ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-10
    Description: Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlipalius, David I -- Valmas, Nicholas -- Tuck, Andrew G -- Jagadeesan, Rajeswaran -- Ma, Li -- Kaur, Ramandeep -- Goldinger, Anita -- Anderson, Cameron -- Kuang, Jujiao -- Zuryn, Steven -- Mau, Yosep S -- Cheng, Qiang -- Collins, Patrick J -- Nayak, Manoj K -- Schirra, Horst Joachim -- Hilliard, Massimo A -- Ebert, Paul R -- R01NS060129/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):807-10. doi: 10.1126/science.1224951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agri-Science Queensland, Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, Brisbane, QLD 4001, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23139334" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arsenicals/pharmacology ; Arsenites/pharmacology ; Beetles/drug effects/*enzymology/genetics/metabolism ; Caenorhabditis elegans/drug effects/*enzymology/genetics/metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism ; Catalytic Domain ; Dihydrolipoamide Dehydrogenase/chemistry/*genetics/metabolism ; Insect Proteins/chemistry/genetics/metabolism ; Insecticide Resistance/*genetics ; *Insecticides/pharmacology ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Pesticides ; *Phosphines/pharmacology ; Polymorphism, Genetic ; Protein Multimerization ; Tribolium/drug effects/*enzymology/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-16
    Description: Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuryn, Steven -- Ahier, Arnaud -- Portoso, Manuela -- White, Esther Redhouse -- Morin, Marie-Charlotte -- Margueron, Raphael -- Jarriault, Sophie -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):826-9. doi: 10.1126/science.1255885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. ; Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France. ; Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. sophie@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124442" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/*cytology/genetics ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Dedifferentiation ; Cell Nucleus/metabolism/ultrastructure ; *Cell Transdifferentiation ; Digestive System/cytology ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/genetics/*metabolism ; Histones/*metabolism ; Lysine/metabolism ; Methylation ; Models, Biological ; Molecular Sequence Data ; Motor Neurons/*cytology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈sec〉〈st〉Synopsis〈/st〉〈p〉〈textbox textbox-type="graphic"〉〈p〉〈inline-fig〉〈/inline-fig〉〈/p〉〈/textbox〉〈/p〉 〈p〉Expression of both wild-type and P301L mutant tau inhibit mitophagy in N2a cells and 〈i〉C. elegans〈/i〉 neurons, by impairing Parkin translocation to mitochondria. This is due to aberrant interactions between tau and Parkin, trapping Parkin in the cytosol and preventing its translocation.〈/p〉 〈p〉 〈l type="unord"〉〈li〉〈p〉Expression of wild-type and FTD-linked P301L mutant tau inhibits mitophagy in N2a cells and 〈i〉C. elegans〈/i〉 neurons.〈/p〉〈/li〉 〈li〉〈p〉Tau impairs Parkin translocation to depolarised mitochondria, with the P301L mutant causing accelerated impairment compared to wild-type tau.〈/p〉〈/li〉 〈li〉〈p〉Tau aberrantly interacts with Parkin in the cytosol, trapping Parkin and preventing its translocation to mitochondria.〈/p〉〈/li〉〈/l〉 〈/p〉〈/sec〉
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Accumulation of the protein tau characterises Alzheimer's disease and other tauopathies, including familial forms of frontotemporal dementia (FTD) that carry pathogenic tau mutations. Another hallmark feature of these diseases is the accumulation of dysfunctional mitochondria. Although disease-associated tau is known to impair several aspects of mitochondrial function, it is still unclear whether it also directly impinges on mitochondrial quality control, specifically Parkin-dependent mitophagy. Using the mito-QC mitophagy reporter, we found that both human wild-type (hTau) and FTD mutant tau (hP301L) inhibited mitophagy in neuroblastoma cells, by reducing mitochondrial translocation of Parkin. In the 〈i〉Caenorhabditis elegans〈/i〉 nervous system, hTau expression reduced mitophagy, whereas hP301L expression completely inhibited it. These effects were not due to changes in the mitochondrial membrane potential or the cytoskeleton, as tau specifically impaired Parkin recruitment to defective mitochondria by sequestering it in the cytosol. This sequestration was mediated by aberrant interactions of Parkin with the projection domain of tau. As mitochondria are dysfunctional in neurodegenerative conditions, these data suggest a vicious cycle, with tau also inhibiting the degradation of damaged mitochondria.〈/p〉
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...