ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2011-05-25
    Description: The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-09
    Description: Thyroglobulin (Tg) is the macromolecular precursor of thyroid hormones and is thought to be uniquely expressed by thyroid epithelial cells. Tg and the thyroid-stimulating hormone receptor (TSHR) are targets for autoantibody generation in the autoimmune disorder Graves disease (GD). Fully expressed GD is characterized by thyroid overactivity and orbital tissue inflammation and remodeling. This process is known as thyroid-associated ophthalmopathy (TAO). Early reports suggested that in TAO, both Tg and TSHR become overexpressed in orbital tissues. Previously, we found that CD34+ progenitor cells, known as fibrocytes, express functional TSHR, infiltrate the orbit, and comprise a large subset of orbital fibroblasts in TAO. We now report that fibrocytes also express Tg, which resolves as a 305-kDa protein on Western blots. It can be immunoprecipitated with anti-Tg Abs. Further, 125iodine and [35S]methionine are incorporated into Tg expressed by fibrocytes. De novo Tg synthesis is attenuated with a specific small interfering RNA targeting the protein. A fragment of the Tg gene promoter fused to a luciferase reporter exhibits substantial activity when transfected into fibrocytes. Unlike fibrocytes, GD orbital fibroblasts, which comprise a mixture of CD34+ and CD34− cells, express much lower levels of Tg and TSHR. When sorted into pure CD34+ and CD34− subsets, Tg and TSHR mRNA levels become substantially higher in CD34+ cells. These findings indicate that human fibrocytes express multiple “thyroid-specific” proteins, the levels of which are reduced after they infiltrate tissue. Our observations establish the basis for Tg accumulation in orbital GD.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-17
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-05
    Description: The morphology of amorphous solid water grown by vapor deposition was found to depend strongly on the angular distribution of the water molecules incident from the gas phase. Systematic variation of the incident angle during deposition using a collimated beam of water led to the growth of nonporous to highly porous amorphous solid water. The physical and chemical properties of amorphous solid water are of interest because of its presence in astrophysical environments. The ability to control its properties in the laboratory may shed light on some of the outstanding conflicts related to this important material.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevenson -- Kimmel -- Dohnalek -- Smith -- Kay -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1505-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Post Office Box 999, Mail Stop K8-88, Richland, WA 99352, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10066166" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-03-08
    Description: Mutations in the cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1) gene are a common cause of human primary congenital glaucoma (PCG). Here we show that Cyp1b1-/- mice have ocular drainage structure abnormalities resembling those reported in human PCG patients. Using Cyp1b1-/- mice, we identified the tyrosinase gene (Tyr) as a modifier of the drainage structure phenotype, with Tyr deficiency increasing the magnitude of dysgenesis. The severe dysgenesis in eyes lacking both CYP1B1 and TYR was alleviated by administration of the tyrosinase product dihydroxyphenylalanine (l-dopa). Tyr also modified the drainage structure dysgenesis in mice with a mutant Foxc1 gene, which is also involved in PCG. These experiments raise the possibility that a tyrosinase/l-dopa pathway modifies human PCG, which could open new therapeutic avenues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libby, Richard T -- Smith, Richard S -- Savinova, Olga V -- Zabaleta, Adriana -- Martin, Janice E -- Gonzalez, Frank J -- John, Simon W M -- CA34196/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624268" target="_blank"〉PubMed〈/a〉
    Keywords: Albinism, Ocular/genetics/pathology ; Animals ; Anterior Eye Segment/*abnormalities ; Aryl Hydrocarbon Hydroxylases/deficiency/genetics ; Cornea/abnormalities ; Cytochrome P-450 CYP1B1 ; *DNA-Binding Proteins ; Disease Models, Animal ; Female ; Forkhead Transcription Factors ; Glaucoma/*congenital/enzymology/*genetics/pathology ; Intraocular Pressure ; Iris/abnormalities ; Levodopa/administration & dosage/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Monophenol Monooxygenase/deficiency/*genetics/metabolism ; Mutation ; Phenotype ; Pregnancy ; Trabecular Meshwork/abnormalities ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-05-21
    Description: Porencephaly is a rare neurological disease, typically manifest in infants, which is characterized by the existence of degenerative cavities in the brain. To investigate the molecular pathogenesis of porencephaly, we studied a mouse mutant that develops porencephaly secondary to focal disruptions of vascular basement membranes. Half of the mutant mice died with cerebral hemorrhage within a day of birth, and approximately 18% of survivors had porencephaly. We show that vascular defects are caused by a semidominant mutation in the procollagen type IV alpha 1 gene (Col4a1) in mice, which inhibits the secretion of mutant and normal type IV collagen. We also show that COL4A1 mutations segregate with porencephaly in human families. Because not all mutant mice develop porencephaly, we propose that Col4a1 mutations conspire with environmental trauma in causing the disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gould, Douglas B -- Phalan, F Campbell -- Breedveld, Guido J -- van Mil, Saskia E -- Smith, Richard S -- Schimenti, John C -- Aguglia, Umberto -- van der Knaap, Marjo S -- Heutink, Peter -- John, Simon W M -- CA34196/CA/NCI NIH HHS/ -- EY11721/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2005 May 20;308(5725):1167-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15905400" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Animals, Newborn ; Basement Membrane/embryology/metabolism/pathology ; Brain/blood supply/embryology/*pathology ; Brain Diseases/etiology/*genetics/pathology ; Cerebral Hemorrhage/etiology/*genetics/pathology ; Chromosome Mapping ; Collagen Type IV/chemistry/*genetics/metabolism ; Endoderm/metabolism ; Heterozygote ; Humans ; Mice ; *Mutation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-26
    Description: The precise transcriptional regulation of gene expression is essential for vertebrate development, but the role of posttranscriptional regulatory mechanisms is less clear. Cytoplasmic RNA granules (RGs) function in the posttranscriptional control of gene expression, but the extent of RG involvement in organogenesis is unknown. We describe two human cases of pediatric cataract with loss-of-function mutations in TDRD7 and demonstrate that Tdrd7 nullizygosity in mouse causes cataracts, as well as glaucoma and an arrest in spermatogenesis. TDRD7 is a Tudor domain RNA binding protein that is expressed in lens fiber cells in distinct TDRD7-RGs that interact with STAU1-ribonucleoproteins (RNPs). TDRD7 coimmunoprecipitates with specific lens messenger RNAs (mRNAs) and is required for the posttranscriptional control of mRNAs that are critical to normal lens development and to RG function. These findings demonstrate a role for RGs in vertebrate organogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lachke, Salil A -- Alkuraya, Fowzan S -- Kneeland, Stephen C -- Ohn, Takbum -- Aboukhalil, Anton -- Howell, Gareth R -- Saadi, Irfan -- Cavallesco, Resy -- Yue, Yingzi -- Tsai, Anne C-H -- Nair, K Saidas -- Cosma, Mihai I -- Smith, Richard S -- Hodges, Emily -- Alfadhli, Suad M -- Al-Hajeri, Amal -- Shamseldin, Hanan E -- Behbehani, Abdulmutalib -- Hannon, Gregory J -- Bulyk, Martha L -- Drack, Arlene V -- Anderson, Paul J -- John, Simon W M -- Maas, Richard L -- P01 GM061354/GM/NIGMS NIH HHS/ -- P01 GM061354-07/GM/NIGMS NIH HHS/ -- R01 EY010123/EY/NEI NIH HHS/ -- R01 EY010123-15/EY/NEI NIH HHS/ -- R01 EY011721/EY/NEI NIH HHS/ -- R01 EY011721-15/EY/NEI NIH HHS/ -- R01 EY10123/EY/NEI NIH HHS/ -- R01 EY11721/EY/NEI NIH HHS/ -- R01 HD060050/HD/NICHD NIH HHS/ -- R01 HD060050-04/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1571-6. doi: 10.1126/science.1195970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436445" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cataract/congenital/*genetics/pathology ; Cell Line ; Chick Embryo ; Crystallins/genetics/metabolism ; Cytoplasmic Granules/metabolism ; Embryonic Development ; Female ; *Gene Expression Regulation, Developmental ; Gene Knockdown Techniques ; Glaucoma/*genetics ; Humans ; Hypospadias/genetics ; Lens, Crystalline/embryology/*metabolism ; Male ; Mice ; Mutation ; Organogenesis ; Protein Biosynthesis ; RNA, Messenger/*genetics/*metabolism ; RNA-Binding Proteins/genetics/metabolism ; Ribonucleoproteins/genetics/*metabolism ; Spermatogenesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-03
    Description: Although genetic control of morphogenesis is well established, elaboration of complex shapes requires changes in the mechanical properties of cells. In plants, the first visible sign of leaf formation is a bulge on the flank of the shoot apical meristem. Bulging results from local relaxation of cell walls, which causes them to yield to internal hydrostatic pressure. By manipulation of tissue tension in combination with quantitative live imaging and finite-element modeling, we found that the slow-growing area at the shoot tip is substantially strain-stiffened compared with surrounding fast-growing tissue. We propose that strain stiffening limits growth, restricts organ bulging, and contributes to the meristem's functional zonation. Thus, mechanical signals are not just passive readouts of gene action but feed back on morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kierzkowski, Daniel -- Nakayama, Naomi -- Routier-Kierzkowska, Anne-Lise -- Weber, Alain -- Bayer, Emmanuelle -- Schorderet, Martine -- Reinhardt, Didier -- Kuhlemeier, Cris -- Smith, Richard S -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1096-9. doi: 10.1126/science.1213100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Sciences, University of Bern, Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383847" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/physiology/ultrastructure ; Elasticity ; Hydrostatic Pressure ; Lycopersicon esculentum/cytology/*growth & development ; Meristem/cytology/*growth & development ; Models, Biological ; *Morphogenesis ; Osmolar Concentration ; Osmotic Pressure ; Plant Shoots/cytology/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-18
    Description: In this work, we investigate morphological differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta, which has dissected leaves comprising distinct leaflets. With the use of genetics, interspecific gene transfers, and time-lapse imaging, we show that leaflet development requires the REDUCED COMPLEXITY (RCO) homeodomain protein. RCO functions specifically in leaves, where it sculpts developing leaflets by repressing growth at their flanks. RCO evolved in the Brassicaceae family through gene duplication and was lost in A. thaliana, contributing to leaf simplification in this species. Species-specific RCO action with respect to its paralog results from its distinct gene expression pattern in the leaf base. Thus, regulatory evolution coupled with gene duplication and loss generated leaf shape diversity by modifying local growth patterns during organogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vlad, Daniela -- Kierzkowski, Daniel -- Rast, Madlen I -- Vuolo, Francesco -- Dello Ioio, Raffaele -- Galinha, Carla -- Gan, Xiangchao -- Hajheidari, Mohsen -- Hay, Angela -- Smith, Richard S -- Huijser, Peter -- Bailey, C Donovan -- Tsiantis, Miltos -- BB/H006974/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H011455/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):780-3. doi: 10.1126/science.1248384.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531971" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/anatomy & histology/genetics ; Brassicaceae/*anatomy & histology/*genetics ; Chromosome Mapping ; *Evolution, Molecular ; Gene Duplication ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genetic Complementation Test ; Molecular Sequence Data ; Plant Leaves/*anatomy & histology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-23
    Description: The magnetic viscosity (MV) effects observed at time scales between 0.01 and 10 ms at Opemiska are associated with magnetic grains of variable size in rocks. Recent observations made during a ground time-domain electromagnetic (TDEM) survey at Opemiska are consistent with four aspects of the spatial and amplitude characteristics of a MV response: (1) the Bz/t decay rate is roughly proportional to 1/t1+α , where –0.4 〈 α 〈 0.4 , (2) the anomalies are mainly visible on the z -component, when the EM receiver sensor is located inside or just outside the transmitter loop, (3) there is no obvious x - or y -component response, and (4) the sites where MV effects are seen in the TDEM data are coincident with an airborne magnetic anomaly. Previous studies have demonstrated that MV could be caused by (1) fine-grained particles of maghemite or magnetite in the overburden, regolith, or soil that were formed through lateritic weathering processes, (2) volcanic glass shards from tuff containing approximately 1% by weight magnetite, which occur as grains approximately 0.002–0.01 μm in size precipitated in a spatially uniform way, or (3) from the Gallionella bacterium that precipitates ferrihydrite that oxidizes to nanocrystalline maghemite aggregates. The sites investigated at Opemiska are outcropping and well-exposed with relatively little or no overburden, and they are unfavorable for the formation of maghemite; hence, it is assumed that the source of MV seen at Opemiska cannot be the maghemite, or the other aforementioned causes. Hand samples were collected from Opemiska to identify the minerals present. Polished thin sections observed under an optical reflecting microscope identified the accessory minerals magnetite, ilmenite, and pyrrhotite, all known for their relatively high magnetic susceptibility. The use of the scanning electron microscope confirmed fine-grained magnetite grains as small as 0.667 μm . An electromagnetic induction spectrometer confirmed the viscous nature of the susceptibility of the Opemiska samples. This suggests that MV could originate not only from fine-grained magnetite and maghemite particles located in the weathered regolith but also from other iron oxides and magnetic minerals embedded in the rock itself.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...