ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Biological Evolution  (669)
  • Amino Acid Sequence  (554)
  • Protein Structure, Tertiary  (499)
  • Models, Molecular  (435)
  • American Association for the Advancement of Science (AAAS)  (1,659)
  • American Institute of Physics (AIP)
  • Periodicals Archive Online (PAO)
  • 2010-2014  (711)
  • 2005-2009  (948)
  • 1950-1954
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (1,659)
  • American Institute of Physics (AIP)
  • Periodicals Archive Online (PAO)
  • Nature Publishing Group (NPG)  (1,157)
Years
Year
  • 1
    Publication Date: 2014-04-12
    Description: Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costa, Liliana M -- Marshall, Eleanor -- Tesfaye, Mesfin -- Silverstein, Kevin A T -- Mori, Masashi -- Umetsu, Yoshitaka -- Otterbach, Sophie L -- Papareddy, Ranjith -- Dickinson, Hugh G -- Boutiller, Kim -- VandenBosch, Kathryn A -- Ohki, Shinya -- Gutierrez-Marcos, Jose F -- BB/F008082/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/L003023/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/L003023/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):168-72. doi: 10.1126/science.1243005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24723605" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*embryology/genetics ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; *Body Patterning ; Endosperm/embryology/genetics ; Flowers/*embryology/genetics ; Gene Duplication ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gene Knockout Techniques ; Interleukin-1 Receptor-Associated Kinases/metabolism ; MAP Kinase Kinase Kinases/metabolism ; Molecular Sequence Data ; Peptides/chemistry/genetics/metabolism ; Seeds/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):405-6. doi: 10.1126/science.346.6208.405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Cooperative Behavior ; Female ; Hominidae/anatomy & histology/psychology ; Humans ; Male ; Skull/*anatomy & histology ; Testosterone/metabolism ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-23
    Description: Ribonucleotide reductase (RNR) supplies the balanced pools of deoxynucleotide triphosphates (dNTPs) necessary for DNA replication and maintenance of genomic integrity. RNR is subject to allosteric regulatory mechanisms in all eukaryotes, as well as to control by small protein inhibitors Sml1p and Spd1p in budding and fission yeast, respectively. Here, we show that the metazoan protein IRBIT forms a deoxyadenosine triphosphate (dATP)-dependent complex with RNR, which stabilizes dATP in the activity site of RNR and thus inhibits the enzyme. Formation of the RNR-IRBIT complex is regulated through phosphorylation of IRBIT, and ablation of IRBIT expression in HeLa cells causes imbalanced dNTP pools and altered cell cycle progression. We demonstrate a mechanism for RNR regulation in higher eukaryotes that acts by enhancing allosteric RNR inhibition by dATP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnaoutov, Alexei -- Dasso, Mary -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1512-5. doi: 10.1126/science.1251550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. arnaouta@mail.nih.gov. ; Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237103" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalytic Domain ; Deoxyadenine Nucleotides/*metabolism ; HeLa Cells ; Humans ; Immunoprecipitation ; Lectins, C-Type/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Ribonucleotide Reductases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guojie -- Li, Cai -- Li, Qiye -- Li, Bo -- Larkin, Denis M -- Lee, Chul -- Storz, Jay F -- Antunes, Agostinho -- Greenwold, Matthew J -- Meredith, Robert W -- Odeen, Anders -- Cui, Jie -- Zhou, Qi -- Xu, Luohao -- Pan, Hailin -- Wang, Zongji -- Jin, Lijun -- Zhang, Pei -- Hu, Haofu -- Yang, Wei -- Hu, Jiang -- Xiao, Jin -- Yang, Zhikai -- Liu, Yang -- Xie, Qiaolin -- Yu, Hao -- Lian, Jinmin -- Wen, Ping -- Zhang, Fang -- Li, Hui -- Zeng, Yongli -- Xiong, Zijun -- Liu, Shiping -- Zhou, Long -- Huang, Zhiyong -- An, Na -- Wang, Jie -- Zheng, Qiumei -- Xiong, Yingqi -- Wang, Guangbiao -- Wang, Bo -- Wang, Jingjing -- Fan, Yu -- da Fonseca, Rute R -- Alfaro-Nunez, Alonzo -- Schubert, Mikkel -- Orlando, Ludovic -- Mourier, Tobias -- Howard, Jason T -- Ganapathy, Ganeshkumar -- Pfenning, Andreas -- Whitney, Osceola -- Rivas, Miriam V -- Hara, Erina -- Smith, Julia -- Farre, Marta -- Narayan, Jitendra -- Slavov, Gancho -- Romanov, Michael N -- Borges, Rui -- Machado, Joao Paulo -- Khan, Imran -- Springer, Mark S -- Gatesy, John -- Hoffmann, Federico G -- Opazo, Juan C -- Hastad, Olle -- Sawyer, Roger H -- Kim, Heebal -- Kim, Kyu-Won -- Kim, Hyeon Jeong -- Cho, Seoae -- Li, Ning -- Huang, Yinhua -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Bertelsen, Mads F -- Derryberry, Elizabeth -- Warren, Wesley -- Wilson, Richard K -- Li, Shengbin -- Ray, David A -- Green, Richard E -- O'Brien, Stephen J -- Griffin, Darren -- Johnson, Warren E -- Haussler, David -- Ryder, Oliver A -- Willerslev, Eske -- Graves, Gary R -- Alstrom, Per -- Fjeldsa, Jon -- Mindell, David P -- Edwards, Scott V -- Braun, Edward L -- Rahbek, Carsten -- Burt, David W -- Houde, Peter -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Avian Genome Consortium -- Jarvis, Erich D -- Gilbert, M Thomas P -- Wang, Jun -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R01 HL087216/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1311-20. doi: 10.1126/science.1251385. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. ; Royal Veterinary College, University of London, London, UK. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal. ; Department of Biological Sciences, University of South Carolina, Columbia, SC, USA. ; Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. ; Department of Animal Ecology, Uppsala University, Norbyvagen 18D, S-752 36 Uppsala, Sweden. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore. ; Department of Integrative Biology University of California, Berkeley, CA 94720, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China. ; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK. ; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciencias Biomedicas Abel Salazar (ICBAS), Universidade do Porto, Portugal. ; Department of Biology, University of California Riverside, Riverside, CA 92521, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. ; Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA. ; The Genome Institute at Washington University, St. Louis, MO 63108, USA. ; College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA. ; Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA. ; Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK. ; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504712" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biodiversity ; *Biological Evolution ; Birds/classification/*genetics/physiology ; Conserved Sequence ; Diet ; *Evolution, Molecular ; Female ; Flight, Animal ; Genes ; Genetic Variation ; *Genome ; Genomics ; Male ; Molecular Sequence Annotation ; Phylogeny ; Reproduction/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Synteny ; Vision, Ocular/genetics ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-25
    Description: Lingham-Soliar questions our interpretation of integumentary structures in the Middle-Late Jurassic ornithischian dinosaur Kulindadromeus as feather-like appendages and alternatively proposes that the compound structures observed around the humerus and femur of Kulindadromeus are support fibers associated with badly degraded scales. We consider this hypothesis highly unlikely because of the taphonomy and morphology of the preserved structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godefroit, Pascal -- Sinitsa, Sofia M -- Dhouailly, Danielle -- Bolotsky, Yuri L -- Sizov, Alexander V -- McNamara, Maria E -- Benton, Michael J -- Spagna, Paul -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):434. doi: 10.1126/science.1260146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Directorate, Earth and History of Life, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. pascal.godefroit@naturalsciences.be. ; Institute of Natural Resources, Ecology, and Cryology, 26 Butin Street, 672 014 Chita, Russia. ; UJF-CNRS FRE 3405, AGIM, Universite Joseph Fourier, Site Sante, 38 706 La Tronche, France. ; Institute of Geology and Nature Management, FEB RAS, 1 Relochny Street 675 000, Blagoveschensk, Russia. ; Institute of the Earth Crust, SB RAS, 128 Lermontov Street, 664 033 Irkutsk, Russia. ; School of Biological, Earth, and Environmental Science, University College Cork, Cork, Ireland. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; Directorate, Earth and History of Life, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342796" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dinosaurs/*anatomy & histology ; Epidermis/*anatomy & histology ; Feathers/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, William F -- Sousa, Filipa L -- Lane, Nick -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1092-3. doi: 10.1126/science.1251653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Evolution, Heinrich-Heine-Universitat, Universitatsstrasse 1, 40225 Dusseldorf, Germany. bill@hhu.de. ; Institute of Molecular Evolution, Heinrich-Heine-Universitat, Universitatsstrasse 1, 40225 Dusseldorf, Germany. ; Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904143" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Anaerobiosis ; Bacteria, Anaerobic/*metabolism ; *Biological Evolution ; *Energy Metabolism ; Methane/metabolism ; Methanobacterium/*metabolism ; *Origin of Life
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koschowitz, Marie-Claire -- Fischer, Christian -- Sander, Martin -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):416-8. doi: 10.1126/science.1258957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, Berliner Strasse 28, 37073 Goettingen, Germany. m.koschowitz@uni-bonn.de. ; Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, Berliner Strasse 28, 37073 Goettingen, Germany. ; Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Size ; *Color Vision ; Dinosaurs/anatomy & histology/classification/*physiology ; Feathers/anatomy & histology/*physiology ; Galliformes/anatomy & histology/classification/*physiology ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-26
    Description: Using light to silence electrical activity in targeted cells is a major goal of optogenetics. Available optogenetic proteins that directly move ions to achieve silencing are inefficient, pumping only a single ion per photon across the cell membrane rather than allowing many ions per photon to flow through a channel pore. Building on high-resolution crystal-structure analysis, pore vestibule modeling, and structure-guided protein engineering, we designed and characterized a class of channelrhodopsins (originally cation-conducting) converted into chloride-conducting anion channels. These tools enable fast optical inhibition of action potentials and can be engineered to display step-function kinetics for stable inhibition, outlasting light pulses and for orders-of-magnitude-greater light sensitivity of inhibited cells. The resulting family of proteins defines an approach to more physiological, efficient, and sensitive optogenetic inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berndt, Andre -- Lee, Soo Yeun -- Ramakrishnan, Charu -- Deisseroth, Karl -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH075957/MH/NIMH NIH HHS/ -- R01 MH086373/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763591" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CA1 Region, Hippocampal/cytology ; CA3 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neurons/*physiology ; Optogenetics ; Patch-Clamp Techniques ; Protein Engineering ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kennett, Douglas J -- Asmerom, Yemane -- Kemp, Brian M -- Polyak, Victor -- Bolnick, Deborah A -- Malhi, Ripan S -- Culleton, Brendan J -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):390. doi: 10.1126/science.345.6195.390-a. Epub 2014 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA. djk23@psu.edu. ; Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA. ; Department of Anthropology and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA. ; Department of Anthropology and Population Research Center, University of Texas at Austin, Austin, TX 78712, USA. ; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA. ; Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061196" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-03-22
    Description: The development of cells specialized for water conduction or support is a striking innovation of plants that has enabled them to colonize land. The NAC transcription factors regulate the differentiation of these cells in vascular plants. However, the path by which plants with these cells have evolved from their nonvascular ancestors is unclear. We investigated genes of the moss Physcomitrella patens that encode NAC proteins. Loss-of-function mutants formed abnormal water-conducting and supporting cells, as well as malformed sporophyte cells, and overexpression induced ectopic differentiation of water-conducting-like cells. Our results show conservation of transcriptional regulation and cellular function between moss and Arabidopsis thaliana water-conducting cells. The conserved genetic basis suggests roles for NAC proteins in the adaptation of plants to land.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Bo -- Ohtani, Misato -- Yamaguchi, Masatoshi -- Toyooka, Kiminori -- Wakazaki, Mayumi -- Sato, Mayuko -- Kubo, Minoru -- Nakano, Yoshimi -- Sano, Ryosuke -- Hiwatashi, Yuji -- Murata, Takashi -- Kurata, Tetsuya -- Yoneda, Arata -- Kato, Ko -- Hasebe, Mitsuyasu -- Demura, Taku -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1505-8. doi: 10.1126/science.1248417. Epub 2014 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24652936" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Amino Acid Sequence ; Arabidopsis/genetics/*physiology ; Bryopsida/genetics/*physiology ; *Gene Expression Regulation, Plant ; Genetic Loci ; Genome, Plant ; Molecular Sequence Data ; Plant Proteins/genetics/*physiology ; Plant Stems/growth & development ; Trans-Activators/genetics/*physiology ; Transcription, Genetic ; Water/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-05-31
    Description: Netrins are secreted proteins that regulate axon guidance and neuronal migration. Deleted in colorectal cancer (DCC) is a well-established netrin-1 receptor mediating attractive responses. We provide evidence that its close relative neogenin is also a functional netrin-1 receptor that acts with DCC to mediate guidance in vivo. We determined the structures of a functional netrin-1 region, alone and in complexes with neogenin or DCC. Netrin-1 has a rigid elongated structure containing two receptor-binding sites at opposite ends through which it brings together receptor molecules. The ligand/receptor complexes reveal two distinct architectures: a 2:2 heterotetramer and a continuous ligand/receptor assembly. The differences result from different lengths of the linker connecting receptor domains fibronectin type III domain 4 (FN4) and FN5, which differs among DCC and neogenin splice variants, providing a basis for diverse signaling outcomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Kai -- Wu, Zhuhao -- Renier, Nicolas -- Antipenko, Alexander -- Tzvetkova-Robev, Dorothea -- Xu, Yan -- Minchenko, Maria -- Nardi-Dei, Vincenzo -- Rajashankar, Kanagalaghatta R -- Himanen, Juha -- Tessier-Lavigne, Marc -- Nikolov, Dimitar B -- P41 GM103403/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1275-9. doi: 10.1126/science.1255149. Epub 2014 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. ; Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA. ; Department of Chemistry and Chemical Biology, Cornell University and Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA. ; Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA. nikolovd@mskcc.org marctl@mail.rockefeller.edu. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. nikolovd@mskcc.org marctl@mail.rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876346" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Movement ; Fibronectins/chemistry ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nerve Growth Factors/*chemistry/genetics/ultrastructure ; Neurons/physiology ; Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/ultrastructure ; Tumor Suppressor Proteins/*chemistry/genetics/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-08-26
    Description: Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, Maude W -- Toda, Yasuka -- Nakagita, Tomoya -- O'Connell, Mary J -- Klasing, Kirk C -- Misaka, Takumi -- Edwards, Scott V -- Liberles, Stephen D -- R01 DC013289/DC/NIDCD NIH HHS/ -- R01DC013289/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):929-33. doi: 10.1126/science.1255097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu. ; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan. ; Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. ; Department of Animal Science, University of California, Davis, Davis, CA 95616, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Evolution, Molecular ; Mice ; Molecular Sequence Data ; Plant Nectar ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/classification/*genetics ; Taste/*physiology ; Taste Perception/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-04-26
    Description: The hierarchical packaging of eukaryotic chromatin plays a central role in transcriptional regulation and other DNA-related biological processes. Here, we report the 11-angstrom-resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths. The structures show a histone H1-dependent left-handed twist of the repeating tetranucleosomal structural units, within which the four nucleosomes zigzag back and forth with a straight linker DNA. The asymmetric binding and the location of histone H1 in chromatin play a role in the formation of the 30-nanometer fiber. Our results provide mechanistic insights into how nucleosomes compact into higher-order chromatin fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Feng -- Chen, Ping -- Sun, Dapeng -- Wang, Mingzhu -- Dong, Liping -- Liang, Dan -- Xu, Rui-Ming -- Zhu, Ping -- Li, Guohong -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):376-80. doi: 10.1126/science.1251413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/*ultrastructure ; Cryoelectron Microscopy ; DNA/chemistry/*ultrastructure ; Histones/*chemistry/metabolism ; Imaging, Three-Dimensional ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleosomes/*ultrastructure ; Protein Conformation ; Recombinant Proteins/chemistry/metabolism ; Xenopus Proteins/chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayr, Gerald -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1466. doi: 10.1126/science.346.6216.1466-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological Section, D-60325 Frankfurt am Main, Germany. gerald.mayr@senckenberg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525236" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Color Vision ; Dinosaurs/*physiology ; Feathers/*physiology ; Galliformes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-17
    Description: Some HIV-infected individuals develop broadly neutralizing antibodies (bNAbs), whereas most develop antibodies that neutralize only a narrow range of viruses (nNAbs). bNAbs, but not nNAbs, protect animals from experimental infection and are likely a key component of an effective vaccine. nNAbs and bNAbs target the same regions of the viral envelope glycoprotein (Env), but for reasons that remain unclear only nNAbs are elicited by Env immunization. We show that in contrast to germline-reverted (gl) bNAbs, glnNAbs recognized diverse recombinant Envs. Moreover, owing to binding affinity differences, nNAb B cell progenitors had an advantage in becoming activated and internalizing Env compared with bNAb B cell progenitors. We then identified an Env modification strategy that minimized the activation of nNAb B cells targeting epitopes that overlap those of bNAbs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGuire, Andrew T -- Dreyer, Anita M -- Carbonetti, Sara -- Lippy, Adriana -- Glenn, Jolene -- Scheid, Johannes F -- Mouquet, Hugo -- Stamatatos, Leonidas -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI094419-01/AI/NIAID NIH HHS/ -- U19 19AI109632-01/AI/NIAID NIH HHS/ -- U19 AI109632/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1380-3. doi: 10.1126/science.1259206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Biomedical Research Institute, Seattle, WA 98109, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur and CNRS-URA 1961, 75015 Paris, France. ; Seattle Biomedical Research Institute, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98109, USA. lstamata@fhcrc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504724" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Antibodies, Neutralizing/*immunology ; Antibody Affinity ; B-Lymphocytes/immunology ; Binding, Competitive ; Epitopes/immunology ; HIV Antibodies/genetics/*immunology ; HIV-1/*immunology ; Humans ; Lymphocyte Activation ; Models, Molecular ; Receptors, Antigen, B-Cell/genetics/immunology ; Recombinant Proteins/immunology ; env Gene Products, Human Immunodeficiency Virus/chemistry/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-17
    Description: Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination. We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have as fully degenerated W chromosomes as that of chicken. We show that avian sex chromosomes harbor tremendous diversity among species in their composition of pseudoautosomal regions and degree of Z/W differentiation. Punctuated events of shared or lineage-specific recombination suppression have produced a gradient of "evolutionary strata" along the Z chromosome, which initiates from the putative avian sex-determining gene DMRT1 and ends at the pseudoautosomal region. W-linked genes are subject to ongoing functional decay after recombination was suppressed, and the tempo of degeneration slows down in older strata. Overall, we unveil a complex history of avian sex chromosome evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Qi -- Zhang, Jilin -- Bachtrog, Doris -- An, Na -- Huang, Quanfei -- Jarvis, Erich D -- Gilbert, M Thomas P -- Zhang, Guojie -- GM076007/GM/NIGMS NIH HHS/ -- GM093182/GM/NIGMS NIH HHS/ -- R01 GM076007/GM/NIGMS NIH HHS/ -- R01 GM093182/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1246338. doi: 10.1126/science.1246338. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA94720, USA. zhouqi@berkeley.edu zhanggj@genomics.org.cn. ; China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. ; Department of Integrative Biology, University of California, Berkeley, CA94720, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhouqi@berkeley.edu zhanggj@genomics.org.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504727" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; *Biological Evolution ; Birds/classification/*genetics ; Chickens/genetics ; Chromosome Inversion ; Chromosome Mapping ; *Evolution, Molecular ; Female ; Male ; Phylogeny ; Recombination, Genetic ; Sex Chromosomes/*genetics ; Species Specificity ; Struthioniformes/genetics ; Synteny ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-03-01
    Description: One of the hallmark mechanisms activated by type I interferons (IFNs) in human tissues involves cleavage of intracellular RNA by the kinase homology endoribonuclease RNase L. We report 2.8 and 2.1 angstrom crystal structures of human RNase L in complexes with synthetic and natural ligands and a fragment of an RNA substrate. RNase L forms a crossed homodimer stabilized by ankyrin (ANK) and kinase homology (KH) domains, which positions two kinase extension nuclease (KEN) domains for asymmetric RNA recognition. One KEN protomer recognizes an identity nucleotide (U), whereas the other protomer cleaves RNA between nucleotides +1 and +2. The coordinated action of the ANK, KH, and KEN domains thereby provides regulated, sequence-specific cleavage of viral and host RNA targets by RNase L.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Yuchen -- Donovan, Jesse -- Rath, Sneha -- Whitney, Gena -- Chitrakar, Alisha -- Korennykh, Alexei -- R01 GM110161/GM/NIGMS NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1244-8. doi: 10.1126/science.1249845. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, 216 Schultz Laboratory, Princeton, NJ 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578532" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; HeLa Cells ; Hepatitis B virus/genetics ; Humans ; Interferon Type I/pharmacology/*physiology ; Protein Multimerization ; Protein Structure, Tertiary ; *RNA Cleavage ; *RNA Stability ; RNA, Viral/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coley, Phyllis D -- Kursar, Thomas A -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):35-6. doi: 10.1126/science.1248110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Utah, Salt Lake City, UT 84112, USA, and Smithsonian Tropical Research Institute, Panama City, Panama.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Biological Evolution ; French Guiana ; *Herbivory ; Mexico ; Panama ; Plant Leaves ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-10-25
    Description: During cell entry, capsids of incoming influenza A viruses (IAVs) must be uncoated before viral ribonucleoproteins (vRNPs) can enter the nucleus for replication. After hemagglutinin-mediated membrane fusion in late endocytic vacuoles, the vRNPs and the matrix proteins dissociate from each other and disperse within the cytosol. Here, we found that for capsid disassembly, IAV takes advantage of the host cell's aggresome formation and disassembly machinery. The capsids mimicked misfolded protein aggregates by carrying unanchored ubiquitin chains that activated a histone deacetylase 6 (HDAC6)-dependent pathway. The ubiquitin-binding domain was essential for recruitment of HDAC6 to viral fusion sites and for efficient uncoating and infection. That other components of the aggresome processing machinery, including dynein, dynactin, and myosin II, were also required suggested that physical forces generated by microtubule- and actin-associated motors are essential for IAV entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Indranil -- Miyake, Yasuyuki -- Nobs, Samuel Philip -- Schneider, Christoph -- Horvath, Peter -- Kopf, Manfred -- Matthias, Patrick -- Helenius, Ari -- Yamauchi, Yohei -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):473-7. doi: 10.1126/science.1257037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland. ; Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. ; Institute of Molecular Health Sciences, ETH Zurich, Switzerland. ; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary. ; Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. Faculty of Sciences, University of Basel, Basel, Switzerland. ; Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland. ari.helenius@bc.biol.ethz.ch yohei.yamauchi@bc.biol.ethz.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342804" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/*metabolism ; Cell Line, Tumor ; Cell Nucleus/virology ; Dyneins/metabolism ; Gene Knockout Techniques ; Histone Deacetylases/genetics/*physiology ; Host-Pathogen Interactions ; Humans ; Influenza A virus/*physiology ; Influenza, Human/genetics/metabolism/*virology ; Membrane Fusion/genetics/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microtubule-Associated Proteins/metabolism ; Microtubules/metabolism ; Myosin Type II/metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; RNA Interference ; Ribonucleoproteins/metabolism ; Ubiquitin/chemistry/metabolism ; *Virus Internalization ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gramling, Carolyn -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):537. doi: 10.1126/science.346.6209.537.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; *Biological Evolution ; Oxygen/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-10-18
    Description: Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, Ryo -- Sumida, Kumiko -- Yoshii, Tomoaki -- Ohyama, Kentaro -- Shinohara, Hidefumi -- Matsubayashi, Yoshikatsu -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):343-6. doi: 10.1126/science.1257800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ; Department of Applied Molecular Biosciences, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. matsu@bio.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Molecular Sequence Data ; Nitrogen/*metabolism ; Peptides/*metabolism ; Plant Roots/genetics/*growth & development/metabolism ; Plant Shoots/genetics/*growth & development/metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-07-26
    Description: Proteins that cap the ends of the actin filament are essential regulators of cytoskeleton dynamics. Whereas several proteins cap the rapidly growing barbed end, tropomodulin (Tmod) is the only protein known to cap the slowly growing pointed end. The lack of structural information severely limits our understanding of Tmod's capping mechanism. We describe crystal structures of actin complexes with the unstructured amino-terminal and the leucine-rich repeat carboxy-terminal domains of Tmod. The structures and biochemical analysis of structure-inspired mutants showed that one Tmod molecule interacts with three actin subunits at the pointed end, while also contacting two tropomyosin molecules on each side of the filament. We found that Tmod achieves high-affinity binding through several discrete low-affinity interactions, which suggests a mechanism for controlled subunit exchange at the pointed end.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, Jampani Nageswara -- Madasu, Yadaiah -- Dominguez, Roberto -- GM-0080/GM/NIGMS NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. droberto@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061212" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry ; Actins/*chemistry ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Tropomodulin/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-01-18
    Description: Transcription factors (TFs) are key players in evolution. Changes affecting their function can yield novel life forms but may also have deleterious effects. Consequently, gene duplication events that release one gene copy from selective pressure are thought to be the common mechanism by which TFs acquire new activities. Here, we show that LEAFY, a major regulator of flower development and cell division in land plants, underwent changes to its DNA binding specificity, even though plant genomes generally contain a single copy of the LEAFY gene. We examined how these changes occurred at the structural level and identify an intermediate LEAFY form in hornworts that appears to adopt all different specificities. This promiscuous intermediate could have smoothed the evolutionary transitions, thereby allowing LEAFY to evolve new binding specificities while remaining a single-copy gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sayou, Camille -- Monniaux, Marie -- Nanao, Max H -- Moyroud, Edwige -- Brockington, Samuel F -- Thevenon, Emmanuel -- Chahtane, Hicham -- Warthmann, Norman -- Melkonian, Michael -- Zhang, Yong -- Wong, Gane Ka-Shu -- Weigel, Detlef -- Parcy, Francois -- Dumas, Renaud -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):645-8. doi: 10.1126/science.1248229. Epub 2014 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Laboratoire de Physiologie Cellulaire et Vegetale (LPCV), UMR 5168, 38054 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/chemistry/classification/genetics ; DNA, Plant/*chemistry ; DNA-Binding Proteins/*chemistry/classification/*genetics ; Electrophoretic Mobility Shift Assay ; *Evolution, Molecular ; Gene Dosage ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Proteins/*chemistry/classification/*genetics ; Protein Binding/genetics ; Protein Structure, Tertiary ; Species Specificity ; Transcription Factors/chemistry/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-10-25
    Description: Godefroit et al. (Reports, 25 July 2014, p. 451) reported scales and feathers, including "basal plates," in an ornithischian dinosaur. Their arguments against the filaments being collagen fibers are not supported because of a fundamental misinterpretation of such structures and underestimation of their size. The parsimonious explanation is that the filaments are support fibers in association with badly degraded scales and that they do not represent early feather stages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingham-Soliar, Theagarten -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):434. doi: 10.1126/science.1259983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342795" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dinosaurs/*anatomy & histology ; Epidermis/*anatomy & histology ; Feathers/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-12-06
    Description: The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of sRNA-target interactions by jointly acting on sRNA genes and their target sites, which has resulted in a complex system of regulation among alleles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Durand, Eleonore -- Meheust, Raphael -- Soucaze, Marion -- Goubet, Pauline M -- Gallina, Sophie -- Poux, Celine -- Fobis-Loisy, Isabelle -- Guillon, Eline -- Gaude, Thierry -- Sarazin, Alexis -- Figeac, Martin -- Prat, Elisa -- Marande, William -- Berges, Helene -- Vekemans, Xavier -- Billiard, Sylvain -- Castric, Vincent -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1200-5. doi: 10.1126/science.1259442.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire Genetique et Evolution des Populations Vegetales, CNRS UMR 8198, Universite Lille 1, F-59655 Villeneuve d'Ascq cedex, France. ; Reproduction et Developpement des Plantes, Institut Federatif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Claude Bernard Lyon I, Ecole Normale Superieure de Lyon, F-69364 Lyon, Cedex 07, France. ; Department of Biology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland. ; UDSL Universite Lille 2 Droit et Sante, and Plate-forme de genomique fonctionnelle et structurale IFR-114, F-59000 Lille, France. ; Centre National des Ressources Genomiques Vegetales, INRA UPR 1258, Castanet-Tolosan, France. ; Laboratoire Genetique et Evolution des Populations Vegetales, CNRS UMR 8198, Universite Lille 1, F-59655 Villeneuve d'Ascq cedex, France. vincent.castric@univ-lille1.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477454" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics ; *Biological Evolution ; *Gene Expression Regulation, Plant ; *Gene Regulatory Networks ; *Genes, Dominant ; *Genes, Recessive ; Genetic Loci ; Models, Molecular ; Phylogeny ; Pollination ; RNA, Small Untranslated/classification/*genetics ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-10-10
    Description: The HIV-1 envelope (Env) mediates viral entry into host cells. To enable the direct imaging of conformational dynamics within Env, we introduced fluorophores into variable regions of the glycoprotein gp120 subunit and measured single-molecule fluorescence resonance energy transfer within the context of native trimers on the surface of HIV-1 virions. Our observations revealed unliganded HIV-1 Env to be intrinsically dynamic, transitioning between three distinct prefusion conformations, whose relative occupancies were remodeled by receptor CD4 and antibody binding. The distinct properties of neutralization-sensitive and neutralization-resistant HIV-1 isolates support a dynamics-based mechanism of immune evasion and ligand recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304640/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304640/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Munro, James B -- Gorman, Jason -- Ma, Xiaochu -- Zhou, Zhou -- Arthos, James -- Burton, Dennis R -- Koff, Wayne C -- Courter, Joel R -- Smith, Amos B 3rd -- Kwong, Peter D -- Blanchard, Scott C -- Mothes, Walther -- P01 56550/PHS HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):759-63. doi: 10.1126/science.1254426. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA. walther.mothes@yale.edu scb2005@med.cornell.edu james.munro@tufts.edu. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. ; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Immunology and Microbial Science, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA. ; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. walther.mothes@yale.edu scb2005@med.cornell.edu james.munro@tufts.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25298114" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/immunology ; Antigens, CD4/immunology ; Fluorescence Resonance Energy Transfer/methods ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Humans ; *Immune Evasion ; Ligands ; Models, Chemical ; Molecular Imaging/methods ; Protein Multimerization ; Protein Structure, Tertiary ; Virion/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-07-12
    Description: Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic infection. We compared, for 137 linked transmission pairs, the amino acid sequences encoded by non-envelope genes of viruses in both partners and demonstrate a selection bias for transmission of residues that are predicted to confer increased in vivo fitness on viruses in the newly infected, immunologically naive recipient. Although tempered by transmission risk factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias provides an overall transmission advantage for viral quasispecies that are dominated by viruses with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally reduce viral fitness may lower the overall transmission rates and offer long-term benefits even upon successful transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289910/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289910/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlson, Jonathan M -- Schaefer, Malinda -- Monaco, Daniela C -- Batorsky, Rebecca -- Claiborne, Daniel T -- Prince, Jessica -- Deymier, Martin J -- Ende, Zachary S -- Klatt, Nichole R -- DeZiel, Charles E -- Lin, Tien-Ho -- Peng, Jian -- Seese, Aaron M -- Shapiro, Roger -- Frater, John -- Ndung'u, Thumbi -- Tang, Jianming -- Goepfert, Paul -- Gilmour, Jill -- Price, Matt A -- Kilembe, William -- Heckerman, David -- Goulder, Philip J R -- Allen, Todd M -- Allen, Susan -- Hunter, Eric -- 2P51RR000165-51/RR/NCRR NIH HHS/ -- G108/626/Medical Research Council/United Kingdom -- OD P51OD11132/OD/NIH HHS/ -- P01-AI074415/AI/NIAID NIH HHS/ -- P30 AI050409/AI/NIAID NIH HHS/ -- P51 OD010425/OD/NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- P51RR165/RR/NCRR NIH HHS/ -- R01 AI064060/AI/NIAID NIH HHS/ -- R01 AI64060/AI/NIAID NIH HHS/ -- R37 AI051231/AI/NIAID NIH HHS/ -- R37 AI51231/AI/NIAID NIH HHS/ -- T32 AI007387/AI/NIAID NIH HHS/ -- T32-AI007387/AI/NIAID NIH HHS/ -- U01 AI 66454/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):1254031. doi: 10.1126/science.1254031. Epub 2014 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microsoft Research, Redmond, WA 98052, USA. carlson@microsoft.com ehunte4@emory.edu. ; Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. ; Microsoft Research, Redmond, WA 98052, USA. ; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 7BN, UK. National Institute of Health Research, Oxford Biomedical Research Centre, Oxford OX3 7LE, UK. Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK. ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa. Max Planck Institute for Infection Biology, D-10117 Berlin, Germany. ; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA. ; International AIDS Vaccine Initiative, London SW10 9NH, UK. Imperial College of Science Technology and Medicine, London SW10 9NH, UK. ; International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94105, USA. ; Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. ; Microsoft Research, Los Angeles, CA 98117, USA. ; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK. ; Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA. ; International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Microsoft Research, Los Angeles, CA 98117, USA. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK. ; Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. carlson@microsoft.com ehunte4@emory.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Consensus Sequence ; DNA Mutational Analysis ; Disease Transmission, Infectious/statistics & numerical data ; Female ; HIV Infections/*transmission ; HIV-1/*genetics ; *Heterosexuality ; High-Throughput Nucleotide Sequencing ; Human Immunodeficiency Virus Proteins/genetics ; Humans ; Male ; Models, Statistical ; Molecular Sequence Data ; Point Mutation ; Risk Factors ; *Selection, Genetic ; Viral Load
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-01-18
    Description: A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Oystaeyen, Annette -- Oliveira, Ricardo Caliari -- Holman, Luke -- van Zweden, Jelle S -- Romero, Carmen -- Oi, Cintia A -- d'Ettorre, Patrizia -- Khalesi, Mohammadreza -- Billen, Johan -- Wackers, Felix -- Millar, Jocelyn G -- Wenseleers, Tom -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):287-90. doi: 10.1126/science.1244899.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Socioecology and Social Evolution, Zoological Institute, University of Leuven, Naamsestraat 59-Box 2466, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436417" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*physiology ; Bees/*physiology ; Biological Assay ; *Biological Evolution ; Female ; Fertility/drug effects/*physiology ; Male ; Pheromones/classification/pharmacology/*physiology ; Reproduction/drug effects/physiology ; Wasps/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libby, Eric -- Ratcliff, William C -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):426-7. doi: 10.1126/science.1262053.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Santa Fe Institute, Santa Fe, NM 87501, USA. elibby@santafe.edu. ; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; *Biological Evolution ; Cells/*cytology ; Life Cycle Stages
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cappellini, Enrico -- Collins, Matthew J -- Gilbert, M Thomas P -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1320-2. doi: 10.1126/science.1249274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653025" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Databases, Protein ; Fossils ; Humans ; *Mass Spectrometry/instrumentation/methods ; Mummies ; Proteins/*chemistry/isolation & purification ; Proteolysis ; Proteomics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-11-22
    Description: Chromosome segregation depends on sister chromatid cohesion mediated by cohesin. The cohesin subunits Smc1, Smc3, and Scc1 form tripartite rings that are thought to open at distinct sites to allow entry and exit of DNA. However, direct evidence for the existence of open forms of cohesin is lacking. We found that cohesin's proposed DNA exit gate is formed by interactions between Scc1 and the coiled-coil region of Smc3. Mutation of this interface abolished cohesin's ability to stably associate with chromatin and to mediate cohesion. Electron microscopy revealed that weakening of the Smc3-Scc1 interface resulted in opening of cohesin rings, as did proteolytic cleavage of Scc1. These open forms may resemble intermediate states of cohesin normally generated by the release factor Wapl and the protease separase, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huis in 't Veld, Pim J -- Herzog, Franz -- Ladurner, Rene -- Davidson, Iain F -- Piric, Sabina -- Kreidl, Emanuel -- Bhaskara, Venugopal -- Aebersold, Ruedi -- Peters, Jan-Michael -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):968-72. doi: 10.1126/science.1256904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria. ; Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. Department of Biochemistry, Gene Center, Ludwig-Maximilian University, 81377 Munich, Germany. ; Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria. peters@imp.ac.at.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25414306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Chondroitin Sulfate Proteoglycans/chemistry/genetics/*metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; *Chromosome Segregation ; DNA/*metabolism ; DNA Replication ; Humans ; Mass Spectrometry ; Microscopy, Electron ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/genetics/metabolism ; Separase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-08-16
    Description: In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427192/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427192/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulepati, Sabin -- Heroux, Annie -- Bailey, Scott -- GM097330/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41GM103473/GM/NIGMS NIH HHS/ -- P41RR012408/RR/NCRR NIH HHS/ -- R01 GM097330/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1479-84. doi: 10.1126/science.1256996. Epub 2014 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. ; Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA. ; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. scott.bailey@jhu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25123481" target="_blank"〉PubMed〈/a〉
    Keywords: CRISPR-Associated Proteins/*chemistry ; *CRISPR-Cas Systems ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Crystallography, X-Ray ; DNA Helicases/chemistry ; DNA, Single-Stranded/*chemistry ; Escherichia coli/*genetics ; Escherichia coli Proteins/*chemistry ; Models, Molecular ; RNA, Bacterial/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-08-02
    Description: Recent discoveries have highlighted the dramatic evolutionary transformation of massive, ground-dwelling theropod dinosaurs into light, volant birds. Here, we apply Bayesian approaches (originally developed for inferring geographic spread and rates of molecular evolution in viruses) in a different context: to infer size changes and rates of anatomical innovation (across up to 1549 skeletal characters) in fossils. These approaches identify two drivers underlying the dinosaur-bird transition. The theropod lineage directly ancestral to birds undergoes sustained miniaturization across 50 million years and at least 12 consecutive branches (internodes) and evolves skeletal adaptations four times faster than other dinosaurs. The distinct, prolonged phase of miniaturization along the bird stem would have facilitated the evolution of many novelties associated with small body size, such as reorientation of body mass, increased aerial ability, and paedomorphic skulls with reduced snouts but enlarged eyes and brains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Michael S Y -- Cau, Andrea -- Naish, Darren -- Dyke, Gareth J -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):562-6. doi: 10.1126/science.1252243.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Section, South Australian Museum, North Terrace, Adelaide 5000, Australia. School of Earth and Environmental Sciences, University of Adelaide 5005, Australia. mike.lee@samuseum.sa.gov.au. ; Museo Geologico e Paleontologico "Giovanni Capellini," Via Zamboni 63, 40126 Bologna, Italy. Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum Universita di Bologna, 40126 Bologna, Italy. ; Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK. ; Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK. MTA-DE Lendulet Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Egyetem ter 1, Hungary.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; *Biological Evolution ; Birds/*anatomy & histology ; *Body Size ; Dinosaurs/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-16
    Description: Parenting behaviors, such as the provisioning of food by parents to offspring, are known to be highly responsive to changes in environment. However, we currently know little about how such flexibility affects the ways in which parenting is adapted and evolves in response to environmental variation. This is because few studies quantify how individuals vary in their response to changing environments, especially social environments created by other individuals with which parents interact. Social environmental factors differ from nonsocial factors, such as food availability, because parents and offspring both contribute and respond to the social environment they experience. This interdependence leads to the coevolution of flexible behaviors involved in parenting, which could, paradoxically, constrain the ability of individuals to rapidly adapt to changes in their nonsocial environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royle, Nick J -- Russell, Andrew F -- Wilson, Alastair J -- BB/G022976/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):776-81. doi: 10.1126/science.1253294. Epub 2014 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK. n.j.royle@exeter.ac.uk. ; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124432" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Environment ; Female ; Male ; *Maternal Behavior ; *Parenting ; *Paternal Behavior ; Social Environment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-05-09
    Description: Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saio, Tomohide -- Guan, Xiao -- Rossi, Paolo -- Economou, Anastassios -- Kalodimos, Charalampos G -- GM073854/GM/NIGMS NIH HHS/ -- R01 GM073854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):1250494. doi: 10.1126/science.1250494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812405" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/*chemistry ; Binding Sites ; Escherichia coli Proteins/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins/*chemistry ; Molecular Chaperones/*chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Peptides/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-03-01
    Description: Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and young adults with no history of primary liver disease or cirrhosis. We identified a chimeric transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A. Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Honeyman, Joshua N -- Simon, Elana P -- Robine, Nicolas -- Chiaroni-Clarke, Rachel -- Darcy, David G -- Lim, Irene Isabel P -- Gleason, Caroline E -- Murphy, Jennifer M -- Rosenberg, Brad R -- Teegan, Lydia -- Takacs, Constantin N -- Botero, Sergio -- Belote, Rachel -- Germer, Soren -- Emde, Anne-Katrin -- Vacic, Vladimir -- Bhanot, Umesh -- LaQuaglia, Michael P -- Simon, Sanford M -- 2UL1RR024143/RR/NCRR NIH HHS/ -- UL1 RR024143/RR/NCRR NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1010-4. doi: 10.1126/science.1249484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578576" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular/enzymology/*genetics ; Chromosome Deletion ; Chromosomes, Human, Pair 19/genetics ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry/*genetics ; Gene Expression Regulation, Neoplastic ; HSP40 Heat-Shock Proteins/chemistry/*genetics ; Humans ; Liver Neoplasms/enzymology/*genetics ; Oncogene Proteins, Fusion/*genetics ; Protein Multimerization ; Protein Structure, Tertiary ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-04-12
    Description: Primordial germ cell (PGC) specification occurs either by induction from pluripotent cells (epigenesis) or by a cell-autonomous mechanism mediated by germ plasm (preformation). Among vertebrates, epigenesis is basal, whereas germ plasm has evolved convergently across lineages and is associated with greater speciation. We compared protein-coding sequences of vertebrate species that employ preformation with their sister taxa that use epigenesis and demonstrate that genes evolve more rapidly in species containing germ plasm. Furthermore, differences in rates of evolution appear to cause phylogenetic incongruence in protein-coding sequence comparisons between vertebrate taxa. Our results support the hypothesis that germ plasm liberates constraints on somatic development and that enhanced evolvability drives the evolution of germ plasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Evans, Teri -- Wade, Christopher M -- Chapman, Frank A -- Johnson, Andrew D -- Loose, Matthew -- G1100025/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):200-3. doi: 10.1126/science.1249325.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24723612" target="_blank"〉PubMed〈/a〉
    Keywords: Amphibians ; Animals ; *Biological Evolution ; Cytoplasm/*physiology ; Germ Cells/*physiology ; Phylogeny ; Vertebrates/*classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-09-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patek, S N -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1448-9. doi: 10.1126/science.1256617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Duke University, Durham, NC 27708, USA. snp2@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Biomimetic Materials ; *Biomimetics ; *Lizards ; *Skin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-01-11
    Description: It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauli, Andrea -- Norris, Megan L -- Valen, Eivind -- Chew, Guo-Liang -- Gagnon, James A -- Zimmerman, Steven -- Mitchell, Andrew -- Ma, Jiao -- Dubrulle, Julien -- Reyon, Deepak -- Tsai, Shengdar Q -- Joung, J Keith -- Saghatelian, Alan -- Schier, Alexander F -- K99 HD076935/HD/NICHD NIH HHS/ -- R01 GM056211/GM/NIGMS NIH HHS/ -- R01 GM102491/GM/NIGMS NIH HHS/ -- R01 HG005111/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):1248636. doi: 10.1126/science.1248636. Epub 2014 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24407481" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cell Movement ; Chemokine CXCL12/metabolism ; Frameshift Mutation ; Gastrulation/genetics/*physiology ; Molecular Sequence Data ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-07-06
    Description: Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anton, Susan C -- Potts, Richard -- Aiello, Leslie C -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):1236828. doi: 10.1126/science.1236828.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Human Origins, Department of Anthropology, New York University, Rufus D. Smith Hall, 25 Waverly Place, New York, NY 10003, USA. E-mail: susan.anton@nyu.edu. ; Human Origins Program, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. E-mail: pottsr@si.edu. ; Wenner-Gren Foundation, 470 Park Avenue South, 8th Floor, New York, NY 10016, USA. E-mail: laiello@wennergren.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994657" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Behavior ; *Biological Evolution ; Body Size ; Brain/anatomy & histology/growth & development ; Climate Change ; Cognition ; Diet ; Ecology ; *Hominidae/anatomy & histology/genetics/growth & development ; Humans ; Organ Size ; Skull/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-10-18
    Description: Small molecules are useful tools for probing the biological function and therapeutic potential of individual proteins, but achieving selectivity is challenging when the target protein shares structural domains with other proteins. The Bromo and Extra-Terminal (BET) proteins have attracted interest because of their roles in transcriptional regulation, epigenetics, and cancer. The BET bromodomains (protein interaction modules that bind acetyl-lysine) have been targeted by potent small-molecule inhibitors, but these inhibitors lack selectivity for individual family members. We developed an ethyl derivative of an existing small-molecule inhibitor, I-BET/JQ1, and showed that it binds leucine/alanine mutant bromodomains with nanomolar affinity and achieves up to 540-fold selectivity relative to wild-type bromodomains. Cell culture studies showed that blockade of the first bromodomain alone is sufficient to displace a specific BET protein, Brd4, from chromatin. Expansion of this approach could help identify the individual roles of single BET proteins in human physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baud, Matthias G J -- Lin-Shiao, Enrique -- Cardote, Teresa -- Tallant, Cynthia -- Pschibul, Annica -- Chan, Kwok-Ho -- Zengerle, Michael -- Garcia, Jordi R -- Kwan, Terence T-L -- Ferguson, Fleur M -- Ciulli, Alessio -- 097945/Z/11/Z/Wellcome Trust/United Kingdom -- 100476/Z/12/Z/Wellcome Trust/United Kingdom -- BB/G023123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J001201/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):638-41. doi: 10.1126/science.1249830. Epub 2014 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. a.ciulli@dundee.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25323695" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azepines/chemistry/pharmacology ; Cell Line, Tumor ; Chromatin/chemistry ; Crystallography, X-Ray ; Humans ; Leucine/genetics ; Models, Molecular ; Molecular Probes/*chemistry ; Mutation ; Nuclear Proteins/antagonists & inhibitors/*chemistry/genetics ; Protein Engineering/*methods ; Protein Structure, Tertiary ; Transcription Factors/antagonists & inhibitors/*chemistry/genetics ; Triazoles/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-11-02
    Description: The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- Reinhard, Christopher T -- Wang, Xiangli -- Thomson, Danielle -- McGoldrick, Peter -- Rainbird, Robert H -- Johnson, Thomas -- Fischer, Woodward W -- Lyons, Timothy W -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):635-8. doi: 10.1126/science.1258410.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Geology and Geophysics, Yale University, CT, USA. noah.planavsky@yale.edu chris.reinhard@eas.gatech.edu. ; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, USA. noah.planavsky@yale.edu chris.reinhard@eas.gatech.edu. ; Department Geology and Geophysics, Yale University, CT, USA. Department of Geology, University of Illinois, Champaign, IL, USA. ; Department of Earth Science, Carleton University, Ottawa, ON, Canada. ; Centre for Ore Deposit and Exploration Science, University of Tasmania, TAS, Australia. ; Geological Survey of Canada, Ottawa, ON, Canada. ; Department of Geology, University of Illinois, Champaign, IL, USA. ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. ; Department of Earth Sciences, University of California, Riverside, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359975" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; *Biological Evolution ; Chromium Isotopes/chemistry ; Earth (Planet) ; Geologic Sediments/chemistry ; Oxidation-Reduction ; Oxygen/*analysis ; Paleontology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-04-05
    Description: The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an alpha-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotwinkel, Jan Timo -- Wild, Klemens -- Segnitz, Bernd -- Sinning, Irmgard -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):101-4. doi: 10.1126/science.1249094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700861" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Protein Transport ; RNA, Ribosomal/chemistry/metabolism ; RNA, Small Cytoplasmic/*chemistry/*metabolism ; Ribosomes ; Signal Recognition Particle/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-02-08
    Description: We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the kappa and lambda light chains. Protein M blocks antibody-antigen union, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens. Similar to the other immunoglobulin-binding proteins such as Protein A, Protein M as well as its orthologs in other Mycoplasma species could become invaluable reagents in the antibody field.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grover, Rajesh K -- Zhu, Xueyong -- Nieusma, Travis -- Jones, Teresa -- Boero, Isabel -- MacLeod, Amanda S -- Mark, Adam -- Niessen, Sherry -- Kim, Helen J -- Kong, Leopold -- Assad-Garcia, Nacyra -- Kwon, Keehwan -- Chesi, Marta -- Smider, Vaughn V -- Salomon, Daniel R -- Jelinek, Diane F -- Kyle, Robert A -- Pyles, Richard B -- Glass, John I -- Ward, Andrew B -- Wilson, Ian A -- Lerner, Richard A -- 5 R21 AI098057-02/AI/NIAID NIH HHS/ -- K08 AR063729/AR/NIAMS NIH HHS/ -- K08 AR063729-01/AR/NIAMS NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AI042266/AI/NIAID NIH HHS/ -- R21 AI098057/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U19 AI06360/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):656-61. doi: 10.1126/science.1246135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503852" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Antibody Reactions/genetics/*immunology ; Antigens/*immunology ; Bacterial Proteins/chemistry/genetics/*immunology ; Crystallography, X-Ray ; Humans ; Immunoglobulin G/*immunology ; Immunoglobulin Variable Region/*immunology ; Immunoglobulin kappa-Chains/immunology ; Immunoglobulin lambda-Chains/immunology ; Lymphokines/chemistry/genetics/*immunology ; Membrane Proteins/chemistry/genetics/*immunology ; Mycoplasma/*immunology ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karakas, Erkan -- Furukawa, Hiro -- MH085926/MH/NIMH NIH HHS/ -- R01 GM105730/GM/NIGMS NIH HHS/ -- R01 MH085926/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. ; Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. furukawa@cshl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/chemistry/metabolism ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):532-3. doi: 10.1126/science.346.6209.532.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacteria ; *Biological Evolution ; Cells/*microbiology/*ultrastructure ; *Chloroplasts ; Hemiptera/microbiology/ultrastructure ; Humans ; *Mitochondria ; Plants/microbiology/ultrastructure ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):611-3. doi: 10.1126/science.345.6197.611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104366" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*genetics ; *Biological Evolution ; Breeding ; Gene Flow ; Genome, Insect ; *Genomic Islands ; Plants/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-11-22
    Description: Through their association with a kleisin subunit (Scc1), cohesin's Smc1 and Smc3 subunits are thought to form tripartite rings that mediate sister chromatid cohesion. Unlike the structure of Smc1/Smc3 and Smc1/Scc1 interfaces, that of Smc3/Scc1 is not known. Disconnection of this interface is thought to release cohesin from chromosomes in a process regulated by acetylation. We show here that the N-terminal domain of yeast Scc1 contains two alpha helices, forming a four-helix bundle with the coiled coil emerging from Smc3's adenosine triphosphatase head. Mutations affecting this interaction compromise cohesin's association with chromosomes. The interface is far from Smc3 residues, whose acetylation prevents cohesin's dissociation from chromosomes. Cohesin complexes holding chromatids together in vivo do indeed have the configuration of hetero-trimeric rings, and sister DNAs are entrapped within these.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gligoris, Thomas G -- Scheinost, Johanna C -- Burmann, Frank -- Petela, Naomi -- Chan, Kok-Lung -- Uluocak, Pelin -- Beckouet, Frederic -- Gruber, Stephan -- Nasmyth, Kim -- Lowe, Jan -- 091859/Z/10/Z/Wellcome Trust/United Kingdom -- 095514/Wellcome Trust/United Kingdom -- 095514/Z/11/Z/Wellcome Trust/United Kingdom -- C573/A 12386/Cancer Research UK/United Kingdom -- C573/A11625/Medical Research Council/United Kingdom -- MC_U105184326/Medical Research Council/United Kingdom -- U10518432/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):963-7. doi: 10.1126/science.1256917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. ; Max-Planck-Institut fur Biochemie, 82152, Martinsried, Germany. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. Medical Research Council (MRC) Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. Dunn School of Pathology, University of Oxford, Oxford OX1 3RF, UK. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. kim.nasmyth@bioch.ox.ac.uk jyl@mrc-lmb.cam.ac.uk. ; MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK. kim.nasmyth@bioch.ox.ac.uk jyl@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25414305" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry ; Amino Acid Sequence ; Cell Cycle Proteins/*chemistry/genetics ; Chromosomal Proteins, Non-Histone/*chemistry/genetics ; Conserved Sequence ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA/chemistry ; Mutation ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):609-10. doi: 10.1126/science.345.6197.609.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104364" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bees ; *Behavior, Animal ; *Biological Evolution ; Birds ; *Cognition ; Reproduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benton, Michael J -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):508-9. doi: 10.1126/science.1257633. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. mike.benton@bristol.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082682" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology ; *Body Size ; Dinosaurs/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-07-26
    Description: Middle Jurassic to Early Cretaceous deposits from northeastern China have yielded varied theropod dinosaurs bearing feathers. Filamentous integumentary structures have also been described in ornithischian dinosaurs, but whether these filaments can be regarded as part of the evolutionary lineage toward feathers remains controversial. Here we describe a new basal neornithischian dinosaur from the Jurassic of Siberia with small scales around the distal hindlimb, larger imbricated scales around the tail, monofilaments around the head and the thorax, and more complex featherlike structures around the humerus, the femur, and the tibia. The discovery of these branched integumentary structures outside theropods suggests that featherlike structures coexisted with scales and were potentially widespread among the entire dinosaur clade; feathers may thus have been present in the earliest dinosaurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godefroit, Pascal -- Sinitsa, Sofia M -- Dhouailly, Danielle -- Bolotsky, Yuri L -- Sizov, Alexander V -- McNamara, Maria E -- Benton, Michael J -- Spagna, Paul -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):451-5. doi: 10.1126/science.1253351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Directorate 'Earth and History of Life,' Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. pascal.godefroit@naturalsciences.be. ; Institute of Natural Resources, Ecology and Cryology, 26 Butin Street, 672 014 Chita, Russia. ; UJF-CNRS FRE 3405, AGIM, Universite Joseph Fourier, Site Sante, 38 706 La Tronche, France. ; Institute of Geology and Nature Management, FEB RAS, 1 Relochny Street 675 000, Blagoveschensk, Russia. ; Institute of the Earth Crust, SB RAS, 128 Lermontov Street, Irkutsk, 664 033 Irkutsk, Russia. ; School of Biological, Earth and Environmental Science, University College Cork, Cork, Ireland. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. ; Directorate 'Earth and History of Life,' Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Bone and Bones/anatomy & histology ; Dinosaurs/*anatomy & histology ; Epidermis/*anatomy & histology ; Feathers/*anatomy & histology ; Hindlimb/anatomy & histology ; Siberia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koschowitz, Marie-Claire -- Lambertz, Markus -- Fischer, Christian -- Sander, P Martin -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1466-7. doi: 10.1126/science.346.6216.1466-c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115 Bonn, Germany. Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, 37073 Gottingen, Germany. m.koschowitz@uni-bonn.de. ; Institut fur Zoologie, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115 Bonn, Germany. ; Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, 37073 Gottingen, Germany. ; Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115 Bonn, Germany. Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525237" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Color Vision ; Dinosaurs/*physiology ; Feathers/*physiology ; Galliformes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woyke, Tanja -- Rubin, Edward M -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):698-9. doi: 10.1126/science.1258871.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, CA 94598, USA, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; DOE Joint Genome Institute, Walnut Creek, CA 94598, USA, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. emrubin@lbl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378606" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/genetics/isolation & purification ; Bacteria/genetics/isolation & purification ; *Biological Evolution ; DNA/genetics/isolation & purification ; *Environment ; Eukaryota/genetics/isolation & purification ; Laboratories ; *Life ; Metagenomics/*methods ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-02-22
    Description: Growth factors (GFs) are critical in tissue repair, but their translation to clinical use has been modest. Physiologically, GF interactions with extracellular matrix (ECM) components facilitate localized and spatially regulated signaling; therefore, we reasoned that the lack of ECM binding in their clinically used forms could underlie the limited translation. We discovered that a domain in placenta growth factor-2 (PlGF-2(123-144)) binds exceptionally strongly and promiscuously to ECM proteins. By fusing this domain to the GFs vascular endothelial growth factor-A, platelet-derived growth factor-BB, and bone morphogenetic protein-2, we generated engineered GF variants with super-affinity to the ECM. These ECM super-affinity GFs induced repair in rodent models of chronic wounds and bone defects that was greatly enhanced as compared to treatment with the wild-type GFs, demonstrating that this approach may be useful in several regenerative medicine applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martino, Mikael M -- Briquez, Priscilla S -- Guc, Esra -- Tortelli, Federico -- Kilarski, Witold W -- Metzger, Stephanie -- Rice, Jeffrey J -- Kuhn, Gisela A -- Muller, Ralph -- Swartz, Melody A -- Hubbell, Jeffrey A -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):885-8. doi: 10.1126/science.1247663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558160" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein 2/chemistry/genetics/metabolism ; Disease Models, Animal ; Extracellular Matrix/*metabolism ; Extracellular Matrix Proteins/chemistry/metabolism ; Heparitin Sulfate/chemistry/metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Pregnancy Proteins/chemistry/genetics/metabolism ; Protein Engineering ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-sis/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor A/chemistry/genetics/metabolism ; *Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-12-17
    Description: Edentulism, the absence of teeth, has evolved convergently among vertebrates, including birds, turtles, and several lineages of mammals. Instead of teeth, modern birds (Neornithes) use a horny beak (rhamphotheca) and a muscular gizzard to acquire and process food. We performed comparative genomic analyses representing lineages of nearly all extant bird orders and recovered shared, inactivating mutations within genes expressed in both the enamel and dentin of teeth of other vertebrate species, indicating that the common ancestor of modern birds lacked mineralized teeth. We estimate that tooth loss, or at least the loss of enamel caps that provide the outer layer of mineralized teeth, occurred about 116 million years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meredith, Robert W -- Zhang, Guojie -- Gilbert, M Thomas P -- Jarvis, Erich D -- Springer, Mark S -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1254390. doi: 10.1126/science.1254390. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. meredithr@mail.montclair.edu mark.springer@ucr.edu. ; China National GeneBank, Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. ; Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; Department of Neurobiology, Howard Hughes Medical Institute and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Biology, University of California, Riverside, CA 92521, USA. meredithr@mail.montclair.edu mark.springer@ucr.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504730" target="_blank"〉PubMed〈/a〉
    Keywords: Alligators and Crocodiles/genetics ; Animals ; *Biological Evolution ; Birds/*anatomy & histology/classification/*genetics ; *Dental Enamel ; *Dentin ; Evolution, Molecular ; Fossils ; *Genome ; Genomics ; Mammals/genetics ; *Mutation ; Phylogeny ; Tooth ; Vertebrates/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-07-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, Michael -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):129. doi: 10.1126/science.345.6193.129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013041" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/anatomy & histology ; *Fossils ; Hominidae/*classification ; Humans ; Paleontology/*trends ; Skull/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-12-20
    Description: Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perica, Tina -- Kondo, Yasushi -- Tiwari, Sandhya P -- McLaughlin, Stephen H -- Kemplen, Katherine R -- Zhang, Xiuwei -- Steward, Annette -- Reuter, Nathalie -- Clarke, Jane -- Teichmann, Sarah A -- 095195/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1254346. doi: 10.1126/science.1254346.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Department of Molecular Biology, University of Bergen University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. saraht@ebi.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525255" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/*genetics ; Amino Acid Sequence ; Bacillus subtilis/metabolism ; Bacterial Proteins/*chemistry/genetics ; Conserved Sequence ; *Evolution, Molecular ; Ligands ; Mutation ; Pentosyltransferases/*chemistry/genetics ; Protein Binding/genetics ; Protein Conformation ; *Protein Engineering ; Protein Multimerization/*genetics ; Repressor Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-12-17
    Description: Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Xing -- Zhou, Zhonghe -- Dudley, Robert -- Mackem, Susan -- Chuong, Cheng-Ming -- Erickson, Gregory M -- Varricchio, David J -- AR 47364/AR/NIAMS NIH HHS/ -- AR 60306/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1253293. doi: 10.1126/science.1253293.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, PR China. xu.xing@ivpp.ac.cn. ; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, PR China. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick NIH, Frederick, MD 21702, USA. ; Department of Pathology, University of Southern California, CA 90033, USA. Cheng Kung University, Laboratory for Wound Repair and Regeneration, Graduated Institute of Clinical Medicine, Tainan, 70101, Taiwan. ; Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA. ; Earth Sciences, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Birds/anatomy & histology/classification/physiology ; *Dinosaurs/classification ; Feathers/anatomy & histology ; Female ; Flight, Animal ; Fossils ; Male ; Morphogenesis ; Phylogeny ; Reproduction ; Respiratory System/anatomy & histology ; Wings, Animal/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, Michael -- New York, N.Y. -- Science. 2014 May 16;344(6185):680-1. doi: 10.1126/science.344.6185.680.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833368" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-04-26
    Description: Schwartz et al. hold that variation among the Dmanisi skulls reflects taxic diversity. The morphological observations to support their hypothesis, however, are partly incorrect, and not calibrated against intraspecific variation in living taxa. After proper adjustment, Schwartz et al.'s data are fully compatible with the hypothesis of a single paleodeme of early Homo at Dmanisi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zollikofer, Christoph P E -- Ponce de Leon, Marcia S -- Margvelashvili, Ann -- Rightmire, G Philip -- Lordkipanidze, David -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):360. doi: 10.1126/science.1250081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763573" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Face/*anatomy & histology ; *Fossils ; Hominidae/*anatomy & histology ; Humans ; Skull/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-04-20
    Description: Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic beta-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Hiroshi -- Nishizawa, Tomohiro -- Tani, Kazutoshi -- Yamazaki, Yuji -- Tamura, Atsushi -- Ishitani, Ryuichiro -- Dohmae, Naoshi -- Tsukita, Sachiko -- Nureki, Osamu -- Fujiyoshi, Yoshinori -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):304-7. doi: 10.1126/science.1248571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744376" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Claudins/*chemistry ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Static Electricity ; Tight Junctions/*chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-08-16
    Description: Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuryn, Steven -- Ahier, Arnaud -- Portoso, Manuela -- White, Esther Redhouse -- Morin, Marie-Charlotte -- Margueron, Raphael -- Jarriault, Sophie -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):826-9. doi: 10.1126/science.1255885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. ; Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France. ; Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. sophie@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124442" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/*cytology/genetics ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Dedifferentiation ; Cell Nucleus/metabolism/ultrastructure ; *Cell Transdifferentiation ; Digestive System/cytology ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/genetics/*metabolism ; Histones/*metabolism ; Lysine/metabolism ; Methylation ; Models, Biological ; Molecular Sequence Data ; Motor Neurons/*cytology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-12-17
    Description: Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barber, Matthew F -- Elde, Nels C -- 1F32GM108288/GM/NIGMS NIH HHS/ -- GM090042/GM/NIGMS NIH HHS/ -- R00 GM090042/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1362-6. doi: 10.1126/science.1259329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. nelde@genetics.utah.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504720" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Evolution, Molecular ; Haemophilus influenzae/*metabolism ; Haplorhini/*genetics/immunology/*metabolism ; Humans ; Immunity, Innate ; Models, Molecular ; Molecular Sequence Data ; Neisseria/*metabolism ; Neisseria gonorrhoeae/metabolism ; Neisseria meningitidis/metabolism ; Phylogeny ; Polymorphism, Genetic ; Protein Binding ; Selection, Genetic ; Transferrin/chemistry/*genetics/*metabolism ; Transferrin-Binding Protein A/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grayson, D K -- Meltzer, D J -- Buikstra, J E -- Flannery, K V -- Fowler, C S -- Marcus, J -- O'Connell, J F -- Piperno, D R -- Sabloff, J A -- Smith, B D -- Thomas, D H -- Willerslev, E -- Zeder, M A -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):390. doi: 10.1126/science.345.6195.390-b. Epub 2014 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology and Quaternary Research Center, University of Washington, Seattle, WA 98185, USA. grayson@uw.edu. ; Department of Anthropology, Southern Methodist University, Dallas, TX 75275, USA. ; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Anthropology, University of Nevada, Reno, NV 89557, USA. ; Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA. ; Program in Human Ecology and Archaeobiology and Smithsonian Tropical Research Institute (Panama), National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA. ; Santa Fe Institute, Santa Fe, NM 87501, USA. ; Program in Human Ecology and Archaeobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA. ; Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061197" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-08-12
    Description: Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yelshanskaya, Maria V -- Li, Minfen -- Sobolevsky, Alexander I -- NS083660/NS/NINDS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R01 NS083660/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1070-4. doi: 10.1126/science.1256508. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. as4005@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; Cysteine/chemistry ; Glutamic Acid/pharmacology ; HEK293 Cells ; Humans ; *Ion Channel Gating ; Models, Chemical ; Organophosphonates/chemistry/pharmacology ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrimidinones/*pharmacology ; Quinoxalines/chemistry/pharmacology ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-03-22
    Description: Rapidly permineralized fossils can provide exceptional insights into the evolution of life over geological time. Here, we present an exquisitely preserved, calcified stem of a royal fern (Osmundaceae) from Early Jurassic lahar deposits of Sweden in which authigenic mineral precipitation from hydrothermal brines occurred so rapidly that it preserved cytoplasm, cytosol granules, nuclei, and even chromosomes in various stages of cell division. Morphometric parameters of interphase nuclei match those of extant Osmundaceae, indicating that the genome size of these reputed "living fossils" has remained unchanged over at least 180 million years-a paramount example of evolutionary stasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bomfleur, Benjamin -- McLoughlin, Stephen -- Vajda, Vivi -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1376-7. doi: 10.1126/science.1249884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Palaeobiology, Swedish Museum of Natural History, Post Office Box 50007, SE-104 05 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653037" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Cell Nucleus/*ultrastructure ; Chromosomes, Plant/*ultrastructure ; Ferns/*genetics/ultrastructure ; *Fossils ; *Genome, Plant ; Sweden ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-10-04
    Description: Organohalide-respiring microorganisms can use a variety of persistent pollutants, including trichloroethene (TCE), as terminal electron acceptors. The final two-electron transfer step in organohalide respiration is catalyzed by reductive dehalogenases. Here we report the x-ray crystal structure of PceA, an archetypal dehalogenase from Sulfurospirillum multivorans, as well as structures of PceA in complex with TCE and product analogs. The active site harbors a deeply buried norpseudo-B12 cofactor within a nitroreductase fold, also found in a mammalian B12 chaperone. The structures of PceA reveal how a cobalamin supports a reductive haloelimination exploiting a conserved B12-binding scaffold capped by a highly variable substrate-capturing region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bommer, Martin -- Kunze, Cindy -- Fesseler, Jochen -- Schubert, Torsten -- Diekert, Gabriele -- Dobbek, Holger -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):455-8. doi: 10.1126/science.1258118. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biologie, Strukturbiologie/Biochemie, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. ; Institut fur Mikrobiologie, Friedrich-Schiller-Universitat Jena, Lehrstuhl fur Angewandte und Okologische Mikrobiologie, Philosophenweg 12, 07743 Jena, Germany. ; Institut fur Mikrobiologie, Friedrich-Schiller-Universitat Jena, Lehrstuhl fur Angewandte und Okologische Mikrobiologie, Philosophenweg 12, 07743 Jena, Germany. holger.dobbek@biologie.hu-berlin.de gabriele.diekert@uni-jena.de. ; Institut fur Biologie, Strukturbiologie/Biochemie, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. holger.dobbek@biologie.hu-berlin.de gabriele.diekert@uni-jena.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278505" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacterial Proteins/*chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Electron Transport ; Epsilonproteobacteria/*enzymology ; Oxidoreductases/*chemistry ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity ; Trichloroethylene/*chemistry ; Vitamin B 12/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-08-02
    Description: Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Ilmin -- Xiang, Siheng -- Kato, Masato -- Wu, Leeju -- Theodoropoulos, Pano -- Wang, Tao -- Kim, Jiwoong -- Yun, Jonghyun -- Xie, Yang -- McKnight, Steven L -- U01 GM107623/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1139-45. doi: 10.1126/science.1254917. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Quantitative Biomedical Research Center, Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25081482" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amyotrophic Lateral Sclerosis/genetics/*metabolism/pathology ; Astrocytes/*metabolism/pathology ; Cell Death ; Cell Nucleolus/*metabolism ; Cells, Cultured ; Dipeptides/genetics/*metabolism/pharmacology ; Frontotemporal Dementia/genetics/*metabolism/pathology ; Glutamate Plasma Membrane Transport Proteins/genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Hydrogel ; Phosphorylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*genetics ; RNA, Antisense/antagonists & inhibitors/biosynthesis ; RNA, Messenger/antagonists & inhibitors/biosynthesis ; RNA, Ribosomal/antagonists & inhibitors/biosynthesis ; Repetitive Sequences, Amino Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-06-21
    Description: Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatziioannou, Theodora -- Del Prete, Gregory Q -- Keele, Brandon F -- Estes, Jacob D -- McNatt, Matthew W -- Bitzegeio, Julia -- Raymond, Alice -- Rodriguez, Anthony -- Schmidt, Fabian -- Mac Trubey, C -- Smedley, Jeremy -- Piatak, Michael Jr -- KewalRamani, Vineet N -- Lifson, Jeffrey D -- Bieniasz, Paul D -- HHSN261200800001E/PHS HHS/ -- R01 AI050111/AI/NIAID NIH HHS/ -- R01 AI078788/AI/NIAID NIH HHS/ -- R01AI078788/AI/NIAID NIH HHS/ -- R01AI50111/AI/NIAID NIH HHS/ -- R37 AI064003/AI/NIAID NIH HHS/ -- R37AI64003/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1401-5. doi: 10.1126/science.1250761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. ; Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. Howard Hughes Medical Institute, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948736" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology/transmission/*virology ; Amino Acid Sequence ; Animals ; Antigens, CD8/immunology ; CD4-Positive T-Lymphocytes/immunology ; *Disease Models, Animal ; HIV-1/genetics/*physiology ; Host-Pathogen Interactions/*immunology ; Human Immunodeficiency Virus Proteins/chemistry/genetics/metabolism ; Lymphocyte Depletion ; Macaca nemestrina/immunology/*virology ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Regulatory and Accessory Proteins/chemistry/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-05-24
    Description: The evolution of the ratite birds has been widely attributed to vicariant speciation, driven by the Cretaceous breakup of the supercontinent Gondwana. The early isolation of Africa and Madagascar implies that the ostrich and extinct Madagascan elephant birds (Aepyornithidae) should be the oldest ratite lineages. We sequenced the mitochondrial genomes of two elephant birds and performed phylogenetic analyses, which revealed that these birds are the closest relatives of the New Zealand kiwi and are distant from the basal ratite lineage of ostriches. This unexpected result strongly contradicts continental vicariance and instead supports flighted dispersal in all major ratite lineages. We suggest that convergence toward gigantism and flightlessness was facilitated by early Tertiary expansion into the diurnal herbivory niche after the extinction of the dinosaurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, Kieren J -- Llamas, Bastien -- Soubrier, Julien -- Rawlence, Nicolas J -- Worthy, Trevor H -- Wood, Jamie -- Lee, Michael S Y -- Cooper, Alan -- New York, N.Y. -- Science. 2014 May 23;344(6186):898-900. doi: 10.1126/science.1251981.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. ; School of Biological Sciences, Flinders University, South Australia 5001, Australia. ; Landcare Research, Post Office Box 40, Lincoln 7640, New Zealand. ; Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. South Australian Museum, North Terrace, South Australia 5000, Australia. ; Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. alan.cooper@adelaide.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; DNA/*genetics ; Flight, Animal ; Fossils ; Molecular Sequence Data ; New Zealand ; Palaeognathae/*classification/genetics ; Phylogeny ; Struthioniformes/*classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-05-03
    Description: Down-regulation and mutations of the nuclear-architecture proteins lamin A and C cause misshapen nuclei and altered chromatin organization associated with cancer and laminopathies, including the premature-aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we identified the small molecule "Remodelin" that improved nuclear architecture, chromatin organization, and fitness of both human lamin A/C-depleted cells and HGPS-derived patient cells and decreased markers of DNA damage in these cells. Using a combination of chemical, cellular, and genetic approaches, we identified the acetyl-transferase protein NAT10 as the target of Remodelin that mediated nuclear shape rescue in laminopathic cells via microtubule reorganization. These findings provide insights into how NAT10 affects nuclear architecture and suggest alternative strategies for treating laminopathies and aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246063/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246063/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrieu, Delphine -- Britton, Sebastien -- Demir, Mukerrem -- Rodriguez, Raphael -- Jackson, Stephen P -- 092096/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- A11224/Cancer Research UK/United Kingdom -- C6/A11224/Cancer Research UK/United Kingdom -- C6946/A14492/Cancer Research UK/United Kingdom -- MR/L019116/1/Medical Research Council/United Kingdom -- WT092096/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 May 2;344(6183):527-32. doi: 10.1126/science.1252651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust/Cancer Research UK (CRUK) Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786082" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Nucleus/*drug effects/genetics/ultrastructure ; Chromatin/metabolism ; Enzyme Inhibitors/chemistry/*pharmacology ; Humans ; Hydrazones/chemistry/*pharmacology ; Lamin Type A/genetics ; Microtubules/metabolism ; N-Terminal Acetyltransferase E/*antagonists & inhibitors/chemistry/genetics ; Nocodazole/pharmacology ; Progeria/*enzymology/genetics ; Protein Structure, Tertiary ; RNA, Small Interfering/genetics ; Thiazoles/chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-09-13
    Description: The origin of chordates has been debated for more than a century, with one key issue being the emergence of the notochord. In vertebrates, the notochord develops by convergence and extension of the chordamesoderm, a population of midline cells of unique molecular identity. We identify a population of mesodermal cells in a developing invertebrate, the marine annelid Platynereis dumerilii, that converges and extends toward the midline and expresses a notochord-specific combination of genes. These cells differentiate into a longitudinal muscle, the axochord, that is positioned between central nervous system and axial blood vessel and secretes a strong collagenous extracellular matrix. Ancestral state reconstruction suggests that contractile mesodermal midline cells existed in bilaterian ancestors. We propose that these cells, via vacuolization and stiffening, gave rise to the chordate notochord.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lauri, Antonella -- Brunet, Thibaut -- Handberg-Thorsager, Mette -- Fischer, Antje H L -- Simakov, Oleg -- Steinmetz, Patrick R H -- Tomer, Raju -- Keller, Philipp J -- Arendt, Detlev -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1365-8. doi: 10.1126/science.1253396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. ; Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA. ; Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA. ; Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany. detlev.arendt@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214631" target="_blank"〉PubMed〈/a〉
    Keywords: Abdominal Muscles/cytology/embryology ; Animals ; *Biological Evolution ; Gene Expression Regulation, Developmental ; Mesoderm/cytology/*embryology ; Notochord/cytology/*embryology ; Phylogeny ; Polychaeta/*classification/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-03-22
    Description: Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morais, Vanessa A -- Haddad, Dominik -- Craessaerts, Katleen -- De Bock, Pieter-Jan -- Swerts, Jef -- Vilain, Sven -- Aerts, Liesbeth -- Overbergh, Lut -- Grunewald, Anne -- Seibler, Philip -- Klein, Christine -- Gevaert, Kris -- Verstreken, Patrik -- De Strooper, Bart -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):203-7. doi: 10.1126/science.1249161. Epub 2014 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉VIB Center for the Biology of Disease, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24652937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/enzymology ; Drosophila Proteins/*metabolism ; Electron Transport Complex I/*metabolism ; Humans ; Liver/enzymology ; Membrane Potential, Mitochondrial/genetics ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; NADH Dehydrogenase/*metabolism ; Parkinson Disease/*enzymology/*genetics ; Phosphorylation/genetics ; Protein Kinases/*genetics ; Proteome ; Serine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-06-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duffy, Meghan A -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1229-30. doi: 10.1126/science.1255350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104, USA. duffymeg@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24926004" target="_blank"〉PubMed〈/a〉
    Keywords: Ascomycota/*pathogenicity ; *Biological Evolution ; *Ecological and Environmental Processes ; *Host-Pathogen Interactions ; Plant Diseases/*microbiology ; Plantago/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-09-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morell, Virginia -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1443-5. doi: 10.1126/science.345.6203.1443.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237084" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Crows ; Humans ; *Language ; Software ; *Thinking ; *Vocabulary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-05-17
    Description: Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, Andrew J -- Dai, Wei -- O'Mara, Megan L -- Abankwa, Daniel -- Chhabra, Yash -- Pelekanos, Rebecca A -- Gardon, Olivier -- Tunny, Kathryn A -- Blucher, Kristopher M -- Morton, Craig J -- Parker, Michael W -- Sierecki, Emma -- Gambin, Yann -- Gomez, Guillermo A -- Alexandrov, Kirill -- Wilson, Ian A -- Doxastakis, Manolis -- Mark, Alan E -- Waters, Michael J -- New York, N.Y. -- Science. 2014 May 16;344(6185):1249783. doi: 10.1126/science.1249783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. m.waters@uq.edu.au a.brooks@uq.edu.au. ; Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA. ; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia. ; Scripps Research Institute, La Jolla, CA 92037, USA. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833397" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Cysteine/chemistry ; Enzyme Activation ; HEK293 Cells ; Humans ; Janus Kinase 2/antagonists & inhibitors/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Somatotropin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-09-13
    Description: Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245030/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245030/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carroll, Scott P -- Jorgensen, Peter Sogaard -- Kinnison, Michael T -- Bergstrom, Carl T -- Denison, R Ford -- Gluckman, Peter -- Smith, Thomas B -- Strauss, Sharon Y -- Tabashnik, Bruce E -- U54 GM088558/GM/NIGMS NIH HHS/ -- U54GM088558/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):1245993. doi: 10.1126/science.1245993. Epub 2014 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. Institute for Contemporary Evolution, Davis, CA 95616, USA. spcarroll@ucdavis.edu psjorgensen@bio.ku.dk. ; Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark. Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark. spcarroll@ucdavis.edu psjorgensen@bio.ku.dk. ; School of Biology and Ecology, University of Maine, Orono, ME 04469, USA. ; Department of Biology, University of Washington, Seattle, WA 98195, USA. ; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN 55108, USA. ; Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 619 Charles E. Young Drive East, Los Angeles, 90095-1496, CA. ; Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, One Shields Avenue, CA 95616, USA. ; Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25213376" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; *Biodiversity ; *Biological Evolution ; Climate Change ; Conservation of Natural Resources/*methods ; *Environment ; Environmental Monitoring ; Food Supply ; Genetic Engineering ; Health ; Humans ; Phenotype ; Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-18
    Description: The human sense of fairness is an evolutionary puzzle. To study this, we can look to other species, in which this can be translated empirically into responses to reward distribution. Passive and active protest against receiving less than a partner for the same task is widespread in species that cooperate outside kinship and mating bonds. There is less evidence that nonhuman species seek to equalize outcomes to their own detriment, yet the latter has been documented in our closest relatives, the apes. This reaction probably reflects an attempt to forestall partner dissatisfaction with obtained outcomes and its negative impact on future cooperation. We hypothesize that it is the evolution of this response that allowed the development of a complete sense of fairness in humans, which aims not at equality for its own sake but for the sake of continued cooperation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451566/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451566/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brosnan, Sarah F -- de Waal, Frans B M -- P51 OD011132/OD/NIH HHS/ -- P51 RR000165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):1251776. doi: 10.1126/science.1251776. Epub 2014 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Psychology and Philosophy, Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA, USA. sarah.brosnan@gmail.com. ; Living Links, Yerkes National Primate Research Center and Psychology Department, Emory University, Atlanta, GA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Cooperative Behavior ; Hominidae/classification/psychology ; Humans ; Phylogeny ; Reward ; *Social Discrimination ; *Social Justice
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313529/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313529/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schirle, Nicole T -- Sheu-Gruttadauria, Jessica -- MacRae, Ian J -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM104475/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):608-13. doi: 10.1126/science.1258040.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. macrae@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359968" target="_blank"〉PubMed〈/a〉
    Keywords: Argonaute Proteins/*chemistry/genetics ; Base Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; *Gene Expression Regulation ; Humans ; Magnesium/chemistry ; MicroRNAs/*chemistry/genetics ; Models, Molecular ; Nucleic Acid Conformation ; Protein Structure, Secondary ; RNA, Guide/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-02-18
    Description: In this work, we investigate morphological differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta, which has dissected leaves comprising distinct leaflets. With the use of genetics, interspecific gene transfers, and time-lapse imaging, we show that leaflet development requires the REDUCED COMPLEXITY (RCO) homeodomain protein. RCO functions specifically in leaves, where it sculpts developing leaflets by repressing growth at their flanks. RCO evolved in the Brassicaceae family through gene duplication and was lost in A. thaliana, contributing to leaf simplification in this species. Species-specific RCO action with respect to its paralog results from its distinct gene expression pattern in the leaf base. Thus, regulatory evolution coupled with gene duplication and loss generated leaf shape diversity by modifying local growth patterns during organogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vlad, Daniela -- Kierzkowski, Daniel -- Rast, Madlen I -- Vuolo, Francesco -- Dello Ioio, Raffaele -- Galinha, Carla -- Gan, Xiangchao -- Hajheidari, Mohsen -- Hay, Angela -- Smith, Richard S -- Huijser, Peter -- Bailey, C Donovan -- Tsiantis, Miltos -- BB/H006974/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H011455/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):780-3. doi: 10.1126/science.1248384.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531971" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/anatomy & histology/genetics ; Brassicaceae/*anatomy & histology/*genetics ; Chromosome Mapping ; *Evolution, Molecular ; Gene Duplication ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genetic Complementation Test ; Molecular Sequence Data ; Plant Leaves/*anatomy & histology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-04-26
    Description: Lordkipanidze et al. (Research Article, 18 October 2013, p. 326) conclude, from gross morphological comparisons and geometric-morphometric analysis of general shape, that the five hominid crania from Dmanisi in Georgia represent a single regional variant of Homo erectus. However, dental, mandibular, and cranial morphologies all suggest taxic diversity and, in particular, validate the previously named H. georgicus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartz, Jeffrey H -- Tattersall, Ian -- Chi, Zhang -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):360. doi: 10.1126/science.1250056.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763572" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Face/*anatomy & histology ; *Fossils ; Hominidae/*anatomy & histology ; Humans ; Skull/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-06-07
    Description: Calcium homeostasis balances passive calcium leak and active calcium uptake. Human Bax inhibitor-1 (hBI-1) is an antiapoptotic protein that mediates a calcium leak and is representative of a highly conserved and widely distributed family, the transmembrane Bax inhibitor motif (TMBIM) proteins. Here, we present crystal structures of a bacterial homolog and characterize its calcium leak activity. The structure has a seven-transmembrane-helix fold that features two triple-helix sandwiches wrapped around a central C-terminal helix. Structures obtained in closed and open conformations are reversibly interconvertible by change of pH. A hydrogen-bonded, pKa (where Ka is the acid dissociation constant)-perturbed pair of conserved aspartate residues explains the pH dependence of this transition, and biochemical studies show that pH regulates calcium influx in proteoliposomes. Homology models for hBI-1 provide insights into TMBIM-mediated calcium leak and cytoprotective activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yanqi -- Bruni, Renato -- Kloss, Brian -- Assur, Zahra -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- Liu, Qun -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1131-5. doi: 10.1126/science.1252043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. ; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultat fur Informatik, Technische Universitat Munchen, Garching, Germany. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. qunliu@bnl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904158" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*metabolism ; Bacterial Proteins/*chemistry/metabolism ; Calcium/*metabolism ; Cell Membrane/*metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen-Ion Concentration ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-04-20
    Description: Flaviviruses are emerging human pathogens and worldwide health threats. During infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) are produced by resisting degradation by the 5'--〉3' host cell exonuclease Xrn1 through an unknown RNA structure-based mechanism. Here, we present the crystal structure of a complete Xrn1-resistant flaviviral RNA, which contains interwoven pseudoknots within a compact structure that depends on highly conserved nucleotides. The RNA's three-dimensional topology creates a ringlike conformation, with the 5' end of the resistant structure passing through the ring from one side of the fold to the other. Disruption of this structure prevents formation of sfRNA during flaviviral infection. Thus, sfRNA formation results from an RNA fold that interacts directly with Xrn1, presenting the enzyme with a structure that confounds its helicase activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Erich G -- Costantino, David A -- Rabe, Jennifer L -- Moon, Stephanie L -- Wilusz, Jeffrey -- Nix, Jay C -- Kieft, Jeffrey S -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- U54 AI-065357/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):307-10. doi: 10.1126/science.1250897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744377" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Crystallography, X-Ray ; Encephalitis Virus, Murray Valley/*genetics/pathogenicity ; Exoribonucleases/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; RNA, Viral/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapuisat, Michel -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):254-5. doi: 10.1126/science.1249285.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436408" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*physiology ; Bees/*physiology ; *Biological Evolution ; Female ; Fertility/*physiology ; Male ; Pheromones/*physiology ; Wasps/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-05-17
    Description: Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatters, James C -- Kennett, Douglas J -- Asmerom, Yemane -- Kemp, Brian M -- Polyak, Victor -- Blank, Alberto Nava -- Beddows, Patricia A -- Reinhardt, Eduard -- Arroyo-Cabrales, Joaquin -- Bolnick, Deborah A -- Malhi, Ripan S -- Culleton, Brendan J -- Erreguerena, Pilar Luna -- Rissolo, Dominique -- Morell-Hart, Shanti -- Stafford, Thomas W Jr -- New York, N.Y. -- Science. 2014 May 16;344(6185):750-4. doi: 10.1126/science.1252619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Paleoscience and DirectAMS, 10322 NE 190th Street, Bothell, WA 98011, USA. paleosci@gmail.com. ; Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA. ; Department of Anthropology and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA. ; Bay Area Underwater Explorers, Berkeley, CA, USA. ; Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA. ; School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; Instituto Nacional Antropologia e Historia, Colonia Centro Historico, 06060, Mexico City, DF, Mexico. ; Department of Anthropology and Population Research Center, University of Texas at Austin, Austin, TX 78712, USA. ; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA. ; Subdireccion de Arqueologia Subacuatica, Instituto Nacional de Antropologia e Historia, 06070 Mexico City, Mexico. ; Waitt Institute, La Jolla, CA 92038-1948, USA. ; Department of Anthropology, Stanford University, Stanford, CA 94305, USA. ; Centre for AMS C, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Centre for GeoGenetics, Natural History Museum of Denmark, Geological Museum, Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833392" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Biological Evolution ; DNA, Mitochondrial/genetics ; Haplotypes ; Humans ; Indians, North American/*genetics ; Mexico ; Molecular Sequence Data ; Paleontology ; Radiometric Dating ; *Skeleton ; Skull/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-03-15
    Description: Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically "reads" alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049228/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049228/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacob, Yannick -- Bergamin, Elisa -- Donoghue, Mark T A -- Mongeon, Vanessa -- LeBlanc, Chantal -- Voigt, Philipp -- Underwood, Charles J -- Brunzelle, Joseph S -- Michaels, Scott D -- Reinberg, Danny -- Couture, Jean-Francois -- Martienssen, Robert A -- BMA-355900/Canadian Institutes of Health Research/Canada -- GM064844/GM/NIGMS NIH HHS/ -- GM067014/GM/NIGMS NIH HHS/ -- GM075060/GM/NIGMS NIH HHS/ -- R01 GM067014/GM/NIGMS NIH HHS/ -- R01 GM075060/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- R37GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1249-53. doi: 10.1126/science.1248357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626927" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/*chemistry/metabolism ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; DNA Replication ; Epigenesis, Genetic ; Gene Expression Regulation, Plant ; Heterochromatin/*metabolism ; Histones/*metabolism ; Methylation ; Methyltransferases/*chemistry/metabolism ; Mitosis ; Molecular Sequence Data ; *Protein Processing, Post-Translational ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatters, James C -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):390. doi: 10.1126/science.345.6195.390-c. Epub 2014 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Paleoscience, Bothell, WA 98011, USA. paleosci@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061198" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-06-28
    Description: Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor alpha-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Herbert, Andrew S -- Kuehne, Ana I -- Wirchnianski, Ariel S -- Soh, Timothy K -- Stubbs, Sarah H -- Janssen, Hans -- Damme, Markus -- Saftig, Paul -- Whelan, Sean P -- Dye, John M -- Brummelkamp, Thijn R -- AI081842/AI/NIAID NIH HHS/ -- AI109740/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI109740/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; Biochemisches Institut, Christian Albrechts-Universitat Kiel, 24118 Kiel, Germany. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Cells, Cultured ; Chickens ; Dystroglycans/genetics/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Lassa Fever/virology ; Lassa virus/*physiology ; Lysosomal-Associated Membrane Protein 1/chemistry/*metabolism ; Lysosomes/metabolism/virology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein Binding ; Receptors, Virus/*metabolism ; Sialyltransferases/metabolism ; Viral Envelope Proteins/*metabolism ; *Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fritzsch, Bernd -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):631-2. doi: 10.1126/science.345.6197.631-b. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Iowa, Iowa City, IA 52242, USA. bernd-fritzsch@uiowa.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Electric Fish/*genetics ; Electric Organ/*cytology/*physiology ; Electrophorus/*anatomy & histology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-03-22
    Description: The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane alpha helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaremko, Lukasz -- Jaremko, Mariusz -- Giller, Karin -- Becker, Stefan -- Zweckstetter, Markus -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysikalische Chemie, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; Cholesterol/metabolism ; Hydrophobic and Hydrophilic Interactions ; Isoquinolines/*chemistry/metabolism ; Ligands ; Mice ; Micelles ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, GABA/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-09-27
    Description: The Lower to Middle Paleolithic transition (~400,000 to 200,000 years ago) is marked by technical, behavioral, and anatomical changes among hominin populations throughout Africa and Eurasia. The replacement of bifacial stone tools, such as handaxes, by tools made on flakes detached from Levallois cores documents the most important conceptual shift in stone tool production strategies since the advent of bifacial technology more than one million years earlier and has been argued to result from the expansion of archaic Homo sapiens out of Africa. Our data from Nor Geghi 1, Armenia, record the earliest synchronic use of bifacial and Levallois technology outside Africa and are consistent with the hypothesis that this transition occurred independently within geographically dispersed, technologically precocious hominin populations with a shared technological ancestry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adler, D S -- Wilkinson, K N -- Blockley, S -- Mark, D F -- Pinhasi, R -- Schmidt-Magee, B A -- Nahapetyan, S -- Mallol, C -- Berna, F -- Glauberman, P J -- Raczynski-Henk, Y -- Wales, N -- Frahm, E -- Joris, O -- MacLeod, A -- Smith, V C -- Cullen, V L -- Gasparian, B -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1609-13. doi: 10.1126/science.1256484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, CT 06269, USA. daniel.adler@uconn.edu. ; Department of Archaeology, University of Winchester, Winchester, SO22 4NR, UK. ; Department of Geography, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK. ; Natural Environmental Research Council Argon Isotope Facility, Scottish Universities Environmental Research Centre, Scottish Enterprise and Technology Park, Rankine Avenue, East Kilbride, G75 0QF, UK. ; School of Archaeology, University College Dublin, Newman Building, Belfield, Dublin 4, Ireland. ; Department of Anthropology, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, CT 06269, USA. ; Department of Cartography and Geomorphology, Yerevan State University, Alek Manukyan 1, 0025 Yerevan, Armenia. ; Departamento de Geografia e Historia, Universidad de La Laguna, Tenerife, Spain. ; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada. ; Ex-Situ Silex, Leiden, Netherlands. ; Department of Anthropology, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, CT 06269, USA. Centre for GeoGenetics, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen K, Denmark. ; Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield, S1 4ET, UK. ; MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, Romisch-Germanisches Zentralmuseum Mainz, Schloss Monrepos, D-56567 Neuwied, Germany. ; Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK. ; Institute of Archaeology and Ethnology, National Academy of Sciences of the Republic of Armenia, Charents 15, 0025 Yerevan, Armenia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Armenia ; *Biological Evolution ; History, Ancient ; Hominidae/*anatomy & histology ; Humans ; Technology/*history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-08-12
    Description: AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Durr, Katharina L -- Gouaux, Eric -- F32 MH100331/MH/NIMH NIH HHS/ -- F32MH100331/MH/NIMH NIH HHS/ -- R01 NS038631/NS/NINDS NIH HHS/ -- R37 NS038631/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1021-6. doi: 10.1126/science.1258409. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. ; Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. gouauxe@ohsu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103405" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conotoxins/*chemistry ; Conus Snail ; Crystallography, X-Ray ; *Ion Channel Gating ; Ligands ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orlando, Ludovic -- Willerslev, Eske -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):511-2. doi: 10.1126/science.1256515.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350K Copenhagen, Denmark. lorlando@snm.ku.dk. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350K Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Bone and Bones/chemistry/metabolism ; Chromatin/chemistry/metabolism ; *DNA Damage ; DNA Methylation ; *Epigenesis, Genetic ; Genome, Human ; Hair/chemistry/metabolism ; Humans ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-11-15
    Description: Male mammals often kill conspecific offspring. The benefits of such infanticide to males, and its costs to females, probably vary across mammalian social and mating systems. We used comparative analyses to show that infanticide primarily evolves in social mammals in which reproduction is monopolized by a minority of males. It has not promoted social counterstrategies such as female gregariousness, pair living, or changes in group size and sex ratio, but is successfully prevented by female sexual promiscuity, a paternity dilution strategy. These findings indicate that infanticide is a consequence, rather than a cause, of contrasts in mammalian social systems affecting the intensity of sexual conflict.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lukas, Dieter -- Huchard, Elise -- New York, N.Y. -- Science. 2014 Nov 14;346(6211):841-4. doi: 10.1126/science.1257226.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Large Animal Research Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. dl384@cam.ac.uk. ; Large Animal Research Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Universite de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25395534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conflict (Psychology) ; Female ; Male ; Mammals/*psychology ; Pair Bond ; Reproduction ; Sex Ratio ; *Sexual Behavior, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-08-12
    Description: Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4-guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagnon, Matthieu G -- Lin, Jinzhong -- Bulkley, David -- Steitz, Thomas A -- GM022778/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):684-7. doi: 10.1126/science.1253525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA. thomas.steitz@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104389" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry ; Nucleic Acid Conformation ; Peptide Initiation Factors ; Protein Structure, Tertiary ; RNA, Transfer/chemistry ; Ribosome Subunits, Small, Bacterial/*chemistry ; Thermus thermophilus ; Transcriptional Elongation Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-06-07
    Description: Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157056/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157056/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Yu -- Xie, Min -- Chen, Wenbin -- Talbot, Richard -- Maddox, Jillian F -- Faraut, Thomas -- Wu, Chunhua -- Muzny, Donna M -- Li, Yuxiang -- Zhang, Wenguang -- Stanton, Jo-Ann -- Brauning, Rudiger -- Barris, Wesley C -- Hourlier, Thibaut -- Aken, Bronwen L -- Searle, Stephen M J -- Adelson, David L -- Bian, Chao -- Cam, Graham R -- Chen, Yulin -- Cheng, Shifeng -- DeSilva, Udaya -- Dixen, Karen -- Dong, Yang -- Fan, Guangyi -- Franklin, Ian R -- Fu, Shaoyin -- Fuentes-Utrilla, Pablo -- Guan, Rui -- Highland, Margaret A -- Holder, Michael E -- Huang, Guodong -- Ingham, Aaron B -- Jhangiani, Shalini N -- Kalra, Divya -- Kovar, Christie L -- Lee, Sandra L -- Liu, Weiqing -- Liu, Xin -- Lu, Changxin -- Lv, Tian -- Mathew, Tittu -- McWilliam, Sean -- Menzies, Moira -- Pan, Shengkai -- Robelin, David -- Servin, Bertrand -- Townley, David -- Wang, Wenliang -- Wei, Bin -- White, Stephen N -- Yang, Xinhua -- Ye, Chen -- Yue, Yaojing -- Zeng, Peng -- Zhou, Qing -- Hansen, Jacob B -- Kristiansen, Karsten -- Gibbs, Richard A -- Flicek, Paul -- Warkup, Christopher C -- Jones, Huw E -- Oddy, V Hutton -- Nicholas, Frank W -- McEwan, John C -- Kijas, James W -- Wang, Jun -- Worley, Kim C -- Archibald, Alan L -- Cockett, Noelle -- Xu, Xun -- Wang, Wen -- Dalrymple, Brian P -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- BB/1025360/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025360/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025506/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- U54 HG003273/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1168-73. doi: 10.1126/science.1252806.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; Ediburgh Genomics, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK. ; Utah State University, Logan, UT 84322-4815, USA. ; Institut National de la Recherche Agronomique, Laboratoire de Genetique Cellulaire, UMR 444, Castanet-Tolosan F-31326, France. ; Utah State University, Logan, UT 84322-1435, USA. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. ; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. Inner Mongolia Agricultural University, Hohhot 010018, China. Institute of ATCG, Nei Mongol Bio-Information, Hohhot, China. ; Department of Anatomy, University of Otago, Dunedin 9054, New Zealand. ; AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand. ; Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. ; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China. ; Department of Biology, University of Copenhagen, DK-2100 Copenhagen O, Denmark. ; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. ; Inner Mongolia Agricultural University, Hohhot 010018, China. ; U.S. Department of Agriculture Agricultural Research Service Animal Disease Research Unit, Pullman, WA 99164, USA. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA. ; BGI-Shenzhen, Shenzhen 518083, China. Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China. ; Lanzhou Institute of Husbandry and Pharmaceutical Science, Lanzhou, 730050, China. ; Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. ; Biosciences Knowledge Transfer Network, The Roslin Institute, Easter Bush, Midlothian, EH25 9RG, UK. ; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. ; Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia. ; BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Macau 999078, China. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; Utah State University, Logan, UT 84322-1435, USA. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; BGI-Shenzhen, Shenzhen 518083, China. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904168" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Fatty Acids, Volatile/metabolism/physiology ; Gene Expression Regulation ; Genome ; Keratins, Hair-Specific/genetics ; Lipid Metabolism/genetics/*physiology ; Molecular Sequence Data ; Phylogeny ; Rumen/metabolism/*physiology ; Sheep, Domestic/classification/*genetics/*metabolism ; Transcriptome ; Wool/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...