ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-29
    Description: Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from approximately 750 to approximately 635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- Rouxel, Olivier J -- Bekker, Andrey -- Lalonde, Stefan V -- Konhauser, Kurt O -- Reinhard, Christopher T -- Lyons, Timothy W -- England -- Nature. 2010 Oct 28;467(7319):1088-90. doi: 10.1038/nature09485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*metabolism ; Atmosphere/chemistry ; *Biological Evolution ; Ferric Compounds/analysis/metabolism ; Geologic Sediments/chemistry ; History, Ancient ; Ice Cover ; Iron/analysis/metabolism ; Marine Biology ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/analysis/metabolism ; Phosphates/analysis/*metabolism ; Phosphorus/analysis/metabolism ; Seawater/chemistry ; Silicon Dioxide/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, Timothy W -- Reinhard, Christopher T -- England -- Nature. 2009 Sep 10;461(7261):179-81. doi: 10.1038/461179a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Timothy W. Lyons and Christopher T. Reinhard are in the Department of Earth Sciences, University of California, Riverside, California 92521, USA. timothy.lyons@ucr.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; Bacteria/metabolism ; Chromium/*analysis/chemistry ; Chromium Isotopes ; History, Ancient ; Iron/analysis ; Manganese Compounds/metabolism ; Oxidation-Reduction ; Oxides/metabolism ; Oxygen/*analysis/*metabolism ; Seawater/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-21
    Description: The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, Timothy W -- Reinhard, Christopher T -- Planavsky, Noah J -- England -- Nature. 2014 Feb 20;506(7488):307-15. doi: 10.1038/nature13068.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA. ; 1] Department of Earth Sciences, University of California, Riverside, California 92521, USA [2] Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA [3] School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. ; 1] Department of Earth Sciences, University of California, Riverside, California 92521, USA [2] Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; *Earth (Planet) ; *Evolution, Chemical ; History, Ancient ; Life ; Oxygen/analysis/history/*metabolism ; Photosynthesis ; Seawater/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, Timothy W -- Reinhard, Christopher T -- England -- Nature. 2011 Oct 12;478(7368):194-5. doi: 10.1038/478194a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993755" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Gases/*analysis/*chemistry ; Oxygen/*analysis ; *Pressure ; *Volcanic Eruptions
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-09
    Description: The chemical composition of the ocean changed markedly with the oxidation of the Earth's surface, and this process has profoundly influenced the evolutionary and ecological history of life. The early Earth was characterized by a reducing ocean-atmosphere system, whereas the Phanerozoic eon (less than 542 million years ago) is known for a stable and oxygenated biosphere conducive to the radiation of animals. The redox characteristics of surface environments during Earth's middle age (1.8-1 billion years ago) are less well known, but it is generally assumed that the mid-Proterozoic was home to a globally sulphidic (euxinic) deep ocean. Here we present iron data from a suite of mid-Proterozoic marine mudstones. Contrary to the popular model, our results indicate that ferruginous (anoxic and Fe(2+)-rich) conditions were both spatially and temporally extensive across diverse palaeogeographic settings in the mid-Proterozoic ocean, inviting new models for the temporal distribution of iron formations and the availability of bioessential trace elements during a critical window for eukaryotic evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- McGoldrick, Peter -- Scott, Clinton T -- Li, Chao -- Reinhard, Christopher T -- Kelly, Amy E -- Chu, Xuelei -- Bekker, Andrey -- Love, Gordon D -- Lyons, Timothy W -- England -- Nature. 2011 Sep 7;477(7365):448-51. doi: 10.1038/nature10327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21900895" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Geologic Sediments/chemistry ; History, Ancient ; Iron/*analysis/chemistry ; Oceans and Seas ; Seawater/*chemistry ; Sulfur/analysis/chemistry ; Sulfur Isotopes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-06-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhard, Christopher T -- Planavsky, Noah J -- England -- Nature. 2011 Jun 2;474(7349):E1-2; discussion E4-5. doi: 10.1038/nature09959.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, Riverside, California, USA. crein003@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21637209" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Carbon Dioxide/*chemistry ; *Earth (Planet)
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-26
    Description: The accumulation of substantial quantities of O2 in the atmosphere has come to control the chemistry and ecological structure of Earth's surface. Non-mass-dependent (NMD) sulphur isotope anomalies in the rock record are the central tool used to reconstruct the redox history of the early atmosphere. The generation and initial delivery of these anomalies to marine sediments requires low partial pressures of atmospheric O2 (p(O2); refs 2, 3), and the disappearance of NMD anomalies from the rock record 2.32 billion years ago is thought to have signalled a departure from persistently low atmospheric oxygen levels (less than about 10(-5) times the present atmospheric level) during approximately the first two billion years of Earth's history. Here we present a model study designed to describe the long-term surface recycling of crustal NMD anomalies, and show that the record of this geochemical signal is likely to display a 'crustal memory effect' following increases in atmospheric p(O2) above this threshold. Once NMD anomalies have been buried in the upper crust they are extremely resistant to removal, and can be erased only through successive cycles of weathering, dilution and burial on an oxygenated Earth surface. This recycling results in the residual incorporation of NMD anomalies into the sedimentary record long after synchronous atmospheric generation of the isotopic signal has ceased, with dynamic and measurable signals probably surviving for as long as 10-100 million years subsequent to an increase in atmospheric p(O2) to more than 10(-5) times the present atmospheric level. Our results can reconcile geochemical evidence for oxygen production and transient accumulation with the maintenance of NMD anomalies on the early Earth, and suggest that future work should investigate the notion that temporally continuous generation of new NMD sulphur isotope anomalies in the atmosphere was likely to have ceased long before their ultimate disappearance from the rock record.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhard, Christopher T -- Planavsky, Noah J -- Lyons, Timothy W -- England -- Nature. 2013 May 2;497(7447):100-3. doi: 10.1038/nature12021. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615613" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Ecosystem ; Geologic Sediments/*chemistry ; History, Ancient ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/analysis ; Sulfur Isotopes/*analysis/chemistry ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-11
    Description: Iron speciation data for the late Archean Mount McRae Shale provide evidence for a euxinic (anoxic and sulfidic) water column 2.5 billion years ago. Sulfur isotope data compiled from the same stratigraphic section suggest that euxinic conditions were stimulated by an increase in oceanic sulfate concentrations resulting from weathering of continental sulfide minerals exposed to an atmosphere with trace amounts of photosynthetically produced oxygen. Variability in local organic matter flux likely confined euxinic conditions to midportions of the water column on the basin margin. These findings indicate that euxinic conditions may have been common on a variety of spatial and temporal scales both before and immediately after the Paleoproterozoic rise in atmospheric oxygen, hinting at previously unexplored texture and variability in deep ocean chemistry during Earth's early history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhard, Christopher T -- Raiswell, Rob -- Scott, Clint -- Anbar, Ariel D -- Lyons, Timothy W -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):713-6. doi: 10.1126/science.1176711.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California-Riverside, Department of Earth Sciences, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900929" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-02
    Description: The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- Reinhard, Christopher T -- Wang, Xiangli -- Thomson, Danielle -- McGoldrick, Peter -- Rainbird, Robert H -- Johnson, Thomas -- Fischer, Woodward W -- Lyons, Timothy W -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):635-8. doi: 10.1126/science.1258410.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Geology and Geophysics, Yale University, CT, USA. noah.planavsky@yale.edu chris.reinhard@eas.gatech.edu. ; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, USA. noah.planavsky@yale.edu chris.reinhard@eas.gatech.edu. ; Department Geology and Geophysics, Yale University, CT, USA. Department of Geology, University of Illinois, Champaign, IL, USA. ; Department of Earth Science, Carleton University, Ottawa, ON, Canada. ; Centre for Ore Deposit and Exploration Science, University of Tasmania, TAS, Australia. ; Geological Survey of Canada, Ottawa, ON, Canada. ; Department of Geology, University of Illinois, Champaign, IL, USA. ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. ; Department of Earth Sciences, University of California, Riverside, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359975" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; *Biological Evolution ; Chromium Isotopes/chemistry ; Earth (Planet) ; Geologic Sediments/chemistry ; Oxidation-Reduction ; Oxygen/*analysis ; Paleontology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-20
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...