ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-15
    Description: Processing of microRNA (miRNA) precursors results in the release of a double-stranded miRNA/miRNA* duplex. The miRNA or guide strand, is loaded onto the Argonaute (AGO) effector, and the miRNA* or passenger strand is typically degraded. The loaded AGO-containing RNA-induced silencing complex specifically recognizes a target mRNA, leading to its degradation or translational inhibition. In plants, miRNA-mediated cleavage of a target triggers in some cases the production of secondary small interfering RNAs (siRNAs), which in turn can silence other genes in trans. This alternative pathway depends on the length of the miRNA and the specific AGO in the effector complex. However, 22-nt miRNAs are sufficient, but not essential for this pathway. Using a combination of computational and experimental approaches, we show that transitivity can be triggered when the small RNA that is not retained in AGO is 22-nt long. Moreover, we demonstrate that asymmetrically positioned bulged bases in the miRNA:miRNA* duplex, regardless of miRNA or miRNA* length, are sufficient for the initiation of transitivity. We propose that the RNA-induced silencing complex reprogramming occurs during the early steps of miRNA loading, before the miRNA duplex is disassembled and the guide strand is selected.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-12-03
    Description: FLOWERING LOCUS T (FT), which acts in parallel with the meristem-identity gene LEAFY (LFY) to induce flowering of Arabidopsis, was isolated by activation tagging. Like LFY, FT acts partially downstream of CONSTANS (CO), which promotes flowering in response to long days. Unlike many other floral regulators, the deduced sequence of the FT protein does not suggest that it directly controls transcription or transcript processing. Instead, it is similar to the sequence of TERMINAL FLOWER 1 (TFL1), an inhibitor of flowering that also shares sequence similarity with membrane-associated mammalian proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kardailsky, I -- Shukla, V K -- Ahn, J H -- Dagenais, N -- Christensen, S K -- Nguyen, J T -- Chory, J -- Harrison, M J -- Weigel, D -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1962-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583961" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/*growth & development ; *Arabidopsis Proteins ; DNA-Binding Proteins/chemistry/*genetics/*physiology ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Complementation Test ; MADS Domain Proteins ; Meristem/growth & development/metabolism ; Mutation ; Phenotype ; Plant Proteins/*genetics/physiology ; Plant Structures/growth & development ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Signal Transduction ; Transcription Factors/chemistry/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-08-05
    Description: LEAFY (LFY) and APETALA1 (AP1) encode unrelated transcription factors that activate overlapping sets of homeotic genes in Arabidopsis flowers. Sector analysis and targeted expression in transgenic plants were used to study whether LFY and AP1 can participate in cell-cell signaling between and within different layers of the floral meristem. LFY signaled equally well from all layers and had substantial long-range action within layers. Nonautonomous action of LFY was accompanied by movement of the protein to adjacent cells, where it directly activated homeotic target genes. In contrast, AP1 had only limited nonautonomous effects, apparently mediated by downstream genes because activation of early target genes by AP1 was cell-autonomous.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sessions, A -- Yanofsky, M F -- Weigel, D -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926540" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; *Arabidopsis Proteins ; DNA Nucleotidyltransferases/genetics/metabolism ; Gene Expression Regulation, Plant ; Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/genetics/*metabolism ; MADS Domain Proteins ; Meristem/genetics/metabolism ; Phenotype ; Plant Proteins/genetics/*metabolism ; Plants, Genetically Modified ; RNA, Plant/genetics/metabolism ; *Signal Transduction ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-27
    Description: The patterned expression of floral homeotic genes in Arabidopsis depends on the earlier action of meristem-identity genes such as LEAFY, which encodes a transcription factor that determines whether a meristem will generate flowers instead of leaves and shoots. The LEAFY protein, which is expressed throughout the flower, participates in the activation of homeotic genes, which are expressed in specific regions of the flower. Analysis of a LEAFY-responsive enhancer in the homeotic gene AGAMOUS indicates that direct interaction of LEAFY with this enhancer is required for its activity in plants. Thus, LEAFY is a direct upstream regulator of floral homeotic genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busch, M A -- Bomblies, K -- Weigel, D -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):585-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417388" target="_blank"〉PubMed〈/a〉
    Keywords: AGAMOUS Protein, Arabidopsis ; Arabidopsis/*genetics ; *Arabidopsis Proteins ; Binding Sites ; DNA-Binding Proteins/*genetics ; Enhancer Elements, Genetic ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genes, Plant ; Genes, Reporter ; Meristem/genetics/metabolism ; Plant Proteins/*genetics/*metabolism ; Plant Structures/genetics/metabolism ; Point Mutation ; Trans-Activators/genetics/metabolism ; *Transcription Factors ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-02-24
    Description: Although auxin is known to regulate many processes in plant development and has been studied for over a century, the mechanisms whereby plants produce it have remained elusive. Here we report the characterization of a dominant Arabidopsis mutant, yucca, which contains elevated levels of free auxin. YUCCA encodes a flavin monooxygenase-like enzyme and belongs to a family that includes at least nine other homologous Arabidopsis genes, a subset of which appears to have redundant functions. Results from tryptophan analog feeding experiments and biochemical assays indicate that YUCCA catalyzes hydroxylation of the amino group of tryptamine, a rate-limiting step in tryptophan-dependent auxin biosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Y -- Christensen, S K -- Fankhauser, C -- Cashman, J R -- Cohen, J D -- Weigel, D -- Chory, J -- 2R01GM52413/GM/NIGMS NIH HHS/ -- R01GM36426/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 12;291(5502):306-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11209081" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/anatomy & histology/*genetics/growth & development/*metabolism ; *Arabidopsis Proteins ; Catalysis ; Cloning, Molecular ; Genes, Plant ; Indoleacetic Acids/*biosynthesis/*metabolism ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Oxygenases/chemistry/*metabolism ; Phenotype ; Plant Roots/growth & development ; Plants, Toxic ; Tobacco/metabolism ; Tryptamines/metabolism ; Tryptophan/*analogs & derivatives/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-04-22
    Description: Little is known about the types of mutations underlying the evolution of species-specific traits. The metal hyperaccumulator Arabidopsis halleri has the rare ability to colonize heavy-metal-polluted soils, and, as an extremophile sister species of Arabidopsis thaliana, it is a powerful model for research on adaptation. A. halleri naturally accumulates and tolerates leaf concentrations as high as 2.2% zinc and 0.28% cadmium in dry biomass. On the basis of transcriptomics studies, metal hyperaccumulation in A. halleri has been associated with more than 30 candidate genes that are expressed at higher levels in A. halleri than in A. thaliana. Some of these genes have been genetically mapped to broad chromosomal segments of between 4 and 24 cM co-segregating with Zn and Cd hypertolerance. However, the in planta loss-of-function approaches required to demonstrate the contribution of a given candidate gene to metal hyperaccumulation or hypertolerance have not been pursued to date. Using RNA interference to downregulate HMA4 (HEAVY METAL ATPASE 4) expression, we show here that Zn hyperaccumulation and full hypertolerance to Cd and Zn in A. halleri depend on the metal pump HMA4. Contrary to a postulated global trans regulatory factor governing high expression of numerous metal hyperaccumulation genes, we demonstrate that enhanced expression of HMA4 in A. halleri is attributable to a combination of modified cis-regulatory sequences and copy number expansion, in comparison to A. thaliana. Transfer of an A. halleri HMA4 gene to A. thaliana recapitulates Zn partitioning into xylem vessels and the constitutive transcriptional upregulation of Zn deficiency response genes characteristic of Zn hyperaccumulators. Our results demonstrate the importance of cis-regulatory mutations and gene copy number expansion in the evolution of a complex naturally selected extreme trait. The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils and for bio-fortification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanikenne, Marc -- Talke, Ina N -- Haydon, Michael J -- Lanz, Christa -- Nolte, Andrea -- Motte, Patrick -- Kroymann, Juergen -- Weigel, Detlef -- Kramer, Ute -- England -- Nature. 2008 May 15;453(7193):391-5. doi: 10.1038/nature06877. Epub 2008 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18425111" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/physiology ; Adenosine Triphosphatases/*genetics/metabolism ; Arabidopsis/*genetics/*metabolism ; Arabidopsis Proteins/*genetics/metabolism ; Cadmium/metabolism ; *Evolution, Molecular ; Gene Dosage/*genetics ; Gene Expression Regulation, Plant/genetics ; Genome, Plant/genetics ; Metals/*metabolism ; Molecular Sequence Data ; Organ Specificity ; Promoter Regions, Genetic/*genetics ; RNA Interference ; Transcription, Genetic/genetics ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-12-17
    Description: Natural variation presents one of the fundamental challenges of modern biology. Soon, the genome sequences of thousands of individuals will be known for each of several species. But how does the genotypic variation that will be observed among these individuals translate into phenotypic variation? Plants are in many ways ideal for addressing this question, and resources that are unmatched, except in humans, have now been developed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nordborg, Magnus -- Weigel, Detlef -- England -- Nature. 2008 Dec 11;456(7223):720-3. doi: 10.1038/nature07629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA. magnus@usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19079047" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Chromosome Mapping ; Genetic Variation ; Genome, Plant/*genetics ; Genomics/*trends ; Genotype
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-09-08
    Description: Retrotransposons are mobile genetic elements that populate chromosomes, where the host largely controls their activities. In plants and mammals, retrotransposons are transcriptionally silenced by DNA methylation, which in Arabidopsis is propagated at CG dinucleotides by METHYLTRANSFERASE 1 (MET1). In met1 mutants, however, mobilization of retrotransposons is not observed, despite their transcriptional activation. A post-transcriptional mechanism therefore seems to be preventing retrotransposition. Here we show that a copia-type retrotransposon (Evade, French for 'fugitive') evaded suppression of its movement during inbreeding of hybrid epigenomes consisting of met1- and wild-type-derived chromosomes. Evade (EVD) reinsertions caused a series of developmental mutations that allowed its identification. Genetic testing of host control of the EVD life cycle showed that transcriptional suppression occurred by CG methylation supported by RNA-directed DNA methylation. On transcriptional reactivation, subsequent steps of the EVD cycle were inhibited by plant-specific RNA polymerase IV/V and the histone methyltransferase KRYPTONITE (KYP). Moreover, genome resequencing demonstrated retrotransposition of EVD but no other potentially active retroelements when this combination of epigenetic mechanisms was compromised. Our results demonstrate that epigenetic control of retrotransposons extends beyond transcriptional suppression and can be individualized for particular elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mirouze, Marie -- Reinders, Jon -- Bucher, Etienne -- Nishimura, Taisuke -- Schneeberger, Korbinian -- Ossowski, Stephan -- Cao, Jun -- Weigel, Detlef -- Paszkowski, Jerzy -- Mathieu, Olivier -- England -- Nature. 2009 Sep 17;461(7262):427-30. doi: 10.1038/nature08328. Epub 2009 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19734882" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics ; Arabidopsis Proteins/genetics/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics ; DNA Methylation ; DNA-Directed RNA Polymerases/metabolism ; Epigenesis, Genetic/*genetics ; Gene Silencing ; Genome, Plant/genetics ; Histone-Lysine N-Methyltransferase/metabolism ; Inbreeding ; Mutagenesis, Insertional/*genetics ; Recombination, Genetic/*genetics ; Retroelements/*genetics ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-03-26
    Description: Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association (GWA) studies have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available, because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly self-fertilizing model plant known to harbour considerable genetic variation for many adaptively important traits. Our results are dramatically different from those of human GWA studies, in that we identify many common alleles of major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true associations from false. However, a-priori candidates are significantly over-represented among these associations as well, making many of them excellent candidates for follow-up experiments. Our study demonstrates the feasibility of GWA studies in A. thaliana and suggests that the approach will be appropriate for many other organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023908/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023908/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atwell, Susanna -- Huang, Yu S -- Vilhjalmsson, Bjarni J -- Willems, Glenda -- Horton, Matthew -- Li, Yan -- Meng, Dazhe -- Platt, Alexander -- Tarone, Aaron M -- Hu, Tina T -- Jiang, Rong -- Muliyati, N Wayan -- Zhang, Xu -- Amer, Muhammad Ali -- Baxter, Ivan -- Brachi, Benjamin -- Chory, Joanne -- Dean, Caroline -- Debieu, Marilyne -- de Meaux, Juliette -- Ecker, Joseph R -- Faure, Nathalie -- Kniskern, Joel M -- Jones, Jonathan D G -- Michael, Todd -- Nemri, Adnane -- Roux, Fabrice -- Salt, David E -- Tang, Chunlao -- Todesco, Marco -- Traw, M Brian -- Weigel, Detlef -- Marjoram, Paul -- Borevitz, Justin O -- Bergelson, Joy -- Nordborg, Magnus -- GM057994/GM/NIGMS NIH HHS/ -- GM073822/GM/NIGMS NIH HHS/ -- GM078536/GM/NIGMS NIH HHS/ -- GM62932/GM/NIGMS NIH HHS/ -- P42ES007373/ES/NIEHS NIH HHS/ -- R01 GM057994/GM/NIGMS NIH HHS/ -- R01 GM057994-05A1/GM/NIGMS NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- R01 GM062932-05/GM/NIGMS NIH HHS/ -- R01 GM073822/GM/NIGMS NIH HHS/ -- R01 GM073822-01A1/GM/NIGMS NIH HHS/ -- R01 GM078536-01A1/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):627-31. doi: 10.1038/nature08800. Epub 2010 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336072" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*classification/*genetics ; Arabidopsis Proteins/genetics ; Flowers/genetics ; Genes, Plant/genetics ; Genetic Loci/genetics ; Genome, Plant/*genetics ; *Genome-Wide Association Study ; Genotype ; Immunity, Innate/genetics ; Inbreeding ; *Phenotype ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-04
    Description: Plants can defend themselves against a wide array of enemies, from microbes to large animals, yet there is great variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack. A second explanation comes from an evolutionary 'tug of war', in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best explained by costs incurred from constitutive defences in a pest-free environment. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6), underpins marked pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its marked impact on growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todesco, Marco -- Balasubramanian, Sureshkumar -- Hu, Tina T -- Traw, M Brian -- Horton, Matthew -- Epple, Petra -- Kuhns, Christine -- Sureshkumar, Sridevi -- Schwartz, Christopher -- Lanz, Christa -- Laitinen, Roosa A E -- Huang, Yu -- Chory, Joanne -- Lipka, Volker -- Borevitz, Justin O -- Dangl, Jeffery L -- Bergelson, Joy -- Nordborg, Magnus -- Weigel, Detlef -- F23-GM65032-1/GM/NIGMS NIH HHS/ -- GM057171/GM/NIGMS NIH HHS/ -- GM057994/GM/NIGMS NIH HHS/ -- GM073822/GM/NIGMS NIH HHS/ -- GM62932/GM/NIGMS NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- R01 GM062932-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):632-6. doi: 10.1038/nature09083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520716" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Ankyrins/genetics/metabolism ; Arabidopsis/*genetics/growth & development/metabolism/microbiology ; Arabidopsis Proteins/genetics/metabolism ; Biomass ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Fitness/*genetics ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Molecular Sequence Data ; Phenotype ; Plant Diseases/genetics/microbiology ; Plant Leaves/anatomy & histology/genetics/growth & development/parasitology ; Quantitative Trait Loci
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...