ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-05-28
    Description: Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60x coverage) and adjacent normal tissue (46x). Comparing the two genomes, we identify a wide variety of somatic variations, including 〉50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, William -- Jiang, Zhaoshi -- Liu, Jinfeng -- Haverty, Peter M -- Guan, Yinghui -- Stinson, Jeremy -- Yue, Peng -- Zhang, Yan -- Pant, Krishna P -- Bhatt, Deepali -- Ha, Connie -- Johnson, Stephanie -- Kennemer, Michael I -- Mohan, Sankar -- Nazarenko, Igor -- Watanabe, Colin -- Sparks, Andrew B -- Shames, David S -- Gentleman, Robert -- de Sauvage, Frederic J -- Stern, Howard -- Pandita, Ajay -- Ballinger, Dennis G -- Drmanac, Radoje -- Modrusan, Zora -- Seshagiri, Somasekar -- Zhang, Zemin -- England -- Nature. 2010 May 27;465(7297):473-7. doi: 10.1038/nature09004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505728" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Non-Small-Cell Lung/*genetics ; DNA Mutational Analysis ; Genome, Human/*genetics ; Humans ; Lung Neoplasms/*genetics ; Male ; Middle Aged ; Models, Biological ; Point Mutation/*genetics ; Selection, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-04
    Description: T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORgammat, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORgammat in response to TGF-beta signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutz, Sascha -- Kayagaki, Nobuhiko -- Phung, Qui T -- Eidenschenk, Celine -- Noubade, Rajkumar -- Wang, Xiaoting -- Lesch, Justin -- Lu, Rongze -- Newton, Kim -- Huang, Oscar W -- Cochran, Andrea G -- Vasser, Mark -- Fauber, Benjamin P -- DeVoss, Jason -- Webster, Joshua -- Diehl, Lauri -- Modrusan, Zora -- Kirkpatrick, Donald S -- Lill, Jennie R -- Ouyang, Wenjun -- Dixit, Vishva M -- England -- Nature. 2015 Feb 19;518(7539):417-21. doi: 10.1038/nature13979. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Stability ; Female ; Inflammation/genetics/pathology ; Interleukin-17/*biosynthesis ; Intestine, Small/metabolism/pathology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Protein Biosynthesis ; Signal Transduction ; Substrate Specificity ; Th17 Cells/*metabolism ; Transforming Growth Factor beta/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitin-Specific Proteases/biosynthesis/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-18
    Description: Reactive oxygen species (ROS) produced by phagocytes are essential for host defence against bacterial and fungal infections. Individuals with defective ROS production machinery develop chronic granulomatous disease. Conversely, excessive ROS can cause collateral tissue damage during inflammatory processes and therefore needs to be tightly regulated. Here we describe a protein, we termed negative regulator of ROS (NRROS), which limits ROS generation by phagocytes during inflammatory responses. NRROS expression in phagocytes can be repressed by inflammatory signals. NRROS-deficient phagocytes produce increased ROS upon inflammatory challenges, and mice lacking NRROS in their phagocytes show enhanced bactericidal activity against Escherichia coli and Listeria monocytogenes. Conversely, these mice develop severe experimental autoimmune encephalomyelitis owing to oxidative tissue damage in the central nervous system. Mechanistically, NRROS is localized to the endoplasmic reticulum, where it directly interacts with nascent NOX2 (also known as gp91(phox) and encoded by Cybb) monomer, one of the membrane-bound subunits of the NADPH oxidase complex, and facilitates the degradation of NOX2 through the endoplasmic-reticulum-associated degradation pathway. Thus, NRROS provides a hitherto undefined mechanism for regulating ROS production--one that enables phagocytes to produce higher amounts of ROS, if required to control invading pathogens, while minimizing unwanted collateral tissue damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noubade, Rajkumar -- Wong, Kit -- Ota, Naruhisa -- Rutz, Sascha -- Eidenschenk, Celine -- Valdez, Patricia A -- Ding, Jiabing -- Peng, Ivan -- Sebrell, Andrew -- Caplazi, Patrick -- DeVoss, Jason -- Soriano, Robert H -- Sai, Tao -- Lu, Rongze -- Modrusan, Zora -- Hackney, Jason -- Ouyang, Wenjun -- England -- Nature. 2014 May 8;509(7499):235-9. doi: 10.1038/nature13152. Epub 2014 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA [2] Flexus Biosciences, 75 Shoreway Road, Suite D, San Carlos, California 94070, USA (R.N.); American Society for Biochemistry and Molecular Biology, 11200 Rockville Pike, Suite 302, Rockville, Maryland 20852, USA (P.A.V.). ; Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739962" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity/genetics ; Bone Marrow Cells/cytology ; Central Nervous System/metabolism/pathology ; Encephalomyelitis, Autoimmune, Experimental/*immunology/*metabolism/pathology ; Endoplasmic Reticulum/enzymology/metabolism ; Escherichia coli/*immunology ; Female ; Inflammation/immunology/metabolism/pathology ; Listeria monocytogenes/*immunology ; Macrophages/cytology/enzymology/immunology/metabolism ; Male ; Mice ; NADPH Oxidase/metabolism ; Oxidation-Reduction ; Oxidative Stress ; Phagocytes/cytology/immunology/metabolism ; Proteins/genetics/*metabolism ; Reactive Oxygen Species/*antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-07-30
    Description: The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kan, Zhengyan -- Jaiswal, Bijay S -- Stinson, Jeremy -- Janakiraman, Vasantharajan -- Bhatt, Deepali -- Stern, Howard M -- Yue, Peng -- Haverty, Peter M -- Bourgon, Richard -- Zheng, Jianbiao -- Moorhead, Martin -- Chaudhuri, Subhra -- Tomsho, Lynn P -- Peters, Brock A -- Pujara, Kanan -- Cordes, Shaun -- Davis, David P -- Carlton, Victoria E H -- Yuan, Wenlin -- Li, Li -- Wang, Weiru -- Eigenbrot, Charles -- Kaminker, Joshua S -- Eberhard, David A -- Waring, Paul -- Schuster, Stephan C -- Modrusan, Zora -- Zhang, Zemin -- Stokoe, David -- de Sauvage, Frederic J -- Faham, Malek -- Seshagiri, Somasekar -- England -- Nature. 2010 Aug 12;466(7308):869-73. doi: 10.1038/nature09208. Epub 2010 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20668451" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/classification/genetics ; DNA Copy Number Variations/genetics ; DNA Mutational Analysis ; Female ; GTP-Binding Protein alpha Subunits/genetics ; Genes, Neoplasm/*genetics ; Humans ; Lung Neoplasms/classification/genetics ; MAP Kinase Kinase 4/genetics ; Male ; Mutation/*genetics ; Neoplasms/enzymology/*genetics/*metabolism/pathology ; Ovarian Neoplasms/classification/genetics ; Prostatic Neoplasms/classification/genetics ; Protein Kinases/genetics ; Receptors, G-Protein-Coupled/genetics ; Signal Transduction/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-17
    Description: Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690621/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690621/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seshagiri, Somasekar -- Stawiski, Eric W -- Durinck, Steffen -- Modrusan, Zora -- Storm, Elaine E -- Conboy, Caitlin B -- Chaudhuri, Subhra -- Guan, Yinghui -- Janakiraman, Vasantharajan -- Jaiswal, Bijay S -- Guillory, Joseph -- Ha, Connie -- Dijkgraaf, Gerrit J P -- Stinson, Jeremy -- Gnad, Florian -- Huntley, Melanie A -- Degenhardt, Jeremiah D -- Haverty, Peter M -- Bourgon, Richard -- Wang, Weiru -- Koeppen, Hartmut -- Gentleman, Robert -- Starr, Timothy K -- Zhang, Zemin -- Largaespada, David A -- Wu, Thomas D -- de Sauvage, Frederic J -- R00 CA151672/CA/NCI NIH HHS/ -- R01 CA134759/CA/NCI NIH HHS/ -- R01-CA134759/CA/NCI NIH HHS/ -- T32 CA009138/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):660-4. doi: 10.1038/nature11282.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. sekar@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22895193" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Base Sequence ; Cell Cycle Proteins/genetics ; Colonic Neoplasms/*genetics/metabolism/pathology ; DNA Copy Number Variations/genetics ; DNA-Binding Proteins/genetics ; Dioxygenases/genetics ; Exome/genetics ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic/genetics ; Gene Fusion/*genetics ; Genes, APC ; Genes, Neoplasm/*genetics ; Humans ; Insulin-Like Growth Factor II/genetics ; Intercellular Signaling Peptides and Proteins/*genetics ; Molecular Sequence Data ; Mutation/genetics ; Polymorphism, Single Nucleotide/genetics ; Protein-Serine-Threonine Kinases/genetics ; Proto-Oncogene Proteins/genetics ; Receptor, ErbB-3/genetics ; Sequence Analysis, RNA ; Signal Transduction/genetics ; Thrombospondins/*genetics ; Transcription Factor 7-Like 2 Protein/genetics ; Tumor Suppressor Proteins/genetics ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-28
    Description: Human tumours typically harbour a remarkable number of somatic mutations. If presented on major histocompatibility complex class I molecules (MHCI), peptides containing these mutations could potentially be immunogenic as they should be recognized as 'non-self' neo-antigens by the adaptive immune system. Recent work has confirmed that mutant peptides can serve as T-cell epitopes. However, few mutant epitopes have been described because their discovery required the laborious screening of patient tumour-infiltrating lymphocytes for their ability to recognize antigen libraries constructed following tumour exome sequencing. We sought to simplify the discovery of immunogenic mutant peptides by characterizing their general properties. We developed an approach that combines whole-exome and transcriptome sequencing analysis with mass spectrometry to identify neo-epitopes in two widely used murine tumour models. Of the 〉1,300 amino acid changes identified, approximately 13% were predicted to bind MHCI, a small fraction of which were confirmed by mass spectrometry. The peptides were then structurally modelled bound to MHCI. Mutations that were solvent-exposed and therefore accessible to T-cell antigen receptors were predicted to be immunogenic. Vaccination of mice confirmed the approach, with each predicted immunogenic peptide yielding therapeutically active T-cell responses. The predictions also enabled the generation of peptide-MHCI dextramers that could be used to monitor the kinetics and distribution of the anti-tumour T-cell response before and after vaccination. These findings indicate that a suitable prediction algorithm may provide an approach for the pharmacodynamic monitoring of T-cell responses as well as for the development of personalized vaccines in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yadav, Mahesh -- Jhunjhunwala, Suchit -- Phung, Qui T -- Lupardus, Patrick -- Tanguay, Joshua -- Bumbaca, Stephanie -- Franci, Christian -- Cheung, Tommy K -- Fritsche, Jens -- Weinschenk, Toni -- Modrusan, Zora -- Mellman, Ira -- Lill, Jennie R -- Delamarre, Lelia -- England -- Nature. 2014 Nov 27;515(7528):572-6. doi: 10.1038/nature14001.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genentech, South San Francisco, California 94080, USA. ; Immatics Biotechnologies GmbH, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25428506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/immunology ; Cancer Vaccines/immunology ; Cell Line, Tumor ; Exome/*genetics ; Female ; Gene Expression Profiling ; Immunity, Cellular/immunology ; Immunogenetic Phenomena/*genetics ; Immunoprecipitation ; *Mass Spectrometry ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; *Mutation ; Neoplasms/*genetics/immunology ; Peptides/genetics ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-08-11
    Description: De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knockin mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with host cell factor-1 (HCF-1), O-linked N-acetylglucosamine transferase (OGT), and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dey, Anwesha -- Seshasayee, Dhaya -- Noubade, Rajkumar -- French, Dorothy M -- Liu, Jinfeng -- Chaurushiya, Mira S -- Kirkpatrick, Donald S -- Pham, Victoria C -- Lill, Jennie R -- Bakalarski, Corey E -- Wu, Jiansheng -- Phu, Lilian -- Katavolos, Paula -- LaFave, Lindsay M -- Abdel-Wahab, Omar -- Modrusan, Zora -- Seshagiri, Somasekar -- Dong, Ken -- Lin, Zhonghua -- Balazs, Mercedesz -- Suriben, Rowena -- Newton, Kim -- Hymowitz, Sarah -- Garcia-Manero, Guillermo -- Martin, Flavius -- Levine, Ross L -- Dixit, Vishva M -- R01 CA173636/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1541-6. Epub 2012 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22878500" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; *Cell Transformation, Neoplastic ; Chromatin Immunoprecipitation ; Embryonic Development ; Gene Deletion ; Gene Expression Regulation ; Gene Knock-In Techniques ; *Genes, Tumor Suppressor ; Hematopoiesis ; Host Cell Factor C1/metabolism ; Humans ; Leukemia, Myelomonocytic, Chronic/*genetics/metabolism/pathology ; Mice ; Mice, Knockout ; Myelodysplastic Syndromes/*genetics/metabolism/pathology ; Myeloid Cells/cytology/physiology ; Myeloid Progenitor Cells/cytology/physiology ; N-Acetylglucosaminyltransferases/metabolism ; Promoter Regions, Genetic ; Repressor Proteins/metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitin Thiolesterase/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0044-8486
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...