ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (159)
  • American Association for the Advancement of Science (AAAS)  (159)
  • American Association of Petroleum Geologists (AAPG)
  • 2010-2014  (159)
  • 1950-1954
  • 2012  (159)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (159)
  • American Association of Petroleum Geologists (AAPG)
  • Nature Publishing Group (NPG)  (268)
Years
  • 2010-2014  (159)
  • 1950-1954
Year
  • 1
    Publication Date: 2012-11-03
    Description: Multiple cancer-associated single-nucleotide polymorphisms (SNPs) have been mapped to conserved sequences within a 500-kilobase region upstream of the MYC oncogene on human chromosome 8q24. These SNPs may affect cancer development through altered regulation of MYC expression, but this hypothesis has been difficult to confirm. We generated mice deficient in Myc-335, a putative MYC regulatory element that contains rs6983267, a SNP accounting for more human cancer-related morbidity than any other genetic variant or mutation. In Myc-335 null mice, Myc transcripts were expressed in the intestinal crypts in a pattern similar to that in wild-type mice but at modestly reduced levels. The mutant mice displayed no overt phenotype but were markedly resistant to intestinal tumorigenesis induced by the APCmin mutation. These results establish that a cancer-associated SNP identified in human genome-wide association studies has a functional effect in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sur, Inderpreet Kaur -- Hallikas, Outi -- Vaharautio, Anna -- Yan, Jian -- Turunen, Mikko -- Enge, Martin -- Taipale, Minna -- Karhu, Auli -- Aaltonen, Lauri A -- Taipale, Jussi -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1360-3. doi: 10.1126/science.1228606. Epub 2012 Nov 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Science for Life Center, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23118011" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/genetics/pathology ; Animals ; Cell Transformation, Neoplastic/*genetics ; Colon/metabolism/pathology ; Enhancer Elements, Genetic/*genetics ; Humans ; Ileum/metabolism/pathology ; Intestinal Neoplasms/*genetics/pathology ; Mice ; Mice, Mutant Strains ; Polymorphism, Single Nucleotide ; Proto-Oncogene Proteins c-myc/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-24
    Description: Phenotypic variability in genetic disease is usually attributed to genetic background variation or environmental influence. Here, we show that deletion of a single gene, Trim28 (Kap1 or Tif1beta), from the maternal germ line alone, on an otherwise identical genetic background, results in severe phenotypic and epigenetic variability that leads to embryonic lethality. We identify early and minute epigenetic variations in blastomeres of the preimplantation embryo of these animals, suggesting that the embryonic lethality may result from the misregulation of genomic imprinting in mice lacking maternal Trim28. Our results reveal the long-range effects of a maternal gene deletion on epigenetic memory and illustrate the delicate equilibrium of maternal and zygotic factors during nuclear reprogramming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Messerschmidt, Daniel M -- de Vries, Wilhelmine -- Ito, Mitsuteru -- Solter, Davor -- Ferguson-Smith, Anne -- Knowles, Barbara B -- 079249/Wellcome Trust/United Kingdom -- 095606/Wellcome Trust/United Kingdom -- MR/J001597/1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1499-502. doi: 10.1126/science.1216154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Development Group, Institute of Medical Biology, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/physiology ; DNA Methylation ; Down-Regulation ; *Embryo Loss ; Embryo, Mammalian/*physiology ; Embryonic Development ; *Epigenesis, Genetic ; Female ; Gene Expression Regulation, Developmental ; *Genomic Imprinting ; Insulin-Like Growth Factor II/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/*genetics/*physiology ; Oligonucleotide Array Sequence Analysis ; Oocytes/*physiology ; Phenotype ; RNA, Long Noncoding ; RNA, Untranslated/genetics/metabolism ; Repressor Proteins/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-24
    Description: Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, You-Qiang -- Sugiura, Koji -- Sun, Fengyun -- Pendola, Janice K -- Cox, Gregory A -- Handel, Mary Ann -- Schimenti, John C -- Eppig, John J -- CA34196/CA/NCI NIH HHS/ -- HD42137/HD/NICHD NIH HHS/ -- P01 HD042137/HD/NICHD NIH HHS/ -- P30 CA034196/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1496-9. doi: 10.1126/science.1214680.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442484" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Breaks, Double-Stranded ; Embryonic Development ; Female ; *Fertility ; Meiosis ; Mice ; Molecular Sequence Data ; Mutation ; Oocytes/*physiology ; *Oogenesis ; Phenotype ; Protein Phosphatase 2/genetics/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Retroelements ; Transcription, Genetic ; Transcriptome ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-09
    Description: Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we show that the extracellular leucine-rich repeat fibronectin containing 1 (Elfn1) protein is selectively expressed by O-LM interneurons and regulates presynaptic release probability to direct the formation of highly facilitating pyramidal-O-LM synapses. Thus, postsynaptic expression of Elfn1 in O-LM interneurons regulates presynaptic release probability, which confers target-specific synaptic properties to pyramidal cell axons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sylwestrak, Emily L -- Ghosh, Anirvan -- R01 NS067216/NS/NINDS NIH HHS/ -- R01NS067216/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):536-40. doi: 10.1126/science.1222482. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; CA1 Region, Hippocampal/*metabolism ; Cells, Cultured ; Gene Knockdown Techniques ; Green Fluorescent Proteins/genetics/metabolism ; HEK293 Cells ; Humans ; Interneurons/*metabolism ; Mice ; Nerve Tissue Proteins/genetics/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Rats, Inbred LEC ; Synapses/genetics/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-31
    Description: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamming, Dudley W -- Ye, Lan -- Katajisto, Pekka -- Goncalves, Marcus D -- Saitoh, Maki -- Stevens, Deanna M -- Davis, James G -- Salmon, Adam B -- Richardson, Arlan -- Ahima, Rexford S -- Guertin, David A -- Sabatini, David M -- Baur, Joseph A -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1638-43. doi: 10.1126/science.1215135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Female ; Gluconeogenesis ; Glucose/metabolism ; Glucose Clamp Technique ; Homeostasis ; Insulin/administration & dosage/blood ; *Insulin Resistance ; Liver/metabolism ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Muscle, Skeletal/metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-22
    Description: We describe an autonomous DNA nanorobot capable of transporting molecular payloads to cells, sensing cell surface inputs for conditional, triggered activation, and reconfiguring its structure for payload delivery. The device can be loaded with a variety of materials in a highly organized fashion and is controlled by an aptamer-encoded logic gate, enabling it to respond to a wide array of cues. We implemented several different logical AND gates and demonstrate their efficacy in selective regulation of nanorobot function. As a proof of principle, nanorobots loaded with combinations of antibody fragments were used in two different types of cell-signaling stimulation in tissue culture. Our prototype could inspire new designs with different selectivities and biologically active payloads for cell-targeting tasks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Douglas, Shawn M -- Bachelet, Ido -- Church, George M -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):831-4. doi: 10.1126/science.1214081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/immunology ; Antigens, Differentiation, Myelomonocytic/immunology ; Cell Line, Tumor ; *DNA/chemistry ; Histocompatibility Antigens Class I/immunology ; Humans ; Immunoglobulin Fragments/immunology ; Metal Nanoparticles ; Mice ; Molecular Conformation ; *Nanostructures ; *Robotics ; Sialic Acid Binding Ig-like Lectin 3 ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-24
    Description: Diseases of the esophageal epithelium (EE), such as reflux esophagitis and cancer, are rising in incidence. Despite this, the cellular behaviors underlying EE homeostasis and repair remain controversial. Here, we show that in mice, EE is maintained by a single population of cells that divide stochastically to generate proliferating and differentiating daughters with equal probability. In response to challenge with all-trans retinoic acid (atRA), the balance of daughter cell fate is unaltered, but the rate of cell division increases. However, after wounding, cells reversibly switch to producing an excess of proliferating daughters until the wound has closed. Such fate-switching enables a single progenitor population to both maintain and repair tissue without the need for a "reserve" slow-cycling stem cell pool.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527005/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527005/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doupe, David P -- Alcolea, Maria P -- Roshan, Amit -- Zhang, Gen -- Klein, Allon M -- Simons, Benjamin D -- Jones, Philip H -- 079249/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- G0601740/Medical Research Council/United Kingdom -- G0700600/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- MC_U105370181/Medical Research Council/United Kingdom -- U.1053.00.010(70181)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1091-3. doi: 10.1126/science.1218835. Epub 2012 Jul 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22821983" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Differentiation/drug effects ; Cell Division/drug effects ; Cell Proliferation/drug effects ; Cells, Cultured ; Doxycycline/pharmacology ; Epithelial Cells/*physiology ; Epithelium/drug effects/metabolism/*physiology ; Esophagus/*cytology/*physiology ; Green Fluorescent Proteins/biosynthesis ; Histones/biosynthesis ; Mice ; Mice, Inbred C57BL ; Recombinant Fusion Proteins/biosynthesis ; *Regeneration ; Stem Cells/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-01-24
    Description: Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent spines were frequently synchronized in spontaneously active networks, thereby forming dendritic foci that received locally convergent inputs from presynaptic cell assemblies. This precise subcellular geometry manifested itself during N-methyl-D-aspartate receptor-dependent circuit remodeling. Thus, clustered synaptic plasticity is innately programmed to compartmentalize correlated inputs along dendrites and may reify nonlinear synaptic integration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Naoya -- Kitamura, Kazuo -- Matsuo, Naoki -- Mayford, Mark -- Kano, Masanobu -- Matsuki, Norio -- Ikegaya, Yuji -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267814" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; CA3 Region, Hippocampal/cytology/physiology ; Calcium/metabolism ; Dendritic Spines/*physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/*physiology ; Neuronal Plasticity ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Somatosensory Cortex/cytology/physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redmond, Stephanie A -- Chan, Jonah R -- R01 NS062796/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):161-2. doi: 10.1126/science.1221689.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499927" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Demyelinating Diseases/*physiopathology/therapy ; Macrophages/*physiology ; Mice ; Myelin Sheath/*physiology ; Oligodendroglia/*physiology ; Parabiosis ; Phagocytosis ; Spinal Cord Diseases/*physiopathology/therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-05-26
    Description: The transport of pyruvate, the end product of glycolysis, into mitochondria is an essential process that provides the organelle with a major oxidative fuel. Although the existence of a specific mitochondrial pyruvate carrier (MPC) has been anticipated, its molecular identity remained unknown. We report that MPC is a heterocomplex formed by two members of a family of previously uncharacterized membrane proteins that are conserved from yeast to mammals. Members of the MPC family were found in the inner mitochondrial membrane, and yeast mutants lacking MPC proteins showed severe defects in mitochondrial pyruvate uptake. Coexpression of mouse MPC1 and MPC2 in Lactococcus lactis promoted transport of pyruvate across the membrane. These observations firmly establish these proteins as essential components of the MPC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herzig, Sebastien -- Raemy, Etienne -- Montessuit, Sylvie -- Veuthey, Jean-Luc -- Zamboni, Nicola -- Westermann, Benedikt -- Kunji, Edmund R S -- Martinou, Jean-Claude -- MC_U105663139/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):93-6. doi: 10.1126/science.1218530. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Geneva, Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anion Transport Proteins/chemistry/genetics/*metabolism ; Biological Transport ; Biosynthetic Pathways ; Culture Media ; Lactococcus lactis/genetics/metabolism ; Leucine/metabolism ; Mice ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mitochondrial Membranes/*metabolism ; Molecular Sequence Data ; Proprotein Convertase 1/chemistry/genetics/*metabolism ; Proprotein Convertase 2 ; Pyruvic Acid/*metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Thioctic Acid/biosynthesis/metabolism ; Valine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 May 18;336(6083):790-1. doi: 10.1126/science.336.6083.790.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22605724" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Axons/pathology ; Blast Injuries/metabolism/*pathology ; Brain/*pathology ; Brain Chemistry ; Brain Injury, Chronic/metabolism/*pathology ; Humans ; Male ; Mice ; Middle Aged ; *Military Personnel ; *Veterans ; Young Adult ; tau Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-08-11
    Description: Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" vaccines for influenza. However, a substantial part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and CR9114, that protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dreyfus, Cyrille -- Laursen, Nick S -- Kwaks, Ted -- Zuijdgeest, David -- Khayat, Reza -- Ekiert, Damian C -- Lee, Jeong Hyun -- Metlagel, Zoltan -- Bujny, Miriam V -- Jongeneelen, Mandy -- van der Vlugt, Remko -- Lamrani, Mohammed -- Korse, Hans J W M -- Geelen, Eric -- Sahin, Ozcan -- Sieuwerts, Martijn -- Brakenhoff, Just P J -- Vogels, Ronald -- Li, Olive T W -- Poon, Leo L M -- Peiris, Malik -- Koudstaal, Wouter -- Ward, Andrew B -- Wilson, Ian A -- Goudsmit, Jaap -- Friesen, Robert H E -- GM080209/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1343-8. doi: 10.1126/science.1222908. Epub 2012 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22878502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/chemistry/*immunology ; Antibodies, Neutralizing/chemistry/immunology ; Conserved Sequence ; Hemagglutinin Glycoproteins, Influenza Virus/*immunology ; Humans ; Immunodominant Epitopes/chemistry/*immunology ; Influenza B virus/*immunology ; Influenza Vaccines/*immunology ; Mice ; Molecular Sequence Data ; Neutralization Tests ; Orthomyxoviridae Infections/*prevention & control ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taubes, Gary -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):29. doi: 10.1126/science.335.6064.29.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223788" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/metabolism ; Animals ; Anticarcinogenic Agents/*therapeutic use ; Blood Glucose/metabolism ; Clinical Trials as Topic ; Diabetes Mellitus, Type 2/drug therapy ; Humans ; Hypoglycemic Agents/pharmacology/*therapeutic use ; Insulin/blood/metabolism ; Metformin/pharmacology/*therapeutic use ; Mice ; Neoplasms/epidemiology/*prevention & control ; Protein-Serine-Threonine Kinases/metabolism ; Somatomedins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-03-03
    Description: Endogenous thymic regeneration is a crucial function that allows for renewal of immune competence after stress, infection, or immunodepletion. However, the mechanisms governing this regeneration remain poorly understood. We detail such a mechanism, centered on interleukin-22 (IL-22) and triggered by the depletion of CD4(+)CD8(+) double-positive thymocytes. Intrathymic levels of IL-22 were increased after thymic insult, and thymic recovery was impaired in IL-22-deficient mice. IL-22, which signaled through thymic epithelial cells and promoted their proliferation and survival, was up-regulated by radio-resistant RORgamma(t)(+)CCR6(+)NKp46(-) lymphoid tissue inducer cells after thymic injury in an IL-23-dependent manner. Administration of IL-22 enhanced thymic recovery after total body irradiation. These studies reveal mechanisms of endogenous thymic repair and offer innovative regenerative strategies for improving immune competence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudakov, Jarrod A -- Hanash, Alan M -- Jenq, Robert R -- Young, Lauren F -- Ghosh, Arnab -- Singer, Natalie V -- West, Mallory L -- Smith, Odette M -- Holland, Amanda M -- Tsai, Jennifer J -- Boyd, Richard L -- van den Brink, Marcel R M -- AI080455/AI/NIAID NIH HHS/ -- CA107096/CA/NCI NIH HHS/ -- HL069929/HL/NHLBI NIH HHS/ -- HL095075/HL/NHLBI NIH HHS/ -- R01 AI080455/AI/NIAID NIH HHS/ -- R01 CA107096/CA/NCI NIH HHS/ -- R01 HL069929/HL/NHLBI NIH HHS/ -- R01 HL095075/HL/NHLBI NIH HHS/ -- T32 CA009207/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):91-5. doi: 10.1126/science.1218004. Epub 2012 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. dudakovj@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; Cell Proliferation ; Cell Survival ; Dendritic Cells/physiology ; Epithelial Cells/cytology/physiology ; Interleukin-23/metabolism ; Interleukins/administration & dosage/deficiency/genetics/*metabolism ; Lymphocytes/cytology/physiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/genetics/metabolism ; Radiation Dosage ; Receptors, Interleukin/metabolism ; Recombinant Proteins/administration & dosage ; *Regeneration ; Signal Transduction ; Thymocytes/*physiology ; Thymus Gland/cytology/immunology/*physiology/radiation effects ; Up-Regulation ; Whole-Body Irradiation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-07-17
    Description: Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirota, Tsuyoshi -- Lee, Jae Wook -- St John, Peter C -- Sawa, Mariko -- Iwaisako, Keiko -- Noguchi, Takako -- Pongsawakul, Pagkapol Y -- Sonntag, Tim -- Welsh, David K -- Brenner, David A -- Doyle, Francis J 3rd -- Schultz, Peter G -- Kay, Steve A -- GM074868/GM/NIGMS NIH HHS/ -- GM085764/GM/NIGMS NIH HHS/ -- GM096873/GM/NIGMS NIH HHS/ -- MH051573/MH/NIMH NIH HHS/ -- MH082945/MH/NIMH NIH HHS/ -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01 GM041804/GM/NIGMS NIH HHS/ -- R01 GM074868/GM/NIGMS NIH HHS/ -- R01 GM096873/GM/NIGMS NIH HHS/ -- R01 MH051573/MH/NIMH NIH HHS/ -- R01 MH082945/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1094-7. doi: 10.1126/science.1223710. Epub 2012 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798407" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Carbazoles/chemistry/isolation & purification/*pharmacology ; Cell Line, Tumor ; Circadian Clocks/*drug effects ; Cryptochromes/*agonists/metabolism ; Gluconeogenesis/drug effects/genetics ; Glucose-6-Phosphatase/genetics ; HEK293 Cells ; Hepatocytes/drug effects/metabolism ; Humans ; Liver/cytology/drug effects/metabolism ; Mice ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; Protein Stability/drug effects ; Proteolysis/drug effects ; *Small Molecule Libraries ; Sulfonamides/chemistry/isolation & purification/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-12-15
    Description: Mammalian imprinted genes often cluster with long noncoding (lnc) RNAs. Three lncRNAs that induce parental-specific silencing show hallmarks indicating that their transcription is more important than their product. To test whether Airn transcription or product silences the Igf2r gene, we shortened the endogenous lncRNA to different lengths. The results excluded a role for spliced and unspliced Airn lncRNA products and for Airn nuclear size and location in silencing Igf2r. Instead, silencing only required Airn transcriptional overlap of the Igf2r promoter, which interferes with RNA polymerase II recruitment in the absence of repressive chromatin. Such a repressor function for lncRNA transcriptional overlap reveals a gene silencing mechanism that may be widespread in the mammalian genome, given the abundance of lncRNA transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Latos, Paulina A -- Pauler, Florian M -- Koerner, Martha V -- Senergin, H Basak -- Hudson, Quanah J -- Stocsits, Roman R -- Allhoff, Wolfgang -- Stricker, Stefan H -- Klement, Ruth M -- Warczok, Katarzyna E -- Aumayr, Karin -- Pasierbek, Pawel -- Barlow, Denise P -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1469-72. doi: 10.1126/science.1228110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239737" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Cells, Cultured ; *Gene Silencing ; *Genomic Imprinting ; Mice ; Multigene Family ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA, Long Noncoding/genetics/*metabolism ; Receptor, IGF Type 2/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cannon, Christopher P -- Cannon, Paul J -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1386-7. doi: 10.1126/science.1224398.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA. cpcannon@partners.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700906" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiovascular Diseases/chemically induced ; Cyclooxygenase 2/genetics/*metabolism ; Cyclooxygenase 2 Inhibitors/*adverse effects/pharmacology ; Endothelial Cells/*enzymology ; Epoprostenol/metabolism ; Genetic Engineering ; Humans ; Hypertension/*chemically induced ; Mice ; Muscle, Smooth, Vascular/*enzymology ; Risk Factors ; Thrombosis/*chemically induced
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-01-10
    Description: In response to stimulation, B lymphocytes pursue a large number of distinct fates important for immune regulation. Whether each cell's fate is determined by external direction, internal stochastic processes, or directed asymmetric division is unknown. Measurement of times to isotype switch, to develop into a plasmablast, and to divide or to die for thousands of cells indicated that each fate is pursued autonomously and stochastically. As a consequence of competition between these processes, censorship of alternative outcomes predicts intricate correlations that are observed in the data. Stochastic competition can explain how the allocation of a proportion of B cells to each cell fate is achieved. The B cell may exemplify how other complex cell differentiation systems are controlled.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duffy, Ken R -- Wellard, Cameron J -- Markham, John F -- Zhou, Jie H S -- Holmberg, Ross -- Hawkins, Edwin D -- Hasbold, Jhagvaral -- Dowling, Mark R -- Hodgkin, Philip D -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):338-41. doi: 10.1126/science.1213230. Epub 2012 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hamilton Institute, National University of Ireland, Maynooth, Ireland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223740" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology/*immunology ; Cell Death ; Cell Differentiation ; Cell Division ; Female ; Immunoglobulin Class Switching ; *Lymphocyte Activation ; Mice ; Models, Immunological ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-15
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canto, Carles -- Auwerx, Johan -- 231138/European Research Council/International -- New York, N.Y. -- Science. 2012 May 11;336(6082):675-6. doi: 10.1126/science.1222646.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nestle Institute of Health Sciences, Ecole Polytechnique Federale de Lausanne Campus, Quartier de l'Innovation, Batiment G, CH-1015 Lausanne, Switzerland. carlos.cantoalvarez@rd.nestle.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582248" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/metabolism ; Adipose Tissue, White/*metabolism ; Animals ; Fasting/metabolism ; Fibroblast Growth Factors/blood/*metabolism/pharmacology ; Humans ; Metabolic Syndrome X/metabolism ; Mice ; Overweight/metabolism ; PPAR gamma/metabolism ; Signal Transduction ; *Thermogenesis ; Trans-Activators/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-01-28
    Description: During the activation of humoral immune responses, B cells acquire antigen for subsequent presentation to cognate T cells. Here we show that after mouse B cells accumulate antigen, it is maintained in a polarized distribution for extended periods in vivo. Using high-throughput imaging flow cytometry, we observed that this polarization is preserved during B cell division, promoting asymmetric antigen segregation among progeny. Antigen inheritance correlates with the ability of progeny to activate T cells: Daughter cells receiving larger antigen stores exhibit a prolonged capacity to present antigen, which renders them more effective in competing for T cell help. The generation of progeny with differential capacities for antigen presentation may have implications for somatic hypermutation and class switching during affinity maturation and as B cells commit to effector cell fates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thaunat, Olivier -- Granja, Aitor G -- Barral, Patricia -- Filby, Andrew -- Montaner, Beatriz -- Collinson, Lucy -- Martinez-Martin, Nuria -- Harwood, Naomi E -- Bruckbauer, Andreas -- Batista, Facundo D -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):475-9. doi: 10.1126/science.1214100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigens/*analysis/*immunology ; B-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cells, Cultured ; Coculture Techniques ; Computer Simulation ; Flow Cytometry ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Muramidase/analysis/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-06-23
    Description: Telomerase activity controls telomere length and plays a pivotal role in stem cells, aging, and cancer. Here, we report a molecular link between Wnt/beta-catenin signaling and the expression of the telomerase subunit Tert. beta-Catenin-deficient mouse embryonic stem (ES) cells have short telomeres; conversely, ES cell expressing an activated form of beta-catenin (beta-cat(DeltaEx3/+)) have long telomeres. We show that beta-catenin regulates Tert expression through the interaction with Klf4, a core component of the pluripotency transcriptional network. beta-Catenin binds to the Tert promoter in a mouse intestinal tumor model and in human carcinoma cells. We uncover a previously unknown link between the stem cell and oncogenic potential whereby beta-catenin regulates Tert expression, and thereby telomere length, which could be critical in human regenerative therapy and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffmeyer, Katrin -- Raggioli, Angelo -- Rudloff, Stefan -- Anton, Roman -- Hierholzer, Andreas -- Del Valle, Ignacio -- Hein, Kerstin -- Vogt, Riana -- Kemler, Rolf -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1549-54. doi: 10.1126/science.1218370.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723415" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*metabolism ; Animals ; Cell Line, Tumor ; Embryonic Stem Cells/*metabolism ; HEK293 Cells ; Humans ; Kruppel-Like Transcription Factors/metabolism ; Mice ; Neoplasms/genetics/*metabolism ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; Telomerase/*genetics/metabolism ; Telomere/metabolism/ultrastructure ; Telomere Homeostasis ; Transcription Initiation Site ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-10-09
    Description: Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants. Basic studies show that ketamine rapidly induces synaptogenesis and reverses the synaptic deficits caused by chronic stress. These findings highlight the central importance of homeostatic control of mood circuit connections and form the basis of a synaptogenic hypothesis of depression and treatment response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duman, Ronald S -- Aghajanian, George K -- R01 MH093897/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):68-72. doi: 10.1126/science.1222939.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA. ronald.duman@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042884" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/*administration & dosage ; Atrophy/pathology ; Behavior/drug effects ; Depressive Disorder, Major/*drug therapy/pathology/*physiopathology ; Homeostasis/drug effects ; Humans ; Mice ; Neurons/pathology ; Stress, Psychological/pathology/physiopathology ; Synapses/*drug effects/pathology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-06-16
    Description: In central neurons, information flows from the dendritic surface toward the axon terminals. We found that during in vitro gamma oscillations, ectopic action potentials are generated at high frequency in the distal axon of pyramidal cells (PCs) but do not invade the soma. At the same time, axo-axonic cells (AACs) discharged at a high rate and tonically inhibited the axon initial segment, which can be instrumental in preventing ectopic action potential back-propagation. We found that activation of a single AAC substantially lowered soma invasion by antidromic action potential in postsynaptic PCs. In contrast, activation of soma-inhibiting basket cells had no significant impact. These results demonstrate that AACs can separate axonal from somatic activity and maintain the functional polarization of cortical PCs during network oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dugladze, Tamar -- Schmitz, Dietmar -- Whittington, Miles A -- Vida, Imre -- Gloveli, Tengis -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1458-61. doi: 10.1126/science.1222017.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurophysiology, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700932" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Axons/*physiology ; CA3 Region, Hippocampal/cytology/*physiology ; Electric Stimulation ; GABA-A Receptor Antagonists/pharmacology ; In Vitro Techniques ; Interneurons/*physiology ; Mice ; Nerve Net/*physiology ; Neural Inhibition ; Patch-Clamp Techniques ; Presynaptic Terminals/physiology ; Pyramidal Cells/*physiology ; Pyridazines/pharmacology ; Receptors, GABA-A/metabolism ; Synapses/physiology ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-09-08
    Description: Reestablishing homeostasis after tissue damage depends on the proper organization of stem cells and their progeny, though the repair mechanisms are unclear. The mammalian intestinal epithelium is well suited to approach this problem, as it is composed of well-delineated units called crypts of Lieberkuhn. We found that Wnt5a, a noncanonical Wnt ligand, was required for crypt regeneration after injury in mice. Unlike controls, Wnt5a-deficient mice maintained an expanded population of proliferative epithelial cells in the wound. We used an in vitro system to enrich for intestinal epithelial stem cells to discover that Wnt5a inhibited proliferation of these cells. Surprisingly, the effects of Wnt5a were mediated by activation of transforming growth factor-beta (TGF-beta) signaling. These findings suggest a Wnt5a-dependent mechanism for forming new crypt units to reestablish homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, Hiroyuki -- Ajima, Rieko -- Luo, Christine T -- Yamaguchi, Terry P -- Stappenbeck, Thaddeus S -- 5T35DK074375/DK/NIDDK NIH HHS/ -- DK90251/DK/NIDDK NIH HHS/ -- P30-DK52574/DK/NIDDK NIH HHS/ -- R01 DK071619/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):108-13. doi: 10.1126/science.1223821. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement/drug effects/physiology ; Cell Proliferation/drug effects ; Cells, Cultured ; Colon/embryology/*injuries/*physiology ; Culture Media, Conditioned/pharmacology ; Homeostasis/drug effects/physiology ; Intestinal Mucosa/embryology/injuries/physiology ; Ligands ; Mesoderm/cytology/embryology ; Mice ; Mice, Knockout ; Receptor Tyrosine Kinase-like Orphan Receptors/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Stem Cells/cytology/drug effects/physiology ; Tamoxifen/pharmacology ; Transforming Growth Factor beta/*metabolism ; Wnt Proteins/genetics/pharmacology/*physiology ; Wound Healing/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-12-15
    Description: Many mammals use scent marking for sexual and competitive advertisement, but little is known about the mechanism by which scents are used to locate mates and competitors. We show that darcin, an involatile protein sex pheromone in male mouse urine, can rapidly condition preference for its remembered location among females and competitor males so that animals prefer to spend time in the site even when scent is absent. Learned spatial preference is conditioned through contact with darcin in a single trial and remembered for approximately 14 days. This pheromone-induced learning allows animals to relocate sites of particular social relevance and provides proof that pheromones such as darcin can be highly potent stimuli for social learning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Sarah A -- Davidson, Amanda J -- McLean, Lynn -- Beynon, Robert J -- Hurst, Jane L -- BB/J002631/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC503897/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1462-5. doi: 10.1126/science.1225638.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Competitive Behavior/drug effects/*physiology ; Conditioning (Psychology)/drug effects/physiology ; Female ; Male ; Maze Learning/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Proteins/pharmacology/*physiology ; Sex Attractants/pharmacology/*physiology/urine ; Smell/drug effects/physiology ; Spatial Behavior/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-03-10
    Description: Electrically coupled inhibitory interneurons dynamically control network excitability, yet little is known about how chemical and electrical synapses regulate their activity. Using two-photon glutamate uncaging and dendritic patch-clamp recordings, we found that the dendrites of cerebellar Golgi interneurons acted as passive cables. They conferred distance-dependent sublinear synaptic integration and weakened distal excitatory inputs. Gap junctions were present at a higher density on distal dendrites and contributed substantially to membrane conductance. Depolarization of one Golgi cell increased firing in its neighbors, and inclusion of dendritic gap junctions in interneuron network models enabled distal excitatory synapses to drive network activity more effectively. Our results suggest that dendritic gap junctions counteract sublinear dendritic integration by enabling excitatory synaptic charge to spread into the dendrites of neighboring inhibitory interneurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vervaeke, Koen -- Lorincz, Andrea -- Nusser, Zoltan -- Silver, R Angus -- 064413/Wellcome Trust/United Kingdom -- 090197/Wellcome Trust/United Kingdom -- 095667/Wellcome Trust/United Kingdom -- 293681/European Research Council/International -- 294667/European Research Council/International -- BB/F005490/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- F005490/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0400598/Medical Research Council/United Kingdom -- G0400598(71261)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1624-8. doi: 10.1126/science.1215101. Epub 2012 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403180" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Cerebellar Cortex/cytology ; Computer Simulation ; Dendrites/*physiology/*ultrastructure ; Electrical Synapses/*physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Interneurons/*physiology ; Ion Channels/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Neurological ; Nerve Net/*physiology/ultrastructure ; *Neural Inhibition ; Patch-Clamp Techniques ; Synapses/physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ezenwa, Vanessa O -- Gerardo, Nicole M -- Inouye, David W -- Medina, Monica -- Xavier, Joao B -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):198-9. doi: 10.1126/science.1227412.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/microbiology ; Anxiety/microbiology ; Bacteria/genetics ; Bacterial Adhesion/genetics ; Bacterial Secretion Systems/genetics ; *Behavior, Animal ; Decapodiformes/microbiology ; Drosophila melanogaster/microbiology ; Gastrointestinal Tract/microbiology ; Heteroptera/microbiology ; Host-Pathogen Interactions ; Humans ; Iguanas/microbiology ; Metagenome/*genetics/*physiology ; Mice ; Sexual Behavior, Animal ; Stress, Psychological/microbiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-05-26
    Description: Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faini, Marco -- Prinz, Simone -- Beck, Rainer -- Schorb, Martin -- Riches, James D -- Bacia, Kirsten -- Brugger, Britta -- Wieland, Felix T -- Briggs, John A G -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1451-4. doi: 10.1126/science.1221443. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COP-Coated Vesicles/*chemistry/*ultrastructure ; Coat Protein Complex I/*chemistry ; Coatomer Protein/*chemistry ; Cryoelectron Microscopy ; Electron Microscope Tomography ; Image Processing, Computer-Assisted ; Mice ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-04-28
    Description: In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser(86), which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60(S86A) that cannot be phosphorylated by GSK3 could not undergo serum deprivation-induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1(-/-) mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Shu-Yong -- Li, Terytty Yang -- Liu, Qing -- Zhang, Cixiong -- Li, Xiaotong -- Chen, Yan -- Zhang, Shi-Meng -- Lian, Guili -- Liu, Qi -- Ruan, Ka -- Wang, Zhen -- Zhang, Chen-Song -- Chien, Kun-Yi -- Wu, Jiawei -- Li, Qinxi -- Han, Jiahuai -- Lin, Sheng-Cai -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):477-81. doi: 10.1126/science.1217032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Serum-Free ; Glucose/metabolism ; Glycogen Synthase Kinase 3/genetics/*metabolism ; HEK293 Cells ; Histone Acetyltransferases/genetics/*metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Rats ; *Signal Transduction ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-01-17
    Description: The cytokine tumor necrosis factor (TNF) is the primary trigger of inflammation. Like many extracellular signaling proteins, TNF is synthesized as a transmembrane protein; the active signal is its ectodomain, which is shed from cells after cleavage by an ADAM family metalloprotease, ADAM17 (TNFalpha-converting enzyme, TACE). We report that iRhom2 (RHBDF2), a proteolytically inactive member of the rhomboid family, is required for TNF release in mice. iRhom2 binds TACE and promotes its exit from the endoplasmic reticulum. The failure of TACE to exit the endoplasmic reticulum in the absence of iRhom2 prevents the furin-mediated maturation and trafficking of TACE to the cell surface, the site of TNF cleavage. Given the role of TNF in autoimmune and inflammatory diseases, iRhom2 may represent an attractive therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272371/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272371/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adrain, Colin -- Zettl, Markus -- Christova, Yonka -- Taylor, Neil -- Freeman, Matthew -- MC_U105178780/Medical Research Council/United Kingdom -- U.1051.01.009(78780)/Medical Research Council/United Kingdom -- U105178780/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):225-8. doi: 10.1126/science.1214400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246777" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/*metabolism ; Animals ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Endoplasmic Reticulum/metabolism ; Enzyme Activation ; Furin/metabolism ; Humans ; Lipopolysaccharides/immunology ; Macrophages/metabolism ; Mice ; Mice, Knockout ; Protein Binding ; Protein Transport ; *Signal Transduction ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2012-06-02
    Description: The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 A resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Nian -- Chelliah, Yogarany -- Shan, Yongli -- Taylor, Clinton A -- Yoo, Seung-Hee -- Partch, Carrie -- Green, Carla B -- Zhang, Hong -- Takahashi, Joseph S -- R01 GM081875/GM/NIGMS NIH HHS/ -- R01 GM090247/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):189-94. doi: 10.1126/science.1222804. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653727" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; CLOCK Proteins/*chemistry/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm ; Crystallography, X-Ray ; DNA/metabolism ; HEK293 Cells ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1029-30. doi: 10.1126/science.335.6072.1029.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383817" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology ; Animals ; Cell Proliferation ; Cell Separation ; Female ; Humans ; Mice ; Oocytes/*cytology ; *Oogenesis ; Oogonia/*cytology ; Ovary/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-06-30
    Description: Influenza A virus (IAV) infection leads to variable and imperfectly understood pathogenicity. We report that segment 3 of the virus contains a second open reading frame ("X-ORF"), accessed via ribosomal frameshifting. The frameshift product, termed PA-X, comprises the endonuclease domain of the viral PA protein with a C-terminal domain encoded by the X-ORF and functions to repress cellular gene expression. PA-X also modulates IAV virulence in a mouse infection model, acting to decrease pathogenicity. Loss of PA-X expression leads to changes in the kinetics of the global host response, which notably includes increases in inflammatory, apoptotic, and T lymphocyte-signaling pathways. Thus, we have identified a previously unknown IAV protein that modulates the host response to infection, a finding with important implications for understanding IAV pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jagger, B W -- Wise, H M -- Kash, J C -- Walters, K-A -- Wills, N M -- Xiao, Y-L -- Dunfee, R L -- Schwartzman, L M -- Ozinsky, A -- Bell, G L -- Dalton, R M -- Lo, A -- Efstathiou, S -- Atkins, J F -- Firth, A E -- Taubenberger, J K -- Digard, P -- 073126/Wellcome Trust/United Kingdom -- 088789/Wellcome Trust/United Kingdom -- G0700815/Medical Research Council/United Kingdom -- G0700815(82260)/Medical Research Council/United Kingdom -- G9800943/Medical Research Council/United Kingdom -- MR/J002232/1/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):199-204. doi: 10.1126/science.1222213. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; Conserved Sequence ; Female ; *Frameshifting, Ribosomal ; Gene Expression Regulation ; Genome, Viral ; HEK293 Cells ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/growth & development/pathogenicity ; Influenza A virus/*genetics/metabolism ; Lung/pathology/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; *Open Reading Frames ; Orthomyxoviridae Infections/genetics/immunology/pathology/*virology ; Protein Interaction Domains and Motifs ; Proteome ; RNA Replicase/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Reassortant Viruses/genetics ; Repressor Proteins/chemistry/*genetics/*metabolism ; Viral Nonstructural Proteins/chemistry/*genetics/*metabolism ; Viral Proteins/biosynthesis/chemistry/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-06-30
    Description: Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059181/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059181/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Hui-Hsin -- Li, Huiliang -- Fuentealba, Luis C -- Molofsky, Anna V -- Taveira-Marques, Raquel -- Zhuang, Helin -- Tenney, April -- Murnen, Alice T -- Fancy, Stephen P J -- Merkle, Florian -- Kessaris, Nicoletta -- Alvarez-Buylla, Arturo -- Richardson, William D -- Rowitch, David H -- G0501173/Medical Research Council/United Kingdom -- G0800575/Medical Research Council/United Kingdom -- R01 NS028478/NS/NINDS NIH HHS/ -- R37 HD032116/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jul 20;337(6092):358-62. doi: 10.1126/science.1222381. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745251" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*physiology ; Bacterial Proteins/metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Brain/abnormalities/*cytology/physiology ; Brain Injuries/physiopathology ; *Cell Movement ; Green Fluorescent Proteins ; Homeodomain Proteins/metabolism ; Integrases/genetics ; Luminescent Proteins/metabolism ; Mice ; Mice, Transgenic ; Motor Neurons/*physiology ; Nerve Tissue Proteins/genetics ; Proteins/metabolism ; RNA, Untranslated ; Spinal Cord/abnormalities/*cytology/physiology ; Spinal Cord Injuries/physiopathology ; Synapses/*physiology ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hvistendahl, Mara -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):900-2. doi: 10.1126/science.338.6109.900.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23161989" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; Government Programs ; Humans ; Mice ; Nerve Regeneration ; Peripheral Nerves/physiology/transplantation ; Tissue Engineering/*economics/*trends
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamberlain, Jeffrey S -- R37 AR040864/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1431-2. doi: 10.1126/science.1233074.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, School of Medicine, University of Washington, 1959 N.E. Pacific Street, Seattle, WA 98195-7720, USA. Jsc5@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channel Blockers/administration & dosage/therapeutic use ; Clinical Trials as Topic ; Dantrolene/administration & dosage/*therapeutic use ; Disease Models, Animal ; Dystrophin/*biosynthesis/genetics ; Exons/genetics ; Mice ; Muscle Relaxants, Central/administration & dosage/*therapeutic use ; Muscular Dystrophy, Duchenne/genetics/*therapy ; Oligonucleotides, Antisense/administration & dosage/*therapeutic use ; RNA Precursors/genetics ; Ryanodine Receptor Calcium Release Channel/metabolism ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hvistendahl, Mara -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1248-50. doi: 10.1126/science.336.6086.1248. Epub 2012 Jun 6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22674327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*growth & development/metabolism ; Berberine/therapeutic use ; China ; Diet ; Drugs, Chinese Herbal/*therapeutic use ; Gastrointestinal Tract/*microbiology ; History, 20th Century ; History, 21st Century ; Humans ; Mice ; Obesity/diet therapy/drug therapy/*microbiology/*therapy ; Prebiotics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2012-10-09
    Description: The endoplasmic reticulum (ER) is the primary organelle for folding and maturation of secretory and transmembrane proteins. Inability to meet protein-folding demand leads to "ER stress," and activates IRE1alpha, an ER transmembrane kinase-endoribonuclease (RNase). IRE1alpha promotes adaptation through splicing Xbp1 mRNA or apoptosis through incompletely understood mechanisms. Here, we found that sustained IRE1alpha RNase activation caused rapid decay of select microRNAs (miRs -17, -34a, -96, and -125b) that normally repress translation of Caspase-2 mRNA, and thus sharply elevates protein levels of this initiator protease of the mitochondrial apoptotic pathway. In cell-free systems, recombinant IRE1alpha endonucleolytically cleaved microRNA precursors at sites distinct from DICER. Thus, IRE1alpha regulates translation of a proapoptotic protein through terminating microRNA biogenesis, and noncoding RNAs are part of the ER stress response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Upton, John-Paul -- Wang, Likun -- Han, Dan -- Wang, Eric S -- Huskey, Noelle E -- Lim, Lionel -- Truitt, Morgan -- McManus, Michael T -- Ruggero, Davide -- Goga, Andrei -- Papa, Feroz R -- Oakes, Scott A -- DK063720/DK/NIDDK NIH HHS/ -- DP2 OD001925/OD/NIH HHS/ -- DP2OD001925/OD/NIH HHS/ -- GM080783/GM/NIGMS NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 CA136577/CA/NCI NIH HHS/ -- R01 CA136717/CA/NCI NIH HHS/ -- R01 CA140456/CA/NCI NIH HHS/ -- R01 CA154916/CA/NCI NIH HHS/ -- R01 DK080955/DK/NIDDK NIH HHS/ -- R01 GM080783/GM/NIGMS NIH HHS/ -- R01CA136577/CA/NCI NIH HHS/ -- R01CA136717/CA/NCI NIH HHS/ -- R01CA140456/CA/NCI NIH HHS/ -- R01CA154916/CA/NCI NIH HHS/ -- R01DK080955/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):818-22. doi: 10.1126/science.1226191. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042294" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Apoptosis ; Brefeldin A/pharmacology ; Caspase 2/*genetics/*metabolism ; Cell-Free System ; Cells, Cultured ; Cysteine Endopeptidases/*genetics/*metabolism ; Down-Regulation ; Endoplasmic Reticulum/metabolism ; *Endoplasmic Reticulum Stress ; Endoribonucleases/chemistry/genetics/*metabolism ; Enzyme Activation ; HEK293 Cells ; Humans ; Mice ; Mice, Knockout ; MicroRNAs/*metabolism ; Mutant Proteins ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2012-04-12
    Description: Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor beta subunit (CBFbeta), and induces chondrogenesis by regulating the CBFbeta-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Kristen -- Zhu, Shoutian -- Tremblay, Matthew S -- Payette, Joshua N -- Wang, Jianing -- Bouchez, Laure C -- Meeusen, Shelly -- Althage, Alana -- Cho, Charles Y -- Wu, Xu -- Schultz, Peter G -- New York, N.Y. -- Science. 2012 May 11;336(6082):717-21. doi: 10.1126/science.1215157. Epub 2012 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. kjohnson@gnf.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22491093" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/administration & dosage/chemistry/*pharmacology/therapeutic use ; Animals ; Cartilage, Articular/*cytology ; Cattle ; Cell Nucleus/metabolism ; Chondrocytes/cytology/*drug effects/metabolism/physiology ; *Chondrogenesis ; Contractile Proteins/metabolism ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/metabolism ; Disease Models, Animal ; Filamins ; High-Throughput Screening Assays ; Humans ; Mesenchymal Stromal Cells/cytology/*drug effects/physiology ; Mice ; Microfilament Proteins/metabolism ; Osteoarthritis/*drug therapy/pathology/physiopathology ; Phthalic Acids/administration & dosage/chemistry/*pharmacology/therapeutic use ; Regeneration ; Small Molecule Libraries ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-11-01
    Description: Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Richard C -- Wei, Yongjie -- An, Zhenyi -- Zou, Zhongju -- Xiao, Guanghua -- Bhagat, Govind -- White, Michael -- Reichelt, Julia -- Levine, Beth -- K08 CA164047/CA/NCI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 CA071443/CA/NCI NIH HHS/ -- R01 CA084254/CA/NCI NIH HHS/ -- R01 CA109618/CA/NCI NIH HHS/ -- R01 CA129451/CA/NCI NIH HHS/ -- R01 CA84254-S1/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):956-9. doi: 10.1126/science.1225967. Epub 2012 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/genetics/*metabolism ; *Autophagy ; Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism ; Fibroblasts/metabolism/pathology ; HeLa Cells ; Humans ; Membrane Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Proto-Oncogene Proteins c-akt/genetics/*metabolism ; RNA, Small Interfering/genetics ; Rats ; Transduction, Genetic ; Vimentin/genetics ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2012-08-04
    Description: Daily rhythms of mammalian physiology, metabolism, and behavior parallel the day-night cycle. They are orchestrated by a central circadian clock in the brain, the suprachiasmatic nucleus (SCN). Transcription of clock genes is sensitive to metabolic changes in reduction and oxidation (redox); however, circadian cycles in protein oxidation have been reported in anucleate cells, where no transcription occurs. We investigated whether the SCN also expresses redox cycles and how such metabolic oscillations might affect neuronal physiology. We detected self-sustained circadian rhythms of SCN redox state that required the molecular clockwork. The redox oscillation could determine the excitability of SCN neurons through nontranscriptional modulation of multiple potassium (K(+)) channels. Thus, dynamic regulation of SCN excitability appears to be closely tied to metabolism that engages the clockwork machinery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tongfei A -- Yu, Yanxun V -- Govindaiah, Gubbi -- Ye, Xiaoying -- Artinian, Liana -- Coleman, Todd P -- Sweedler, Jonathan V -- Cox, Charles L -- Gillette, Martha U -- EY014024/EY/NEI NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- P30DA018310/DA/NIDA NIH HHS/ -- R01 EY014024/EY/NEI NIH HHS/ -- R01 HL086870/HL/NHLBI NIH HHS/ -- R01 HL092571/HL/NHLBI NIH HHS/ -- R01HL086870/HL/NHLBI NIH HHS/ -- R01HL092571/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 17;337(6096):839-42. doi: 10.1126/science.1222826. Epub 2012 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859819" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/genetics ; Animals ; *Circadian Rhythm ; Fluorometry ; Glutathione/metabolism ; Membrane Potentials ; Mice ; Mice, Mutant Strains ; NADP/metabolism ; Neurons/metabolism/*physiology ; Oxidation-Reduction ; Potassium Channels/metabolism ; Rats ; Suprachiasmatic Nucleus/cytology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-02-22
    Description: The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wende, Hagen -- Lechner, Stefan G -- Cheret, Cyril -- Bourane, Steeve -- Kolanczyk, Maria E -- Pattyn, Alexandre -- Reuter, Katja -- Munier, Francis L -- Carroll, Patrick -- Lewin, Gary R -- Birchmeier, Carmen -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1373-6. doi: 10.1126/science.1214314. Epub 2012 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology, Max Delbruck Center (MDC) for Molecular Medicine, Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22345400" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ganglia, Spinal/cytology/embryology ; Gene Expression Regulation, Developmental ; Humans ; Maf Transcription Factors, Large/genetics/metabolism ; Mechanoreceptors/*cytology/*physiology ; Mice ; Mutation ; Pacinian Corpuscles/cytology/physiology ; Proto-Oncogene Proteins c-maf/genetics/*metabolism ; Proto-Oncogene Proteins c-ret/genetics/metabolism ; Skin/innervation ; *Touch ; Vibration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2012-05-15
    Description: The virulence mechanisms that allow pathogens to colonize the intestine remain unclear. Here, we show that germ-free animals are unable to eradicate Citrobacter rodentium, a model for human infections with attaching and effacing bacteria. Early in infection, virulence genes were expressed and required for pathogen growth in conventionally raised mice but not germ-free mice. Virulence gene expression was down-regulated during the late phase of infection, which led to relocation of the pathogen to the intestinal lumen where it was outcompeted by commensals. The ability of commensals to outcompete C. rodentium was determined, at least in part, by the capacity of the pathogen and commensals to grow on structurally similar carbohydrates. Thus, pathogen colonization is controlled by bacterial virulence and through competition with metabolically related commensals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamada, Nobuhiko -- Kim, Yun-Gi -- Sham, Ho Pan -- Vallance, Bruce A -- Puente, Jose L -- Martens, Eric C -- Nunez, Gabriel -- DK091191/DK/NIDDK NIH HHS/ -- DK61707/DK/NIDDK NIH HHS/ -- R01 DK061707/DK/NIDDK NIH HHS/ -- R01 DK091191/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1325-9. doi: 10.1126/science.1222195. Epub 2012 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Load ; Bacterial Proteins/genetics/metabolism ; Bacteroides/*growth & development ; Citrobacter rodentium/genetics/growth & development/immunology/*pathogenicity ; Enterobacteriaceae Infections/immunology/*microbiology ; Escherichia coli/*growth & development ; Feces/microbiology ; Gene Expression Regulation, Bacterial ; Germ-Free Life ; Intestinal Mucosa/*microbiology ; Intestines/*microbiology ; *Metagenome ; Mice ; Mice, Inbred C57BL ; *Microbial Interactions ; Specific Pathogen-Free Organisms ; Virulence Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-12-01
    Description: Chronic infections strain the regenerative capacity of antiviral T lymphocyte populations, leading to failure in long-term immunity. The cellular and molecular events controlling this regenerative capacity, however, are unknown. We found that two distinct states of virus-specific CD8(+) T cells exist in chronically infected mice and humans. Differential expression of the T-box transcription factors T-bet and Eomesodermin (Eomes) facilitated the cooperative maintenance of the pool of antiviral CD8(+) T cells during chronic viral infection. T-bet(hi) cells displayed low intrinsic turnover but proliferated in response to persisting antigen, giving rise to Eomes(hi) terminal progeny. Genetic elimination of either subset resulted in failure to control chronic infection, which suggests that an imbalance in differentiation and renewal could underlie the collapse of immunity in humans with chronic infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653769/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653769/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paley, Michael A -- Kroy, Daniela C -- Odorizzi, Pamela M -- Johnnidis, Jonathan B -- Dolfi, Douglas V -- Barnett, Burton E -- Bikoff, Elizabeth K -- Robertson, Elizabeth J -- Lauer, Georg M -- Reiner, Steven L -- Wherry, E John -- 059312/Wellcome Trust/United Kingdom -- AI061699/AI/NIAID NIH HHS/ -- AI0663445/AI/NIAID NIH HHS/ -- AI076458/AI/NIAID NIH HHS/ -- AI078897/AI/NIAID NIH HHS/ -- AI082630/AI/NIAID NIH HHS/ -- AI083022/AI/NIAID NIH HHS/ -- HHSN266200500030C/AI/NIAID NIH HHS/ -- HHSN266200500030C/PHS HHS/ -- P01 AI078897/AI/NIAID NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI042370/AI/NIAID NIH HHS/ -- R01 AI061699/AI/NIAID NIH HHS/ -- R01 AI076458/AI/NIAID NIH HHS/ -- T32 AI007632/AI/NIAID NIH HHS/ -- T32-AI-07324/AI/NIAID NIH HHS/ -- U19 AI082630/AI/NIAID NIH HHS/ -- U19 AI083022/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1220-5. doi: 10.1126/science.1229620.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Hepatitis B, Chronic/*immunology ; Humans ; Liver/virology ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Stem Cells/immunology ; T-Box Domain Proteins/genetics/*metabolism ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-03-01
    Description: Posttraumatic stress disorder (PTSD) is characterized by a hypermnesia of the trauma and by a memory impairment that decreases the ability to restrict fear to the appropriate context. Infusion of glucocorticoids in the hippocampus after fear conditioning induces PTSD-like memory impairments and an altered pattern of neural activation in the hippocampal-amygdalar circuit. Mice become unable to identify the context as the correct predictor of the threat and show fear responses to a discrete cue not predicting the threat in normal conditions. These data demonstrate PTSD-like memory impairments in rodents and identify a potential pathophysiological mechanism of this condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaouane, Nadia -- Porte, Yves -- Vallee, Monique -- Brayda-Bruno, Laurent -- Mons, Nicole -- Calandreau, Ludovic -- Marighetto, Aline -- Piazza, Pier Vincenzo -- Desmedt, Aline -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1510-3. doi: 10.1126/science.1207615. Epub 2012 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS UMR 5228, Centre de Neurosciences Integratives et Cognitives, Talence, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22362879" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/*physiopathology ; Animals ; Conditioning (Psychology) ; Corticosterone/*administration & dosage/blood/metabolism/pharmacology ; Cues ; Electroshock ; *Fear ; Hippocampus/*physiopathology ; Male ; Memory Disorders/chemically induced/*physiopathology ; Mice ; Mice, Inbred C57BL ; Proto-Oncogene Proteins c-fos/metabolism ; Restraint, Physical ; Stress Disorders, Post-Traumatic/*physiopathology ; Stress, Psychological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-05
    Description: The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not previously observed upon deletion of individual shelterin proteins. The shelterin-free telomeres are processed by microhomology-mediated alternative-NHEJ when Ku70/80 is absent and are attacked by nucleolytic degradation in the absence of 53BP1. The data establish that the end-protection problem is specified by six pathways [ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) signaling, classical-NHEJ, alt-NHEJ, homologous recombination, and resection] and show how shelterin acts with general DNA damage response factors to solve this problem.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM49046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 CA076027/CA/NCI NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 4;336(6081):593-7. doi: 10.1126/science.1218498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Nuclear/genetics/metabolism ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Ligases/metabolism ; DNA Repair ; DNA-Binding Proteins/genetics/metabolism ; Homologous Recombination ; Mice ; Mice, Knockout ; Poly(ADP-ribose) Polymerases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Telomere/*metabolism/ultrastructure ; *Telomere Homeostasis ; Telomere-Binding Proteins/genetics/*metabolism ; Telomeric Repeat Binding Protein 1/genetics/metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-03-24
    Description: Exposure to microbes during early childhood is associated with protection from immune-mediated diseases such as inflammatory bowel disease (IBD) and asthma. Here, we show that in germ-free (GF) mice, invariant natural killer T (iNKT) cells accumulate in the colonic lamina propria and lung, resulting in increased morbidity in models of IBD and allergic asthma as compared with that of specific pathogen-free mice. This was associated with increased intestinal and pulmonary expression of the chemokine ligand CXCL16, which was associated with increased mucosal iNKT cells. Colonization of neonatal-but not adult-GF mice with a conventional microbiota protected the animals from mucosal iNKT accumulation and related pathology. These results indicate that age-sensitive contact with commensal microbes is critical for establishing mucosal iNKT cell tolerance to later environmental exposures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olszak, Torsten -- An, Dingding -- Zeissig, Sebastian -- Vera, Miguel Pinilla -- Richter, Julia -- Franke, Andre -- Glickman, Jonathan N -- Siebert, Reiner -- Baron, Rebecca M -- Kasper, Dennis L -- Blumberg, Richard S -- AI090102/AI/NIAID NIH HHS/ -- DK034854/DK/NIDDK NIH HHS/ -- DK44319/DK/NIDDK NIH HHS/ -- DK51362/DK/NIDDK NIH HHS/ -- DK53056/DK/NIDDK NIH HHS/ -- DK88199/DK/NIDDK NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- R01 DK044319/DK/NIDDK NIH HHS/ -- R01 DK088199/DK/NIDDK NIH HHS/ -- R37 DK044319/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):489-93. doi: 10.1126/science.1219328. Epub 2012 Mar 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442383" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Newborn ; Antigens, CD1d/immunology ; Asthma/*immunology ; Bacteria/*growth & development ; Chemokine CXCL6/genetics/metabolism ; Colitis, Ulcerative/chemically induced/*immunology ; Colon/immunology/microbiology ; DNA Methylation ; Disease Models, Animal ; Disease Susceptibility ; Germ-Free Life ; Intestinal Mucosa/*immunology ; Intestines/immunology/*microbiology ; Lung/*immunology ; Mice ; Mice, Inbred C57BL ; Natural Killer T-Cells/*immunology ; Oxazolone ; Receptors, CXCR/genetics/metabolism ; Specific Pathogen-Free Organisms
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-10-23
    Description: Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans. Here we show that gliomas can originate from differentiated cells in the central nervous system (CNS), including cortical neurons. Transduction by oncogenic lentiviral vectors of neural stem cells (NSCs), astrocytes, or even mature neurons in the brains of mice can give rise to malignant gliomas. All the tumors, irrespective of the site of lentiviral vector injection (the initiating population), shared common features of high expression of stem or progenitor markers and low expression of differentiation markers. Microarray analysis revealed that tumors of astrocytic and neuronal origin match the mesenchymal GBM subtype. We propose that most differentiated cells in the CNS upon defined genetic alterations undergo dedifferentiation to generate a NSC or progenitor state to initiate and maintain the tumor progression, as well as to give rise to the heterogeneous populations observed in malignant gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedmann-Morvinski, Dinorah -- Bushong, Eric A -- Ke, Eugene -- Soda, Yasushi -- Marumoto, Tomotoshi -- Singer, Oded -- Ellisman, Mark H -- Verma, Inder M -- 5P41RR004050/RR/NCRR NIH HHS/ -- HL053670/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 CA014195-38/CA/NCI NIH HHS/ -- R01 HL053670/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 23;338(6110):1080-4. doi: 10.1126/science.1226929. Epub 2012 Oct 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087000" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/metabolism/*pathology ; Brain Neoplasms/*genetics/*pathology ; Genes, Neurofibromatosis 1 ; Genes, p53 ; Glioblastoma/genetics/pathology ; Glioma/*genetics/*pathology ; Lentivirus ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins/genetics ; Neural Stem Cells/metabolism/pathology ; Neurons/metabolism/*pathology ; *Oncogenes ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-06-09
    Description: Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile alpha/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osterloh, Jeannette M -- Yang, Jing -- Rooney, Timothy M -- Fox, A Nicole -- Adalbert, Robert -- Powell, Eric H -- Sheehan, Amy E -- Avery, Michelle A -- Hackett, Rachel -- Logan, Mary A -- MacDonald, Jennifer M -- Ziegenfuss, Jennifer S -- Milde, Stefan -- Hou, Ying-Ju -- Nathan, Carl -- Ding, Aihao -- Brown, Robert H Jr -- Conforti, Laura -- Coleman, Michael -- Tessier-Lavigne, Marc -- Zuchner, Stephan -- Freeman, Marc R -- 5R01-NS050557-05/NS/NINDS NIH HHS/ -- AI030165/AI/NIAID NIH HHS/ -- R01NS059991/NS/NINDS NIH HHS/ -- R01NS072248/NS/NINDS NIH HHS/ -- RC2-NS070-342/NS/NINDS NIH HHS/ -- U54NS065712/NS/NINDS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):481-4. doi: 10.1126/science.1223899. Epub 2012 Jun 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Apoptosis ; Armadillo Domain Proteins/analysis/*genetics/*physiology ; Axons/*physiology/ultrastructure ; Axotomy ; Cell Survival ; Cells, Cultured ; Cytoskeletal Proteins/analysis/*genetics/*physiology ; Denervation ; Drosophila/embryology/genetics/physiology ; Drosophila Proteins/analysis/*genetics/*physiology ; Mice ; Mutation ; Neurons/*physiology ; Sciatic Nerve/injuries/physiology ; Signal Transduction ; Superior Cervical Ganglion/cytology ; Tissue Culture Techniques ; *Wallerian Degeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-12-15
    Description: The formation of repetitive structures (such as stripes) in nature is often consistent with a reaction-diffusion mechanism, or Turing model, of self-organizing systems. We used mouse genetics to analyze how digit patterning (an iterative digit/nondigit pattern) is generated. We showed that the progressive reduction in Hoxa13 and Hoxd11-Hoxd13 genes (hereafter referred to as distal Hox genes) from the Gli3-null background results in progressively more severe polydactyly, displaying thinner and densely packed digits. Combined with computer modeling, our results argue for a Turing-type mechanism underlying digit patterning, in which the dose of distal Hox genes modulates the digit period or wavelength. The phenotypic similarity with fish-fin endoskeleton patterns suggests that the pentadactyl state has been achieved through modification of an ancestral Turing-type mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486416/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486416/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheth, Rushikesh -- Marcon, Luciano -- Bastida, M Felix -- Junco, Marisa -- Quintana, Laura -- Dahn, Randall -- Kmita, Marie -- Sharpe, James -- Ros, Maria A -- 82880-1/Canadian Institutes of Health Research/Canada -- 83362-2/Canadian Institutes of Health Research/Canada -- MOP-82880/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1476-80. doi: 10.1126/science.1226804.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Facultad de Medicina, Instituto de Biomedicina y Biotecnologia de Cantabria, Consejo Superior de Investigaciones Cientificas-Sociedad para el Desarrollo Regional de Cantabria-Universidad de Cantabria, 39011 Santander, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239739" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*genetics ; Computer Simulation ; Genes, Homeobox/genetics/*physiology ; Homeodomain Proteins/genetics/physiology ; Kruppel-Like Transcription Factors/genetics ; Mice ; Mice, Mutant Strains ; Models, Genetic ; Nerve Tissue Proteins/genetics ; Polydactyly/*genetics ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-03-17
    Description: Neurotransmitters are released through nascent fusion pores, which ordinarily dilate after bilayer fusion, preventing consistent biochemical studies. We used lipid bilayer nanodiscs as fusion partners; their rigid protein framework prevents dilation and reveals properties of the fusion pore induced by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). We found that although only one SNARE per nanodisc is required for maximum rates of bilayer fusion, efficient release of content on the physiologically relevant time scale of synaptic transmission apparently requires three or more SNARE complexes (SNAREpins) and the native transmembrane domain of vesicle-associated membrane protein 2 (VAMP2). We suggest that several SNAREpins simultaneously zippering their SNARE transmembrane helices within the freshly fused bilayers provide a radial force that prevents the nascent pore from resealing during synchronous neurotransmitter release.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Lei -- Shen, Qing-Tao -- Kiel, Alexander -- Wang, Jing -- Wang, Hong-Wei -- Melia, Thomas J -- Rothman, James E -- Pincet, Frederic -- R01 DK027044/DK/NIDDK NIH HHS/ -- R37 DK027044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1355-9. doi: 10.1126/science.1214984.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Diffusion ; *Lipid Bilayers ; Liposomes ; *Membrane Fusion ; Membrane Proteins/chemistry/metabolism ; Mice ; Neurotransmitter Agents/metabolism ; Protein Structure, Tertiary ; Proteolipids/chemistry ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; SNARE Proteins/*chemistry/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/*chemistry/metabolism ; Synaptosomal-Associated Protein 25/chemistry/metabolism ; Syntaxin 1/chemistry/metabolism ; Vesicle-Associated Membrane Protein 2/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-03-10
    Description: We have identified tens of thousands of short extrachromosomal circular DNAs (microDNA) in mouse tissues as well as mouse and human cell lines. These microDNAs are 200 to 400 base pairs long, are derived from unique nonrepetitive sequence, and are enriched in the 5'-untranslated regions of genes, exons, and CpG islands. Chromosomal loci that are enriched sources of microDNA in the adult brain are somatically mosaic for microdeletions that appear to arise from the excision of microDNAs. Germline microdeletions identified by the "Thousand Genomes" project may also arise from the excision of microDNAs in the germline lineage. We have thus identified a previously unknown DNA entity in mammalian cells and provide evidence that their generation leaves behind deletions in different genomic loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, Yoshiyuki -- Kumar, Pankaj -- Layer, Ryan -- Willcox, Smaranda -- Gagan, Jeffrey R -- Griffith, Jack D -- Dutta, Anindya -- ES013773/ES/NIEHS NIH HHS/ -- GM31819/GM/NIGMS NIH HHS/ -- GM84465/GM/NIGMS NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 CA060499/CA/NCI NIH HHS/ -- R01 CA060499-18/CA/NCI NIH HHS/ -- R01 CA60499/CA/NCI NIH HHS/ -- R01 ES013773/ES/NIEHS NIH HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM084465/GM/NIGMS NIH HHS/ -- R01 GM084465-04/GM/NIGMS NIH HHS/ -- T32 GM008136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):82-6. doi: 10.1126/science.1213307. Epub 2012 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403181" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Animals ; Base Pairing ; Base Sequence ; Brain/*embryology ; Brain Chemistry ; Cell Line ; Cell Line, Tumor ; *Chromosome Deletion ; Chromosomes, Human/*genetics ; Chromosomes, Mammalian/*genetics ; CpG Islands ; DNA Replication ; *DNA, Circular/analysis/chemistry/isolation & purification/metabolism ; Exons ; Germ Cells/chemistry ; Heart/embryology ; Humans ; Liver/chemistry/embryology ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, Daniel P -- R01 DK045416/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):42-3. doi: 10.1126/science.1221688.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA. dkelly@sanfordburnham.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22491843" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, Brown/metabolism ; Adipocytes, White/*metabolism ; Animals ; Energy Metabolism ; *Exercise ; Fibronectins/genetics/*metabolism ; Gene Expression Regulation ; Hormones/*metabolism ; Humans ; Mice ; Models, Biological ; Muscle Fibers, Skeletal/metabolism ; Muscle, Skeletal/*metabolism ; Oxygen Consumption ; Physical Conditioning, Animal ; Physical Endurance ; *Physical Exertion ; Thermogenesis ; Trans-Activators/*metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-01-28
    Description: Prions are infectious pathogens essentially composed of PrP(Sc), an abnormally folded form of the host-encoded prion protein PrP(C). Constrained steric interactions between PrP(Sc) and PrP(C) are thought to provide prions with species specificity and to control cross-species transmission into other host populations, including humans. We compared the ability of brain and lymphoid tissues from ovine and human PrP transgenic mice to replicate foreign, inefficiently transmitted prions. Lymphoid tissue was consistently more permissive than the brain to prions such as those causing chronic wasting disease and bovine spongiform encephalopathy. Furthermore, when the transmission barrier was overcome through strain shifting in the brain, a distinct agent propagated in the spleen, which retained the ability to infect the original host. Thus, prion cross-species transmission efficacy can exhibit a marked tissue dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beringue, Vincent -- Herzog, Laetitia -- Jaumain, Emilie -- Reine, Fabienne -- Sibille, Pierre -- Le Dur, Annick -- Vilotte, Jean-Luc -- Laude, Hubert -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):472-5. doi: 10.1126/science.1215659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Recherche Agronomique UR892, Virologie Immunologie Moleculaires, Jouy-en-Josas, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282814" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cattle ; Cricetinae ; Encephalopathy, Bovine Spongiform/transmission ; Humans ; Mice ; Mice, Transgenic ; Organ Specificity ; *PrPSc Proteins/analysis/chemistry/pathogenicity ; Prion Diseases/metabolism/*transmission ; Sheep ; Species Specificity ; Spleen/*chemistry ; Wasting Disease, Chronic/transmission ; Zoonoses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-01-28
    Description: The adult dentate gyrus generates new granule cells (GCs) that develop over several weeks and integrate into the preexisting network. Although adult hippocampal neurogenesis has been implicated in learning and memory, the specific role of new GCs remains unclear. We examined whether immature adult-born neurons contribute to information encoding. By combining calcium imaging and electrophysiology in acute slices, we found that weak afferent activity recruits few mature GCs while activating a substantial proportion of the immature neurons. These different activation thresholds are dictated by an enhanced excitation/inhibition balance transiently expressed in immature GCs. Immature GCs exhibit low input specificity that switches with time toward a highly specific responsiveness. Therefore, activity patterns entering the dentate gyrus can undergo differential decoding by a heterogeneous population of GCs originated at different times.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385415/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385415/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marin-Burgin, Antonia -- Mongiat, Lucas A -- Pardi, M Belen -- Schinder, Alejandro F -- 55005963/Howard Hughes Medical Institute/ -- R03 TW008607/TW/FIC NIH HHS/ -- R03TW008607-01/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1238-42. doi: 10.1126/science.1214956. Epub 2012 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio de Plasticidad Neuronal, Instituto Leloir, Instituto de Investigaciones Bioquimicas de Buenos Aires-Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282476" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dentate Gyrus/*cytology/*physiology ; Electric Stimulation ; Entorhinal Cortex/cytology/physiology ; Excitatory Postsynaptic Potentials ; Female ; GABAergic Neurons/physiology ; Glutamic Acid/metabolism ; Inhibitory Postsynaptic Potentials ; Mice ; Mice, Inbred C57BL ; *Neural Inhibition ; *Neurogenesis ; Neuronal Plasticity ; Neurons/cytology/*physiology ; Patch-Clamp Techniques ; Perforant Pathway ; Synapses/physiology ; *Synaptic Potentials
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-02-04
    Description: We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with 〈70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berning, Sebastian -- Willig, Katrin I -- Steffens, Heinz -- Dibaj, Payam -- Hell, Stefan W -- New York, N.Y. -- Science. 2012 Feb 3;335(6068):551. doi: 10.1126/science.1215369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of NanoBiophotonics, Max Planck Institute (MPI) for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22301313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendritic Spines/*physiology/*ultrastructure ; Fluorescence ; Luminescent Proteins ; Mice ; Microscopy, Fluorescence/instrumentation/*methods ; Nanotechnology ; Somatosensory Cortex/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-07-28
    Description: The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677224/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677224/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Devendra -- Chan, Joseph Minhow -- Zoppoli, Pietro -- Niola, Francesco -- Sullivan, Ryan -- Castano, Angelica -- Liu, Eric Minwei -- Reichel, Jonathan -- Porrati, Paola -- Pellegatta, Serena -- Qiu, Kunlong -- Gao, Zhibo -- Ceccarelli, Michele -- Riccardi, Riccardo -- Brat, Daniel J -- Guha, Abhijit -- Aldape, Ken -- Golfinos, John G -- Zagzag, David -- Mikkelsen, Tom -- Finocchiaro, Gaetano -- Lasorella, Anna -- Rabadan, Raul -- Iavarone, Antonio -- 1R01LM010140-01/LM/NLM NIH HHS/ -- R01 CA085628/CA/NCI NIH HHS/ -- R01 CA101644/CA/NCI NIH HHS/ -- R01 CA127643/CA/NCI NIH HHS/ -- R01 CA131126/CA/NCI NIH HHS/ -- R01 LM010140/LM/NLM NIH HHS/ -- R01 NS061776/NS/NINDS NIH HHS/ -- R01CA085628/CA/NCI NIH HHS/ -- R01CA101644/CA/NCI NIH HHS/ -- R01CA127643/CA/NCI NIH HHS/ -- R01CA131126/CA/NCI NIH HHS/ -- R01NS061776/NS/NINDS NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 CA121852-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1231-5. doi: 10.1126/science.1220834. Epub 2012 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837387" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Animals ; Antineoplastic Agents/pharmacology ; Benzamides/pharmacology ; Brain Neoplasms/genetics/metabolism ; *Cell Transformation, Neoplastic ; Chromosomal Instability ; Enzyme Inhibitors/pharmacology ; Fetal Proteins/chemistry/*genetics/metabolism ; Glioblastoma/*genetics/metabolism ; Humans ; Mice ; Microtubule-Associated Proteins/chemistry/*genetics/metabolism ; Mitosis ; Neoplasm Transplantation ; Nuclear Proteins/chemistry/*genetics/metabolism ; Oncogene Fusion ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Piperazines/pharmacology ; Protein Structure, Tertiary ; Pyrazoles/pharmacology ; Pyrimidines/pharmacology ; Receptor, Fibroblast Growth Factor, Type 1/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Receptor, Fibroblast Growth Factor, Type 3/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Spindle Apparatus/metabolism ; Translocation, Genetic ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-10-09
    Description: Advances in characterizing the neuropathology and functional dysconnectivity of depression and promising trials with emerging circuit-targeted and fast-onset therapeutics are providing unprecedented opportunities to gain deeper insight into the neurobiology of this devastating and pervasive disorder. Because of practical and ethical limitations to dissecting these mechanisms in humans, continued progress will critically depend on our ability to emulate aspects of depressive symptomatology and treatment response in nonhuman organisms. Although various experimental models are currently available, they often draw skepticism from both clinicians and basic research scientists. We review recent progress and highlight some of the best leads to diversify and improve discovery end points for preclinical depression research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berton, Olivier -- Hahn, Chang-Gyu -- Thase, Michael E -- MH087581/MH/NIMH NIH HHS/ -- R01 MH087581/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):75-9. doi: 10.1126/science.1222940.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA 19104, USA. bertonol@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Depressive Disorder, Major/*genetics/*physiopathology ; *Disease Models, Animal ; *Genetic Predisposition to Disease ; Humans ; Mice ; Primates ; *Translational Medical Research ; Zebrafish
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-01-17
    Description: Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor-alpha (TNFalpha), which is shed from the plasma membrane after cleavage by the TNFalpha convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFalpha shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFalpha in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McIlwain, David R -- Lang, Philipp A -- Maretzky, Thorsten -- Hamada, Koichi -- Ohishi, Kazuhito -- Maney, Sathish Kumar -- Berger, Thorsten -- Murthy, Aditya -- Duncan, Gordon -- Xu, Haifeng C -- Lang, Karl S -- Haussinger, Dieter -- Wakeham, Andrew -- Itie-Youten, Annick -- Khokha, Rama -- Ohashi, Pamela S -- Blobel, Carl P -- Mak, Tak W -- GM64750/GM/NIGMS NIH HHS/ -- R01 GM064750/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):229-32. doi: 10.1126/science.1214448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246778" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/*metabolism ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/metabolism ; Base Sequence ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Gene Deletion ; *Immunity, Innate ; Lipopolysaccharides/*immunology ; Listeria monocytogenes/immunology/physiology ; Listeriosis/*immunology/metabolism/microbiology/pathology ; Macrophages/immunology/metabolism ; Macrophages, Peritoneal/immunology/metabolism/microbiology ; Mice ; Molecular Sequence Data ; Protein Transport ; Shock, Septic/*immunology/metabolism ; Spleen/cytology ; Tumor Necrosis Factor-alpha/blood/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-01
    Description: Mitochondrial fission and fusion play critical roles in maintaining functional mitochondria when cells experience metabolic or environmental stresses. Fusion helps mitigate stress by mixing the contents of partially damaged mitochondria as a form of complementation. Fission is needed to create new mitochondria, but it also contributes to quality control by enabling the removal of damaged mitochondria and can facilitate apoptosis during high levels of cellular stress. Disruptions in these processes affect normal development, and they have been implicated in neurodegenerative diseases, such as Parkinson's.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762028/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762028/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youle, Richard J -- van der Bliek, Alexander M -- GM051866/GM/NIGMS NIH HHS/ -- Z99 NS999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1062-5. doi: 10.1126/science.1219855.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. youler@ninds.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; DNA, Mitochondrial/genetics ; Humans ; *Membrane Fusion ; Mice ; Mitochondria/genetics/*physiology ; Mitochondrial Diseases/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Mutation ; Neurodegenerative Diseases/metabolism ; Parkinson Disease/metabolism ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coste, Bertrand -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):59. doi: 10.1126/science.1229853.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Center of Neurobiology-Neurophysiology of Marseilles, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042881" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Pressure ; Cell Line, Tumor ; Cytokines/genetics/physiology ; Ganglia, Spinal/cytology/*physiology ; Ion Channels/genetics/physiology ; Mechanotransduction, Cellular/genetics/*physiology ; Mice ; Neurons ; Patch-Clamp Techniques ; *Pressure ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gittis, Aryn -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):59. doi: 10.1126/science.1229852.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042880" target="_blank"〉PubMed〈/a〉
    Keywords: Adamantane/administration & dosage/analogs & derivatives ; Adrenergic Agents/toxicity ; Animals ; Antiparkinson Agents/therapeutic use ; Corpus Striatum/drug effects/*physiopathology ; Dopamine/metabolism ; Humans ; Interneurons/*drug effects/*physiology ; Levodopa/therapeutic use ; Mice ; Mice, Transgenic ; Movement Disorders/drug therapy/physiopathology ; Neural Pathways/drug effects/physiopathology ; Oxidopamine/toxicity ; Parkinsonian Disorders/*drug therapy/*physiopathology ; Receptors, AMPA/antagonists & inhibitors ; Receptors, Kainic Acid/antagonists & inhibitors ; Treatment Failure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-22
    Description: The blood-testis barrier includes strands of tight junctions between somatic Sertoli cells that restricts solutes from crossing the paracellular space, creating a microenvironment within seminiferous tubules and providing immune privilege to meiotic and postmeiotic cells. Large cysts of germ cells transit the Sertoli cell tight junctions (SCTJs) without compromising their integrity. We used confocal microscopy to visualize SCTJ components during germ cell cyst migration across the SCTJs. Cysts become enclosed within a network of transient compartments fully bounded by old and new tight junctions. Dissolution of the old tight junctions releases the germ cells into the adluminal compartment, thus completing transit across the blood-testis barrier. Claudin 3, a tight junction protein, is transiently incorporated into new tight junctions and then replaced by claudin 11.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694388/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694388/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Benjamin E -- Braun, Robert E -- CA34196/CA/NCI NIH HHS/ -- HD12629/HD/NICHD NIH HHS/ -- P30 CA034196/CA/NCI NIH HHS/ -- U54 HD012629/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):798-802. doi: 10.1126/science.1219969. Epub 2012 Sep 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22997133" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood-Testis Barrier/*ultrastructure ; *Cell Movement ; Claudin-3/analysis/metabolism ; Claudins/analysis/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Confocal ; Models, Biological ; Seminiferous Tubules/chemistry/ultrastructure ; Sertoli Cells/chemistry/physiology/*ultrastructure ; Spermatocytes/*physiology/ultrastructure ; Spermatogenesis ; Tight Junctions/chemistry/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-09-18
    Description: Interferon regulatory factor 4 (IRF4) and IRF8 regulate B, T, macrophage, and dendritic cell differentiation. They are recruited to cis-regulatory Ets-IRF composite elements by PU.1 or Spi-B. How these IRFs target genes in most T cells is enigmatic given the absence of specific Ets partners. Chromatin immunoprecipitation sequencing in T helper 17 (T(H)17) cells reveals that IRF4 targets sequences enriched for activating protein 1 (AP-1)-IRF composite elements (AICEs) that are co-bound by BATF, an AP-1 factor required for T(H)17, B, and dendritic cell differentiation. IRF4 and BATF bind cooperatively to structurally divergent AICEs to promote gene activation and T(H)17 differentiation. The AICE motif directs assembly of IRF4 or IRF8 with BATF heterodimers and is also used in T(H)2, B, and dendritic cells. This genomic regulatory element and cognate factors appear to have evolved to integrate diverse immunomodulatory signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glasmacher, Elke -- Agrawal, Smita -- Chang, Abraham B -- Murphy, Theresa L -- Zeng, Wenwen -- Vander Lugt, Bryan -- Khan, Aly A -- Ciofani, Maria -- Spooner, Chauncey J -- Rutz, Sascha -- Hackney, Jason -- Nurieva, Roza -- Escalante, Carlos R -- Ouyang, Wenjun -- Littman, Dan R -- Murphy, Kenneth M -- Singh, Harinder -- RC1 AI087266/AI/NIAID NIH HHS/ -- RC4 AI092765/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):975-80. doi: 10.1126/science.1228309. Epub 2012 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Immunology, Genentech, Incorporated, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22983707" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic-Leucine Zipper Transcription Factors/metabolism ; Cell Differentiation/genetics ; Chromatin Immunoprecipitation ; Humans ; Immunomodulation/*genetics ; Interferon Regulatory Factors/*metabolism ; Mice ; Mice, Inbred C57BL ; *Regulatory Elements, Transcriptional ; Th17 Cells/*immunology ; Transcription Factor AP-1/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-06-30
    Description: Effective immune surveillance by cytotoxic T cells requires newly synthesized polypeptides for presentation by major histocompatibility complex (MHC) class I molecules. These polypeptides are produced not only from conventional AUG-initiated, but also from cryptic non-AUG-initiated, reading frames by distinct translational mechanisms. Biochemical analysis of ribosomal initiation complexes at CUG versus AUG initiation codons revealed that cells use an elongator leucine-bound transfer RNA (Leu-tRNA) to initiate translation at cryptic CUG start codons. CUG/Leu-tRNA initiation was independent of the canonical initiator tRNA (AUG/Met-tRNA(i)(Met)) pathway but required expression of eukaryotic initiation factor 2A. Thus, a tRNA-based translation initiation mechanism allows non-AUG-initiated protein synthesis and supplies peptides for presentation by MHC class I molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Starck, Shelley R -- Jiang, Vivian -- Pavon-Eternod, Mariana -- Prasad, Sharanya -- McCarthy, Brian -- Pan, Tao -- Shastri, Nilabh -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1719-23. doi: 10.1126/science.1220270.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation/*genetics ; Antigen-Presenting Cells/immunology ; COS Cells ; Cercopithecus aethiops ; *Codon, Initiator ; HeLa Cells ; Histocompatibility Antigens Class I/*genetics/*immunology ; Humans ; Hybridomas/immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Peptide Chain Initiation, Translational ; Protein Biosynthesis/*genetics ; *RNA, Transfer, Leu ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-12-15
    Description: Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Kexin -- Wu, Zhenhua Jeremy -- Groner, Anna C -- He, Housheng Hansen -- Cai, Changmeng -- Lis, Rosina T -- Wu, Xiaoqiu -- Stack, Edward C -- Loda, Massimo -- Liu, Tao -- Xu, Han -- Cato, Laura -- Thornton, James E -- Gregory, Richard I -- Morrissey, Colm -- Vessella, Robert L -- Montironi, Rodolfo -- Magi-Galluzzi, Cristina -- Kantoff, Philip W -- Balk, Steven P -- Liu, X Shirley -- Brown, Myles -- CA090381/CA/NCI NIH HHS/ -- CA097186/CA/NCI NIH HHS/ -- CA111803/CA/NCI NIH HHS/ -- CA131945/CA/NCI NIH HHS/ -- CA166507/CA/NCI NIH HHS/ -- CA85859/CA/NCI NIH HHS/ -- CA89021/CA/NCI NIH HHS/ -- CA90381/CA/NCI NIH HHS/ -- GM99409/GM/NIGMS NIH HHS/ -- K99 CA166507/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- R01 GM099409/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1465-9. doi: 10.1126/science.1227604.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239736" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Castration ; Cell Line, Tumor ; Cohort Studies ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Humans ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Male ; Methyltransferases/chemistry/genetics/metabolism ; Mice ; Mice, Inbred ICR ; Mice, SCID ; Oncogene Proteins/genetics/*metabolism ; Polycomb Repressive Complex 2/genetics/*metabolism ; Prostatic Neoplasms/genetics/*metabolism/mortality ; Protein Structure, Tertiary ; Receptors, Androgen/metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-02-11
    Description: Alzheimer's disease (AD) is associated with impaired clearance of beta-amyloid (Abeta) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble Abeta within hours in an apoE-dependent manner. Abeta plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological Abeta clearance mechanisms, resulting in the rapid reversal of a broad range of Abeta-induced deficits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651582/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651582/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, Paige E -- Cirrito, John R -- Wesson, Daniel W -- Lee, C Y Daniel -- Karlo, J Colleen -- Zinn, Adriana E -- Casali, Brad T -- Restivo, Jessica L -- Goebel, Whitney D -- James, Michael J -- Brunden, Kurt R -- Wilson, Donald A -- Landreth, Gary E -- AG030482-03S1/AG/NIA NIH HHS/ -- DC003906/DC/NIDCD NIH HHS/ -- K01 AG029524/AG/NIA NIH HHS/ -- P50-AG005681/AG/NIA NIH HHS/ -- R01 AG030482/AG/NIA NIH HHS/ -- R01 AG037693/AG/NIA NIH HHS/ -- R01 DC003906/DC/NIDCD NIH HHS/ -- R01-AG037693/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1503-6. doi: 10.1126/science.1217697. Epub 2012 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323736" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*drug therapy/*metabolism ; Amyloid beta-Peptides/*metabolism ; Amyloidosis/drug therapy/metabolism ; Animals ; Apolipoproteins E/*metabolism ; Astrocytes/drug effects/metabolism ; Behavior, Animal/drug effects ; Brain/drug effects/*metabolism ; Disease Models, Animal ; Extracellular Fluid/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia/drug effects/metabolism ; Molecular Targeted Therapy ; Odors ; Olfactory Pathways/drug effects/physiology ; Orphan Nuclear Receptors/metabolism ; PPAR gamma/metabolism ; Phagocytosis ; Plaque, Amyloid/drug therapy ; Retinoid X Receptors/agonists/metabolism ; Tetrahydronaphthalenes/*pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-03-24
    Description: The hippocampus and entorhinal cortex play a pivotal role in spatial learning and memory. The two forebrain regions are highly interconnected via excitatory pathways. Using optogenetic tools, we identified and characterized long-range gamma-aminobutyric acid-releasing (GABAergic) neurons that provide a bidirectional hippocampal-entorhinal inhibitory connectivity and preferentially target GABAergic interneurons. Activation of long-range GABAergic axons enhances sub- and suprathreshold rhythmic theta activity of postsynaptic neurons in the target areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melzer, Sarah -- Michael, Magdalena -- Caputi, Antonio -- Eliava, Marina -- Fuchs, Elke C -- Whittington, Miles A -- Monyer, Hannah -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1506-10. doi: 10.1126/science.1217139.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; CA1 Region, Hippocampal/cytology/physiology ; Dentate Gyrus/cytology/physiology ; Entorhinal Cortex/*physiology ; GABAergic Neurons/*physiology ; Hippocampus/cytology/*physiology ; Interneurons/*physiology ; Mice ; *Neural Inhibition ; Neural Pathways ; Patch-Clamp Techniques ; Somatostatin/metabolism ; Synapses/physiology ; Synaptic Potentials ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koch, Christof -- New York, N.Y. -- Science. 2012 Aug 3;337(6094):531-2. doi: 10.1126/science.1218616.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Allen Institute for Brain Science, Seattle, WA 98103, USA. christofk@alleninstitute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859475" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Humans ; Mice ; Nerve Tissue Proteins/*metabolism ; Neurons/*metabolism ; *Proteomics ; Synapses/metabolism ; *Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-02-11
    Description: DNMT1, the major maintenance DNA methyltransferase in animals, helps to regulate gene expression, genome imprinting, and X-chromosome inactivation. We report on the crystal structure of a productive covalent mouse DNMT1(731-1602)-DNA complex containing a central hemimethylated CpG site. The methyl group of methylcytosine is positioned within a shallow hydrophobic concave surface, whereas the cytosine on the target strand is looped out and covalently anchored within the catalytic pocket. The DNA is distorted at the hemimethylated CpG step, with side chains from catalytic and recognition loops inserting through both grooves to fill an intercalation-type cavity associated with a dual base flip-out on partner strands. Structural and biochemical data establish how a combination of active and autoinhibitory mechanisms ensures the high fidelity of DNMT1-mediated maintenance DNA methylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693633/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693633/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Jikui -- Teplova, Marianna -- Ishibe-Murakami, Satoko -- Patel, Dinshaw J -- P30 CA008748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):709-12. doi: 10.1126/science.1214453.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323818" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/chemistry/metabolism ; Animals ; Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA (Cytosine-5-)-Methyltransferase/*chemistry/genetics/*metabolism ; *DNA Methylation ; Dinucleoside Phosphates/chemistry ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-09-01
    Description: The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koike, Nobuya -- Yoo, Seung-Hee -- Huang, Hung-Chung -- Kumar, Vivek -- Lee, Choogon -- Kim, Tae-Kyung -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- R01 NS053616/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):349-54. doi: 10.1126/science.1226339. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936566" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/metabolism ; Animals ; CLOCK Proteins/metabolism ; Chromatin/*metabolism ; Chromatin Assembly and Disassembly/genetics ; Circadian Clocks/*genetics ; Cryptochromes/*genetics ; DNA, Intergenic ; Enhancer Elements, Genetic ; *Epigenesis, Genetic ; Gene Expression Profiling ; Genetic Loci ; Histones/metabolism ; Liver/metabolism/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Period Circadian Proteins/genetics ; RNA Polymerase II/metabolism ; RNA, Messenger/genetics ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-12-22
    Description: Most mammalian genes produce multiple distinct messenger RNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced complementary DNA from nine tissues from four mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specific. Thousands of previously unknown, lineage-specific, and conserved alternative exons were identified; widely conserved alternative exons had signatures of binding by MBNL, PTB, RBFOX, STAR, and TIA family splicing factors, implicating them as ancestral mammalian splicing regulators. Our data also indicate that alternative splicing often alters protein phosphorylatability, delimiting the scope of kinase signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568499/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568499/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merkin, Jason -- Russell, Caitlin -- Chen, Ping -- Burge, Christopher B -- OD011092/OD/NIH HHS/ -- R01 HG002439/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1593-9. doi: 10.1126/science.1228186.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258891" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Biological Evolution ; Cattle ; Chickens ; Conserved Sequence ; DNA, Complementary ; DNA-Binding Proteins/metabolism ; *Evolution, Molecular ; Exons ; Gene Expression Profiling ; *Gene Expression Regulation ; Introns ; Macaca mulatta ; Male ; Mammals/*genetics ; Mice ; Models, Genetic ; Phosphorylation ; Phylogeny ; Protein Isoforms/chemistry/*genetics/metabolism ; Protein Kinases/genetics/metabolism ; RNA Splice Sites ; RNA Splicing ; RNA-Binding Proteins/metabolism ; Rats ; Sequence Analysis, DNA ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-04-28
    Description: 5-Methylcytosine can be converted to 5-hydroxymethylcytosine (5hmC) in mammalian DNA by the ten-eleven translocation (TET) enzymes. We introduce oxidative bisulfite sequencing (oxBS-Seq), the first method for quantitative mapping of 5hmC in genomic DNA at single-nucleotide resolution. Selective chemical oxidation of 5hmC to 5-formylcytosine (5fC) enables bisulfite conversion of 5fC to uracil. We demonstrate the utility of oxBS-Seq to map and quantify 5hmC at CpG islands (CGIs) in mouse embryonic stem (ES) cells and identify 800 5hmC-containing CGIs that have on average 3.3% hydroxymethylation. High levels of 5hmC were found in CGIs associated with transcriptional regulators and in long interspersed nuclear elements, suggesting that these regions might undergo epigenetic reprogramming in ES cells. Our results open new questions on 5hmC dynamics and sequence-specific targeting by TETs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Booth, Michael J -- Branco, Miguel R -- Ficz, Gabriella -- Oxley, David -- Krueger, Felix -- Reik, Wolf -- Balasubramanian, Shankar -- 095645/Wellcome Trust/United Kingdom -- 11961/Cancer Research UK/United Kingdom -- G0801156/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):934-7. doi: 10.1126/science.1220671. Epub 2012 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539555" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*analysis ; Animals ; *CpG Islands ; Cytosine/*analogs & derivatives/analysis/chemistry ; DNA/*chemistry/genetics ; DNA Methylation ; *Embryonic Stem Cells/physiology ; Epigenesis, Genetic ; Genes, Intracisternal A-Particle ; High-Throughput Nucleotide Sequencing ; Long Interspersed Nucleotide Elements ; Mice ; Oxidation-Reduction ; Rhenium/chemistry ; *Sequence Analysis, DNA ; Sulfites ; Transcription, Genetic ; Uracil/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-02-11
    Description: In its physiological state, cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIbeta(2):C(2) holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the beta4-beta5 loop in the RIIbeta subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIbeta subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIbeta tetramer differs appreciably from our model of the RIalpha tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ping -- Smith-Nguyen, Eric V -- Keshwani, Malik M -- Deal, Michael S -- Kornev, Alexandr P -- Taylor, Susan S -- GM34921/GM/NIGMS NIH HHS/ -- R01 GM034921/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):712-6. doi: 10.1126/science.1213979.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0654, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323819" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*chemistry/*metabolism ; Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/*chemistry/*metabolism ; Holoenzymes/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Folding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-08-28
    Description: The heart's pumping capacity results from highly regulated interactions of actomyosin molecular motors. Mutations in the gene for a potential regulator of these motors, cardiac myosin-binding protein C (cMyBP-C), cause hypertrophic cardiomyopathy. However, cMyBP-C's ability to modulate cardiac contractility is not well understood. Using single-particle fluorescence imaging techniques, transgenic protein expression, proteomics, and modeling, we found that cMyBP-C slowed actomyosin motion generation in native cardiac thick filaments. This mechanical effect was localized to where cMyBP-C resides within the thick filament (i.e., the C-zones) and was modulated by phosphorylation and site-specific proteolytic degradation. These results provide molecular insight into why cMyBP-C should be considered a member of a tripartite complex with actin and myosin that allows fine tuning of cardiac muscle contraction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Previs, M J -- Beck Previs, S -- Gulick, J -- Robbins, J -- Warshaw, D M -- 8P20GM103449/GM/NIGMS NIH HHS/ -- HL007647/HL/NHLBI NIH HHS/ -- HL059408/HL/NHLBI NIH HHS/ -- P01 HL059408/HL/NHLBI NIH HHS/ -- P20 GM103449/GM/NIGMS NIH HHS/ -- R01 HL086728/HL/NHLBI NIH HHS/ -- T32 HL007647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1215-8. doi: 10.1126/science.1223602. Epub 2012 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923435" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actomyosin/metabolism ; Amino Acid Motifs ; Animals ; Carrier Proteins/chemistry/*metabolism ; Mice ; Mice, Transgenic ; *Myocardial Contraction ; Myocardium/*metabolism/ultrastructure ; Myofibrils/*metabolism ; Myosins/*metabolism ; Phosphorylation ; Proteolysis ; Sarcomeres/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-07-07
    Description: Obstruction of critical blood vessels due to thrombosis or embolism is a leading cause of death worldwide. Here, we describe a biomimetic strategy that uses high shear stress caused by vascular narrowing as a targeting mechanism--in the same way platelets do--to deliver drugs to obstructed blood vessels. Microscale aggregates of nanoparticles were fabricated to break up into nanoscale components when exposed to abnormally high fluid shear stress. When coated with tissue plasminogen activator and administered intravenously in mice, these shear-activated nanotherapeutics induce rapid clot dissolution in a mesenteric injury model, restore normal flow dynamics, and increase survival in an otherwise fatal mouse pulmonary embolism model. This biophysical strategy for drug targeting, which lowers required doses and minimizes side effects while maximizing drug efficacy, offers a potential new approach for treatment of life-threatening diseases that result from acute vascular occlusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korin, Netanel -- Kanapathipillai, Mathumai -- Matthews, Benjamin D -- Crescente, Marilena -- Brill, Alexander -- Mammoto, Tadanori -- Ghosh, Kaustabh -- Jurek, Samuel -- Bencherif, Sidi A -- Bhatta, Deen -- Coskun, Ahmet U -- Feldman, Charles L -- Wagner, Denisa D -- Ingber, Donald E -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):738-42. doi: 10.1126/science.1217815. Epub 2012 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22767894" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomimetic Materials ; Blood Circulation ; Drug Delivery Systems/*methods ; Fibrinolytic Agents/*administration & dosage ; Hemodynamics ; Hemorheology ; Lactic Acid ; Male ; Mesenteric Arteries ; Mesenteric Vascular Occlusion/*drug therapy ; Mice ; Mice, Inbred C57BL ; Microfluidic Analytical Techniques ; Models, Anatomic ; *Nanoparticles ; Polyglycolic Acid ; Pulmonary Embolism/*drug therapy ; Stress, Mechanical ; Thrombosis/*drug therapy/prevention & control ; Tissue Plasminogen Activator/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-12-12
    Description: Concentrations of acetyl-coenzyme A and nicotinamide adenine dinucleotide (NAD(+)) affect histone acetylation and thereby couple cellular metabolic status and transcriptional regulation. We report that the ketone body d-beta-hydroxybutyrate (betaOHB) is an endogenous and specific inhibitor of class I histone deacetylases (HDACs). Administration of exogenous betaOHB, or fasting or calorie restriction, two conditions associated with increased betaOHB abundance, all increased global histone acetylation in mouse tissues. Inhibition of HDAC by betaOHB was correlated with global changes in transcription, including that of the genes encoding oxidative stress resistance factors FOXO3A and MT2. Treatment of cells with betaOHB increased histone acetylation at the Foxo3a and Mt2 promoters, and both genes were activated by selective depletion of HDAC1 and HDAC2. Consistent with increased FOXO3A and MT2 activity, treatment of mice with betaOHB conferred substantial protection against oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735349/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735349/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimazu, Tadahiro -- Hirschey, Matthew D -- Newman, John -- He, Wenjuan -- Shirakawa, Kotaro -- Le Moan, Natacha -- Grueter, Carrie A -- Lim, Hyungwook -- Saunders, Laura R -- Stevens, Robert D -- Newgard, Christopher B -- Farese, Robert V Jr -- de Cabo, Rafael -- Ulrich, Scott -- Akassoglou, Katerina -- Verdin, Eric -- P30 DK026743/DK/NIDDK NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 DK056084/DK/NIDDK NIH HHS/ -- T32 AG000212/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):211-4. doi: 10.1126/science.1227166. Epub 2012 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223453" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Hydroxybutyric Acid/blood/*metabolism/pharmacology ; Acetylation ; Animals ; Caloric Restriction ; Catalase/metabolism ; Fasting ; Forkhead Transcription Factors/genetics ; HEK293 Cells ; Histone Deacetylase Inhibitors/blood/*metabolism/pharmacology ; Histone Deacetylases/genetics/*metabolism ; Histones/metabolism ; Humans ; Kidney/drug effects/*metabolism ; Lipid Peroxidation ; Metallothionein/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; *Oxidative Stress/genetics ; Promoter Regions, Genetic ; RNA, Small Interfering ; Superoxide Dismutase/metabolism ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-12-12
    Description: Mouse primordial germ cells (PGCs) undergo sequential epigenetic changes and genome-wide DNA demethylation to reset the epigenome for totipotency. Here, we demonstrate that erasure of CpG methylation (5mC) in PGCs occurs via conversion to 5-hydroxymethylcytosine (5hmC), driven by high levels of TET1 and TET2. Global conversion to 5hmC initiates asynchronously among PGCs at embryonic day (E) 9.5 to E10.5 and accounts for the unique process of imprint erasure. Mechanistically, 5hmC enrichment is followed by its protracted decline thereafter at a rate consistent with replication-coupled dilution. The conversion to 5hmC is an important component of parallel redundant systems that drive comprehensive reprogramming in PGCs. Nonetheless, we identify rare regulatory elements that escape systematic DNA demethylation in PGCs, providing a potential mechanistic basis for transgenerational epigenetic inheritance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847602/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847602/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hackett, Jamie A -- Sengupta, Roopsha -- Zylicz, Jan J -- Murakami, Kazuhiro -- Lee, Caroline -- Down, Thomas A -- Surani, M Azim -- 079249/Wellcome Trust/United Kingdom -- 083089/Wellcome Trust/United Kingdom -- 083563/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- RG44593/Wellcome Trust/United Kingdom -- RG49135/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):448-52. doi: 10.1126/science.1229277. Epub 2012 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223451" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; CpG Islands ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; DNA-Binding Proteins/genetics/metabolism ; Embryo, Mammalian/*metabolism ; Embryonic Development ; *Epigenesis, Genetic ; Female ; *Genomic Imprinting ; Germ Cells/*metabolism ; Germ Layers/cytology ; Male ; Mice ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/metabolism ; RNA-Binding Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-12-12
    Description: The cJun NH(2)-terminal kinase (JNK) signaling pathway contributes to inflammation and plays a key role in the metabolic response to obesity, including insulin resistance. Macrophages are implicated in this process. To test the role of JNK, we established mice with selective JNK deficiency in macrophages. We report that feeding a high-fat diet to control and JNK-deficient mice caused similar obesity, but only mice with JNK-deficient macrophages remained insulin-sensitive. The protection of mice with macrophage-specific JNK deficiency against insulin resistance was associated with reduced tissue infiltration by macrophages. Immunophenotyping demonstrated that JNK was required for pro-inflammatory macrophage polarization. These studies demonstrate that JNK in macrophages is required for the establishment of obesity-induced insulin resistance and inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835653/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835653/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Myoung Sook -- Jung, Dae Young -- Morel, Caroline -- Lakhani, Saquib A -- Kim, Jason K -- Flavell, Richard A -- Davis, Roger J -- CA065861/CA/NCI NIH HHS/ -- DK032520/DK/NIDDK NIH HHS/ -- DK080756/DK/NIDDK NIH HHS/ -- DK090963/DK/NIDDK NIH HHS/ -- DK093000/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- R24 DK090963/DK/NIDDK NIH HHS/ -- U24 DK093000/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):218-22. doi: 10.1126/science.1227568. Epub 2012 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223452" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/immunology/pathology ; Animals ; Diet, High-Fat ; Glucose Clamp Technique ; Immunophenotyping ; Inflammation/immunology/*physiopathology ; *Insulin Resistance ; Islets of Langerhans/pathology ; MAP Kinase Signaling System ; Macrophage Activation ; Macrophages/*enzymology/*immunology/physiology ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Mitogen-Activated Protein Kinase 9/deficiency/genetics/*metabolism ; Obesity/immunology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-12-15
    Description: Intratumoral heterogeneity arises through the evolution of genetically diverse subclones during tumor progression. However, it remains unknown whether cells within single genetic clones are functionally equivalent. By combining DNA copy number alteration (CNA) profiling, sequencing, and lentiviral lineage tracking, we followed the repopulation dynamics of 150 single lentivirus-marked lineages from 10 human colorectal cancers through serial xenograft passages in mice. CNA and mutational analysis distinguished individual clones and showed that clones remained stable upon serial transplantation. Despite this stability, the proliferation, persistence, and chemotherapy tolerance of lentivirally marked lineages were variable within each clone. Chemotherapy promoted the dominance of previously minor or dormant lineages. Thus, apart from genetic diversity, tumor cells display inherent functional variability in tumor propagation potential, which contributes to both cancer growth and therapy tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kreso, Antonija -- O'Brien, Catherine A -- van Galen, Peter -- Gan, Olga I -- Notta, Faiyaz -- Brown, Andrew M K -- Ng, Karen -- Ma, Jing -- Wienholds, Erno -- Dunant, Cyrille -- Pollett, Aaron -- Gallinger, Steven -- McPherson, John -- Mullighan, Charles G -- Shibata, Darryl -- Dick, John E -- R21 CA149990/CA/NCI NIH HHS/ -- R21CA149990-01/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):543-8. doi: 10.1126/science.1227670. Epub 2012 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campbell Family Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239622" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Cell Tracking ; Clonal Evolution/*genetics ; Clone Cells ; Colorectal Neoplasms/*drug therapy/genetics/*pathology ; DNA Copy Number Variations ; Drug Resistance, Neoplasm/*genetics ; Humans ; Lentivirus ; Mice ; Neoplasm Transplantation ; Transcriptome ; Transduction, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-12-22
    Description: The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-beta in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-beta induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lijun -- Wu, Jiaxi -- Du, Fenghe -- Chen, Xiang -- Chen, Zhijian J -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):786-91. doi: 10.1126/science.1232458. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258413" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Cell Line, Tumor ; Cyclic AMP/biosynthesis ; Cyclic GMP/biosynthesis ; Cytidine Triphosphate/metabolism ; Cytosol/enzymology/*immunology ; DNA/*immunology/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Interferon Type I/*biosynthesis ; Interferon-beta/*biosynthesis ; Metabolic Networks and Pathways ; Mice ; Molecular Sequence Data ; Nucleotidyltransferases/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1293. doi: 10.1126/science.335.6074.1293.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422955" target="_blank"〉PubMed〈/a〉
    Keywords: Agaricales/*chemistry ; Amino Acids/isolation & purification/poisoning ; Animals ; China ; Fatty Acids/metabolism ; Guanidines/isolation & purification/poisoning ; Heart/drug effects ; Humans ; Hypoglycemia/*chemically induced ; Mice ; Mushroom Poisoning/*metabolism ; Mycotoxins/*poisoning ; Myocardium/*metabolism ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-08-11
    Description: De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knockin mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with host cell factor-1 (HCF-1), O-linked N-acetylglucosamine transferase (OGT), and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dey, Anwesha -- Seshasayee, Dhaya -- Noubade, Rajkumar -- French, Dorothy M -- Liu, Jinfeng -- Chaurushiya, Mira S -- Kirkpatrick, Donald S -- Pham, Victoria C -- Lill, Jennie R -- Bakalarski, Corey E -- Wu, Jiansheng -- Phu, Lilian -- Katavolos, Paula -- LaFave, Lindsay M -- Abdel-Wahab, Omar -- Modrusan, Zora -- Seshagiri, Somasekar -- Dong, Ken -- Lin, Zhonghua -- Balazs, Mercedesz -- Suriben, Rowena -- Newton, Kim -- Hymowitz, Sarah -- Garcia-Manero, Guillermo -- Martin, Flavius -- Levine, Ross L -- Dixit, Vishva M -- R01 CA173636/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1541-6. Epub 2012 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22878500" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; *Cell Transformation, Neoplastic ; Chromatin Immunoprecipitation ; Embryonic Development ; Gene Deletion ; Gene Expression Regulation ; Gene Knock-In Techniques ; *Genes, Tumor Suppressor ; Hematopoiesis ; Host Cell Factor C1/metabolism ; Humans ; Leukemia, Myelomonocytic, Chronic/*genetics/metabolism/pathology ; Mice ; Mice, Knockout ; Myelodysplastic Syndromes/*genetics/metabolism/pathology ; Myeloid Cells/cytology/physiology ; Myeloid Progenitor Cells/cytology/physiology ; N-Acetylglucosaminyltransferases/metabolism ; Promoter Regions, Genetic ; Repressor Proteins/metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitin Thiolesterase/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-01-17
    Description: Recognition and clearance of a bacterial infection are a fundamental properties of innate immunity. Here, we describe an effector B cell population that protects against microbial sepsis. Innate response activator (IRA) B cells are phenotypically and functionally distinct, develop and diverge from B1a B cells, depend on pattern-recognition receptors, and produce granulocyte-macrophage colony-stimulating factor. Specific deletion of IRA B cell activity impairs bacterial clearance, elicits a cytokine storm, and precipitates septic shock. These observations enrich our understanding of innate immunity, position IRA B cells as gatekeepers of bacterial infection, and identify new treatment avenues for infectious diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rauch, Philipp J -- Chudnovskiy, Aleksey -- Robbins, Clinton S -- Weber, Georg F -- Etzrodt, Martin -- Hilgendorf, Ingo -- Tiglao, Elizabeth -- Figueiredo, Jose-Luiz -- Iwamoto, Yoshiko -- Theurl, Igor -- Gorbatov, Rostic -- Waring, Michael T -- Chicoine, Adam T -- Mouded, Majd -- Pittet, Mikael J -- Nahrendorf, Matthias -- Weissleder, Ralph -- Swirski, Filip K -- 1R01HL095612/HL/NHLBI NIH HHS/ -- P01-A154904/PHS HHS/ -- P50 CA086355/CA/NCI NIH HHS/ -- P50 CA086355-11/CA/NCI NIH HHS/ -- P50 CA86355/CA/NCI NIH HHS/ -- R01 HL095612/HL/NHLBI NIH HHS/ -- R01 HL095612-03/HL/NHLBI NIH HHS/ -- R24 CA69246/CA/NCI NIH HHS/ -- S10 RR026360/RR/NCRR NIH HHS/ -- U01 HL080731/HL/NHLBI NIH HHS/ -- U01 HL080731-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 3;335(6068):597-601. doi: 10.1126/science.1215173. Epub 2012 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22245738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocyte Subsets/*immunology/metabolism ; Cell Lineage ; Cell Separation ; Escherichia coli Infections/*immunology ; Female ; Flow Cytometry ; Granulocyte-Macrophage Colony-Stimulating Factor/immunology/*metabolism ; *Immunity, Innate ; Immunoglobulin M/metabolism ; Immunophenotyping ; Integrin alpha4beta1/immunology/metabolism ; Lipopolysaccharides ; Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/immunology/metabolism ; Mice ; Mice, Inbred C57BL ; Parabiosis ; Peritonitis/*immunology ; Sepsis/*immunology ; Shock, Septic/immunology ; Spleen/immunology ; Toll-Like Receptor 4/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):32-3. doi: 10.1126/science.338.6103.32.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042865" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antipsychotic Agents ; Brain/drug effects/*physiopathology ; Disease Models, Animal ; Drug Discovery/history/*trends ; Gene Expression Profiling ; Genome, Human ; History, 20th Century ; History, 21st Century ; Humans ; Intellectual Disability ; Mental Disorders/drug therapy/genetics/*therapy ; Mice ; Neural Pathways ; Neuroimaging ; Neurons/metabolism/physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-09-29
    Description: Although coagulation factors play a role in host defense for "living fossils" such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of nuclear factor kappaB-dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor "decoration" of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doronin, Konstantin -- Flatt, Justin W -- Di Paolo, Nelson C -- Khare, Reeti -- Kalyuzhniy, Oleksandr -- Acchione, Mauro -- Sumida, John P -- Ohto, Umeharu -- Shimizu, Toshiyuki -- Akashi-Takamura, Sachiko -- Miyake, Kensuke -- MacDonald, James W -- Bammler, Theo K -- Beyer, Richard P -- Farin, Frederico M -- Stewart, Phoebe L -- Shayakhmetov, Dmitry M -- AI065429/AI/NIAID NIH HHS/ -- CA141439/CA/NCI NIH HHS/ -- P30ES07033/ES/NIEHS NIH HHS/ -- R01 AI065429/AI/NIAID NIH HHS/ -- R01 CA141439/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):795-8. doi: 10.1126/science.1226625. Epub 2012 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019612" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae Infections/*immunology/metabolism/virology ; Adenoviruses, Human/genetics/*immunology/*metabolism ; Animals ; CHO Cells ; Capsid Proteins/chemistry/genetics/metabolism ; Cell Line, Tumor ; Cricetinae ; Cricetulus ; Cryoelectron Microscopy ; Cytokines/metabolism ; Factor X/chemistry/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation ; Hepatocytes/virology ; Humans ; *Immunity, Innate ; Macrophages/metabolism/virology ; Mice ; Mice, Inbred C57BL ; Molecular Dynamics Simulation ; Mutation ; NF-kappa B/metabolism ; Signal Transduction ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-10-09
    Description: Reconstitution of female germ cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells and induced pluripotent stem cells in mice are induced into primordial germ cell-like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, undergo X-reactivation, imprint erasure, and cyst formation, and exhibit meiotic potential. Upon transplantation under mouse ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which then contribute to fertile offspring after in vitro maturation and fertilization. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ cell development in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, Katsuhiko -- Ogushi, Sugako -- Kurimoto, Kazuki -- Shimamoto, So -- Ohta, Hiroshi -- Saitou, Mitinori -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):971-5. doi: 10.1126/science.1226889. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. khayashi@anat2.med.kyoto-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques ; *Cell Differentiation ; Embryonic Stem Cells/*cytology ; Female ; Fertilization in Vitro ; Induced Pluripotent Stem Cells/*cytology ; Male ; Mice ; Oocytes/*cytology/transplantation ; Oogenesis ; Ovarian Follicle/*cytology ; Repressor Proteins/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-09-29
    Description: A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Suk-Won -- Tao, Hu -- Kim, Dae-Hyeong -- Cheng, Huanyu -- Song, Jun-Kyul -- Rill, Elliott -- Brenckle, Mark A -- Panilaitis, Bruce -- Won, Sang Min -- Kim, Yun-Soung -- Song, Young Min -- Yu, Ki Jun -- Ameen, Abid -- Li, Rui -- Su, Yewang -- Yang, Miaomiao -- Kaplan, David L -- Zakin, Mitchell R -- Slepian, Marvin J -- Huang, Yonggang -- Omenetto, Fiorenzo G -- Rogers, John A -- EB002520/EB/NIBIB NIH HHS/ -- P41 EB002520/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1640-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019646" target="_blank"〉PubMed〈/a〉
    Keywords: *Absorbable Implants ; Animals ; Anti-Bacterial Agents ; Electric Power Supplies ; *Electronics ; Metals ; Mice ; Mice, Inbred BALB C ; Oxides ; *Semiconductors ; *Silicon ; Transistors, Electronic ; Wireless Technology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-06-09
    Description: The chemokine-mediated recruitment of effector T cells to sites of inflammation is a central feature of the immune response. The extent to which chemokine expression levels are limited by the intrinsic developmental characteristics of a tissue has remained unexplored. We show in mice that effector T cells cannot accumulate within the decidua, the specialized stromal tissue encapsulating the fetus and placenta. Impaired accumulation was in part attributable to the epigenetic silencing of key T cell-attracting inflammatory chemokine genes in decidual stromal cells, as evidenced by promoter accrual of repressive histone marks. These findings give insight into mechanisms of fetomaternal immune tolerance, as well as reveal the epigenetic modification of tissue stromal cells as a modality for limiting effector T cell trafficking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727649/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727649/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nancy, Patrice -- Tagliani, Elisa -- Tay, Chin-Siean -- Asp, Patrik -- Levy, David E -- Erlebacher, Adrian -- P30CA016087/CA/NCI NIH HHS/ -- R01 AI062980/AI/NIAID NIH HHS/ -- R01AI062980/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1317-21. doi: 10.1126/science.1220030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22679098" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemokine CCL5/genetics/metabolism ; Chemokine CXCL10/genetics/metabolism ; Chemokine CXCL11/genetics/metabolism ; Chemokine CXCL9/genetics/metabolism ; Chemokines/*genetics/metabolism ; Chromatin Immunoprecipitation ; Decidua/*immunology/*metabolism ; Endometrium/cytology/immunology ; Female ; *Gene Silencing ; Histones/metabolism ; *Immune Tolerance ; Immunologic Memory ; Inflammation ; Methylation ; Mice ; Mice, Inbred C57BL ; Myometrium/immunology ; Ovalbumin/immunology ; Pregnancy ; Promoter Regions, Genetic ; Receptors, CXCR3/immunology/metabolism ; Stromal Cells/*immunology/*metabolism ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-11-20
    Description: Nanoparticle-based drug delivery systems have been developed to improve the efficacy and reduce the systemic toxicity of a wide range of drugs. Although clinically approved nanoparticles have consistently shown value in reducing drug toxicity, their use has not always translated into improved clinical outcomes. This has led to the development of "multifunctional" nanoparticles, where additional capabilities like targeting and image contrast enhancement are added to the nanoparticles. However, additional functionality means additional synthetic steps and costs, more convoluted behavior and effects in vivo, and also greater regulatory hurdles. The trade-off between additional functionality and complexity is the subject of ongoing debate and the focus of this Review.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660151/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660151/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Zhiliang -- Al Zaki, Ajlan -- Hui, James Z -- Muzykantov, Vladimir R -- Tsourkas, Andrew -- R01 CA157766/CA/NCI NIH HHS/ -- R01 EB012065/EB/NIBIB NIH HHS/ -- R01 HL087036/HL/NHLBI NIH HHS/ -- R01-CA157766/CA/NCI NIH HHS/ -- R01-EB012065/EB/NIBIB NIH HHS/ -- R21 EB013226/EB/NIBIB NIH HHS/ -- R21 EB013754/EB/NIBIB NIH HHS/ -- R21-EB013226/EB/NIBIB NIH HHS/ -- R21-EB013754/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):903-10. doi: 10.1126/science.1226338.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23161990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/metabolism ; Cardiovascular Diseases/diagnosis/drug therapy ; Clinical Trials as Topic ; Cost-Benefit Analysis ; Diagnostic Imaging/*economics ; Drug Delivery Systems/*economics ; Humans ; Mice ; Molecular Targeted Therapy/*methods ; Nanoparticles/chemistry/economics/*therapeutic use ; Neoplasms/diagnosis/drug therapy ; Transcytosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-01-24
    Description: Natural killer (NK) cells are lymphocytes involved in antimicrobial and antitumoral immune responses. Using N-ethyl-N-nitrosourea mutagenesis in mice, we identified a mutant with increased resistance to viral infections because of the presence of hyperresponsive NK cells. Whole-genome sequencing and functional analysis revealed a loss-of-function mutation in the Ncr1 gene encoding the activating receptor NKp46. The down-regulation of NK cell activity by NKp46 was associated with the silencing of the Helios transcription factor in NK cells. NKp46 was critical for the subsequent development of antiviral and antibacterial T cell responses, which suggests that the regulation of NK cell function by NKp46 allows for the optimal development of adaptive immune responses. NKp46 blockade enhanced NK cell reactivity in vivo, which could enable the design of immunostimulation strategies in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narni-Mancinelli, Emilie -- Jaeger, Baptiste N -- Bernat, Claire -- Fenis, Aurore -- Kung, Sam -- De Gassart, Aude -- Mahmood, Sajid -- Gut, Marta -- Heath, Simon C -- Estelle, Jordi -- Bertosio, Elodie -- Vely, Frederic -- Gastinel, Louis N -- Beutler, Bruce -- Malissen, Bernard -- Malissen, Marie -- Gut, Ivo G -- Vivier, Eric -- Ugolini, Sophie -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):344-8. doi: 10.1126/science.1215621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Campus de Luminy case 906, 13288 Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267813" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Amino Acid Substitution ; Animals ; Antibodies, Blocking/immunology ; Antibodies, Monoclonal/immunology ; Antigens, Ly/genetics/immunology/*physiology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; DNA-Binding Proteins/*genetics/physiology ; Down-Regulation ; Genetic Complementation Test ; Herpesviridae Infections/*immunology/virology ; Immunologic Memory ; Killer Cells, Natural/*immunology ; Listeriosis/immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muromegalovirus/physiology ; Mutagenesis ; Natural Cytotoxicity Triggering Receptor 1/antagonists & ; inhibitors/genetics/immunology/*physiology ; T-Lymphocytes/*immunology ; Transcription Factors/*genetics/physiology ; Transcription, Genetic ; Viral Load
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-06-08
    Description: The intestinal microflora, typically equated with bacteria, influences diseases such as obesity and inflammatory bowel disease. Here, we show that the mammalian gut contains a rich fungal community that interacts with the immune system through the innate immune receptor Dectin-1. Mice lacking Dectin-1 exhibited increased susceptibility to chemically induced colitis, which was the result of altered responses to indigenous fungi. In humans, we identified a polymorphism in the gene for Dectin-1 (CLEC7A) that is strongly linked to a severe form of ulcerative colitis. Together, our findings reveal a eukaryotic fungal community in the gut (the "mycobiome") that coexists with bacteria and substantially expands the repertoire of organisms interacting with the intestinal immune system to influence health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iliev, Iliyan D -- Funari, Vincent A -- Taylor, Kent D -- Nguyen, Quoclinh -- Reyes, Christopher N -- Strom, Samuel P -- Brown, Jordan -- Becker, Courtney A -- Fleshner, Phillip R -- Dubinsky, Marla -- Rotter, Jerome I -- Wang, Hanlin L -- McGovern, Dermot P B -- Brown, Gordon D -- Underhill, David M -- 086558/Wellcome Trust/United Kingdom -- AI071116/AI/NIAID NIH HHS/ -- P01-DK046763/DK/NIDDK NIH HHS/ -- R01 DK093426/DK/NIDDK NIH HHS/ -- UL1 RR033176/RR/NCRR NIH HHS/ -- UL1 TR000124/TR/NCATS NIH HHS/ -- UL1RR033176/RR/NCRR NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1314-7. doi: 10.1126/science.1221789. Epub 2012 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22674328" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Fungal/blood ; Candida tropicalis/immunology/isolation & purification/pathogenicity/physiology ; Colitis, Ulcerative/chemically induced/*immunology/*microbiology ; Colon/immunology/*microbiology ; Colony Count, Microbial ; Dextran Sulfate ; Disease Susceptibility ; Female ; Fungi/classification/*immunology/isolation & purification/*physiology ; Haplotypes ; Humans ; Immunity, Innate ; Immunity, Mucosal ; Intestinal Mucosa/immunology/*microbiology ; Intestines/immunology/microbiology ; Lectins, C-Type/deficiency/*genetics/*metabolism ; Metagenome ; Mice ; Mice, Inbred C57BL ; Polymorphism, Single Nucleotide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-01-10
    Description: Polyaromatic hydrocarbons (PAHs) are prevalent, potent carcinogens, and 7,12-dimethylbenz[a]anthracene (DMBA) is a model PAH widely used to study tumorigenesis. Mice lacking Langerhans cells (LCs), a signatory epidermal dendritic cell (DC), are protected from cutaneous chemical carcinogenesis, independent of T cell immunity. Investigation of the underlying mechanism revealed that LC-deficient skin was relatively resistant to DMBA-induced DNA damage. LCs efficiently metabolized DMBA to DMBA-trans-3,4-diol, an intermediate proximal to oncogenic Hras mutation, and DMBA-treated LC-deficient skin contained significantly fewer Hras mutations. Moreover, DMBA-trans-3,4-diol application bypassed tumor resistance in LC-deficient mice. Additionally, the genotoxic impact of DMBA on human keratinocytes was significantly increased by prior incubation with human-derived LC. Thus, tissue-associated DC can enhance chemical carcinogenesis via PAH metabolism, highlighting the complex relation between immune cells and carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Modi, Badri G -- Neustadter, Jason -- Binda, Elisa -- Lewis, Julia -- Filler, Renata B -- Roberts, Scott J -- Kwong, Bernice Y -- Reddy, Swapna -- Overton, John D -- Galan, Anjela -- Tigelaar, Robert -- Cai, Lining -- Fu, Peter -- Shlomchik, Mark -- Kaplan, Daniel H -- Hayday, Adrian -- Girardi, Michael -- 085780/Wellcome Trust/United Kingdom -- K08 AR002072/AR/NIAMS NIH HHS/ -- P30 CA016359/CA/NCI NIH HHS/ -- R01 AR056632/AR/NIAMS NIH HHS/ -- R01 CA102703/CA/NCI NIH HHS/ -- R01-AR044077/AR/NIAMS NIH HHS/ -- R01-AR056632/AR/NIAMS NIH HHS/ -- R01CA102703/CA/NCI NIH HHS/ -- T32 AR007016/AR/NIAMS NIH HHS/ -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):104-8. doi: 10.1126/science.1211600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223807" target="_blank"〉PubMed〈/a〉
    Keywords: 9,10-Dimethyl-1,2-benzanthracene/*analogs & derivatives/metabolism/toxicity ; Animals ; Aryl Hydrocarbon Hydroxylases/metabolism ; Carcinogens/*metabolism/*toxicity ; Carcinoma, Squamous Cell/*chemically induced/metabolism ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cytochrome P-450 CYP1A1/metabolism ; Cytochrome P-450 CYP1B1 ; *DNA Damage ; Genes, ras ; Humans ; Keratinocytes/metabolism/pathology ; Langerhans Cells/immunology/*metabolism ; Mice ; Mice, Transgenic ; Skin Neoplasms/*chemically induced/metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-01-10
    Description: Posttranslational modification of alpha-dystroglycan (alpha-DG) by the like-acetylglucosaminyltransferase (LARGE) is required for it to function as an extracellular matrix (ECM) receptor. Mutations in the LARGE gene have been identified in congenital muscular dystrophy patients with brain abnormalities. However, the precise function of LARGE remains unclear. Here we found that LARGE could act as a bifunctional glycosyltransferase, with both xylosyltransferase and glucuronyltransferase activities, which produced repeating units of [-3-xylose-alpha1,3-glucuronic acid-beta1-]. This modification allowed alpha-DG to bind laminin-G domain-containing ECM ligands.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702376/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702376/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inamori, Kei-ichiro -- Yoshida-Moriguchi, Takako -- Hara, Yuji -- Anderson, Mary E -- Yu, Liping -- Campbell, Kevin P -- 1U54NS053672/NS/NINDS NIH HHS/ -- U54 NS053672/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):93-6. doi: 10.1126/science.1214115.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223806" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; CHO Cells ; Carbohydrate Conformation ; Catalytic Domain ; Cricetinae ; Dystroglycans/chemistry/*metabolism ; Glucuronic Acid/metabolism ; Glucuronosyltransferase/metabolism ; Glycosaminoglycans/metabolism ; Glycosylation ; HEK293 Cells ; Humans ; Laminin/metabolism ; Ligands ; Mice ; Mutation ; N-Acetylglucosaminyltransferases/chemistry/genetics/*metabolism ; Pentosyltransferases/metabolism ; Polysaccharides/*metabolism ; Protein Processing, Post-Translational ; Recombinant Proteins/metabolism ; Xylose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-08-04
    Description: The synaptic adhesion molecules neurexin and neuroligin alter the development and function of synapses and are linked to autism in humans. Here, we found that Caenorhabditis elegans neurexin (NRX-1) and neuroligin (NLG-1) mediated a retrograde synaptic signal that inhibited neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on, whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased presynaptic levels of tomosyn, an inhibitor of SV fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zhitao -- Hom, Sabrina -- Kudze, Tambudzai -- Tong, Xia-Jing -- Choi, Seungwon -- Aramuni, Gayane -- Zhang, Weiqi -- Kaplan, Joshua M -- NS32196/NS/NINDS NIH HHS/ -- R37 NS032196/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):980-4. doi: 10.1126/science.1224896. Epub 2012 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859820" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules, Neuronal/genetics/*metabolism ; Cholinergic Neurons/physiology ; Excitatory Postsynaptic Potentials ; Exocytosis ; Kinetics ; Mice ; MicroRNAs/genetics/metabolism ; Motor Neurons/physiology ; Mutation ; Neural Inhibition ; Neuromuscular Junction/*physiology ; Neurotransmitter Agents/metabolism ; *Synaptic Transmission ; Synaptic Vesicles/physiology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-11-20
    Description: The epicardium encapsulates the heart and functions as a source of multipotent progenitor cells and paracrine factors essential for cardiac development and repair. Injury of the adult heart results in reactivation of a developmental gene program in the epicardium, but the transcriptional basis of epicardial gene expression has not been delineated. We established a mouse embryonic heart organ culture and gene expression system that facilitated the identification of epicardial enhancers activated during heart development and injury. Epicardial activation of these enhancers depends on a combinatorial transcriptional code centered on CCAAT/enhancer binding protein (C/EBP) transcription factors. Disruption of C/EBP signaling in the adult epicardium reduced injury-induced neutrophil infiltration and improved cardiac function. These findings reveal a transcriptional basis for epicardial activation and heart injury, providing a platform for enhancing cardiac regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Guo N -- Thatcher, Jeffrey E -- McAnally, John -- Kong, Yongli -- Qi, Xiaoxia -- Tan, Wei -- DiMaio, J Michael -- Amatruda, James F -- Gerard, Robert D -- Hill, Joseph A -- Bassel-Duby, Rhonda -- Olson, Eric N -- 1K99HL114738/HL/NHLBI NIH HHS/ -- HL100401-01/HL/NHLBI NIH HHS/ -- K99 HL114738/HL/NHLBI NIH HHS/ -- R01 HL077439/HL/NHLBI NIH HHS/ -- R01 HL093039/HL/NHLBI NIH HHS/ -- R01 HL111665/HL/NHLBI NIH HHS/ -- U01 HL100401/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1599-603. doi: 10.1126/science.1229765. Epub 2012 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23160954" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/genetics/metabolism ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Protein-beta/genetics/metabolism ; CCAAT-Enhancer-Binding Protein-delta/genetics/metabolism ; CCAAT-Enhancer-Binding Proteins/genetics/*metabolism ; Enhancer Elements, Genetic ; Female ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Heart/embryology/*physiopathology ; Male ; Mice ; Mice, Transgenic ; Models, Genetic ; Myocardial Contraction ; Myocardial Infarction/*genetics/metabolism ; Myocardial Reperfusion Injury/*genetics/metabolism ; Neutrophil Infiltration ; Oligonucleotide Array Sequence Analysis ; Organ Culture Techniques ; Pericardium/cytology/*embryology/*metabolism ; Signal Transduction ; Uroplakin III/genetics/metabolism ; Ventricular Remodeling ; WT1 Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):36-7, 39. doi: 10.1126/science.338.6103.36.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042868" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/*physiology ; Humans ; Learning ; Mice ; *Neuronal Plasticity ; Neurons/*physiology ; Recognition (Psychology)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: Adult-generated hippocampal neurons are required for mood control and antidepressant efficacy, raising hopes that someday we can harness the power of new neurons to treat mood disorders such as depression. However, conflicting findings from preclinical research--involving stress, depression, and neurogenesis--highlight the complexity of considering neurogenesis as a road to remission from depression. To reconcile differences in the literature, we introduce the "neurogenic interactome," a platform from which to consider the diverse and dynamic factors regulating neurogenesis. We propose consideration of the varying perspectives--system, region, and local regulation of neurogenesis--offered by the interactome and exchange of ideas between the fields of learning and memory and mood disorder research to clarify the role of neurogenesis in the etiology and treatment of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756889/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756889/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eisch, Amelia J -- Petrik, David -- K02 DA023555/DA/NIDA NIH HHS/ -- R01 DA016765/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):72-5. doi: 10.1126/science.1222941.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA. amelia.eisch@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Depressive Disorder, Major/*pathology/*physiopathology/psychology ; Hippocampus/*growth & development/pathology/*physiopathology ; Humans ; Learning ; Memory ; Mice ; Mice, Transgenic ; *Neurogenesis ; Neurons/pathology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-08-21
    Description: Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here, we identify the intestinal microbiota as a target of inflammation that affects the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10-deficient (Il10(-/-)) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)-treated Il10(-/-) mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10(-/-) mice, without altering intestinal inflammation. Mucosa-associated pks(+) E. coli were found in a significantly high percentage of inflammatory bowel disease and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arthur, Janelle C -- Perez-Chanona, Ernesto -- Muhlbauer, Marcus -- Tomkovich, Sarah -- Uronis, Joshua M -- Fan, Ting-Jia -- Campbell, Barry J -- Abujamel, Turki -- Dogan, Belgin -- Rogers, Arlin B -- Rhodes, Jonathan M -- Stintzi, Alain -- Simpson, Kenneth W -- Hansen, Jonathan J -- Keku, Temitope O -- Fodor, Anthony A -- Jobin, Christian -- MOP114872/Canadian Institutes of Health Research/Canada -- P30 CA016086/CA/NCI NIH HHS/ -- P30 DK034987/DK/NIDDK NIH HHS/ -- P40 R018603/PHS HHS/ -- R01 CA136887/CA/NCI NIH HHS/ -- R01 DK047700/DK/NIDDK NIH HHS/ -- R01 DK073338/DK/NIDDK NIH HHS/ -- R01 DK47700/DK/NIDDK NIH HHS/ -- R01 DK53347-11/DK/NIDDK NIH HHS/ -- R01 DK73338/DK/NIDDK NIH HHS/ -- T32 DK007737/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):120-3. doi: 10.1126/science.1224820. Epub 2012 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Pharmacology and Immunology-Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22903521" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Azoxymethane/toxicity ; Carcinogens/toxicity ; Carcinoma/chemically induced/*microbiology/pathology ; Cell Transformation, Neoplastic/genetics/pathology ; Colitis/*complications/genetics ; Colorectal Neoplasms/chemically induced/*microbiology/pathology ; *DNA Damage ; Escherichia coli/genetics/pathogenicity ; Interleukin-10/genetics ; Intestines/*microbiology/pathology ; Metagenome/genetics/*physiology ; Mice ; Mice, Mutant Strains ; Polyketide Synthases/genetics ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...