ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (148)
  • American Association for the Advancement of Science (AAAS)  (148)
  • National Academy of Sciences
  • 2010-2014  (148)
  • 1980-1984
  • 1925-1929
  • 2013  (65)
  • 2012  (83)
  • 1929
Collection
Publisher
Years
  • 2010-2014  (148)
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2012-09-01
    Description: We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30x) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of "missing evolution" in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617501/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617501/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Matthias -- Kircher, Martin -- Gansauge, Marie-Theres -- Li, Heng -- Racimo, Fernando -- Mallick, Swapan -- Schraiber, Joshua G -- Jay, Flora -- Prufer, Kay -- de Filippo, Cesare -- Sudmant, Peter H -- Alkan, Can -- Fu, Qiaomei -- Do, Ron -- Rohland, Nadin -- Tandon, Arti -- Siebauer, Michael -- Green, Richard E -- Bryc, Katarzyna -- Briggs, Adrian W -- Stenzel, Udo -- Dabney, Jesse -- Shendure, Jay -- Kitzman, Jacob -- Hammer, Michael F -- Shunkov, Michael V -- Derevianko, Anatoli P -- Patterson, Nick -- Andres, Aida M -- Eichler, Evan E -- Slatkin, Montgomery -- Reich, David -- Kelso, Janet -- Paabo, Svante -- GM100233/GM/NIGMS NIH HHS/ -- R01 GM040282/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):222-6. doi: 10.1126/science.1224344. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. mmeyer@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936568" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Fossils ; Gene Flow ; Gene Library ; *Genetic Variation ; Genome, Human/*genetics ; *Heterozygote ; Humans ; Molecular Sequence Data ; Neanderthals/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-10
    Description: Complex worker caste systems have contributed to the evolutionary success of advanced ant societies; however, little is known about the developmental processes underlying their origin and evolution. We combined hormonal manipulation, gene expression, and phylogenetic analyses with field observations to understand how novel worker subcastes evolve. We uncovered an ancestral developmental potential to produce a "supersoldier" subcaste that has been actualized at least two times independently in the hyperdiverse ant genus Pheidole. This potential has been retained and can be environmentally induced throughout the genus. Therefore, the retention and induction of this potential have facilitated the parallel evolution of supersoldiers through a process known as genetic accommodation. The recurrent induction of ancestral developmental potential may facilitate the adaptive and parallel evolution of phenotypes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajakumar, Rajendhran -- San Mauro, Diego -- Dijkstra, Michiel B -- Huang, Ming H -- Wheeler, Diana E -- Hiou-Tim, Francois -- Khila, Abderrahman -- Cournoyea, Michael -- Abouheif, Ehab -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):79-82. doi: 10.1126/science.1211451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 Avenue Dr. Penfield, Montreal, Quebec, Canada, H3A 1B1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*genetics/growth & development/physiology ; *Biological Evolution ; Environment ; Female ; Genes, Insect ; Larva/growth & development ; Male ; Methoprene/pharmacology ; Molecular Sequence Data ; Phenotype ; Phylogeny ; Selection, Genetic ; Social Behavior ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-24
    Description: Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, You-Qiang -- Sugiura, Koji -- Sun, Fengyun -- Pendola, Janice K -- Cox, Gregory A -- Handel, Mary Ann -- Schimenti, John C -- Eppig, John J -- CA34196/CA/NCI NIH HHS/ -- HD42137/HD/NICHD NIH HHS/ -- P01 HD042137/HD/NICHD NIH HHS/ -- P30 CA034196/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1496-9. doi: 10.1126/science.1214680.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442484" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Breaks, Double-Stranded ; Embryonic Development ; Female ; *Fertility ; Meiosis ; Mice ; Molecular Sequence Data ; Mutation ; Oocytes/*physiology ; *Oogenesis ; Phenotype ; Protein Phosphatase 2/genetics/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Retroelements ; Transcription, Genetic ; Transcriptome ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-23
    Description: Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet ("airborne transmission") between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herfst, Sander -- Schrauwen, Eefje J A -- Linster, Martin -- Chutinimitkul, Salin -- de Wit, Emmie -- Munster, Vincent J -- Sorrell, Erin M -- Bestebroer, Theo M -- Burke, David F -- Smith, Derek J -- Rimmelzwaan, Guus F -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- DP1-OD000490-01/OD/NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1534-41. doi: 10.1126/science.1213362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723413" target="_blank"〉PubMed〈/a〉
    Keywords: Air Microbiology ; Amino Acid Substitution ; Animals ; Antiviral Agents/pharmacology ; Containment of Biohazards ; Disease Models, Animal ; Female ; *Ferrets ; Hemagglutinin Glycoproteins, Influenza ; Virus/chemistry/genetics/immunology/metabolism ; Humans ; Immune Sera ; Influenza A Virus, H5N1 Subtype/drug effects/*genetics/*pathogenicity/physiology ; Influenza in Birds/epidemiology/virology ; Influenza, Human/epidemiology/transmission/*virology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Orthomyxoviridae Infections/transmission/*virology ; Oseltamivir/pharmacology ; Pandemics ; Poultry ; RNA Replicase/chemistry/genetics ; Reassortant Viruses/pathogenicity ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Serial Passage ; Sialic Acids/metabolism ; Viral Proteins/chemistry/genetics ; Virulence ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-15
    Description: Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754843/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754843/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tagliabracci, Vincent S -- Engel, James L -- Wen, Jianzhong -- Wiley, Sandra E -- Worby, Carolyn A -- Kinch, Lisa N -- Xiao, Junyu -- Grishin, Nick V -- Dixon, Jack E -- DK018024-37/DK/NIDDK NIH HHS/ -- DK018849-36/DK/NIDDK NIH HHS/ -- GM094575/GM/NIGMS NIH HHS/ -- R01 DK018849/DK/NIDDK NIH HHS/ -- R37 DK018024/DK/NIDDK NIH HHS/ -- T32 CA009523/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1150-3. doi: 10.1126/science.1217817. Epub 2012 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582013" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Calcification, Physiologic ; Casein Kinase I ; Casein Kinases/metabolism ; Caseins/*metabolism ; Cattle ; Cell Line, Tumor ; Cleft Palate/genetics/metabolism ; Exophthalmos/genetics/metabolism ; Extracellular Matrix Proteins/chemistry/genetics/*metabolism/secretion ; Glycoproteins/metabolism ; Golgi Apparatus/*enzymology ; HEK293 Cells ; HeLa Cells ; Humans ; Microcephaly/genetics/metabolism ; Milk/enzymology ; Molecular Sequence Data ; Mutation ; Osteopontin ; Osteosclerosis/genetics/metabolism ; Phosphorylation ; Protein Sorting Signals ; Recombinant Fusion Proteins/chemistry/metabolism/secretion ; *Secretory Pathway ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-29
    Description: Most living species exploit a limited range of resources. However, little is known about how tight associations build up during evolution between such specialist species and the hosts they use. We examined the dependence of Drosophila pachea on its single host, the senita cactus. Several amino acid changes in the Neverland oxygenase rendered D. pachea unable to transform cholesterol into 7-dehydrocholesterol (the first reaction in the steroid hormone biosynthetic pathway in insects) and thus made D. pachea dependent on the uncommon sterols of its host plant. The neverland mutations increase survival on the cactus's unusual sterols and are in a genomic region that faced recent positive selection. This study illustrates how relatively few genetic changes in a single gene may restrict the ecological niche of a species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729188/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729188/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, Michael -- Murat, Sophie -- Clark, Andrew G -- Gouppil, Geraldine -- Blais, Catherine -- Matzkin, Luciano M -- Guittard, Emilie -- Yoshiyama-Yanagawa, Takuji -- Kataoka, Hiroshi -- Niwa, Ryusuke -- Lafont, Rene -- Dauphin-Villemant, Chantal -- Orgogozo, Virginie -- AI064950/AI/NIAID NIH HHS/ -- R01 AI064950/AI/NIAID NIH HHS/ -- R01 HG003229/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1658-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS UMR7592, Universite Paris Diderot, Sorbonne Paris Cite, Institut Jacques Monod, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019649" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cactaceae/*metabolism ; Cholesterol/metabolism ; Conserved Sequence ; Dehydrocholesterols/metabolism ; Drosophila/genetics/*physiology ; Drosophila Proteins/chemistry/*genetics/metabolism ; *Food Chain ; Molecular Sequence Data ; *Mutation ; Oxygenases/chemistry/*genetics/metabolism ; Protein Conformation ; RNA Interference ; Selection, Genetic ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-26
    Description: The transport of pyruvate, the end product of glycolysis, into mitochondria is an essential process that provides the organelle with a major oxidative fuel. Although the existence of a specific mitochondrial pyruvate carrier (MPC) has been anticipated, its molecular identity remained unknown. We report that MPC is a heterocomplex formed by two members of a family of previously uncharacterized membrane proteins that are conserved from yeast to mammals. Members of the MPC family were found in the inner mitochondrial membrane, and yeast mutants lacking MPC proteins showed severe defects in mitochondrial pyruvate uptake. Coexpression of mouse MPC1 and MPC2 in Lactococcus lactis promoted transport of pyruvate across the membrane. These observations firmly establish these proteins as essential components of the MPC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herzig, Sebastien -- Raemy, Etienne -- Montessuit, Sylvie -- Veuthey, Jean-Luc -- Zamboni, Nicola -- Westermann, Benedikt -- Kunji, Edmund R S -- Martinou, Jean-Claude -- MC_U105663139/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):93-6. doi: 10.1126/science.1218530. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Geneva, Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anion Transport Proteins/chemistry/genetics/*metabolism ; Biological Transport ; Biosynthetic Pathways ; Culture Media ; Lactococcus lactis/genetics/metabolism ; Leucine/metabolism ; Mice ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mitochondrial Membranes/*metabolism ; Molecular Sequence Data ; Proprotein Convertase 1/chemistry/genetics/*metabolism ; Proprotein Convertase 2 ; Pyruvic Acid/*metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Thioctic Acid/biosynthesis/metabolism ; Valine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-08-11
    Description: Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" vaccines for influenza. However, a substantial part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and CR9114, that protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dreyfus, Cyrille -- Laursen, Nick S -- Kwaks, Ted -- Zuijdgeest, David -- Khayat, Reza -- Ekiert, Damian C -- Lee, Jeong Hyun -- Metlagel, Zoltan -- Bujny, Miriam V -- Jongeneelen, Mandy -- van der Vlugt, Remko -- Lamrani, Mohammed -- Korse, Hans J W M -- Geelen, Eric -- Sahin, Ozcan -- Sieuwerts, Martijn -- Brakenhoff, Just P J -- Vogels, Ronald -- Li, Olive T W -- Poon, Leo L M -- Peiris, Malik -- Koudstaal, Wouter -- Ward, Andrew B -- Wilson, Ian A -- Goudsmit, Jaap -- Friesen, Robert H E -- GM080209/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1343-8. doi: 10.1126/science.1222908. Epub 2012 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22878502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/chemistry/*immunology ; Antibodies, Neutralizing/chemistry/immunology ; Conserved Sequence ; Hemagglutinin Glycoproteins, Influenza Virus/*immunology ; Humans ; Immunodominant Epitopes/chemistry/*immunology ; Influenza B virus/*immunology ; Influenza Vaccines/*immunology ; Mice ; Molecular Sequence Data ; Neutralization Tests ; Orthomyxoviridae Infections/*prevention & control ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-17
    Description: Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirota, Tsuyoshi -- Lee, Jae Wook -- St John, Peter C -- Sawa, Mariko -- Iwaisako, Keiko -- Noguchi, Takako -- Pongsawakul, Pagkapol Y -- Sonntag, Tim -- Welsh, David K -- Brenner, David A -- Doyle, Francis J 3rd -- Schultz, Peter G -- Kay, Steve A -- GM074868/GM/NIGMS NIH HHS/ -- GM085764/GM/NIGMS NIH HHS/ -- GM096873/GM/NIGMS NIH HHS/ -- MH051573/MH/NIMH NIH HHS/ -- MH082945/MH/NIMH NIH HHS/ -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01 GM041804/GM/NIGMS NIH HHS/ -- R01 GM074868/GM/NIGMS NIH HHS/ -- R01 GM096873/GM/NIGMS NIH HHS/ -- R01 MH051573/MH/NIMH NIH HHS/ -- R01 MH082945/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1094-7. doi: 10.1126/science.1223710. Epub 2012 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798407" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Carbazoles/chemistry/isolation & purification/*pharmacology ; Cell Line, Tumor ; Circadian Clocks/*drug effects ; Cryptochromes/*agonists/metabolism ; Gluconeogenesis/drug effects/genetics ; Glucose-6-Phosphatase/genetics ; HEK293 Cells ; Hepatocytes/drug effects/metabolism ; Humans ; Liver/cytology/drug effects/metabolism ; Mice ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; Protein Stability/drug effects ; Proteolysis/drug effects ; *Small Molecule Libraries ; Sulfonamides/chemistry/isolation & purification/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-22
    Description: Symbioses between nitrogen (N)(2)-fixing prokaryotes and photosynthetic eukaryotes are important for nitrogen acquisition in N-limited environments. Recently, a widely distributed planktonic uncultured nitrogen-fixing cyanobacterium (UCYN-A) was found to have unprecedented genome reduction, including the lack of oxygen-evolving photosystem II and the tricarboxylic acid cycle, which suggested partnership in a symbiosis. We showed that UCYN-A has a symbiotic association with a unicellular prymnesiophyte, closely related to calcifying taxa present in the fossil record. The partnership is mutualistic, because the prymnesiophyte receives fixed N in exchange for transferring fixed carbon to UCYN-A. This unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis and is analogous to plastid and organismal evolution, and if calcifying, may have important implications for past and present oceanic N(2) fixation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, Anne W -- Foster, Rachel A -- Krupke, Andreas -- Carter, Brandon J -- Musat, Niculina -- Vaulot, Daniel -- Kuypers, Marcel M M -- Zehr, Jonathan P -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1546-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean Sciences, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22997339" target="_blank"〉PubMed〈/a〉
    Keywords: Calcification, Physiologic ; Carbon/metabolism ; Cyanobacteria/cytology/genetics/isolation & purification/*physiology ; Genes, rRNA ; Genome, Bacterial ; Haptophyta/cytology/genetics/isolation & purification/*physiology ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation ; Pacific Ocean ; *Photosynthesis ; Phytoplankton/cytology/genetics/isolation & purification/*physiology ; Seawater/*microbiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-02-11
    Description: Sodium/calcium (Na(+)/Ca(2+)) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca(2+) for cell signaling. We demonstrated the Na(+)/Ca(2+)-exchange function of an NCX from Methanococcus jannaschii (NCX_Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX_Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca(2+) and three that likely bind Na(+). Two passageways allow for Na(+) and Ca(2+) access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX_Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX_Mj.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liao, Jun -- Li, Hua -- Zeng, Weizhong -- Sauer, David B -- Belmares, Ricardo -- Jiang, Youxing -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):686-90. doi: 10.1126/science.1215759.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323814" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; Calcium/*metabolism ; Crystallization ; Crystallography, X-Ray ; Ion Transport ; Ligands ; Methanococcales/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sodium/*metabolism ; Sodium-Calcium Exchanger/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-02-04
    Description: Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, Vaughn -- Morris, Robert M -- Frazar, Christian D -- Berthiaume, Chris T -- Morales, Rhonda L -- Armbrust, E Virginia -- New York, N.Y. -- Science. 2012 Feb 3;335(6068):587-90. doi: 10.1126/science.1212665.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22301318" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/*genetics/metabolism ; Biota ; *Ecosystem ; Enzymes/genetics/metabolism ; Euryarchaeota/classification/*genetics/metabolism/*physiology ; Genes, Archaeal ; *Genome, Archaeal ; Genome, Bacterial ; Heterotrophic Processes ; Lipid Metabolism/genetics ; Metabolic Networks and Pathways/genetics ; *Metagenome ; Microbial Consortia ; Molecular Sequence Data ; Pacific Ocean ; Peptide Hydrolases/genetics/metabolism ; Phylogeny ; Proteins/metabolism ; Rhodopsin/genetics ; Rhodopsins, Microbial ; Seawater/*microbiology ; Sequence Alignment ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-03-17
    Description: In bacteria, ribosomes stalled at the end of truncated messages are rescued by transfer-messenger RNA (tmRNA), a bifunctional molecule that acts as both a transfer RNA (tRNA) and a messenger RNA (mRNA), and SmpB, a small protein that works in concert with tmRNA. Here, we present the crystal structure of a tmRNA fragment, SmpB and elongation factor Tu bound to the ribosome at 3.2 angstroms resolution. The structure shows how SmpB plays the role of both the anticodon loop of tRNA and portions of mRNA to facilitate decoding in the absence of an mRNA codon in the A site of the ribosome and explains why the tmRNA-SmpB system does not interfere with normal translation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763467/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763467/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neubauer, Cajetan -- Gillet, Reynald -- Kelley, Ann C -- Ramakrishnan, V -- 082086/Wellcome Trust/United Kingdom -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- U105184332/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1366-9. doi: 10.1126/science.1217039.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422985" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Bacterial Proteins/chemistry/metabolism ; Base Sequence ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Elongation Factor Tu/*chemistry/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/*chemistry/*metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; RNA-Binding Proteins/*chemistry/*metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/*metabolism/ultrastructure ; Thermus thermophilus/*chemistry/genetics/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-06-02
    Description: The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 A resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Nian -- Chelliah, Yogarany -- Shan, Yongli -- Taylor, Clinton A -- Yoo, Seung-Hee -- Partch, Carrie -- Green, Carla B -- Zhang, Hong -- Takahashi, Joseph S -- R01 GM081875/GM/NIGMS NIH HHS/ -- R01 GM090247/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):189-94. doi: 10.1126/science.1222804. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653727" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; CLOCK Proteins/*chemistry/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm ; Crystallography, X-Ray ; DNA/metabolism ; HEK293 Cells ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-01-17
    Description: Exocytosis is essential to the lytic cycle of apicomplexan parasites and required for the pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery required for exocytosis in a Ca(2+)-dependent fashion. Here, the phenotype of a Toxoplasma gondii conditional mutant impaired in host cell invasion and egress was pinpointed to a defect in secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins. Whole-genome sequencing identified the etiological point mutation in TgDOC2.1. A conditional allele of the orthologous gene engineered into Plasmodium falciparum was also defective in microneme secretion. However, the major effect was on invasion, suggesting that microneme secretion is dispensable for Plasmodium egress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farrell, Andrew -- Thirugnanam, Sivasakthivel -- Lorestani, Alexander -- Dvorin, Jeffrey D -- Eidell, Keith P -- Ferguson, David J P -- Anderson-White, Brooke R -- Duraisingh, Manoj T -- Marth, Gabor T -- Gubbels, Marc-Jan -- AI057919/AI/NIAID NIH HHS/ -- AI081220/AI/NIAID NIH HHS/ -- AI087874/AI/NIAID NIH HHS/ -- AI088314/AI/NIAID NIH HHS/ -- HG004719/HG/NHGRI NIH HHS/ -- K08 AI087874/AI/NIAID NIH HHS/ -- K08 AI087874-02/AI/NIAID NIH HHS/ -- R01 AI057919/AI/NIAID NIH HHS/ -- R01 HG004719/HG/NHGRI NIH HHS/ -- R21 AI081220/AI/NIAID NIH HHS/ -- R21 AI088314/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):218-21. doi: 10.1126/science.1210829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246776" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/*metabolism ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; *Exocytosis ; Genes, Protozoan ; Genetic Complementation Test ; Genome, Protozoan ; Humans ; Models, Molecular ; Molecular Sequence Data ; Movement ; Mutagenesis ; Organelles/*metabolism ; Plasmodium falciparum/genetics/growth & development/physiology ; Point Mutation ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Toxoplasma/genetics/growth & development/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-06-30
    Description: Influenza A virus (IAV) infection leads to variable and imperfectly understood pathogenicity. We report that segment 3 of the virus contains a second open reading frame ("X-ORF"), accessed via ribosomal frameshifting. The frameshift product, termed PA-X, comprises the endonuclease domain of the viral PA protein with a C-terminal domain encoded by the X-ORF and functions to repress cellular gene expression. PA-X also modulates IAV virulence in a mouse infection model, acting to decrease pathogenicity. Loss of PA-X expression leads to changes in the kinetics of the global host response, which notably includes increases in inflammatory, apoptotic, and T lymphocyte-signaling pathways. Thus, we have identified a previously unknown IAV protein that modulates the host response to infection, a finding with important implications for understanding IAV pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jagger, B W -- Wise, H M -- Kash, J C -- Walters, K-A -- Wills, N M -- Xiao, Y-L -- Dunfee, R L -- Schwartzman, L M -- Ozinsky, A -- Bell, G L -- Dalton, R M -- Lo, A -- Efstathiou, S -- Atkins, J F -- Firth, A E -- Taubenberger, J K -- Digard, P -- 073126/Wellcome Trust/United Kingdom -- 088789/Wellcome Trust/United Kingdom -- G0700815/Medical Research Council/United Kingdom -- G0700815(82260)/Medical Research Council/United Kingdom -- G9800943/Medical Research Council/United Kingdom -- MR/J002232/1/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):199-204. doi: 10.1126/science.1222213. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; Conserved Sequence ; Female ; *Frameshifting, Ribosomal ; Gene Expression Regulation ; Genome, Viral ; HEK293 Cells ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/growth & development/pathogenicity ; Influenza A virus/*genetics/metabolism ; Lung/pathology/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; *Open Reading Frames ; Orthomyxoviridae Infections/genetics/immunology/pathology/*virology ; Protein Interaction Domains and Motifs ; Proteome ; RNA Replicase/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Reassortant Viruses/genetics ; Repressor Proteins/chemistry/*genetics/*metabolism ; Viral Nonstructural Proteins/chemistry/*genetics/*metabolism ; Viral Proteins/biosynthesis/chemistry/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-11-10
    Description: Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlipalius, David I -- Valmas, Nicholas -- Tuck, Andrew G -- Jagadeesan, Rajeswaran -- Ma, Li -- Kaur, Ramandeep -- Goldinger, Anita -- Anderson, Cameron -- Kuang, Jujiao -- Zuryn, Steven -- Mau, Yosep S -- Cheng, Qiang -- Collins, Patrick J -- Nayak, Manoj K -- Schirra, Horst Joachim -- Hilliard, Massimo A -- Ebert, Paul R -- R01NS060129/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):807-10. doi: 10.1126/science.1224951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agri-Science Queensland, Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, Brisbane, QLD 4001, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23139334" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arsenicals/pharmacology ; Arsenites/pharmacology ; Beetles/drug effects/*enzymology/genetics/metabolism ; Caenorhabditis elegans/drug effects/*enzymology/genetics/metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism ; Catalytic Domain ; Dihydrolipoamide Dehydrogenase/chemistry/*genetics/metabolism ; Insect Proteins/chemistry/genetics/metabolism ; Insecticide Resistance/*genetics ; *Insecticides/pharmacology ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Pesticides ; *Phosphines/pharmacology ; Polymorphism, Genetic ; Protein Multimerization ; Tribolium/drug effects/*enzymology/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-06-02
    Description: Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Tingting -- Liu, Zixu -- Song, Chuanjun -- Hu, Yunfei -- Han, Zhifu -- She, Ji -- Fan, Fangfang -- Wang, Jiawei -- Jin, Changwen -- Chang, Junbiao -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1160-4. doi: 10.1126/science.1218867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654057" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/immunology/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Chitin/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Plants, Genetically Modified ; Protein Multimerization ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/*chemistry/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-07-17
    Description: The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 (14)C years ago are well stratified. Western Stemmed projectile points were recovered in deposits dated to 11,070 to 11,340 (14)C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear technological evolution. "Blind testing" analysis of coprolites by an independent laboratory confirms the presence of human DNA in specimens of pre-Clovis age. The colonization of the Americas involved multiple technologically divergent, and possibly genetically divergent, founding groups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenkins, Dennis L -- Davis, Loren G -- Stafford, Thomas W Jr -- Campos, Paula F -- Hockett, Bryan -- Jones, George T -- Cummings, Linda Scott -- Yost, Chad -- Connolly, Thomas J -- Yohe, Robert M 2nd -- Gibbons, Summer C -- Raghavan, Maanasa -- Rasmussen, Morten -- Paijmans, Johanna L A -- Hofreiter, Michael -- Kemp, Brian M -- Barta, Jodi Lynn -- Monroe, Cara -- Gilbert, M Thomas P -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):223-8. doi: 10.1126/science.1218443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA. djenkins@uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Archaeology ; *Caves ; DNA/analysis ; Emigration and Immigration/history ; Feces ; *Fossils ; History, Ancient ; Humans ; Molecular Sequence Data ; North America ; Oregon ; Population Dynamics ; Radiometric Dating ; Rodentia ; Technology/history ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-03-01
    Description: The genetic changes responsible for morphological differences between species are largely unidentified. Such changes can involve modifications of growth that are relevant to understanding evolution, development, and disease. We identified a gene that induces male-specific wing size and shape differences between Nasonia wasp species. Fine-scale mapping and in situ hybridization reveal that changes in at least three regions (two strictly in noncoding sequence) around the gene unpaired-like (upd-like) cause changes in spatial and temporal expression of upd-like in the developing wing and corresponding changes in wing width. Upd-like shows homology to the Drosophila unpaired gene, a well-studied signaling protein that regulates cell proliferation and differentiation. Our results indicate how multiple changes in the regulation of upd-like are involved in microevolution of morphological and sex-specific differences between species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520604/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520604/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loehlin, David W -- Werren, John H -- 5R01 GM070026-04/GM/NIGMS NIH HHS/ -- 5R24 GM084917-04/GM/NIGMS NIH HHS/ -- R01 GM070026/GM/NIGMS NIH HHS/ -- R24 GM084917/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):943-7. doi: 10.1126/science.1215193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, NY 14627, USA. loehlin@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363002" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; Cloning, Molecular ; Drosophila/genetics ; Drosophila Proteins/genetics ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genes, Insect ; Insect Proteins/*genetics/metabolism ; Male ; Molecular Sequence Data ; Morphogenesis/genetics ; Organ Size ; Quantitative Trait Loci ; Sex Characteristics ; Species Specificity ; Transcription Factors/genetics ; Wasps/anatomy & histology/*genetics/*growth & development ; Wings, Animal/*anatomy & histology/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-09-01
    Description: Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (beta-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070369/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070369/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsberg, Kevin J -- Reyes, Alejandro -- Wang, Bin -- Selleck, Elizabeth M -- Sommer, Morten O A -- Dantas, Gautam -- T32 GM007067/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1107-11. doi: 10.1126/science.1220761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936781" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/pharmacology ; Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/*genetics/pathogenicity ; Base Sequence ; Drug Resistance, Multiple, Bacterial/*genetics ; High-Throughput Screening Assays ; Humans ; Metagenome/*drug effects/*genetics ; Metagenomics ; Molecular Sequence Data ; *Soil Microbiology ; Sulfonamides/pharmacology ; Tetracyclines/pharmacology ; beta-Lactams/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-03-01
    Description: The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs as the free-energy barrier between two states is crossed. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding, we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Forster resonance energy transfer experiments. Whereas the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by a factor of less than 5, which shows that a fast- and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- McHale, Kevin -- Louis, John M -- Eaton, William A -- Z99 DK999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):981-4. doi: 10.1126/science.1215768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA. chunghoi@niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363011" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Carrier Proteins/*chemistry ; Fluorescence Resonance Energy Transfer ; Kinetics ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Photons ; Protein Conformation ; *Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-06-02
    Description: C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by gamma-secretase to release the amyloid-beta polypeptides, which are associated with Alzheimer's disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded "N-helix" followed by a short "N-loop" connecting to the transmembrane domain (TMD). The TMD is a flexibly curved alpha helix, making it well suited for processive cleavage by gamma-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer's therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528355/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528355/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrett, Paul J -- Song, Yuanli -- Van Horn, Wade D -- Hustedt, Eric J -- Schafer, Johanna M -- Hadziselimovic, Arina -- Beel, Andrew J -- Sanders, Charles R -- F31 NS077681/NS/NINDS NIH HHS/ -- P01 GM080513/GM/NIGMS NIH HHS/ -- T32 GM008320/GM/NIGMS NIH HHS/ -- T32 GM08320/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1168-71. doi: 10.1126/science.1219988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654059" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amyloid beta-Protein Precursor/*chemistry/genetics/*metabolism ; Binding Sites ; Cholesterol/*metabolism ; Electron Spin Resonance Spectroscopy ; Humans ; Micelles ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-03-17
    Description: In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377438/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377438/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagnon, Matthieu G -- Seetharaman, Sai V -- Bulkley, David -- Steitz, Thomas A -- GM022778/GM/NIGMS NIH HHS/ -- P01 GM022778/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1370-2. doi: 10.1126/science.1217443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422986" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carboxylic Ester Hydrolases/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal/chemistry/metabolism ; RNA, Transfer, Amino Acyl/chemistry/metabolism ; RNA, Transfer, Met/chemistry/metabolism ; Ribosome Subunits, Large, Bacterial/chemistry/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism ; Ribosomes/*chemistry/metabolism ; Thermus thermophilus/*chemistry/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-08-28
    Description: Plants possess arrays of functionally diverse specialized metabolites, many of which are distributed taxonomically. Here, we describe the evolution of a class of substituted alpha-pyrone metabolites in Arabidopsis, which we have named arabidopyrones. The biosynthesis of arabidopyrones requires a cytochrome P450 enzyme (CYP84A4) to generate the catechol-substituted substrate for an extradiol ring-cleavage dioxygenase (AtLigB). Unlike other ring-cleavage-derived plant metabolites made from tyrosine, arabidopyrones are instead derived from phenylalanine through the early steps of phenylpropanoid metabolism. Whereas CYP84A4, an Arabidopsis-specific paralog of the lignin-biosynthetic enzyme CYP84A1, has neofunctionalized relative to its ancestor, AtLigB homologs are widespread among land plants and many bacteria. This study exemplifies the rapid evolution of a biochemical pathway formed by the addition of a new biological activity into an existing metabolic infrastructure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weng, Jing-Ke -- Li, Yi -- Mo, Huaping -- Chapple, Clint -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):960-4. doi: 10.1126/science.1221614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Biosynthetic Pathways ; Catalytic Domain ; Cytochrome P-450 Enzyme System/chemistry/genetics/*metabolism ; Dioxygenases/genetics/metabolism ; Evolution, Molecular ; Gene Duplication ; Genome, Plant ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phenylalanine/metabolism ; Phylogeny ; Plant Stems/metabolism ; Plants, Genetically Modified ; Pyrones/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-05-26
    Description: Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westfall, Corey S -- Zubieta, Chloe -- Herrmann, Jonathan -- Kapp, Ulrike -- Nanao, Max H -- Jez, Joseph M -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1708-11. doi: 10.1126/science.1221863. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Washington University, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628555" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis ; Arabidopsis Proteins/*chemistry/metabolism ; Benzoates/chemistry ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry ; Indoleacetic Acids/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleotidyltransferases/*chemistry/metabolism ; Oxylipins/chemistry ; Plant Growth Regulators/chemistry/metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-04-12
    Description: Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observations of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shapiro, B Jesse -- Friedman, Jonathan -- Cordero, Otto X -- Preheim, Sarah P -- Timberlake, Sonia C -- Szabo, Gitta -- Polz, Martin F -- Alm, Eric J -- U54 GM088558/GM/NIGMS NIH HHS/ -- U54 GM088558-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):48-51. doi: 10.1126/science.1218198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22491847" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Bacterial/genetics ; *Ecosystem ; *Evolution, Molecular ; Gene Flow ; Gene Transfer, Horizontal ; Genes, Bacterial ; Genetic Variation ; *Genome, Bacterial ; Models, Genetic ; Molecular Sequence Data ; Mutation ; Oceans and Seas ; Phylogeny ; Polymorphism, Single Nucleotide ; *Recombination, Genetic ; Seawater/*microbiology ; *Selection, Genetic ; Vibrio/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-03-03
    Description: It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trondelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andoya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parducci, Laura -- Jorgensen, Tina -- Tollefsrud, Mari Mette -- Elverland, Ellen -- Alm, Torbjorn -- Fontana, Sonia L -- Bennett, K D -- Haile, James -- Matetovici, Irina -- Suyama, Yoshihisa -- Edwards, Mary E -- Andersen, Kenneth -- Rasmussen, Morten -- Boessenkool, Sanne -- Coissac, Eric -- Brochmann, Christian -- Taberlet, Pierre -- Houmark-Nielsen, Michael -- Larsen, Nicolaj Krog -- Orlando, Ludovic -- Gilbert, M Thomas P -- Kjaer, Kurt H -- Alsos, Inger Greve -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1083-6. doi: 10.1126/science.1216043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383845" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Chloroplast/genetics ; DNA, Mitochondrial/genetics ; *Ecosystem ; Europe ; *Fossils ; Geologic Sediments ; Haplotypes ; *Ice Cover ; Molecular Sequence Data ; Mutation ; Norway ; *Picea/genetics ; *Pinus/genetics ; Scandinavian and Nordic Countries ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-01-10
    Description: DNA recognition by TAL effectors is mediated by tandem repeats, each 33 to 35 residues in length, that specify nucleotides via unique repeat-variable diresidues (RVDs). The crystal structure of PthXo1 bound to its DNA target was determined by high-throughput computational structure prediction and validated by heavy-atom derivatization. Each repeat forms a left-handed, two-helix bundle that presents an RVD-containing loop to the DNA. The repeats self-associate to form a right-handed superhelix wrapped around the DNA major groove. The first RVD residue forms a stabilizing contact with the protein backbone, while the second makes a base-specific contact to the DNA sense strand. Two degenerate amino-terminal repeats also interact with the DNA. Containing several RVDs and noncanonical associations, the structure illustrates the basis of TAL effector-DNA recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mak, Amanda Nga-Sze -- Bradley, Philip -- Cernadas, Raul A -- Bogdanove, Adam J -- Stoddard, Barry L -- R01 GM049857/GM/NIGMS NIH HHS/ -- R01 GM088277/GM/NIGMS NIH HHS/ -- R01 GM098861/GM/NIGMS NIH HHS/ -- R01GM098861/GM/NIGMS NIH HHS/ -- RL1 0CA833133/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):716-9. doi: 10.1126/science.1216211. Epub 2012 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025 Seattle, WA 98019, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223736" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA, Plant/*chemistry/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; High-Throughput Screening Assays ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Processes ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repetitive Sequences, Amino Acid ; Virulence Factors/*chemistry/*metabolism ; Xanthomonas/*chemistry/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-05-05
    Description: Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garelli, Andres -- Gontijo, Alisson M -- Miguela, Veronica -- Caparros, Esther -- Dominguez, Maria -- New York, N.Y. -- Science. 2012 May 4;336(6081):579-82. doi: 10.1126/science.1216735.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas-Universidad Miguel Hernandez de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556250" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Drosophila Proteins/chemistry/*genetics/*metabolism ; Drosophila melanogaster/*genetics/*growth & development/metabolism ; Ecdysone/biosynthesis ; Ethyl Methanesulfonate/pharmacology ; Gene Expression Regulation, Developmental ; Genes, Insect ; Imaginal Discs/growth & development/*physiology ; Intercellular Signaling Peptides and Proteins/chemistry/*genetics/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Larva/growth & development ; *Metamorphosis, Biological/genetics ; Molecular Sequence Data ; Neoplasms, Experimental/genetics/metabolism/pathology ; Peptide Initiation Factors/genetics/metabolism ; Pupa/growth & development ; Regeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-09-18
    Description: It is held as a paradigm that ribosomally synthesized peptides and proteins contain only l-amino acids. We demonstrate a ribosomal origin of the marine sponge-derived polytheonamides, exceptionally potent, giant natural-product toxins. Isolation of the biosynthetic genes from the sponge metagenome revealed a bacterial gene architecture. Only six candidate enzymes were identified for 48 posttranslational modifications, including 18 epimerizations and 17 methylations of nonactivated carbon centers. Three enzymes were functionally validated, which showed that a radical S-adenosylmethionine enzyme is responsible for the unidirectional epimerization of multiple and different amino acids. Collectively, these complex alterations create toxins that function as unimolecular minimalistic ion channels with near-femtomolar activity. This study broadens the biosynthetic scope of ribosomal systems and creates new opportunities for peptide and protein bioengineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, Michael F -- Gurgui, Cristian -- Helf, Maximilian J -- Morinaka, Brandon I -- Uria, Agustinus R -- Oldham, Neil J -- Sahl, Hans-Georg -- Matsunaga, Shigeki -- Piel, Jorn -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):387-90. doi: 10.1126/science.1226121. Epub 2012 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22983711" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ion Channels/biosynthesis/*metabolism ; Marine Toxins/biosynthesis/*metabolism ; *Metagenome ; Methylation ; Molecular Sequence Data ; Protein Biosynthesis ; *Protein Processing, Post-Translational ; Proteins/*metabolism ; Ribosomes/metabolism ; S-Adenosylmethionine/metabolism ; Theonella/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2012-10-23
    Description: Growing RNA chains fold cotranscriptionally as they are synthesized by RNA polymerase. Riboswitches, which regulate gene expression by adopting alternative RNA folds, are sensitive to cotranscriptional events. We developed an optical-trapping assay to follow the cotranscriptional folding of a nascent RNA and used it to monitor individual transcripts of the pbuE adenine riboswitch, visualizing distinct folding transitions. We report a particular folding signature for the riboswitch aptamer whose presence directs the gene-regulatory transcription outcome, and we measured the termination frequency as a function of adenine level and tension applied to the RNA. Our results demonstrate that the outcome is kinetically controlled. These experiments furnish a means to observe conformational switching in real time and enable the precise mapping of events during cotranscriptional folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frieda, Kirsten L -- Block, Steven M -- R37 GM057035/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):397-400. doi: 10.1126/science.1225722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087247" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*chemistry/metabolism ; Bacillus subtilis/genetics ; Base Sequence ; Kinetics ; Molecular Sequence Data ; *Optical Tweezers ; *RNA Folding ; Riboswitch/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2012-01-10
    Description: To operate in the extreme cold, ion channels from psychrophiles must have evolved structural changes to compensate for their thermal environment. A reasonable assumption would be that the underlying adaptations lie within the encoding genes. Here, we show that delayed rectifier K(+) channel genes from an Antarctic and a tropical octopus encode channels that differ at only four positions and display very similar behavior when expressed in Xenopus oocytes. However, the transcribed messenger RNAs are extensively edited, creating functional diversity. One editing site, which recodes an isoleucine to a valine in the channel's pore, greatly accelerates gating kinetics by destabilizing the open state. This site is extensively edited in both Antarctic and Arctic species, but mostly unedited in tropical species. Thus adenosine-to-inosine RNA editing can respond to the physical environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219319/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219319/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garrett, Sandra -- Rosenthal, Joshua J C -- 2 U54 NS039405-06/NS/NINDS NIH HHS/ -- FNS064774A/PHS HHS/ -- G12 RR 03051/RR/NCRR NIH HHS/ -- R01 NS064259/NS/NINDS NIH HHS/ -- U54 NS039405/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):848-51. doi: 10.1126/science.1212795. Epub 2012 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan 00901, PR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223739" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/*genetics ; Adenosine/metabolism ; Animals ; Antarctic Regions ; Inosine/metabolism ; Molecular Sequence Data ; Octopodiformes/genetics/*physiology ; *RNA Editing ; Recombinant Proteins ; Shaker Superfamily of Potassium Channels/genetics/*physiology ; Species Specificity ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-12-01
    Description: Placental development and genomic imprinting coevolved with parental conflict over resource distribution to mammalian offspring. The imprinted genes IGF2 and IGF2R code for the growth promoter insulin-like growth factor 2 (IGF2) and its inhibitor, mannose 6-phosphate (M6P)/IGF2 receptor (IGF2R), respectively. M6P/IGF2R of birds and fish do not recognize IGF2. In monotremes, which lack imprinting, IGF2 specifically bound M6P/IGF2R via a hydrophobic CD loop. We show that the DNA coding the CD loop in monotremes functions as an exon splice enhancer (ESE) and that structural evolution of binding site loops (AB, HI, FG) improved therian IGF2 affinity. We propose that ESE evolution led to the fortuitous acquisition of IGF2 binding by M6P/IGF2R that drew IGF2R into parental conflict; subsequent imprinting may then have accelerated affinity maturation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658703/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658703/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Christopher -- Hoppe, Hans-Jurgen -- Rezgui, Dellel -- Strickland, Madeleine -- Forbes, Briony E -- Grutzner, Frank -- Frago, Susana -- Ellis, Rosamund Z -- Wattana-Amorn, Pakorn -- Prince, Stuart N -- Zaccheo, Oliver J -- Nolan, Catherine M -- Mungall, Andrew J -- Jones, E Yvonne -- Crump, Matthew P -- Hassan, A Bassim -- 082352/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 9891/Cancer Research UK/United Kingdom -- A13295/Cancer Research UK/United Kingdom -- A9891/Cancer Research UK/United Kingdom -- C375/Cancer Research UK/United Kingdom -- C429/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1209-13. doi: 10.1126/science.1228633.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic and Biological Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197533" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Conserved Sequence ; Enhancer Elements, Genetic/*genetics ; *Evolution, Molecular ; *Exons ; Genomic Imprinting ; Humans ; Insulin-Like Growth Factor II/*chemistry/classification/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Receptor, IGF Type 2/*chemistry/classification/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-11-01
    Description: Vasopressin- and oxytocin-related neuropeptides are key regulators of animal physiology, including water balance and reproduction. Although these neuropeptides also modulate social behavior and cognition in mammals, the mechanism for influencing behavioral plasticity and the evolutionary origin of these effects are not well understood. Here, we present a functional vasopressin- and oxytocin-like signaling system in the nematode Caenorhabditis elegans. Through activation of its receptor NTR-1, a vasopressin/oxytocin-related neuropeptide, designated nematocin, facilitates the experience-driven modulation of salt chemotaxis, a type of gustatory associative learning in C. elegans. Our study suggests that vasopressin and oxytocin neuropeptides have ancient roles in modulating sensory processing in neural circuits that underlie behavioral plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beets, Isabel -- Janssen, Tom -- Meelkop, Ellen -- Temmerman, Liesbet -- Suetens, Nick -- Rademakers, Suzanne -- Jansen, Gert -- Schoofs, Liliane -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):543-5. doi: 10.1126/science.1226860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Functional Genomics and Proteomics Unit, KU Leuven, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Evolution ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans ; Proteins/agonists/chemistry/genetics/metabolism/pharmacology/*physiology ; Learning/drug effects/*physiology ; Male ; Molecular Sequence Data ; Neuropeptides/chemistry/genetics/pharmacology/*physiology ; Oxytocin/chemistry/genetics/pharmacology/*physiology ; Receptors, G-Protein-Coupled/agonists/genetics/metabolism/*physiology ; Signal Transduction ; Taste/drug effects/*physiology ; Vasopressins/chemistry/genetics/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2012-03-10
    Description: We have identified tens of thousands of short extrachromosomal circular DNAs (microDNA) in mouse tissues as well as mouse and human cell lines. These microDNAs are 200 to 400 base pairs long, are derived from unique nonrepetitive sequence, and are enriched in the 5'-untranslated regions of genes, exons, and CpG islands. Chromosomal loci that are enriched sources of microDNA in the adult brain are somatically mosaic for microdeletions that appear to arise from the excision of microDNAs. Germline microdeletions identified by the "Thousand Genomes" project may also arise from the excision of microDNAs in the germline lineage. We have thus identified a previously unknown DNA entity in mammalian cells and provide evidence that their generation leaves behind deletions in different genomic loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, Yoshiyuki -- Kumar, Pankaj -- Layer, Ryan -- Willcox, Smaranda -- Gagan, Jeffrey R -- Griffith, Jack D -- Dutta, Anindya -- ES013773/ES/NIEHS NIH HHS/ -- GM31819/GM/NIGMS NIH HHS/ -- GM84465/GM/NIGMS NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 CA060499/CA/NCI NIH HHS/ -- R01 CA060499-18/CA/NCI NIH HHS/ -- R01 CA60499/CA/NCI NIH HHS/ -- R01 ES013773/ES/NIEHS NIH HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM084465/GM/NIGMS NIH HHS/ -- R01 GM084465-04/GM/NIGMS NIH HHS/ -- T32 GM008136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):82-6. doi: 10.1126/science.1213307. Epub 2012 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403181" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Animals ; Base Pairing ; Base Sequence ; Brain/*embryology ; Brain Chemistry ; Cell Line ; Cell Line, Tumor ; *Chromosome Deletion ; Chromosomes, Human/*genetics ; Chromosomes, Mammalian/*genetics ; CpG Islands ; DNA Replication ; *DNA, Circular/analysis/chemistry/isolation & purification/metabolism ; Exons ; Germ Cells/chemistry ; Heart/embryology ; Humans ; Liver/chemistry/embryology ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2012-07-28
    Description: Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six alpha helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kellosalo, Juho -- Kajander, Tommi -- Kogan, Konstantin -- Pokharel, Kisun -- Goldman, Adrian -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):473-6. doi: 10.1126/science.1222505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology and Biophysics Program, Institute of Biotechnology, Post Office Box 65, University of Helsinki, FIN-00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837527" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/metabolism ; Biocatalysis ; Calcium/chemistry ; Catalytic Domain ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Diphosphates/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Ion Channel Gating ; Magnesium/chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Pyrophosphatases/*chemistry/genetics/*metabolism ; Sodium/*metabolism ; Sodium-Potassium-Exchanging ATPase/*chemistry/genetics/metabolism ; Thermotoga maritima/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2012-02-04
    Description: Resistance of nematodes to anthelmintics such as avermectins has emerged as a major global health and agricultural problem, but genes conferring natural resistance to avermectins are unknown. We show that a naturally occurring four-amino-acid deletion in the ligand-binding domain of GLC-1, the alpha-subunit of a glutamate-gated chloride channel, confers resistance to avermectins in the model nematode Caenorhabditis elegans. We also find that the same variant confers resistance to the avermectin-producing bacterium Streptomyces avermitilis. Population-genetic analyses identified two highly divergent haplotypes at the glc-1 locus that have been maintained at intermediate frequencies by long-term balancing selection. These results implicate variation in glutamate-gated chloride channels in avermectin resistance and provide a mechanism by which such resistance can be maintained.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273849/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273849/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, Rajarshi -- Andersen, Erik C -- Shapiro, Joshua A -- Gerke, Justin P -- Kruglyak, Leonid -- P50-GM071508/GM/NIGMS NIH HHS/ -- R01 HG004321/HG/NHGRI NIH HHS/ -- R01 HG004321-03/HG/NHGRI NIH HHS/ -- R01-HG004321/HG/NHGRI NIH HHS/ -- R37- MH59520/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 3;335(6068):574-8. doi: 10.1126/science.1214318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lewis-Sigler Institute for Integrative Genomics, Department of Ecology and Evolutionary Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22301316" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Antinematodal Agents/*pharmacology ; Caenorhabditis elegans/*drug effects/*genetics/physiology ; Caenorhabditis elegans Proteins/chemistry/*genetics/metabolism ; Chloride Channels/chemistry/*genetics/metabolism ; Crosses, Genetic ; Drug Resistance/genetics ; Genes, Helminth ; Genome-Wide Association Study ; Ivermectin/*analogs & derivatives/*pharmacology ; Ligands ; Molecular Sequence Data ; Mutation ; Polymorphism, Single Nucleotide ; Protein Structure, Tertiary ; Quantitative Trait Loci ; Selection, Genetic ; Streptomyces/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2012-06-02
    Description: Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winzer, Thilo -- Gazda, Valeria -- He, Zhesi -- Kaminski, Filip -- Kern, Marcelo -- Larson, Tony R -- Li, Yi -- Meade, Fergus -- Teodor, Roxana -- Vaistij, Fabian E -- Walker, Carol -- Bowser, Tim A -- Graham, Ian A -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1704-8. doi: 10.1126/science.1220757. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653730" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents, Phytogenic/*biosynthesis ; *Genes, Plant ; Molecular Sequence Data ; *Multigene Family ; Noscapine/*metabolism ; Papaver/enzymology/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2012-10-16
    Description: The rhg1-b allele of soybean is widely used for resistance against soybean cyst nematode (SCN), the most economically damaging pathogen of soybeans in the United States. Gene silencing showed that genes in a 31-kilobase segment at rhg1-b, encoding an amino acid transporter, an alpha-SNAP protein, and a WI12 (wound-inducible domain) protein, each contribute to resistance. There is one copy of the 31-kilobase segment per haploid genome in susceptible varieties, but 10 tandem copies are present in an rhg1-b haplotype. Overexpression of the individual genes in roots was ineffective, but overexpression of the genes together conferred enhanced SCN resistance. Hence, SCN resistance mediated by the soybean quantitative trait locus Rhg1 is conferred by copy number variation that increases the expression of a set of dissimilar genes in a repeated multigene segment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, David E -- Lee, Tong Geon -- Guo, Xiaoli -- Melito, Sara -- Wang, Kai -- Bayless, Adam M -- Wang, Jianping -- Hughes, Teresa J -- Willis, David K -- Clemente, Thomas E -- Diers, Brian W -- Jiang, Jiming -- Hudson, Matthew E -- Bent, Andrew F -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1206-9. doi: 10.1126/science.1228746. Epub 2012 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23065905" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; *Gene Dosage ; Gene Expression Regulation, Plant ; *Genetic Loci ; Genetic Variation ; Haplotypes ; Male ; Molecular Sequence Data ; Plant Diseases/*genetics/*parasitology ; Plant Proteins/*genetics ; Plant Roots/genetics/parasitology ; Protein Structure, Tertiary/genetics ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics ; Soybeans/*genetics/*parasitology ; *Tylenchoidea
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-01-17
    Description: Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor-alpha (TNFalpha), which is shed from the plasma membrane after cleavage by the TNFalpha convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFalpha shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFalpha in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McIlwain, David R -- Lang, Philipp A -- Maretzky, Thorsten -- Hamada, Koichi -- Ohishi, Kazuhito -- Maney, Sathish Kumar -- Berger, Thorsten -- Murthy, Aditya -- Duncan, Gordon -- Xu, Haifeng C -- Lang, Karl S -- Haussinger, Dieter -- Wakeham, Andrew -- Itie-Youten, Annick -- Khokha, Rama -- Ohashi, Pamela S -- Blobel, Carl P -- Mak, Tak W -- GM64750/GM/NIGMS NIH HHS/ -- R01 GM064750/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):229-32. doi: 10.1126/science.1214448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246778" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/*metabolism ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/metabolism ; Base Sequence ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Gene Deletion ; *Immunity, Innate ; Lipopolysaccharides/*immunology ; Listeria monocytogenes/immunology/physiology ; Listeriosis/*immunology/metabolism/microbiology/pathology ; Macrophages/immunology/metabolism ; Macrophages, Peritoneal/immunology/metabolism/microbiology ; Mice ; Molecular Sequence Data ; Protein Transport ; Shock, Septic/*immunology/metabolism ; Spleen/cytology ; Tumor Necrosis Factor-alpha/blood/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2012-09-08
    Description: In animals and plants, social structure can reduce conflict within populations and bias aggression toward competing populations; however, for bacteria in the wild it remains unknown whether such population-level organization exists. Here, we show that environmental bacteria are organized into socially cohesive units in which antagonism occurs between rather than within ecologically defined populations. By screening approximately 35,000 possible mutual interactions among Vibrionaceae isolates from the ocean, we show that genotypic clusters known to have cohesive habitat association also act as units in terms of antibiotic production and resistance. Genetic analyses show that within populations, broad-range antibiotics are produced by few genotypes, whereas all others are resistant, suggesting cooperation between conspecifics. Natural antibiotics may thus mediate competition between populations rather than solely increase the success of individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cordero, Otto X -- Wildschutte, Hans -- Kirkup, Benjamin -- Proehl, Sarah -- Ngo, Lynn -- Hussain, Fatima -- Le Roux, Frederique -- Mincer, Tracy -- Polz, Martin F -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1228-31. doi: 10.1126/science.1219385.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955834" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*biosynthesis ; *Antibiosis ; DNA Transposable Elements ; *Drug Resistance, Bacterial ; *Ecosystem ; Gene Transfer, Horizontal ; Genes, Bacterial ; Genome, Bacterial ; Genotype ; *Microbial Interactions ; Molecular Sequence Data ; Oceans and Seas ; Polyketide Synthases/genetics ; Seawater/*microbiology ; Vibrio/*drug effects/genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-04-28
    Description: Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couradeau, Estelle -- Benzerara, Karim -- Gerard, Emmanuelle -- Moreira, David -- Bernard, Sylvain -- Brown, Gordon E Jr -- Lopez-Garcia, Purificacion -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):459-62. doi: 10.1126/science.1216171.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Mineralogie et de Physique de la Matiere Condensee, CNRS UMR 7590, Universite Pierre et Marie Curie, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539718" target="_blank"〉PubMed〈/a〉
    Keywords: Barium/analysis ; Base Sequence ; *Biofilms ; Calcification, Physiologic ; Calcium/analysis ; Calcium Carbonate/*analysis ; Carbonates/*analysis/metabolism ; Chemical Precipitation ; Cyanobacteria/classification/*isolation & purification/*physiology/ultrastructure ; Genes, Bacterial ; Genes, rRNA ; Inclusion Bodies/*chemistry/*ultrastructure ; Lakes/*microbiology ; Magnesium/analysis ; Mexico ; Molecular Sequence Data ; Phylogeny ; Strontium/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2012-03-03
    Description: The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S(N)1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531234/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531234/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yun, Mi-Kyung -- Wu, Yinan -- Li, Zhenmei -- Zhao, Ying -- Waddell, M Brett -- Ferreira, Antonio M -- Lee, Richard E -- Bashford, Donald -- White, Stephen W -- AI070721/AI/NIAID NIH HHS/ -- CA21765/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI070721/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1110-4. doi: 10.1126/science.1214641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383850" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Aminobenzoic Acid/chemistry/metabolism ; Amino Acid Sequence ; Anti-Bacterial Agents/chemistry/metabolism/*pharmacology ; Bacillus anthracis/drug effects/enzymology ; Biocatalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dihydropteroate Synthase/*chemistry/genetics/*metabolism ; Diphosphates/chemistry/metabolism ; *Drug Resistance, Bacterial ; Magnesium/chemistry ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Parabens/chemistry/metabolism ; Protein Conformation ; Sulfamethoxazole/chemistry/metabolism/*pharmacology ; Sulfathiazoles/chemistry/metabolism/*pharmacology ; Yersinia pestis/drug effects/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-12-01
    Description: Notch signaling affects many developmental and cellular processes and has been implicated in congenital disorders, stroke, and numerous cancers. The Notch receptor binds its ligands Delta and Serrate and is able to discriminate between them in different contexts. However, the specific domains in Notch responsible for this selectivity are poorly defined. Through genetic screens in Drosophila, we isolated a mutation, Notch(jigsaw), that affects Serrate- but not Delta-dependent signaling. Notch(jigsaw) carries a missense mutation in epidermal growth factor repeat-8 (EGFr-8) and is defective in Serrate binding. A homologous point mutation in mammalian Notch2 also exhibits defects in signaling of a mammalian Serrate homolog, Jagged1. Hence, an evolutionarily conserved valine in EGFr-8 is essential for ligand selectivity and provides a molecular handle to study numerous Notch-dependent signaling events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamoto, Shinya -- Charng, Wu-Lin -- Rana, Nadia A -- Kakuda, Shinako -- Jaiswal, Manish -- Bayat, Vafa -- Xiong, Bo -- Zhang, Ke -- Sandoval, Hector -- David, Gabriela -- Wang, Hao -- Haltiwanger, Robert S -- Bellen, Hugo J -- 1RC4GM096355-01/GM/NIGMS NIH HHS/ -- 5K12GM084897/GM/NIGMS NIH HHS/ -- 5P30HD024064/HD/NICHD NIH HHS/ -- 5R01GM061126-12/GM/NIGMS NIH HHS/ -- 5R01GM067858/GM/NIGMS NIH HHS/ -- 5T32-HD055200/HD/NICHD NIH HHS/ -- K12 GM084897/GM/NIGMS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 GM061126/GM/NIGMS NIH HHS/ -- R01 GM067858/GM/NIGMS NIH HHS/ -- RC4 GM096355/GM/NIGMS NIH HHS/ -- T32 HD055200/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1229-32. doi: 10.1126/science.1228745.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium-Binding Proteins/*metabolism ; Cells, Cultured ; DNA Mutational Analysis ; Drosophila Proteins/*genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Epidermal Growth Factor/genetics ; Evolution, Molecular ; Humans ; Intercellular Signaling Peptides and Proteins/*metabolism ; Intracellular Signaling Peptides and Proteins/*metabolism ; Ligands ; Male ; Membrane Proteins/*metabolism ; Methionine/genetics ; Molecular Sequence Data ; Mutation ; Receptor, Notch2/genetics/metabolism ; Receptors, Notch/*genetics/*metabolism ; Tandem Repeat Sequences/genetics ; Valine/genetics ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-03-01
    Description: Botulinum neurotoxins (BoNTs) are highly poisonous substances that are also effective medicines. Accidental BoNT poisoning often occurs through ingestion of Clostridium botulinum-contaminated food. Here, we present the crystal structure of a BoNT in complex with a clostridial nontoxic nonhemagglutinin (NTNHA) protein at 2.7 angstroms. Biochemical and functional studies show that NTNHA provides large and multivalent binding interfaces to protect BoNT from gastrointestinal degradation. Moreover, the structure highlights key residues in BoNT that regulate complex assembly in a pH-dependent manner. Collectively, our findings define the molecular mechanisms by which NTNHA shields BoNT in the hostile gastrointestinal environment and releases it upon entry into the circulation. These results will assist in the design of small molecules for inhibiting oral BoNT intoxication and of delivery vehicles for oral administration of biologics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545708/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545708/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Shenyan -- Rumpel, Sophie -- Zhou, Jie -- Strotmeier, Jasmin -- Bigalke, Hans -- Perry, Kay -- Shoemaker, Charles B -- Rummel, Andreas -- Jin, Rongsheng -- R01 AI091823/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):977-81. doi: 10.1126/science.1214270.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363010" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Botulinum Toxins, Type A/*chemistry/metabolism ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Mutagenesis ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-11-23
    Description: Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for 〉99% of schistosomiasis cases worldwide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valentim, Claudia L L -- Cioli, Donato -- Chevalier, Frederic D -- Cao, Xiaohang -- Taylor, Alexander B -- Holloway, Stephen P -- Pica-Mattoccia, Livia -- Guidi, Alessandra -- Basso, Annalisa -- Tsai, Isheng J -- Berriman, Matthew -- Carvalho-Queiroz, Claudia -- Almeida, Marcio -- Aguilar, Hector -- Frantz, Doug E -- Hart, P John -- LoVerde, Philip T -- Anderson, Timothy J C -- 098051/Wellcome Trust/United Kingdom -- 5R21-AI072704/AI/NIAID NIH HHS/ -- 5R21-AI096277/AI/NIAID NIH HHS/ -- C06 RR013556/RR/NCRR NIH HHS/ -- HHSN272201000005I/PHS HHS/ -- R01 AI097576/AI/NIAID NIH HHS/ -- R01-AI097576/AI/NIAID NIH HHS/ -- R21 AI072704/AI/NIAID NIH HHS/ -- R21 AI096277/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1385-9. doi: 10.1126/science.1243106. Epub 2013 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24263136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drug Resistance/*genetics ; Gene Knockdown Techniques ; Genetic Linkage ; Helminth Proteins/*genetics ; Humans ; Molecular Sequence Data ; Mutation ; Oxamniquine/*pharmacology ; Phylogeny ; Protein Conformation ; Quantitative Trait Loci ; RNA Interference ; Schistosoma mansoni/*drug effects/*genetics ; Schistosomicides/*pharmacology ; Sulfotransferases/chemistry/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-06-08
    Description: Evolutionarily young genes that serve essential functions represent a paradox; they must perform a function that either was not required until after their birth or was redundant with another gene. How young genes rapidly acquire essential function is largely unknown. We traced the evolutionary steps by which the Drosophila gene Umbrea acquired an essential role in chromosome segregation in D. melanogaster since the gene's origin less than 15 million years ago. Umbrea neofunctionalization occurred via loss of an ancestral heterochromatin-localizing domain, followed by alterations that rewired its protein interaction network and led to species-specific centromere localization. Our evolutionary cell biology approach provides temporal and mechanistic detail about how young genes gain essential function. Such innovations may constantly alter the repertoire of centromeric proteins in eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross, Benjamin D -- Rosin, Leah -- Thomae, Andreas W -- Hiatt, Mary Alice -- Vermaak, Danielle -- de la Cruz, Aida Flor A -- Imhof, Axel -- Mellone, Barbara G -- Malik, Harmit S -- R01 GM074108/GM/NIGMS NIH HHS/ -- R01GM074108/GM/NIGMS NIH HHS/ -- T32HG000035/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1211-4. doi: 10.1126/science.1234393.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744945" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Centromere/genetics/*physiology ; Chromosomal Proteins, Non-Histone/*genetics ; Drosophila/*genetics ; Drosophila Proteins/*genetics ; *Evolution, Molecular ; Gene Duplication ; Genes, Insect/*physiology ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-07-28
    Description: The essential bacterial protein FtsZ is a guanosine triphosphatase that self-assembles into a structure at the division site termed the "Z ring". During cytokinesis, the Z ring exerts a constrictive force on the membrane by using the chemical energy of guanosine triphosphate hydrolysis. However, the structural basis of this constriction remains unresolved. Here, we present the crystal structure of a guanosine diphosphate-bound Mycobacterium tuberculosis FtsZ protofilament, which exhibits a curved conformational state. The structure reveals a longitudinal interface that is important for function. The protofilament curvature highlights a hydrolysis-dependent conformational switch at the T3 loop that leads to longitudinal bending between subunits, which could generate sufficient force to drive cytokinesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ying -- Hsin, Jen -- Zhao, Lingyun -- Cheng, Yiwen -- Shang, Weina -- Huang, Kerwyn Casey -- Wang, Hong-Wei -- Ye, Sheng -- 1F32GM100677-01A1/GM/NIGMS NIH HHS/ -- DP2 OD006466/OD/NIH HHS/ -- DP2OD006466/OD/NIH HHS/ -- F32 GM100677/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, P.R. China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/physiology ; Crystallography, X-Ray ; *Cytokinesis ; Cytoskeletal Proteins/*chemistry/genetics/*metabolism ; Escherichia coli/chemistry ; Guanosine Diphosphate/chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mycobacterium tuberculosis/*chemistry/physiology ; Point Mutation ; Protein Conformation ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Staphylococcus aureus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-26
    Description: Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na(+) channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na(+) currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172297/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172297/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowe, Ashlee H -- Xiao, Yucheng -- Rowe, Matthew P -- Cummins, Theodore R -- Zakon, Harold H -- NS 053422/NS/NINDS NIH HHS/ -- R01 NS053422/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):441-6. doi: 10.1126/science.1236451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159039" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects/physiology ; Amino Acid Sequence ; Animals ; Arvicolinae/*metabolism ; *Food Chain ; Formaldehyde/pharmacology ; Mice ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/chemistry/genetics/*metabolism ; NAV1.8 Voltage-Gated Sodium Channel/chemistry/genetics/*metabolism ; Pain/chemically induced/*metabolism ; *Predatory Behavior ; Protein Structure, Tertiary ; Scorpion Venoms
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-02-11
    Description: In its physiological state, cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIbeta(2):C(2) holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the beta4-beta5 loop in the RIIbeta subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIbeta subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIbeta tetramer differs appreciably from our model of the RIalpha tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ping -- Smith-Nguyen, Eric V -- Keshwani, Malik M -- Deal, Michael S -- Kornev, Alexandr P -- Taylor, Susan S -- GM34921/GM/NIGMS NIH HHS/ -- R01 GM034921/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):712-6. doi: 10.1126/science.1213979.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0654, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323819" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*chemistry/*metabolism ; Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/*chemistry/*metabolism ; Holoenzymes/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Folding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-03-23
    Description: Glycosylated alpha-dystroglycan (alpha-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate alpha-DG, but many genes mutated in WWS remain unknown. To identify modifiers of alpha-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated alpha-DG to enter cells. In complementary screens, we profiled cells for absence of alpha-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of alpha-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Riemersma, Moniek -- van Beusekom, Ellen -- Blomen, Vincent A -- Velds, Arno -- Kerkhoven, Ron M -- Carette, Jan E -- Topaloglu, Haluk -- Meinecke, Peter -- Wessels, Marja W -- Lefeber, Dirk J -- Whelan, Sean P -- van Bokhoven, Hans -- Brummelkamp, Thijn R -- AI057159/AI/NIAID NIH HHS/ -- AI081842/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):479-83. doi: 10.1126/science.1233675. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Dystroglycans/*metabolism ; Female ; Glycosylation ; Haploidy ; Host-Pathogen Interactions/*genetics ; Humans ; Infant ; Lassa Fever/*genetics/virology ; Lassa virus/*physiology ; Male ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Pedigree ; Proteome/*metabolism ; *Virus Internalization ; Walker-Warburg Syndrome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-09-29
    Description: Numerous insects have independently evolved the ability to feed on plants that produce toxic secondary compounds called cardenolides and can sequester these compounds for use in their defense. We surveyed the protein target for cardenolides, the alpha subunit of the sodium pump, Na(+),K(+)-ATPase (ATPalpha), in 14 species that feed on cardenolide-producing plants and 15 outgroups spanning three insect orders. Despite the large number of potential targets for modulating cardenolide sensitivity, amino acid substitutions associated with host-plant specialization are highly clustered, with many parallel substitutions. Additionally, we document four independent duplications of ATPalpha with convergent tissue-specific expression patterns. We find that unique substitutions are disproportionately associated with recent duplications relative to parallel substitutions. Together, these findings support the hypothesis that adaptation tends to take evolutionary paths that minimize negative pleiotropy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770729/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770729/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhen, Ying -- Aardema, Matthew L -- Medina, Edgar M -- Schumer, Molly -- Andolfatto, Peter -- R01 GM083228/GM/NIGMS NIH HHS/ -- R01-GM083228/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1634-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019645" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological/*genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Apocynaceae/*metabolism/parasitology ; Cardenolides/*metabolism ; *Evolution, Molecular ; Genetic Pleiotropy ; Herbivory/*genetics ; Host-Parasite Interactions/*genetics ; Insects/enzymology/*genetics/physiology ; Molecular Sequence Data ; Organ Specificity ; Sodium-Potassium-Exchanging ATPase/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-12-18
    Description: An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Joseph F -- Pang, Kevin -- Schnitzler, Christine E -- Nguyen, Anh-Dao -- Moreland, R Travis -- Simmons, David K -- Koch, Bernard J -- Francis, Warren R -- Havlak, Paul -- NISC Comparative Sequencing Program -- Smith, Stephen A -- Putnam, Nicholas H -- Haddock, Steven H D -- Dunn, Casey W -- Wolfsberg, Tyra G -- Mullikin, James C -- Martindale, Mark Q -- Baxevanis, Andreas D -- ZIA HG000140-13/Intramural NIH HHS/ -- ZIA HG000140-14/Intramural NIH HHS/ -- ZIA HG000140-15/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1242592. doi: 10.1126/science.1242592.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Cell Lineage/*genetics ; Ctenophora/classification/*cytology/*genetics ; *Genome ; Mesoderm/cytology ; Molecular Sequence Data ; Muscle Development/genetics ; Neurogenesis/genetics ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-07-03
    Description: Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating disease that can cause severe yield losses. A previously uncharacterized Pgt race, designated Ug99, has overcome most of the widely used resistance genes and is threatening major wheat production areas. Here, we demonstrate that the Sr35 gene from Triticum monococcum is a coiled-coil, nucleotide-binding, leucine-rich repeat gene that confers near immunity to Ug99 and related races. This gene is absent in the A-genome diploid donor and in polyploid wheat but is effective when transferred from T. monococcum to polyploid wheat. The cloning of Sr35 opens the door to the use of biotechnological approaches to control this devastating disease and to analyses of the molecular interactions that define the wheat-rust pathosystem.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748951/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748951/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saintenac, Cyrille -- Zhang, Wenjun -- Salcedo, Andres -- Rouse, Matthew N -- Trick, Harold N -- Akhunov, Eduard -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):783-6. doi: 10.1126/science.1239022. Epub 2013 Jun 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23811222" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; *Basidiomycota/pathogenicity ; Cloning, Molecular ; Disease Resistance/genetics ; *Genes, Plant ; Haplotypes ; Molecular Sequence Annotation ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Diseases/genetics/*immunology/microbiology ; Plant Proteins/chemistry/genetics ; Plant Stems/microbiology ; Plants, Genetically Modified ; Polymorphism, Single Nucleotide ; Polyploidy ; Sequence Analysis, DNA ; Triticum/*genetics/immunology/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-04-06
    Description: A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn's disease, suggesting a broader influence of HLA expression levels in human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Apps, Richard -- Qi, Ying -- Carlson, Jonathan M -- Chen, Haoyan -- Gao, Xiaojiang -- Thomas, Rasmi -- Yuki, Yuko -- Del Prete, Greg Q -- Goulder, Philip -- Brumme, Zabrina L -- Brumme, Chanson J -- John, Mina -- Mallal, Simon -- Nelson, George -- Bosch, Ronald -- Heckerman, David -- Stein, Judy L -- Soderberg, Kelly A -- Moody, M Anthony -- Denny, Thomas N -- Zeng, Xue -- Fang, Jingyuan -- Moffett, Ashley -- Lifson, Jeffrey D -- Goedert, James J -- Buchbinder, Susan -- Kirk, Gregory D -- Fellay, Jacques -- McLaren, Paul -- Deeks, Steven G -- Pereyra, Florencia -- Walker, Bruce -- Michael, Nelson L -- Weintrob, Amy -- Wolinsky, Steven -- Liao, Wilson -- Carrington, Mary -- 5-M01-RR-00722/RR/NCRR NIH HHS/ -- HHSN261200800001E/CA/NCI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- K08 AR057763/AR/NIAMS NIH HHS/ -- K08AR057763/AR/NIAMS NIH HHS/ -- K24 AI069994/AI/NIAID NIH HHS/ -- K24AI069994/AI/NIAID NIH HHS/ -- N02-CP-55504/CP/NCI NIH HHS/ -- P30 AI027763/AI/NIAID NIH HHS/ -- P30 AI027767/AI/NIAID NIH HHS/ -- P30 AI027767-24/AI/NIAID NIH HHS/ -- P30 MH62246/MH/NIMH NIH HHS/ -- PG/09/077/27964/British Heart Foundation/United Kingdom -- R01 AI046995/AI/NIAID NIH HHS/ -- R01 AI060460/AI/NIAID NIH HHS/ -- R01 AI087145/AI/NIAID NIH HHS/ -- R01 AR065174/AR/NIAMS NIH HHS/ -- R01-AI046995/AI/NIAID NIH HHS/ -- R01-AI060460/AI/NIAID NIH HHS/ -- R01-DA-04334/DA/NIDA NIH HHS/ -- R01-DA-12568/DA/NIDA NIH HHS/ -- R01-DA04334/DA/NIDA NIH HHS/ -- R01-DA12568/DA/NIDA NIH HHS/ -- R24 AI067039/AI/NIAID NIH HHS/ -- U01-AI-067854/AI/NIAID NIH HHS/ -- U01-AI-35039/AI/NIAID NIH HHS/ -- U01-AI-35040/AI/NIAID NIH HHS/ -- U01-AI-35041/AI/NIAID NIH HHS/ -- U01-AI-35042/AI/NIAID NIH HHS/ -- U01-AI-35043/AI/NIAID NIH HHS/ -- U01-AI-37613/AI/NIAID NIH HHS/ -- U01-AI-37984/AI/NIAID NIH HHS/ -- UL1 RR024131/RR/NCRR NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):87-91. doi: 10.1126/science.1232685.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559252" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; Alleles ; Amino Acid Sequence ; Anti-Retroviral Agents/therapeutic use ; Crohn Disease/genetics/immunology ; *Gene Expression Regulation ; HIV/genetics/*immunology ; HIV Infections/drug therapy/*genetics/*immunology ; HLA-C Antigens/*genetics ; Humans ; Immunodominant Epitopes/genetics ; Molecular Sequence Data ; Mutation ; Peptide Fragments/immunology ; Polymorphism, Single Nucleotide ; T-Lymphocytes, Cytotoxic/*immunology ; Viral Load/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-07-03
    Description: Gene expression in organisms involves many factors and is tightly controlled. Although much is known about the initial phase of transcription by RNA polymerase III (Pol III), the enzyme that synthesizes the majority of RNA molecules in eukaryotic cells, termination is poorly understood. Here, we show that the extensive structure of Pol III-synthesized transcripts dictates the release of elongation complexes at the end of genes. The poly-T termination signal, which does not cause termination in itself, causes catalytic inactivation and backtracking of Pol III, thus committing the enzyme to termination and transporting it to the nearest RNA secondary structure, which facilitates Pol III release. Similarity between termination mechanisms of Pol III and bacterial RNA polymerase suggests that hairpin-dependent termination may date back to the common ancestor of multisubunit RNA polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Soren -- Yuzenkova, Yulia -- Zenkin, Nikolay -- 202994/European Research Council/International -- BB/F013558/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J006378/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1577-80. doi: 10.1126/science.1237934.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812715" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Molecular Sequence Data ; Nucleic Acid Conformation ; Poly T/metabolism ; Poly U/metabolism ; RNA Polymerase III/*metabolism ; RNA, Ribosomal, 5S/chemistry/genetics ; RNA, Transfer, Tyr/chemistry/genetics ; Saccharomyces cerevisiae/*enzymology/genetics ; *Transcription Termination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-02-02
    Description: The geographic origins of breeds and the genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral populations. We found evidence for the origins of major breed groups in the Middle East and contributions from a racing breed to North American feral populations. We identified the gene EphB2 as a strong candidate for the derived head crest phenotype shared by numerous breeds, an important trait in mate selection in many avian species. We also found evidence that this trait evolved just once and spread throughout the species, and that the crest originates early in development by the localized molecular reversal of feather bud polarity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778192/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778192/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shapiro, Michael D -- Kronenberg, Zev -- Li, Cai -- Domyan, Eric T -- Pan, Hailin -- Campbell, Michael -- Tan, Hao -- Huff, Chad D -- Hu, Haofu -- Vickrey, Anna I -- Nielsen, Sandra C A -- Stringham, Sydney A -- Hu, Hao -- Willerslev, Eske -- Gilbert, M Thomas P -- Yandell, Mark -- Zhang, Guojie -- Wang, Jun -- GO RC2HG005619/HG/NHGRI NIH HHS/ -- R01 GM104390/GM/NIGMS NIH HHS/ -- R01 HG004694/HG/NHGRI NIH HHS/ -- R01HG004694/HG/NHGRI NIH HHS/ -- R44 HG006579/HG/NHGRI NIH HHS/ -- RC2 HG005619/HG/NHGRI NIH HHS/ -- T32 GM007464/GM/NIGMS NIH HHS/ -- T32 HD007491/HD/NICHD NIH HHS/ -- T32GM007464/GM/NIGMS NIH HHS/ -- T32HD07491/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1063-7. doi: 10.1126/science.1230422. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Utah, Salt Lake City, UT 84112, USA. mike.shapiro@utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Domestic/anatomy & histology/classification/genetics ; Animals, Wild/anatomy & histology/classification/genetics ; Breeding ; Columbidae/anatomy & histology/*classification/*genetics ; *Evolution, Molecular ; Feathers/anatomy & histology ; *Genetic Variation ; Genome ; Head/*anatomy & histology ; Models, Genetic ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Single Nucleotide ; *Quantitative Trait, Heritable ; Receptor, EphB2/genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-07-28
    Description: Histocompatibility is the basis by which multicellular organisms of the same species distinguish self from nonself. Relatively little is known about the mechanisms underlying histocompatibility reactions in lower organisms. Botryllus schlosseri is a colonial urochordate, a sister group of vertebrates, that exhibits a genetically determined natural transplantation reaction, whereby self-recognition between colonies leads to formation of parabionts with a common vasculature, whereas rejection occurs between incompatible colonies. Using genetically defined lines, whole-transcriptome sequencing, and genomics, we identified a single gene that encodes self-nonself and determines "graft" outcomes in this organism. This gene is significantly up-regulated in colonies poised to undergo fusion and/or rejection, is highly expressed in the vasculature, and is functionally linked to histocompatibility outcomes. These findings establish a platform for advancing the science of allorecognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voskoboynik, Ayelet -- Newman, Aaron M -- Corey, Daniel M -- Sahoo, Debashis -- Pushkarev, Dmitry -- Neff, Norma F -- Passarelli, Benedetto -- Koh, Winston -- Ishizuka, Katherine J -- Palmeri, Karla J -- Dimov, Ivan K -- Keasar, Chen -- Fan, H Christina -- Mantalas, Gary L -- Sinha, Rahul -- Penland, Lolita -- Quake, Stephen R -- Weissman, Irving L -- 1R01AG037968/AG/NIA NIH HHS/ -- 1R56AI089968/AI/NIAID NIH HHS/ -- K12 HL087746/HL/NHLBI NIH HHS/ -- K99 CA151673/CA/NCI NIH HHS/ -- K99CA151673-01A1/CA/NCI NIH HHS/ -- R01 AG037968/AG/NIA NIH HHS/ -- R01 GM100315/GM/NIGMS NIH HHS/ -- R01GM100315/GM/NIGMS NIH HHS/ -- R56 AI089968/AI/NIAID NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):384-7. doi: 10.1126/science.1238036.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. ayeletv@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888037" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Genes ; Genome ; Genotype ; Histocompatibility/*genetics ; Immune Tolerance ; Molecular Sequence Data ; Sequence Analysis, DNA ; Transcriptome ; Up-Regulation ; Urochordata/*genetics/*immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-04-27
    Description: Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson's disease factors, the mitochondrial kinase PINK1 (PTEN-induced putative kinase protein 1; PTEN is phosphatase and tensin homolog) and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and the identity of key factors directing Parkin to damaged mitochondria are unknown. We show that the mitochondrial outer membrane guanosine triphosphatase mitofusin (Mfn) 2 mediates Parkin recruitment to damaged mitochondria. Parkin bound to Mfn2 in a PINK1-dependent manner; PINK1 phosphorylated Mfn2 and promoted its Parkin-mediated ubiqitination. Ablation of Mfn2 in mouse cardiac myocytes prevented depolarization-induced translocation of Parkin to the mitochondria and suppressed mitophagy. Accumulation of morphologically and functionally abnormal mitochondria induced respiratory dysfunction in Mfn2-deficient mouse embryonic fibroblasts and cardiomyocytes and in Parkin-deficient Drosophila heart tubes, causing dilated cardiomyopathy. Thus, Mfn2 functions as a mitochondrial receptor for Parkin and is required for quality control of cardiac mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yun -- Dorn, Gerald W 2nd -- R01 HL059888/HL/NHLBI NIH HHS/ -- R21 HL107276/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):471-5. doi: 10.1126/science.1231031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620051" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autophagy ; Cardiomyopathies/enzymology ; Drosophila melanogaster ; Fibroblasts/ultrastructure ; GTP Phosphohydrolases/genetics/*metabolism ; HEK293 Cells ; Humans ; Mice ; Mice, Mutant Strains ; Mitochondria/enzymology ; Mitochondria, Heart/*enzymology ; Molecular Sequence Data ; Myocytes, Cardiac/*enzymology/ultrastructure ; Phosphorylation ; Protein Kinases/*metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-10-05
    Description: Most models of gene duplication assume that the ancestral functions of the preduplication gene are independent and can therefore be neatly partitioned between descendant paralogs. However, many gene products, such as transcriptional regulators, are components within cooperative assemblies; here, we show that a natural consequence of duplication and divergence of such proteins can be competitive interference between the paralogs. Our example is based on the duplication of the essential MADS-box transcriptional regulator Mcm1, which is found in all fungi and regulates a large set of genes. We show that a set of historical amino acid sequence substitutions minimized paralog interference in contemporary species and, in doing so, increased the molecular complexity of this gene regulatory network. We propose that paralog interference is a common constraint on gene duplicate evolution, and its resolution, which can generate additional regulatory complexity, is needed to stabilize duplicated genes in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Christopher R -- Hanson-Smith, Victor -- Johnson, Alexander D -- F32 GM108299/GM/NIGMS NIH HHS/ -- R01 GM037049/GM/NIGMS NIH HHS/ -- R01 GM057049/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):104-8. doi: 10.1126/science.1240810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbiology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/genetics ; Candida albicans/genetics ; *Evolution, Molecular ; *Gene Duplication ; *Gene Regulatory Networks ; Kluyveromyces/genetics ; Minichromosome Maintenance 1 Protein/*genetics ; Molecular Sequence Data ; Saccharomyces cerevisiae/genetics ; Sequence Deletion ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-09-07
    Description: Organofluorines represent a rapidly expanding proportion of molecules that are used in pharmaceuticals, diagnostics, agrochemicals, and materials. Despite the prevalence of fluorine in synthetic compounds, the known biological scope is limited to a single pathway that produces fluoroacetate. Here, we demonstrate that this pathway can be exploited as a source of fluorinated building blocks for introduction of fluorine into natural-product scaffolds. Specifically, we have constructed pathways involving two polyketide synthase systems, and we show that fluoroacetate can be used to incorporate fluorine into the polyketide backbone in vitro. We further show that fluorine can be inserted site-selectively and introduced into polyketide products in vivo. These results highlight the prospects for the production of complex fluorinated natural products using synthetic biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Mark C -- Thuronyi, Benjamin W -- Charkoudian, Louise K -- Lowry, Brian -- Khosla, Chaitan -- Chang, Michelle C Y -- 1 DP2 OD008696/OD/NIH HHS/ -- 1 T32 GMO66698/PHS HHS/ -- 1S10RR023679-01/RR/NCRR NIH HHS/ -- F32 CA137994/CA/NCI NIH HHS/ -- R01 GM087934/GM/NIGMS NIH HHS/ -- S10 RR16634-01/RR/NCRR NIH HHS/ -- T32 GM066698/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1089-94. doi: 10.1126/science.1242345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009388" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/metabolism ; Base Sequence ; Biological Products/chemistry/*metabolism ; Burkholderia/enzymology ; Coenzyme A Ligases/chemistry/genetics/metabolism ; Escherichia coli ; Fluoroacetates/chemistry/*metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Polyketide Synthases/chemistry/genetics/*metabolism ; Polyketides/chemistry/*metabolism ; Protein Engineering ; Protein Structure, Tertiary ; Streptomyces coelicolor/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-03-16
    Description: Fossil insects living some 300 million years ago show winglike pads on all thoracic and abdominal segments, which suggests their serial homology. It remains unclear whether winglike structures in nonwinged segments have been lost or modified through evolution. Here, we identified a ventral lateral part of the body wall on the first thoracic segment, the hypomeron, and pupal dorsolateral denticular outgrowths as wing serial homologs in the mealworm beetle Tenebrio molitor. Both domains transform into winglike structures under Hox RNA interference conditions. Gene expression and functional analyses revealed central roles for the key wing selector genes, vestigial and scalloped, in the hypomeron and the denticular outgrowth formation. We propose that modification, rather than loss, of dorsal appendages has provided an additional diversifying mechanism of insect body plan.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohde, Takahiro -- Yaginuma, Toshinobu -- Niimi, Teruyuki -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):495-8. doi: 10.1126/science.1234219. Epub 2013 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Genes, Homeobox/genetics ; Genes, Insect/genetics/physiology ; Larva/anatomy & histology/genetics/growth & development ; Molecular Sequence Data ; RNA Interference ; Tenebrio/*anatomy & histology/genetics/*growth & development ; Wings, Animal/*anatomy & histology/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-09-14
    Description: The global epidemic of multidrug-resistant Salmonella Typhimurium DT104 provides an important example, both in terms of the agent and its resistance, of a widely disseminated zoonotic pathogen. Here, with an unprecedented national collection of isolates collected contemporaneously from humans and animals and including a sample of internationally derived isolates, we have used whole-genome sequencing to dissect the phylogenetic associations of the bacterium and its antimicrobial resistance genes through the course of an epidemic. Contrary to current tenets supporting a single homogeneous epidemic, we demonstrate that the bacterium and its resistance genes were largely maintained within animal and human populations separately and that there was limited transmission, in either direction. We also show considerable variation in the resistance profiles, in contrast to the largely stable bacterial core genome, which emphasizes the critical importance of integrated genotypic data sets in understanding the ecology of bacterial zoonoses and antimicrobial resistance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mather, A E -- Reid, S W J -- Maskell, D J -- Parkhill, J -- Fookes, M C -- Harris, S R -- Brown, D J -- Coia, J E -- Mulvey, M R -- Gilmour, M W -- Petrovska, L -- de Pinna, E -- Kuroda, M -- Akiba, M -- Izumiya, H -- Connor, T R -- Suchard, M A -- Lemey, P -- Mellor, D J -- Haydon, D T -- Thomson, N R -- 098051/Wellcome Trust/United Kingdom -- 260864/European Research Council/International -- AI107034/AI/NIAID NIH HHS/ -- HG006139/HG/NHGRI NIH HHS/ -- R01 AI107034/AI/NIAID NIH HHS/ -- R01 GM086887/GM/NIGMS NIH HHS/ -- R01 HG006139/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1514-7. doi: 10.1126/science.1240578. Epub 2013 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24030491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drug Resistance, Multiple, Bacterial/*genetics ; Epidemics ; Genome, Bacterial ; *Host-Pathogen Interactions ; Humans ; Molecular Sequence Data ; Phylogeny ; Salmonella Infections/epidemiology/*microbiology ; Salmonella Infections, Animal/epidemiology/*microbiology ; Salmonella typhimurium/*classification/drug effects/genetics ; Zoonoses/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-03-23
    Description: Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Jiang, Yi -- Ma, Jinming -- Wu, Huixian -- Wacker, Daniel -- Katritch, Vsevolod -- Han, Gye Won -- Liu, Wei -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Gao, Xiang -- Zhou, X Edward -- Melcher, Karsten -- Zhang, Chenghai -- Bai, Fang -- Yang, Huaiyu -- Yang, Linlin -- Jiang, Hualiang -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- Xu, H Eric -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):610-4. doi: 10.1126/science.1232807. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dihydroergotamine/chemistry/*metabolism ; Ergotamine/chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Sequence Data ; Mutagenesis ; Norfenfluramine/chemistry/metabolism ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propranolol/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/*chemistry/genetics/*metabolism ; Serotonin 5-HT1 Receptor Agonists/*chemistry/*metabolism ; Tryptamines/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-24
    Description: Small open reading frames (smORFs) are short DNA sequences that are able to encode small peptides of less than 100 amino acids. Study of these elements has been neglected despite thousands existing in our genomes. We and others previously showed that peptides as short as 11 amino acids are translated and provide essential functions during insect development. Here, we describe two peptides of less than 30 amino acids regulating calcium transport, and hence influencing regular muscle contraction, in the Drosophila heart. These peptides seem conserved for more than 550 million years in a range of species from flies to humans, in which they have been implicated in cardiac pathologies. Such conservation suggests that the mechanisms for heart regulation are ancient and that smORFs may be a fundamental genome component that should be studied systematically.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magny, Emile G -- Pueyo, Jose Ignacio -- Pearl, Frances M G -- Cespedes, Miguel Angel -- Niven, Jeremy E -- Bishop, Sarah A -- Couso, Juan Pablo -- 087516/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1116-20. doi: 10.1126/science.1238802. Epub 2013 Aug 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23970561" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/*metabolism ; Conserved Sequence ; Drosophila Proteins/chemistry/genetics/metabolism/*physiology ; Drosophila melanogaster ; Evolution, Molecular ; Ion Transport ; Molecular Sequence Data ; Muscle Proteins/chemistry/genetics/*physiology ; Muscle, Skeletal/*metabolism ; *Myocardial Contraction ; Myocardium/*metabolism ; Open Reading Frames ; Peptides/chemistry/genetics/*physiology ; Protein Structure, Secondary ; Transaldolase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-06-01
    Description: Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Kinetochore assembly depends on specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A and H2B. We further found that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Hidenori -- Jiang, Jiansheng -- Zhou, Bing-Rui -- Rozendaal, Marieke -- Feng, Hanqiao -- Ghirlando, Rodolfo -- Xiao, T Sam -- Straight, Aaron F -- Bai, Yawen -- R01 GM074728/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- ZIA AI000960-07/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1110-3. doi: 10.1126/science.1235532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723239" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Autoantigens/metabolism ; Binding Sites ; Centromere/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Conserved Sequence ; Drosophila ; Histones/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-12-18
    Description: Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping -- Dong, Suwei -- Shieh, Jae-Hung -- Peguero, Elizabeth -- Hendrickson, Ronald -- Moore, Malcolm A S -- Danishefsky, Samuel J -- HL025848/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM109760/GM/NIGMS NIH HHS/ -- R01 HL025848/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1357-60. doi: 10.1126/science.1245095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Cells, Cultured ; Consensus Sequence ; Dose-Response Relationship, Drug ; Erythrocyte Count ; Erythropoietin/*administration & dosage/*chemical synthesis/chemistry ; Glycophorin/chemistry ; Glycosylation ; Injections, Subcutaneous ; Mannose/chemistry ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; N-Acetylneuraminic Acid/chemistry ; Oligosaccharides/chemistry ; Reticulocytes/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-01-26
    Description: The human genome contains ~50 genes that were derived from transposable elements or transposons, and many are now integral components of cellular gene expression programs. The human THAP9 gene is related to the Drosophila P-element transposase. Here, we show that human THAP9 can mobilize Drosophila P-elements in both Drosophila and human cells. Chimeric proteins formed between the Drosophila P-element transposase N-terminal THAP DNA binding domain and the C-terminal regions of human THAP9 can also mobilize Drosophila P elements. Our results indicate that human THAP9 is an active DNA transposase that, although "domesticated," still retains the catalytic activity to mobilize P transposable elements across species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majumdar, Sharmistha -- Singh, Anita -- Rio, Donald C -- R01 GM048862/GM/NIGMS NIH HHS/ -- R01 GM094890/GM/NIGMS NIH HHS/ -- R01 GM097352/GM/NIGMS NIH HHS/ -- R01 GM104385/GM/NIGMS NIH HHS/ -- R01GM094890/GM/NIGMS NIH HHS/ -- R01GM104385/GM/NIGMS NIH HHS/ -- R01GM48862/GM/NIGMS NIH HHS/ -- R01GM61987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):446-8. doi: 10.1126/science.1231789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; *DNA Transposable Elements ; Drosophila/genetics ; Genome, Human ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Transfection ; Transposases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-07-03
    Description: Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici, afflicts bread wheat (Triticum aestivum). New virulent races collectively referred to as "Ug99" have emerged, which threaten global wheat production. The wheat gene Sr33, introgressed from the wild relative Aegilops tauschii into bread wheat, confers resistance to diverse stem rust races, including the Ug99 race group. We cloned Sr33, which encodes a coiled-coil, nucleotide-binding, leucine-rich repeat protein. Sr33 is orthologous to the barley (Hordeum vulgare) Mla mildew resistance genes that confer resistance to Blumeria graminis f. sp. hordei. The wheat Sr33 gene functions independently of RAR1, SGT1, and HSP90 chaperones. Haplotype analysis from diverse collections of Ae. tauschii placed the origin of Sr33 resistance near the southern coast of the Caspian Sea.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Periyannan, Sambasivam -- Moore, John -- Ayliffe, Michael -- Bansal, Urmil -- Wang, Xiaojing -- Huang, Li -- Deal, Karin -- Luo, Mingcheng -- Kong, Xiuying -- Bariana, Harbans -- Mago, Rohit -- McIntosh, Robert -- Dodds, Peter -- Dvorak, Jan -- Lagudah, Evans -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):786-8. doi: 10.1126/science.1239028. Epub 2013 Jun 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Canberra, ACT 2601, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23811228" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Basidiomycota/pathogenicity ; Cloning, Molecular ; Disease Resistance/genetics ; *Genes, Plant ; Haplotypes ; Hordeum/genetics ; Hybridization, Genetic ; Molecular Chaperones/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Plant Diseases/genetics/*immunology/microbiology ; Plant Proteins/chemistry/genetics/metabolism ; Plant Stems/microbiology ; Plants, Genetically Modified ; Poaceae/*genetics ; Synteny ; Triticum/*genetics/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-03-23
    Description: Kinesin-mediated cargo transport is required for many cellular functions and plays a key role in pathological processes. Structural information on how kinesins recognize their cargoes is required for a molecular understanding of this fundamental and ubiquitous process. Here, we present the crystal structure of the tetratricopeptide repeat domain of kinesin light chain 2 in complex with a cargo peptide harboring a "tryptophan-acidic" motif derived from SKIP (SifA-kinesin interacting protein), a critical host determinant in Salmonella pathogenesis and a regulator of lysosomal positioning. Structural data together with biophysical, biochemical, and cellular assays allow us to propose a framework for intracellular transport based on the binding by kinesin-1 of W-acidic cargo motifs through a combination of electrostatic interactions and sequence-specific elements, providing direct molecular evidence of the mechanisms for kinesin-1:cargo recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pernigo, Stefano -- Lamprecht, Anneri -- Steiner, Roberto A -- Dodding, Mark P -- 097316/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):356-9. doi: 10.1126/science.1234264. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519214" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Glycoproteins/*chemistry/metabolism ; HeLa Cells ; Humans ; Mice ; Microtubule-Associated Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Tryptophan/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-12-07
    Description: The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike alpha2-6-linked receptors and strong preference for a subset of avian-like alpha2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- de Vries, Robert P -- Zhu, Xueyong -- Nycholat, Corwin M -- McBride, Ryan -- Yu, Wenli -- Paulson, James C -- Wilson, Ian A -- GM62116/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R56 AI099275/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311689" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; Humans ; Influenza A Virus, H7N9 Subtype/*metabolism/*pathogenicity ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/virology ; Ligands ; Microarray Analysis ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-07-23
    Description: Ten years ago, the discovery of Mimivirus, a virus infecting Acanthamoeba, initiated a reappraisal of the upper limits of the viral world, both in terms of particle size (〉0.7 micrometers) and genome complexity (〉1000 genes), dimensions typical of parasitic bacteria. The diversity of these giant viruses (the Megaviridae) was assessed by sampling a variety of aquatic environments and their associated sediments worldwide. We report the isolation of two giant viruses, one off the coast of central Chile, the other from a freshwater pond near Melbourne (Australia), without morphological or genomic resemblance to any previously defined virus families. Their micrometer-sized ovoid particles contain DNA genomes of at least 2.5 and 1.9 megabases, respectively. These viruses are the first members of the proposed "Pandoravirus" genus, a term reflecting their lack of similarity with previously described microorganisms and the surprises expected from their future study.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Philippe, Nadege -- Legendre, Matthieu -- Doutre, Gabriel -- Coute, Yohann -- Poirot, Olivier -- Lescot, Magali -- Arslan, Defne -- Seltzer, Virginie -- Bertaux, Lionel -- Bruley, Christophe -- Garin, Jerome -- Claverie, Jean-Michel -- Abergel, Chantal -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):281-6. doi: 10.1126/science.1239181.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Genomic Information Laboratory, UMR 7256 CNRS Aix-Marseille Universite, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869018" target="_blank"〉PubMed〈/a〉
    Keywords: Amoeba/*virology ; Base Sequence ; *Evolution, Molecular ; Fresh Water/virology ; *Genome, Viral ; Mimiviridae/*classification/*genetics/isolation & purification/ultrastructure ; Molecular Sequence Data ; Phylogeny ; Proteomics ; Seawater/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-06-08
    Description: Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor and an antagonist of the phosphoinositide-3 kinase (PI3K) pathway. We identified a 576-amino acid translational variant of PTEN, termed PTEN-Long, that arises from an alternative translation start site 519 base pairs upstream of the ATG initiation sequence, adding 173 N-terminal amino acids to the normal PTEN open reading frame. PTEN-Long is a membrane-permeable lipid phosphatase that is secreted from cells and can enter other cells. As an exogenous agent, PTEN-Long antagonized PI3K signaling and induced tumor cell death in vitro and in vivo. By providing a means to restore a functional tumor-suppressor protein to tumor cells, PTEN-Long may have therapeutic uses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935617/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935617/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopkins, Benjamin D -- Fine, Barry -- Steinbach, Nicole -- Dendy, Meaghan -- Rapp, Zachary -- Shaw, Jacquelyn -- Pappas, Kyrie -- Yu, Jennifer S -- Hodakoski, Cindy -- Mense, Sarah -- Klein, Joshua -- Pegno, Sarah -- Sulis, Maria-Luisa -- Goldstein, Hannah -- Amendolara, Benjamin -- Lei, Liang -- Maurer, Matthew -- Bruce, Jeffrey -- Canoll, Peter -- Hibshoosh, Hanina -- Parsons, Ramon -- 2T32 CA09503/CA/NCI NIH HHS/ -- CA082783/CA/NCI NIH HHS/ -- CA097403/CA/NCI NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- R01 CA082783/CA/NCI NIH HHS/ -- R01 CA155117/CA/NCI NIH HHS/ -- R01 NS066955/NS/NINDS NIH HHS/ -- R01 NS073610/NS/NINDS NIH HHS/ -- R01NS066955/NS/NINDS NIH HHS/ -- T32 CA009503/CA/NCI NIH HHS/ -- T32 GM008224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):399-402. doi: 10.1126/science.1234907. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line, Tumor ; *Cell Survival ; Embryonic Stem Cells ; Glioblastoma/drug therapy/metabolism/pathology ; HEK293 Cells ; Humans ; Mice ; Mice, Nude ; Molecular Sequence Data ; Mutation ; PTEN Phosphohydrolase/*chemistry/genetics/*metabolism/pharmacology ; Peptide Chain Initiation, Translational ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; RNA, Messenger/genetics/metabolism ; *Signal Transduction/drug effects ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-05-04
    Description: Superoxide and other reactive oxygen species (ROS) originate from several natural sources and profoundly influence numerous elemental cycles, including carbon and trace metals. In the deep ocean, the permanent absence of light precludes currently known ROS sources, yet ROS production mysteriously occurs. Here, we show that taxonomically and ecologically diverse heterotrophic bacteria from aquatic and terrestrial environments are a vast, unrecognized, and light-independent source of superoxide, and perhaps other ROS derived from superoxide. Superoxide production by a model bacterium within the ubiquitous Roseobacter clade involves an extracellular oxidoreductase that is stimulated by the reduced form of nicotinamide adenine dinucleotide (NADH), suggesting a surprising homology with eukaryotic organisms. The consequences of ROS cycling in immense aphotic zones representing key sites of nutrient regeneration and carbon export must now be considered, including potential control of carbon remineralization and metal bioavailability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diaz, Julia M -- Hansel, Colleen M -- Voelker, Bettina M -- Mendes, Chantal M -- Andeer, Peter F -- Zhang, Tong -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1223-6. doi: 10.1126/science.1237331. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641059" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbon Cycle ; *Heterotrophic Processes ; Mercury/*metabolism ; Molecular Sequence Data ; NAD/metabolism ; Oxidoreductases/metabolism ; Phylogeny ; Roseobacter/classification/*metabolism ; Superoxides/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-12-15
    Description: Elongation factor P (EF-P) is a translation factor of unknown function that has been implicated in a great variety of cellular processes. Here, we show that EF-P prevents ribosome from stalling during synthesis of proteins containing consecutive prolines, such as PPG, PPP, or longer proline strings, in natural and engineered model proteins. EF-P promotes peptide-bond formation and stabilizes the peptidyl-transfer RNA in the catalytic center of the ribosome. EF-P is posttranslationally modified by a hydroxylated beta-lysine attached to a lysine residue. The modification enhances the catalytic proficiency of the factor mainly by increasing its affinity to the ribosome. We propose that EF-P and its eukaryotic homolog, eIF5A, are essential for the synthesis of a subset of proteins containing proline stretches in all cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doerfel, Lili K -- Wohlgemuth, Ingo -- Kothe, Christina -- Peske, Frank -- Urlaub, Henning -- Rodnina, Marina V -- New York, N.Y. -- Science. 2013 Jan 4;339(6115):85-8. doi: 10.1126/science.1229017. Epub 2012 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239624" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Escherichia coli/genetics/*metabolism ; Lysine/metabolism ; Molecular Sequence Data ; Peptide Elongation Factors/*metabolism ; Proline/genetics/*metabolism ; Protein Biosynthesis ; Protein Processing, Post-Translational ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-06-01
    Description: Perennial plants live for more than 1 year and flower only after an extended vegetative phase. We used Arabis alpina, a perennial relative of annual Arabidopsis thaliana, to study how increasing age and exposure to winter cold (vernalization) coordinate to establish competence to flower. We show that the APETALA2 transcription factor, a target of microRNA miR172, prevents flowering before vernalization. Additionally, miR156 levels decline as A. alpina ages, causing increased production of SPL (SQUAMOSA PROMOTER BINDING PROTEIN LIKE) transcription factors and ensuring that flowering occurs in response to cold. The age at which plants respond to vernalization can be altered by manipulating miR156 levels. Although miR156 and miR172 levels are uncoupled in A. alpina, miR156 abundance represents the timer controlling age-dependent flowering responses to cold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bergonzi, Sara -- Albani, Maria C -- Ver Loren van Themaat, Emiel -- Nordstrom, Karl J V -- Wang, Renhou -- Schneeberger, Korbinian -- Moerland, Perry D -- Coupland, George -- New York, N.Y. -- Science. 2013 May 31;340(6136):1094-7. doi: 10.1126/science.1234116.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Plant Breeding Research, Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723236" target="_blank"〉PubMed〈/a〉
    Keywords: Arabis/genetics/*physiology ; *Cold Temperature ; Flowers/genetics/*physiology ; Gene Expression Regulation, Plant ; MicroRNAs/metabolism ; Molecular Sequence Data ; Phylogeny ; Plant Proteins/genetics/metabolism ; *Seasons ; Time Factors ; Transcription Factors/classification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-30
    Description: Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonnet, Jerome -- Yin, Peter -- Ortiz, Monica E -- Subsoontorn, Pakpoom -- Endy, Drew -- New York, N.Y. -- Science. 2013 May 3;340(6132):599-603. doi: 10.1126/science.1232758. Epub 2013 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Y2E2-269B, 473 Via Ortega, Stanford, CA 94305-4201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539178" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage M13/genetics ; DNA, Bacterial/genetics ; DNA-Directed RNA Polymerases/metabolism ; Escherichia coli/genetics ; *Gene Regulatory Networks ; *Genetic Engineering ; Integrases/genetics/metabolism ; Logic ; Molecular Sequence Data ; Plasmids ; Promoter Regions, Genetic ; Recombination, Genetic ; Sequence Deletion ; Sequence Inversion ; Transcription Termination, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-05-11
    Description: Differences in biomolecular sequence and function underlie dramatic ranges of appearance and behavior among species. We studied the basic region-leucine zipper (bZIP) transcription factors and quantified bZIP dimerization networks for five metazoan and two single-cell species, measuring interactions in vitro for 2891 protein pairs. Metazoans have a higher proportion of heteromeric bZIP interactions and more network complexity than the single-cell species. The metazoan bZIP interactomes have broadly similar structures, but there has been extensive rewiring of connections compared to the last common ancestor, and each species network is highly distinct. Many metazoan bZIP orthologs and paralogs have strikingly different interaction specificities, and some differences arise from minor sequence changes. Our data show that a shifting landscape of biochemical functions related to signaling and gene expression contributes to species diversity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinke, Aaron W -- Baek, Jiyeon -- Ashenberg, Orr -- Keating, Amy E -- GM067681/GM/NIGMS NIH HHS/ -- R01 GM067681/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 10;340(6133):730-4. doi: 10.1126/science.1233465.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic-Leucine Zipper Transcription Factors/chemistry/genetics/*metabolism ; Conserved Sequence ; *Evolution, Molecular ; Humans ; *Metabolic Networks and Pathways ; Molecular Sequence Data ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-03-09
    Description: A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1alpha and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, Basil P -- Gomes, Ana P -- Dai, Han -- Li, Jun -- Case, April W -- Considine, Thomas -- Riera, Thomas V -- Lee, Jessica E -- E, Sook Yen -- Lamming, Dudley W -- Pentelute, Bradley L -- Schuman, Eli R -- Stevens, Linda A -- Ling, Alvin J Y -- Armour, Sean M -- Michan, Shaday -- Zhao, Huizhen -- Jiang, Yong -- Sweitzer, Sharon M -- Blum, Charles A -- Disch, Jeremy S -- Ng, Pui Yee -- Howitz, Konrad T -- Rolo, Anabela P -- Hamuro, Yoshitomo -- Moss, Joel -- Perni, Robert B -- Ellis, James L -- Vlasuk, George P -- Sinclair, David A -- P01 AG027916/AG/NIA NIH HHS/ -- R01 AG019719/AG/NIA NIH HHS/ -- R01 AG028730/AG/NIA NIH HHS/ -- R37 AG028730/AG/NIA NIH HHS/ -- ZIA HL000659-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23471411" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Enzyme Activation ; Forkhead Transcription Factors/chemistry/genetics ; Glutamic Acid/chemistry/genetics ; Heterocyclic Compounds with 4 or More Rings/chemistry/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Myoblasts/drug effects/enzymology ; Protein Structure, Tertiary ; Sirtuin 1/*chemistry/genetics/*metabolism ; Stilbenes/chemistry/*pharmacology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-03-30
    Description: Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a-factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavity containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136949/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136949/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pryor, Edward E Jr -- Horanyi, Peter S -- Clark, Kathleen M -- Fedoriw, Nadia -- Connelly, Sara M -- Koszelak-Rosenblum, Mary -- Zhu, Guangyu -- Malkowski, Michael G -- Wiener, Michael C -- Dumont, Mark E -- P30 CA044579/CA/NCI NIH HHS/ -- U54 GM094611/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1600-4. doi: 10.1126/science.1232048.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Membrane Protein Structural Biology Consortium, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539602" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Cell Membrane/*enzymology ; Crystallography, X-Ray ; Membrane Proteins/*chemistry ; Metalloendopeptidases/*chemistry ; Molecular Sequence Data ; Protein Structure, Secondary ; Saccharomyces cerevisiae Proteins/*chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-10-12
    Description: The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brandt, Guido -- Haak, Wolfgang -- Adler, Christina J -- Roth, Christina -- Szecsenyi-Nagy, Anna -- Karimnia, Sarah -- Moller-Rieker, Sabine -- Meller, Harald -- Ganslmeier, Robert -- Friederich, Susanne -- Dresely, Veit -- Nicklisch, Nicole -- Pickrell, Joseph K -- Sirocko, Frank -- Reich, David -- Cooper, Alan -- Alt, Kurt W -- Genographic Consortium -- R01 GM100233/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):257-61. doi: 10.1126/science.1241844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Anthropology, Johannes Gutenberg University of Mainz, Mainz, Germany. brandtg@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115443" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/history ; Base Sequence ; DNA, Mitochondrial/*genetics/history ; Europe ; *Genetic Drift ; *Genetic Variation ; History, Ancient ; Humans ; Molecular Sequence Data ; Population/*genetics ; Transients and Migrants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-07-23
    Description: A newly emerged H7N9 virus has caused 132 human infections with 37 deaths in China since 18 February 2013. Control measures in H7N9 virus-positive live poultry markets have reduced the number of infections; however, the character of the virus, including its pandemic potential, remains largely unknown. We systematically analyzed H7N9 viruses isolated from birds and humans. The viruses were genetically closely related and bound to human airway receptors; some also maintained the ability to bind to avian airway receptors. The viruses isolated from birds were nonpathogenic in chickens, ducks, and mice; however, the viruses isolated from humans caused up to 30% body weight loss in mice. Most importantly, one virus isolated from humans was highly transmissible in ferrets by respiratory droplet. Our findings indicate nothing to reduce the concern that these viruses can transmit between humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qianyi -- Shi, Jianzhong -- Deng, Guohua -- Guo, Jing -- Zeng, Xianying -- He, Xijun -- Kong, Huihui -- Gu, Chunyang -- Li, Xuyong -- Liu, Jinxiong -- Wang, Guojun -- Chen, Yan -- Liu, Liling -- Liang, Libin -- Li, Yuanyuan -- Fan, Jun -- Wang, Jinliang -- Li, Wenhui -- Guan, Lizheng -- Li, Qimeng -- Yang, Huanliang -- Chen, Pucheng -- Jiang, Li -- Guan, Yuntao -- Xin, Xiaoguang -- Jiang, Yongping -- Tian, Guobin -- Wang, Xiurong -- Qiao, Chuanling -- Li, Chengjun -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):410-4. doi: 10.1126/science.1240532. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868922" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens/virology ; Columbidae/virology ; Ducks/virology ; Ferrets/*virology ; Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/metabolism ; Humans ; Influenza A virus/genetics/isolation & purification/*pathogenicity/physiology ; Influenza in Birds/virology ; Influenza, Human/*transmission/*virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-03-30
    Description: Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane alpha-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide-binding site and to the bottom of the chamber.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quigley, Andrew -- Dong, Yin Yao -- Pike, Ashley C W -- Dong, Liang -- Shrestha, Leela -- Berridge, Georgina -- Stansfeld, Phillip J -- Sansom, Mark S P -- Edwards, Aled M -- Bountra, Chas -- von Delft, Frank -- Bullock, Alex N -- Burgess-Brown, Nicola A -- Carpenter, Elisabeth P -- 092809/Wellcome Trust/United Kingdom -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1604-7. doi: 10.1126/science.1231513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539603" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Lamin Type A ; Membrane Proteins/*chemistry/genetics ; Metabolism, Inborn Errors/genetics/*metabolism ; Metalloendopeptidases/*chemistry/genetics ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*metabolism ; Progeria/genetics/metabolism ; Protein Conformation ; Protein Precursors/chemistry/genetics/*metabolism ; Substrate Specificity ; Thermolysin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-12-22
    Description: The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-beta in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-beta induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lijun -- Wu, Jiaxi -- Du, Fenghe -- Chen, Xiang -- Chen, Zhijian J -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):786-91. doi: 10.1126/science.1232458. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258413" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Cell Line, Tumor ; Cyclic AMP/biosynthesis ; Cyclic GMP/biosynthesis ; Cytidine Triphosphate/metabolism ; Cytosol/enzymology/*immunology ; DNA/*immunology/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Interferon Type I/*biosynthesis ; Interferon-beta/*biosynthesis ; Metabolic Networks and Pathways ; Mice ; Molecular Sequence Data ; Nucleotidyltransferases/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-02-16
    Description: Instances in which natural selection maintains genetic variation in a population over millions of years are thought to be extremely rare. We conducted a genome-wide scan for long-lived balancing selection by looking for combinations of SNPs shared between humans and chimpanzees. In addition to the major histocompatibility complex, we identified 125 regions in which the same haplotypes are segregating in the two species, all but two of which are noncoding. In six cases, there is evidence for an ancestral polymorphism that persisted to the present in humans and chimpanzees. Regions with shared haplotypes are significantly enriched for membrane glycoproteins, and a similar trend is seen among shared coding polymorphisms. These findings indicate that ancient balancing selection has shaped human variation and point to genes involved in host-pathogen interactions as common targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612375/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612375/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leffler, Ellen M -- Gao, Ziyue -- Pfeifer, Susanne -- Segurel, Laure -- Auton, Adam -- Venn, Oliver -- Bowden, Rory -- Bontrop, Ronald -- Wall, Jeffrey D -- Sella, Guy -- Donnelly, Peter -- McVean, Gilean -- Przeworski, Molly -- 075491/Z/04/B/Wellcome Trust/United Kingdom -- 086084/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 095552/Z/11/Z/Wellcome Trust/United Kingdom -- GM72861/GM/NIGMS NIH HHS/ -- HG005226/HG/NHGRI NIH HHS/ -- R01 GM072861/GM/NIGMS NIH HHS/ -- T32 GM007197/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1578-82. doi: 10.1126/science.1234070. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. emleffler@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Genetic Association Studies ; Genome, Human/*genetics ; Haplotypes ; Host-Pathogen Interactions/*genetics ; Humans ; Molecular Sequence Data ; Pan troglodytes/*genetics ; Pedigree ; Polymorphism, Single Nucleotide ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-01-05
    Description: The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815447/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815447/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, Andreas -- Avvakumov, George -- Tong, Jiefei -- Fan, Yihui -- Zhao, Yanling -- Alberts, Philipp -- Persaud, Avinash -- Walker, John R -- Neculai, Ana-Mirela -- Neculai, Dante -- Vorobyov, Andrew -- Garg, Pankaj -- Beatty, Linda -- Chan, Pak-Kei -- Juang, Yu-Chi -- Landry, Marie-Claude -- Yeh, Christina -- Zeqiraj, Elton -- Karamboulas, Konstantina -- Allali-Hassani, Abdellah -- Vedadi, Masoud -- Tyers, Mike -- Moffat, Jason -- Sicheri, Frank -- Pelletier, Laurence -- Durocher, Daniel -- Raught, Brian -- Rotin, Daniela -- Yang, Jianhua -- Moran, Michael F -- Dhe-Paganon, Sirano -- Sidhu, Sachdev S -- 092076/Wellcome Trust/United Kingdom -- 092381/Wellcome Trust/United Kingdom -- 1R01NS072420-01/Canadian Institutes of Health Research/Canada -- MOP-102536/Canadian Institutes of Health Research/Canada -- MOP-111149/Canadian Institutes of Health Research/Canada -- MOP-13494/Canadian Institutes of Health Research/Canada -- MOP-57795/Canadian Institutes of Health Research/Canada -- R01 NS072420/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):590-5. doi: 10.1126/science.1230161. Epub 2013 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23287719" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Combinatorial Chemistry Techniques ; Conserved Sequence ; Drug Design ; Endopeptidases/chemistry/*metabolism ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Protease Inhibitors/chemistry/*isolation & purification/pharmacology ; Protein Conformation ; Protein Structure, Secondary ; Small Molecule Libraries ; Ubiquitin/chemistry/genetics/*metabolism ; Ubiquitin Thiolesterase/chemistry/*metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism ; Ubiquitination/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-05-26
    Description: Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690818/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690818/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bricker, Daniel K -- Taylor, Eric B -- Schell, John C -- Orsak, Thomas -- Boutron, Audrey -- Chen, Yu-Chan -- Cox, James E -- Cardon, Caleb M -- Van Vranken, Jonathan G -- Dephoure, Noah -- Redin, Claire -- Boudina, Sihem -- Gygi, Steven P -- Brivet, Michele -- Thummel, Carl S -- Rutter, Jared -- K99 AR059190/AR/NIAMS NIH HHS/ -- K99AR059190/AR/NIAMS NIH HHS/ -- P30 HL101310/HL/NHLBI NIH HHS/ -- P30DK072437/DK/NIDDK NIH HHS/ -- R01 DK071962/DK/NIDDK NIH HHS/ -- R01 GM087346/GM/NIGMS NIH HHS/ -- R01 GM094232/GM/NIGMS NIH HHS/ -- R01GM083746/GM/NIGMS NIH HHS/ -- R24 DK092784/DK/NIDDK NIH HHS/ -- R24DK092784/DK/NIDDK NIH HHS/ -- RC1DK086426/DK/NIDDK NIH HHS/ -- T32GM007464/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):96-100. doi: 10.1126/science.1218099. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628558" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/metabolism ; Animals ; Anion Transport Proteins/chemistry/genetics/*metabolism ; Biological Transport ; Carbohydrate Metabolism ; Citric Acid Cycle ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/chemistry/genetics/*metabolism ; Humans ; Metabolomics ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mitochondrial Membranes/*metabolism ; Mitochondrial Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Oxidation-Reduction ; Point Mutation ; Pyruvic Acid/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-01-28
    Description: TRAAK channels, members of the two-pore domain K(+) (potassium ion) channel family K2P, are expressed almost exclusively in the nervous system and control the resting membrane potential. Their gating is sensitive to polyunsaturated fatty acids, mechanical deformation of the membrane, and temperature changes. Physiologically, these channels appear to control the noxious input threshold for temperature and pressure sensitivity in dorsal root ganglia neurons. We present the crystal structure of human TRAAK at a resolution of 3.8 angstroms. The channel comprises two protomers, each containing two distinct pore domains, which create a two-fold symmetric K(+) channel. The extracellular surface features a helical cap, 35 angstroms tall, that creates a bifurcated pore entryway and accounts for the insensitivity of two-pore domain K(+) channels to inhibitory toxins. Two diagonally opposed gate-forming inner helices form membrane-interacting structures that may underlie this channel's sensitivity to chemical and mechanical properties of the cell membrane.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brohawn, Stephen G -- del Marmol, Josefina -- MacKinnon, Roderick -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):436-41. doi: 10.1126/science.1213808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282805" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Cell Membrane/chemistry/physiology ; Cricetinae ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ion Channel Gating ; Lipid Bilayers/chemistry ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channel Blockers/pharmacology ; Potassium Channels/*chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-03-10
    Description: Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein alphaB crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: beta-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the beta-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laganowsky, Arthur -- Liu, Cong -- Sawaya, Michael R -- Whitelegge, Julian P -- Park, Jiyong -- Zhao, Minglei -- Pensalfini, Anna -- Soriaga, Angela B -- Landau, Meytal -- Teng, Poh K -- Cascio, Duilio -- Glabe, Charles -- Eisenberg, David -- 016570/PHS HHS/ -- 1R01-AG029430/AG/NIA NIH HHS/ -- 5T32GM008496/GM/NIGMS NIH HHS/ -- P50 AG016570/AG/NIA NIH HHS/ -- R01 AG029430/AG/NIA NIH HHS/ -- R01 AG033069/AG/NIA NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1228-31. doi: 10.1126/science.1213151.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California Los Angeles (UCLA), Howard Hughes Medical Institute (HHMI), Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyloid/*chemistry/immunology ; Amyloid beta-Peptides/chemistry ; Antibodies/immunology ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Peptide Fragments/*chemistry/immunology ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; alpha-Crystallin B Chain/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-01-28
    Description: Two-pore domain potassium (K(+)) channels (K2P channels) control the negative resting potential of eukaryotic cells and regulate cell excitability by conducting K(+) ions across the plasma membrane. Here, we present the 3.4 angstrom resolution crystal structure of a human K2P channel, K2P1 (TWIK-1). Unlike other K(+) channel structures, K2P1 is dimeric. An extracellular cap domain located above the selectivity filter forms an ion pathway in which K(+) ions flow through side portals. Openings within the transmembrane region expose the pore to the lipid bilayer and are filled with electron density attributable to alkyl chains. An interfacial helix appears structurally poised to affect gating. The structure lays a foundation to further investigate how K2P channels are regulated by diverse stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Alexandria N -- Long, Stephen B -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):432-6. doi: 10.1126/science.1213274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282804" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Humans ; Ion Channel Gating ; Lipid Bilayers/chemistry ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/*chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-08-28
    Description: The function of bone morphogenetic protein (BMP) signaling in dorsoventral (DV) patterning of animal embryos is conserved among Bilateria. In vertebrates, the BMP ligand antidorsalizing morphogenetic protein (Admp) is expressed dorsally and moves to the opposite side to specify the ventral fate. Here, we show that Pinhead is an antagonist specific for Admp with a role in establishing the DV axis of the trunk epidermis in embryos of the ascidian Ciona intestinalis. Pinhead and Admp exist in tandem in the genomes of various animals from arthropods to vertebrates. This genomic configuration is important for mutually exclusive expression of these genes, because Pinhead transcription directly disturbs the action of the Admp enhancer. Our data suggest that this dual negative regulatory mechanism is widely conserved in animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imai, Kaoru S -- Daido, Yutaka -- Kusakabe, Takehiro G -- Satou, Yutaka -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):964-7. doi: 10.1126/science.1222488.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biodiversity, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923581" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Body Patterning ; Bone Morphogenetic Protein 2/genetics/metabolism ; Bone Morphogenetic Protein 4/genetics/metabolism ; Bone Morphogenetic Proteins/chemistry/*genetics/metabolism ; Ciona intestinalis/*embryology/genetics/metabolism ; Embryo, Nonmammalian/*metabolism ; Embryonic Development ; Enhancer Elements, Genetic ; Epidermis/embryology ; Gastrula/metabolism ; *Gene Expression Regulation, Developmental ; Molecular Sequence Data ; Oligodeoxyribonucleotides, Antisense ; Oryzias/embryology/genetics/metabolism ; Promoter Regions, Genetic ; Signal Transduction ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-19
    Description: Cells must balance the cost and benefit of protein expression to optimize organismal fitness. The lac operon of the bacterium Escherichia coli has been a model for quantifying the physiological impact of costly protein production and for elucidating the resulting regulatory mechanisms. We report quantitative fitness measurements in 27 redesigned operons that suggested that protein production is not the primary origin of fitness costs. Instead, we discovered that the lac permease activity, which relates linearly to cost, is the major physiological burden to the cell. These findings explain control points in the lac operon that minimize the cost of lac permease activity, not protein expression. Characterizing similar relationships in other systems will be important to map the impact of cost/benefit tradeoffs on cell physiology and regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eames, Matt -- Kortemme, Tanja -- New York, N.Y. -- Science. 2012 May 18;336(6083):911-5. doi: 10.1126/science.1219083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, MC 2530, University of California, San Francisco, CA 94158-2330, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22605776" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biocatalysis ; Biological Transport ; Escherichia coli/*genetics/growth & development/metabolism ; Escherichia coli Proteins/*genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Gene Knockout Techniques ; Genetic Engineering ; Isopropyl Thiogalactoside/metabolism ; *Lac Operon ; Lac Repressors ; Lactose/metabolism ; Models, Biological ; Molecular Sequence Data ; Monosaccharide Transport Proteins/*genetics/*metabolism ; Mutation ; Symporters/*genetics/*metabolism ; beta-Galactosidase/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-06-30
    Description: Transposable elements (TEs) are abundant in the human genome, and some are capable of generating new insertions through RNA intermediates. In cancer, the disruption of cellular mechanisms that normally suppress TE activity may facilitate mutagenic retrotranspositions. We performed single-nucleotide resolution analysis of TE insertions in 43 high-coverage whole-genome sequencing data sets from five cancer types. We identified 194 high-confidence somatic TE insertions, as well as thousands of polymorphic TE insertions in matched normal genomes. Somatic insertions were present in epithelial tumors but not in blood or brain cancers. Somatic L1 insertions tend to occur in genes that are commonly mutated in cancer, disrupt the expression of the target genes, and are biased toward regions of cancer-specific DNA hypomethylation, highlighting their potential impact in tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656569/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656569/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Eunjung -- Iskow, Rebecca -- Yang, Lixing -- Gokcumen, Omer -- Haseley, Psalm -- Luquette, Lovelace J 3rd -- Lohr, Jens G -- Harris, Christopher C -- Ding, Li -- Wilson, Richard K -- Wheeler, David A -- Gibbs, Richard A -- Kucherlapati, Raju -- Lee, Charles -- Kharchenko, Peter V -- Park, Peter J -- Cancer Genome Atlas Research Network -- F32 AG039979/AG/NIA NIH HHS/ -- F32AG039979/AG/NIA NIH HHS/ -- K25 AG037596/AG/NIA NIH HHS/ -- K25AG037596/AG/NIA NIH HHS/ -- R01 GM082798/GM/NIGMS NIH HHS/ -- R01GM082798/GM/NIGMS NIH HHS/ -- RC1HG005482/HG/NHGRI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- U01 HG005725/HG/NHGRI NIH HHS/ -- U01HG005209/HG/NHGRI NIH HHS/ -- U01HG005725/HG/NHGRI NIH HHS/ -- U24 CA144025/CA/NCI NIH HHS/ -- U24CA144025/CA/NCI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):967-71. doi: 10.1126/science.1222077. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745252" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Transformation, Neoplastic ; Colorectal Neoplasms/*genetics ; DNA Methylation ; Female ; Gene Expression Regulation, Neoplastic ; Genes, Neoplasm ; Genome, Human ; Glioblastoma/*genetics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Microsatellite Instability ; Molecular Sequence Annotation ; Molecular Sequence Data ; Multiple Myeloma/*genetics ; Mutagenesis, Insertional ; Mutation ; Ovarian Neoplasms/*genetics ; Prostatic Neoplasms/*genetics ; *Retroelements ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-01-28
    Description: Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671610/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671610/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jeong Ho -- Silhavy, Jennifer L -- Lee, Ji Eun -- Al-Gazali, Lihadh -- Thomas, Sophie -- Davis, Erica E -- Bielas, Stephanie L -- Hill, Kiley J -- Iannicelli, Miriam -- Brancati, Francesco -- Gabriel, Stacey B -- Russ, Carsten -- Logan, Clare V -- Sharif, Saghira Malik -- Bennett, Christopher P -- Abe, Masumi -- Hildebrandt, Friedhelm -- Diplas, Bill H -- Attie-Bitach, Tania -- Katsanis, Nicholas -- Rajab, Anna -- Koul, Roshan -- Sztriha, Laszlo -- Waters, Elizabeth R -- Ferro-Novick, Susan -- Woods, C Geoffrey -- Johnson, Colin A -- Valente, Enza Maria -- Zaki, Maha S -- Gleeson, Joseph G -- DK068306/DK/NIDDK NIH HHS/ -- DK072301/DK/NIDDK NIH HHS/ -- DK075972/DK/NIDDK NIH HHS/ -- DK090917/DK/NIDDK NIH HHS/ -- EY021872/EY/NEI NIH HHS/ -- G0700073/Medical Research Council/United Kingdom -- GGP08145/Telethon/Italy -- HD042601/HD/NICHD NIH HHS/ -- NS04843/NS/NINDS NIH HHS/ -- NS052455/NS/NINDS NIH HHS/ -- P30 CA023100/CA/NCI NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R01 DK068306/DK/NIDDK NIH HHS/ -- R01 DK072301/DK/NIDDK NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 EY021872/EY/NEI NIH HHS/ -- R01 HD042601/HD/NICHD NIH HHS/ -- R01 NS048453/NS/NINDS NIH HHS/ -- R01 NS052455/NS/NINDS NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):966-9. doi: 10.1126/science.1213506. Epub 2012 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Laboratory, Howard Hughes Medical Institute (HHMI), Department of Neurosciences, University of California, San Diego, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282472" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cerebellar Diseases/*genetics/metabolism/pathology ; Cilia/metabolism/*ultrastructure ; Conserved Sequence ; DNA, Intergenic ; *Evolution, Molecular ; Eye Abnormalities/*genetics/metabolism/pathology ; Gene Expression Profiling ; *Gene Expression Regulation ; Genetic Heterogeneity ; *Genetic Loci ; Humans ; Kidney Diseases, Cystic/*genetics/metabolism/pathology ; Membrane Proteins/chemistry/*genetics/metabolism ; Molecular Sequence Data ; Multigene Family ; Mutation ; Mutation, Missense ; Phenotype ; Protein Transport ; *Regulatory Sequences, Nucleic Acid ; Retina/abnormalities/metabolism/pathology ; Transport Vesicles/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-06-02
    Description: Wnts are lipid-modified morphogens that play critical roles in development principally through engagement of Frizzled receptors. The 3.25 angstrom structure of Xenopus Wnt8 (XWnt8) in complex with mouse Frizzled-8 (Fz8) cysteine-rich domain (CRD) reveals an unusual two-domain Wnt structure, not obviously related to known protein folds, resembling a "hand" with "thumb" and "index" fingers extended to grasp the Fz8-CRD at two distinct binding sites. One site is dominated by a palmitoleic acid lipid group projecting from serine 187 at the tip of Wnt's thumb into a deep groove in the Fz8-CRD. In the second binding site, the conserved tip of Wnt's "index finger" forms hydrophobic amino acid contacts with a depression on the opposite side of the Fz8-CRD. The conservation of amino acids in both interfaces appears to facilitate ligand-receptor cross-reactivity, which has important implications for understanding Wnt's functional pleiotropy and for developing Wnt-based drugs for cancer and regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Waghray, Deepa -- Levin, Aron M -- Thomas, Christoph -- Garcia, K Christopher -- R01 GM097015/GM/NIGMS NIH HHS/ -- R01-GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):59-64. doi: 10.1126/science.1222879. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653731" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cysteine/chemistry ; Fatty Acids, Monounsaturated/chemistry ; Glycosylation ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism ; Wnt Proteins/*chemistry/metabolism ; Wnt Signaling Pathway ; Xenopus Proteins/*chemistry/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...