simple model for biased partitioning predicts a population structure of long-lived and highly heterogeneous phenotypes. This straightforward mechanism of generating sustained growth rate differences at subinhibitory antibiotic concentrations has implications for understanding the emergence of multidrug resistance in bacteria.
    Keywords: Cell Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-05-01
    Print ISSN: 0924-4247
    Electronic ISSN: 1873-3069
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...