ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-26
    Description: Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, Maude W -- Toda, Yasuka -- Nakagita, Tomoya -- O'Connell, Mary J -- Klasing, Kirk C -- Misaka, Takumi -- Edwards, Scott V -- Liberles, Stephen D -- R01 DC013289/DC/NIDCD NIH HHS/ -- R01DC013289/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):929-33. doi: 10.1126/science.1255097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu. ; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan. ; Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. ; Department of Animal Science, University of California, Davis, Davis, CA 95616, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Evolution, Molecular ; Mice ; Molecular Sequence Data ; Plant Nectar ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/classification/*genetics ; Taste/*physiology ; Taste Perception/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...