ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-24
    Description: Phenotypic variability in genetic disease is usually attributed to genetic background variation or environmental influence. Here, we show that deletion of a single gene, Trim28 (Kap1 or Tif1beta), from the maternal germ line alone, on an otherwise identical genetic background, results in severe phenotypic and epigenetic variability that leads to embryonic lethality. We identify early and minute epigenetic variations in blastomeres of the preimplantation embryo of these animals, suggesting that the embryonic lethality may result from the misregulation of genomic imprinting in mice lacking maternal Trim28. Our results reveal the long-range effects of a maternal gene deletion on epigenetic memory and illustrate the delicate equilibrium of maternal and zygotic factors during nuclear reprogramming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Messerschmidt, Daniel M -- de Vries, Wilhelmine -- Ito, Mitsuteru -- Solter, Davor -- Ferguson-Smith, Anne -- Knowles, Barbara B -- 079249/Wellcome Trust/United Kingdom -- 095606/Wellcome Trust/United Kingdom -- MR/J001597/1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1499-502. doi: 10.1126/science.1216154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Development Group, Institute of Medical Biology, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/physiology ; DNA Methylation ; Down-Regulation ; *Embryo Loss ; Embryo, Mammalian/*physiology ; Embryonic Development ; *Epigenesis, Genetic ; Female ; Gene Expression Regulation, Developmental ; *Genomic Imprinting ; Insulin-Like Growth Factor II/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/*genetics/*physiology ; Oligonucleotide Array Sequence Analysis ; Oocytes/*physiology ; Phenotype ; RNA, Long Noncoding ; RNA, Untranslated/genetics/metabolism ; Repressor Proteins/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-07
    Description: Epigenetic alterations are increasingly recognized as causes of human cancers and disease. These aberrations are likely to arise during genomic reprogramming in mammalian preimplantation embryos, when their epigenomes are most vulnerable. However, this process is only partially understood because of the experimental inaccessibility of early-stage embryos. Here, we introduce a methodologic advance, probing single cells for various DNA-methylation errors at multiple loci, to reveal failed maintenance of epigenetic mark results in chimeric mice, which display unpredictable phenotypes leading to developmental arrest. Yet we show that mouse pronuclear transfer can be used to ameliorate such reprogramming defects. This study not only details the epigenetic reprogramming dynamics in early mammalian embryos but also suggests diagnostic and potential future therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorthongpanich, Chanchao -- Cheow, Lih Feng -- Balu, Sathish -- Quake, Stephen R -- Knowles, Barbara B -- Burkholder, William F -- Solter, Davor -- Messerschmidt, Daniel M -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1110-2. doi: 10.1126/science.1240617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Development Group, Institute of Medical Biology, A*STAR, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/*metabolism ; Cellular Reprogramming/*genetics ; *Chimerism ; *DNA Methylation ; *Epigenesis, Genetic ; Gene Deletion ; *Gene Expression Regulation, Developmental ; Genetic Loci ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nuclear Proteins/genetics ; Repressor Proteins/genetics ; Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-18
    Description: Preeclampsia (PE) is a gestational hypertensive syndrome affecting between 5 and 8% of all pregnancies. Although PE is the leading cause of fetal and maternal morbidity and mortality, its molecular etiology is still unclear. Here, we show that ELABELA (ELA), an endogenous ligand of the apelin receptor (APLNR, or APJ), is a circulating hormone secreted by the placenta. Elabela but not Apelin knockout pregnant mice exhibit PE-like symptoms, including proteinuria and elevated blood pressure due to defective placental angiogenesis. In mice, infusion of exogenous ELA normalizes hypertension, proteinuria, and birth weight. ELA, which is abundant in human placentas, increases the invasiveness of trophoblast-like cells, suggesting that it enhances placental development to prevent PE. The ELA-APLNR signaling axis may offer a new paradigm for the treatment of common pregnancy-related complications, including PE.
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...