ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (525)
  • American Association for the Advancement of Science (AAAS)  (525)
  • American Meteorological Society
  • 2005-2009  (143)
  • 1995-1999  (382)
  • 1970-1974
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mice homozygous for a disrupted allele of the mismatch repair gene Pms2 have a mutator phenotype. When this allele is crossed into quasi-monoclonal (QM) mice, which have a very limited B cell repertoire, homozygotes have fewer somatic mutations at the immunoglobulin heavy chain and lambda chain loci than do heterozygotes or wild-type QM mice. That is, mismatch repair seems to contribute to somatic hypermutation rather than stifling it. It is suggested that at immunoglobulin loci in hypermutable B cells, mismatched base pairs are "corrected" according to the newly synthesized DNA strand, thereby fixing incipient mutations instead of eliminating them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cascalho, M -- Wong, J -- Steinberg, C -- Wabl, M -- 1R01 GM37699/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0670, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469811" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenosine Triphosphatases ; Alleles ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology ; Base Composition ; Base Sequence ; Cloning, Molecular ; Crosses, Genetic ; *DNA Repair ; *DNA Repair Enzymes ; *DNA-Binding Proteins ; Female ; Gene Rearrangement ; *Genes, Immunoglobulin ; Heterozygote ; Immunoglobulin Heavy Chains/chemistry/genetics ; Immunoglobulin Variable Region/chemistry/*genetics ; Immunoglobulin lambda-Chains/chemistry/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Mutation ; Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-12-05
    Description: Group I introns possess a single active site that catalyzes the two sequential reactions of self-splicing. An RNA comprising the two domains of the Tetrahymena thermophila group I intron catalytic core retains activity, and the 5.0 angstrom crystal structure of this 247-nucleotide ribozyme is now described. Close packing of the two domains forms a shallow cleft capable of binding the short helix that contains the 5' splice site. The helix that provides the binding site for the guanosine substrate deviates significantly from A-form geometry, providing a tight binding pocket. The binding pockets for both the 5' splice site helix and guanosine are formed and oriented in the absence of these substrates. Thus, this large ribozyme is largely preorganized for catalysis, much like a globular protein enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golden, B L -- Gooding, A R -- Podell, E R -- Cech, T R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):259-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA. bgolden@petunia.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Guanosine/metabolism ; Introns ; Magnesium/metabolism ; Manganese/metabolism ; *Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/metabolism ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena thermophila/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-09-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kyrpides, N C -- Ouzounis, C A -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9750114" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Genes, Archaeal ; Open Reading Frames ; Publishing/*standards ; *Review Literature as Topic ; Sequence Analysis, DNA/*standards
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-07
    Description: The red clover necrotic mosaic virus genome is composed of two single-stranded RNA components, RNA-1 and RNA-2. The viral capsid protein is translated from a subgenomic RNA (sgRNA) that is transcribed from genomic RNA-1. Here, a 34-nucleotide sequence in RNA-2 is shown to be required for transcription of sgRNA. Mutations that prevent base-pairing between the RNA-1 subgenomic promoter and the 34-nucleotide trans-activator prevent expression of a reporter gene. A model is proposed in which direct binding of RNA-2 to RNA-1 trans-activates sgRNA synthesis. This RNA-mediated regulation of transcription is unusual among RNA viruses, which typically rely on protein regulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sit, T L -- Vaewhongs, A A -- Lommel, S A -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694655" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; DNA, Complementary ; Gene Expression ; Genes, Reporter ; Green Fluorescent Proteins ; Luminescent Proteins/genetics ; Models, Genetic ; Molecular Sequence Data ; Mosaic Viruses/*genetics ; Mutation ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; RNA, Double-Stranded/genetics/metabolism ; RNA, Messenger/biosynthesis/genetics ; RNA, Viral/biosynthesis/chemistry/*genetics ; Sequence Alignment ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1787-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9776677" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Ethnic Groups/genetics ; *Genetic Markers ; Genetic Predisposition to Disease ; *Genetic Techniques ; Genetic Variation ; *Genetics, Medical ; *Genome, Human ; Humans ; Point Mutation ; *Polymorphism, Genetic ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, B J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132, USA. graves@bioscience.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490475" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins/chemistry ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Leucine Zippers ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Transcription Factors/*chemistry/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The OxyR transcription factor is sensitive to oxidation and activates the expression of antioxidant genes in response to hydrogen peroxide in Escherichia coli. Genetic and biochemical studies revealed that OxyR is activated through the formation of a disulfide bond and is deactivated by enzymatic reduction with glutaredoxin 1 (Grx1). The gene encoding Grx1 is regulated by OxyR, thus providing a mechanism for autoregulation. The redox potential of OxyR was determined to be -185 millivolts, ensuring that OxyR is reduced in the absence of stress. These results represent an example of redox signaling through disulfide bond formation and reduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, M -- Aslund, F -- Storz, G -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/genetics/metabolism ; Base Sequence ; Cysteine/metabolism ; *DNA-Binding Proteins ; Disulfides/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins ; Gene Expression Regulation, Bacterial ; Glutaredoxins ; Glutathione/metabolism ; Glutathione Disulfide/metabolism ; Glutathione Reductase/metabolism ; Hydrogen Peroxide/*metabolism/pharmacology ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; *Oxidoreductases ; Proteins/genetics/metabolism ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Thioredoxins/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-10-16
    Description: Dense genetic maps of human, mouse, and rat genomes that are based on coding genes and on microsatellite and single-nucleotide polymorphism markers have been complemented by precise gene homolog alignment with moderate-resolution maps of livestock, companion animals, and additional mammal species. Comparative genetic assessment expands the utility of these maps in gene discovery, in functional genomics, and in tracking the evolutionary forces that sculpted the genome organization of modern mammalian species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, S J -- Menotti-Raymond, M -- Murphy, W J -- Nash, W G -- Wienberg, J -- Stanyon, R -- Copeland, N G -- Jenkins, N A -- Womack, J E -- Marshall Graves, J A -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):458-62, 479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521336" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/genetics ; Base Sequence ; *Chromosome Mapping ; *Evolution, Molecular ; Genetic Markers ; *Genome ; *Genome, Human ; Humans ; Mammals/*genetics ; Mutation ; *Phylogeny ; Rodentia/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-03-26
    Description: The carboxyl-terminal domain of colicin E5 was shown to inhibit protein synthesis of Escherichia coli. Its target, as revealed through in vivo and in vitro experiments, was not ribosomes as in the case of E3, but the transfer RNAs (tRNAs) for Tyr, His, Asn, and Asp, which contain a modified base, queuine, at the wobble position of each anticodon. The E5 carboxyl-terminal domain hydrolyzed these tRNAs just on the 3' side of this nucleotide. Tight correlation was observed between the toxicity of E5 and the cleavage of intracellular tRNAs of this group, implying that these tRNAs are the primary targets of colicin E5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, T -- Tomita, K -- Ueda, T -- Watanabe, K -- Uozumi, T -- Masaki, H -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2097-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092236" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/*metabolism ; Bacterial Proteins/biosynthesis/genetics/pharmacology ; Base Sequence ; Cloning, Molecular ; Colicins/genetics/*metabolism/pharmacology ; Escherichia coli/drug effects/metabolism ; *Escherichia coli Proteins ; Guanine/analogs & derivatives/analysis ; Molecular Sequence Data ; RNA, Bacterial/chemistry/*metabolism ; RNA, Ribosomal, 16S/metabolism ; RNA, Transfer, Amino Acid-Specific/chemistry/*metabolism ; RNA, Transfer, Asn/chemistry/metabolism ; RNA, Transfer, Asp/chemistry/metabolism ; RNA, Transfer, His/chemistry/metabolism ; RNA, Transfer, Tyr/chemistry/metabolism ; Ribonucleases/genetics/*metabolism/pharmacology ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-24
    Description: Gene expression is modulated by regulatory elements that influence transcription elongation by RNA polymerase: terminators that disrupt the elongation complex and release RNA, and regulators that overcome termination signals. RNA release from Escherichia coli RNA polymerase can be induced by a complementary oligonucleotide that replaces the upstream half of the RNA hairpin stem of intrinsic terminator transcripts, implying that RNA hairpins act by extracting RNA from the transcription complex. A transcription antiterminator inhibits this activity of oligonucleotides and therefore protects the elongation complex from destabilizing attacks on the emerging transcript. These effects illuminate the structure of the complex and the mechanism of transcription termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarnell, W S -- Roberts, J W -- GM 21941/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):611-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Biochemistry, Molecular and Cell Biology, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213678" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; DNA, Bacterial/chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Escherichia coli/*genetics/metabolism ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Messenger/chemistry/genetics/*metabolism ; Templates, Genetic ; *Terminator Regions, Genetic ; *Transcription, Genetic ; Viral Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: The Mammalian Gene Collection (MGC) project is a new effort by the NIH to generate full-length complementary DNA (cDNA) resources. This project will provide publicly accessible resources to the full research community. The MGC project entails the production of libraries, sequencing, and database and repository development, as well as the support of library construction, sequencing, and analytic technologies dedicated to the goal of obtaining a full set of human and other mammalian full-length (open reading frame) sequences and clones of expressed genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strausberg, R L -- Feingold, E A -- Klausner, R D -- Collins, F S -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):455-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Computational Biology ; DNA, Complementary ; Databases, Factual ; Expressed Sequence Tags ; *Gene Library ; *Genome ; *Genome, Human ; Humans ; Mammals/*genetics ; Mice ; National Institutes of Health (U.S.) ; Private Sector ; Public Sector ; *Sequence Analysis, DNA ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garber, K -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1788.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9776678" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromatography, High Pressure Liquid ; Databases, Factual ; *Genetic Markers ; Genetic Predisposition to Disease ; *Genetic Techniques ; *Genome, Human ; Humans ; National Institutes of Health (U.S.) ; Neoplasms/*genetics ; Point Mutation ; *Polymorphism, Genetic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normilw, D -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):774-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9714680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Artiodactyla/anatomy & histology/classification ; Base Sequence ; *Biological Evolution ; DNA/genetics ; Evolution, Molecular ; *Fossils ; *Mammals/anatomy & histology/classification/genetics ; Paleodontology ; Phylogeny ; Whales/anatomy & histology/classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-30
    Description: Many filamentous cyanobacteria grow as multicellular organisms that show a developmental pattern of single nitrogen-fixing heterocysts separated by approximately 10 vegetative cells. Overexpression of a 54-base-pair gene, patS, blocked heterocyst differentiation in Anabaena sp. strain PCC 7120. A patS null mutant showed an increased frequency of heterocysts and an abnormal pattern. Expression of a patS-gfp reporter was localized in developing proheterocysts. The addition of a synthetic peptide corresponding to the last five amino acids of PatS inhibited heterocyst development. PatS appears to control heterocyst pattern formation through intercellular signaling mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, H S -- Golden, J W -- GM36890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):935-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794762" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anabaena/cytology/genetics/*growth & development/metabolism ; Bacterial Proteins/chemistry/genetics/*physiology ; Base Sequence ; Cosmids ; Culture Media ; Diffusion ; Genes, Bacterial ; Genes, Reporter ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation, Missense ; Nitrates/metabolism ; Nitrogen Fixation ; Oligopeptides/pharmacology ; Peptide Fragments/pharmacology ; Phenotype ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, S J -- Eisenberg, J F -- Miyamoto, M -- Hedges, S B -- Kumar, S -- Wilson, D E -- Menotti-Raymond, M -- Murphy, W J -- Nash, W G -- Lyons, L A -- Menninger, J C -- Stanyon, R -- Wienberg, J -- Copeland, N G -- Jenkins, N A -- Gellin, J -- Yerle, M -- Andersson, L -- Womack, J -- Broad, T -- Postlethwait, J -- Serov, O -- Bailey, E -- James, M R -- Marshall Graves, J A -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):463-78.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Frederick, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Chromosome Mapping ; Chromosome Painting ; *Genome ; *Genome, Human ; Humans ; Mammals/*genetics ; Nucleic Acid Hybridization ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: Annotation of large-scale gene sequence data will benefit from comprehensive and consistent application of well-documented, standard analysis methods and from progressive and vigilant efforts to ensure quality and utility and to keep the annotation up to date. However, it is imperative to learn how to apply information derived from functional genomics and proteomics technologies to conceptualize and explain the behaviors of biological systems. Quantitative and dynamical models of systems behaviors will supersede the limited and static forms of single-gene annotation that are now the norm. Molecular biological epistemology will increasingly encompass both teleological and causal explanations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boguski, M S -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):453-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521334" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cloning, Molecular ; *Computational Biology ; Databases, Factual ; *Genetic Techniques ; *Genome ; Genome, Human ; Human Genome Project ; Humans ; Molecular Biology ; *Proteome ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: The photosynthetic apparatus in plant cells is associated with membranes of the thylakoids within the chloroplast and is embedded into a highly specialized lipid matrix. Diacylglycerol galactolipids are common in thylakoid membranes but are excluded from all others. Isolation of the gene DGD1, encoding a galactosyltransferase-like protein, now provides insights into assembly of the thylakoid lipid matrix and subcellular lipid trafficking in Arabidopsis thaliana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dormann, P -- Balbo, I -- Benning, C -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2181-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381884" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; *Arabidopsis Proteins ; Base Sequence ; Chloroplasts/metabolism ; Chromosome Mapping ; DNA, Complementary/genetics ; Endoplasmic Reticulum/metabolism ; Exons ; Galactolipids ; Galactosyltransferases/chemistry/*genetics/*metabolism ; Genes, Plant ; Glycolipids/*biosynthesis ; Intracellular Membranes/metabolism ; *Lipid Metabolism ; Molecular Sequence Data ; Mutation ; Plants, Genetically Modified ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-25
    Description: Cell proliferation requires cell growth; that is, cells only divide after they reach a critical size. However, the mechanisms by which cells grow and maintain their appropriate size have remained elusive. Drosophila deficient in the S6 kinase gene (dS6K) exhibited an extreme delay in development and a severe reduction in body size. These flies had smaller cells rather than fewer cells. The effect was cell-autonomous, displayed throughout larval development, and distinct from that of ribosomal protein mutants (Minutes). Thus, the dS6K gene product regulates cell size in a cell-autonomous manner without impinging on cell number.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montagne, J -- Stewart, M J -- Stocker, H -- Hafen, E -- Kozma, S C -- Thomas, G -- F32 GM15926/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497130" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Constitution ; Cell Count ; Cell Division ; Cell Size ; Drosophila melanogaster/cytology/*enzymology/genetics/*growth & development ; Epithelial Cells/cytology ; Female ; Genes, Insect ; Larva/cytology/growth & development ; Male ; Metamorphosis, Biological ; Molecular Sequence Data ; Mutation ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; Wings, Animal/*cytology/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mullikin, J C -- McMurragy, A A -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1867-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambs, UK. jcm@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206892" target="_blank"〉PubMed〈/a〉
    Keywords: Automation ; Base Sequence ; Fluorescence ; *Genome, Human ; Human Genome Project ; Humans ; Sequence Analysis, DNA/*instrumentation/methods ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amitai, M -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1436-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Compugen Ltd., Tel Aviv, Israel. mor@compugen.co.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867651" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Databases, Factual ; *Markov Chains ; Molecular Sequence Data ; Platelet-Derived Growth Factor/chemistry/genetics ; Probability ; Proteins/*chemistry/genetics ; *Sequence Alignment ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1999-12-22
    Description: West Nile (WN) virus, a mosquito-transmitted virus native to Africa, Asia, and Europe, was isolated from two species of mosquitoes, Culex pipiens and Aedes vexans, and from brain tissues of 28 American crows, Corvus brachyrhynchos, and one Cooper's hawk, Accipiter cooperii, in Connecticut. A portion of the genome of virus isolates from four different hosts was sequenced and analyzed by comparative phylogenetic analysis. Our isolates from Connecticut were similar to one another and most closely related to two WN isolates from Romania (2.8 and 3.6 percent difference). If established in North America, WN virus will likely have severe effects on human health and on the health of populations of birds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, J F -- Andreadis, T G -- Vossbrinck, C R -- Tirrell, S -- Wakem, E M -- French, R A -- Garmendia, A E -- Van Kruiningen, H J -- P01-AI-30548/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2331-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, Department of Soil and Water, the Connecticut Agricultural Experiment Station, Post Office Box 1106, New Haven, CT 06504, USA. john.f.anderson@po.state.ct.us〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600741" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/virology ; Animals ; Base Sequence ; Bird Diseases/epidemiology/*virology ; Brain/*virology ; Connecticut/epidemiology ; Culex/virology ; Culicidae/*virology ; Genome, Viral ; Humans ; Insect Vectors/*virology ; Phylogeny ; Raptors/virology ; Romania ; Songbirds/virology ; West Nile Fever/epidemiology/*veterinary/virology ; West Nile virus/classification/genetics/*isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1999-02-19
    Description: A highly fatal hemorrhagic disease has been identified in 10 young Asian and African elephants at North American zoos. In the affected animals there was ultrastructural evidence for herpesvirus-like particles in endothelial cells of the heart, liver, and tongue. Consensus primer polymerase chain reaction combined with sequencing yielded molecular evidence that confirmed the presence of two novel but related herpesviruses associated with the disease, one in Asian elephants and another in African elephants. Otherwise healthy African elephants with external herpetic lesions yielded herpesvirus sequences identical to that found in Asian elephants with endothelial disease. This finding suggests that the Asian elephant deaths were caused by cross-species infection with a herpesvirus that is naturally latent in, but normally not lethal to, African elephants. A reciprocal relationship may exist for the African elephant disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richman, L K -- Montali, R J -- Garber, R L -- Kennedy, M A -- Lehnhardt, J -- Hildebrandt, T -- Schmitt, D -- Hardy, D -- Alcendor, D J -- Hayward, G S -- 1 K08 AI01526-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1171-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Smithsonian, National Zoological Park, Washington, DC 20008, USA. lkrichma@welchlink.welch.jhu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024244" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Amino Acid Sequence ; Animals ; Animals, Zoo/*virology ; Asia ; Base Sequence ; DNA, Viral/genetics ; DNA-Directed DNA Polymerase/chemistry/genetics ; Elephants/*virology ; Endodeoxyribonucleases/chemistry/genetics ; Endothelium, Vascular/pathology/*virology ; Female ; Genes, Viral ; Hemorrhage/pathology/veterinary/virology ; Herpesviridae/classification/genetics/*isolation & purification ; Herpesviridae Infections/pathology/transmission/*veterinary/virology ; Inclusion Bodies, Viral/ultrastructure ; Male ; Molecular Sequence Data ; Phylogeny ; Polymerase Chain Reaction ; United States ; Viral Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-08
    Description: The G+C nucleotide content of ribosomal RNA (rRNA) sequences is strongly correlated with the optimal growth temperature of prokaryotes. This property allows inference of the environmental temperature of the common ancestor to all life forms from knowledge of the G+C content of its rRNA sequences. A model of sequence evolution, assuming varying G+C content among lineages and unequal substitution rates among sites, was devised to estimate ancestral base compositions. This method was applied to rRNA sequences of various species representing the major lineages of life. The inferred G+C content of the common ancestor to extant life forms appears incompatible with survival at high temperature. This finding challenges a widely accepted hypothesis about the origin of life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galtier, N -- Tourasse, N -- Gouy, M -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):220-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Biometrie, Genetique et Biologie des Populations, Universite C. Bernard Lyon 1, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Computer Simulation ; Confidence Intervals ; Cytosine/*analysis ; *Evolution, Molecular ; Guanine/*analysis ; Hot Temperature ; Likelihood Functions ; Markov Chains ; Models, Chemical ; *Origin of Life ; Phylogeny ; RNA, Archaeal/chemistry ; RNA, Bacterial/chemistry ; RNA, Ribosomal/*chemistry ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1998-08-14
    Description: Tumor necrosis factor-alpha (TNF-alpha) is a major mediator of both acute and chronic inflammatory responses in many diseases. Tristetraprolin (TTP), the prototype of a class of Cys-Cys-Cys-His (CCCH) zinc finger proteins, inhibited TNF-alpha production from macrophages by destabilizing its messenger RNA. This effect appeared to result from direct TTP binding to the AU-rich element of the TNF-alpha messenger RNA. TTP is a cytosolic protein in these cells, and its biosynthesis was induced by the same agents that stimulate TNF-alpha production, including TNF-alpha itself. These findings identify TTP as a component of a negative feedback loop that interferes with TNF-alpha production by destabilizing its messenger RNA. This pathway represents a potential target for anti-TNF-alpha therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carballo, E -- Lai, W S -- Blackshear, P J -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):1001-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Office of Clinical Research and Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703499" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Base Sequence ; Biological Transport ; Cell Line ; Cell Nucleus/metabolism ; Chick Embryo ; Cytosol/metabolism ; *DNA-Binding Proteins ; Feedback ; Gene Expression Regulation ; Humans ; *Immediate-Early Proteins ; Lipopolysaccharides/pharmacology ; Macrophages/*physiology ; Mice ; Mice, Knockout ; Proteins/*physiology ; RNA Probes ; RNA, Messenger/chemistry/genetics/metabolism ; Transfection ; Tristetraprolin ; Tumor Necrosis Factor-alpha/antagonists & inhibitors/*biosynthesis/genetics ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavaghan, H -- New York, N.Y. -- Science. 1998 May 22;280(5367):1188.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9634397" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biotechnology/*legislation & jurisprudence ; *European Union ; Genetic Engineering/*legislation & jurisprudence ; *Genome, Human ; Humans ; Internationality ; *Patents as Topic ; *Plants, Genetically Modified
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1998-06-11
    Description: A human member of the immunoglobulin superfamily was shown to mediate entry of several alphaherpesviruses, including herpes simplex viruses (HSV) 1 and 2, porcine pseudorabies virus (PRV), and bovine herpesvirus 1 (BHV-1). This membrane glycoprotein is poliovirus receptor-related protein 1 (Prr1), designated here as HveC. Incubation of HSV-1 with a secreted form of HveC inhibited subsequent infection of a variety of cell lines, suggesting that HveC interacts directly with the virus. Poliovirus receptor (Pvr) itself mediated entry of PRV and BHV-1 but not of the HSV strains tested. HveC was expressed in human cells of epithelial and neuronal origin; it is the prime candidate for the coreceptor that allows both HSV-1 and HSV-2 to infect epithelial cells on mucosal surfaces and spread to cells of the nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geraghty, R J -- Krummenacher, C -- Cohen, G H -- Eisenberg, R J -- Spear, P G -- NS-30606/NS/NINDS NIH HHS/ -- NS-36731/NS/NINDS NIH HHS/ -- R01 AI 36293/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1618-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616127" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaherpesvirinae/*physiology ; Animals ; Base Sequence ; CHO Cells ; Cell Adhesion Molecules/genetics/*physiology ; Cells, Cultured ; Cricetinae ; Epithelial Cells/virology ; Gene Expression ; Herpesvirus 1, Bovine/physiology ; Herpesvirus 1, Human/*physiology ; Herpesvirus 1, Suid/physiology ; Herpesvirus 2, Human/*physiology ; Humans ; *Membrane Proteins ; Molecular Sequence Data ; Neurons/virology ; Polymerase Chain Reaction ; *Receptors, Virus ; Transfection ; Tumor Cells, Cultured ; Viral Envelope Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wuethrich, B -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):1980-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9767049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Female ; Genome, Human ; Humans ; Male ; *Mutation ; Recombination, Genetic ; Reproduction, Asexual ; Rotifera/genetics/physiology ; Selection, Genetic ; *Sex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1998-04-16
    Description: The genomic regulatory network that controls gene expression ultimately determines form and function in each species. The operational nature of the regulatory programming specified in cis-regulatory DNA sequence was determined from a detailed functional analysis of a sea urchin control element that directs the expression of a gene in the endoderm during development. Spatial expression and repression, and the changing rate of transcription of this gene, are mediated by a complex and extended cis-regulatory system. The system may be typical of developmental cis-regulatory apparatus. All of its activities are integrated in the proximal element, which contains seven target sites for DNA binding proteins. A quantitative computational model of this regulatory element was constructed that explicitly reveals the logical interrelations hard-wired into the DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuh, C H -- Bolouri, H -- Davidson, E H -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1896-902.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Adhesion Molecules/*genetics/physiology ; Computer Simulation ; DNA-Binding Proteins/metabolism ; Embryo, Nonmammalian/metabolism ; Endoderm/metabolism ; Gastrula/metabolism ; *Gene Expression Regulation, Developmental ; Lithium Chloride/pharmacology ; Models, Genetic ; Molecular Sequence Data ; Mutagenesis ; Promoter Regions, Genetic/genetics/*physiology ; Proteins/*genetics/physiology ; Sea Urchins/embryology/*genetics/metabolism ; *Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-30
    Description: Toward a genetic dissection of the processes involved in aging, a screen for gene mutations that extend life-span in Drosophila melanogaster was performed. The mutant line methuselah (mth) displayed approximately 35 percent increase in average life-span and enhanced resistance to various forms of stress, including starvation, high temperature, and dietary paraquat, a free-radical generator. The mth gene predicted a protein with homology to several guanosine triphosphate-binding protein-coupled seven-transmembrane domain receptors. Thus, the organism may use signal transduction pathways to modulate stress response and life-span.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y J -- Seroude, L -- Benzer, S -- AG12289/AG/NIA NIH HHS/ -- EY09278/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):943-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794765" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Base Sequence ; Cloning, Molecular ; DNA Transposable Elements ; *Drosophila Proteins ; Drosophila melanogaster/*genetics/*physiology ; Female ; Food Deprivation ; GTP-Binding Proteins/chemistry/*genetics/metabolism/physiology ; *Genes, Insect ; Hot Temperature ; Insecticide Resistance ; Longevity/genetics ; Male ; Molecular Sequence Data ; Mutation ; Oxidative Stress ; Paraquat/pharmacology ; Receptors, Cell Surface/chemistry/*genetics/metabolism/physiology ; *Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1692-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9660707" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Base Sequence ; Chromosome Inversion ; DNA/*genetics ; Evolution, Molecular ; *Genome, Human ; Humans ; *Multigene Family ; Nucleic Acid Hybridization ; *Polymorphism, Genetic ; RNA, Fungal/genetics ; RNA, Small Nuclear/*genetics ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1999-12-22
    Description: In late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lanciotti, R S -- Roehrig, J T -- Deubel, V -- Smith, J -- Parker, M -- Steele, K -- Crise, B -- Volpe, K E -- Crabtree, M B -- Scherret, J H -- Hall, R A -- MacKenzie, J S -- Cropp, C B -- Panigrahy, B -- Ostlund, E -- Schmitt, B -- Malkinson, M -- Banet, C -- Weissman, J -- Komar, N -- Savage, H M -- Stone, W -- McNamara, T -- Gubler, D J -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2333-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522, USA. rsl2@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600742" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; Antibodies, Viral/immunology ; Base Sequence ; Bird Diseases/epidemiology/virology ; Birds/virology ; *Disease Outbreaks ; Encephalitis Viruses, Japanese/classification/genetics ; Fluorescent Antibody Technique, Indirect ; Genome, Viral ; Humans ; Molecular Sequence Data ; New England/epidemiology ; New York City/epidemiology ; Phylogeny ; Songbirds/virology ; Viral Envelope Proteins/chemistry/genetics/immunology ; West Nile Fever/*epidemiology/veterinary/*virology ; West Nile virus/*classification/*genetics/immunology/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-15
    Description: The structure of a highly conserved complex between a 58-nucleotide domain of large subunit ribosomal RNA and the RNA-binding domain of ribosomal protein L11 has been solved at 2.8 angstrom resolution. It reveals a precisely folded RNA structure that is stabilized by extensive tertiary contacts and contains an unusually large core of stacked bases. A bulge loop base from one hairpin of the RNA is intercalated into the distorted major groove of another helix; the protein locks this tertiary interaction into place by binding to the intercalated base from the minor groove side. This direct interaction with a key ribosomal RNA tertiary interaction suggests that part of the role of L11 is to stabilize an unusual RNA fold within the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conn, G L -- Draper, D E -- Lattman, E E -- Gittis, A G -- R37 GM29048/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 14;284(5417):1171-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325228" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/metabolism ; Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Peptide Elongation Factor G ; Peptide Elongation Factors/metabolism ; Phylogeny ; Protein Conformation ; RNA, Bacterial/*chemistry/metabolism ; RNA, Ribosomal/*chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1999-06-26
    Description: Motilin is a 22-amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract of humans and other species. It affects gastric motility by stimulating interdigestive antrum and duodenal contractions. A heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptor for motilin was isolated from human stomach, and its amino acid sequence was found to be 52 percent identical to the human receptor for growth hormone secretagogues. The macrolide antibiotic erythromycin also interacted with the cloned motilin receptor, providing a molecular basis for its effects on the human GI tract. The motilin receptor is expressed in enteric neurons of the human duodenum and colon. Development of motilin receptor agonists and antagonists may be useful in the treatment of multiple disorders of GI motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feighner, S D -- Tan, C P -- McKee, K K -- Palyha, O C -- Hreniuk, D L -- Pong, S S -- Austin, C P -- Figueroa, D -- MacNeil, D -- Cascieri, M A -- Nargund, R -- Bakshi, R -- Abramovitz, M -- Stocco, R -- Kargman, S -- O'Neill, G -- Van Der Ploeg, L H -- Evans, J -- Patchett, A A -- Smith, R G -- Howard, A D -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2184-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Disorders, Department of Medicinal Chemistry, Merck Research Laboratories, Building RY-80Y-265, 126 East Lincoln Avenue, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381885" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Calcium/metabolism ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 13 ; Cloning, Molecular ; Colon/*metabolism ; Erythromycin/metabolism ; GTP-Binding Proteins/metabolism ; Humans ; In Situ Hybridization ; Intestine, Small/*metabolism ; Ligands ; Molecular Sequence Data ; Motilin/analogs & derivatives/*metabolism ; Receptors, Gastrointestinal Hormone/*chemistry/*genetics/metabolism ; Receptors, Neuropeptide/*chemistry/*genetics/metabolism ; Stomach/*metabolism ; Thyroid Gland/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Although data on nucleotide sequence variation in the human nuclear genome have begun to accumulate, little is known about genomic diversity in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). A 10,154-base pair sequence on the chimpanzee X chromosome is reported, representing all major subspecies and bonobos. Comparison to humans shows the diversity of the chimpanzee sequences to be almost four times as high and the age of the most recent common ancestor three times as great as the corresponding values of humans. Phylogenetic analyses show the sequences from the different chimpanzee subspecies to be intermixed and the distance between some chimpanzee sequences to be greater than the distance between them and the bonobo sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaessmann, H -- Wiebe, V -- Paabo, S -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1159-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Evolutionary Anthropology, Inselstrasse 22, D-04103 Leipzig, Germany. kaessmann@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/*genetics ; *Genetic Variation ; *Genome ; Gorilla gorilla/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Pan paniscus/classification/*genetics ; Pan troglodytes/classification/*genetics ; Phylogeny ; Recombination, Genetic ; Species Specificity ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1997-03-21
    Description: The "Spanish" influenza pandemic killed at least 20 million people in 1918-1919, making it the worst infectious pandemic in history. Understanding the origins of the 1918 virus and the basis for its exceptional virulence may aid in the prediction of future influenza pandemics. RNA from a victim of the 1918 pandemic was isolated from a formalin-fixed, paraffin-embedded, lung tissue sample. Nine fragments of viral RNA were sequenced from the coding regions of hemagglutinin, neuraminidase, nucleoprotein, matrix protein 1, and matrix protein 2. The sequences are consistent with a novel H1N1 influenza A virus that belongs to the subgroup of strains that infect humans and swine, not the avian subgroup.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taubenberger, J K -- Reid, A H -- Krafft, A E -- Bijwaard, K E -- Fanning, T G -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Pathology, Department of Cellular Pathology, Armed Forces Institute of Pathology, Washington DC 20306-6000, USA. taubenbe@email.afip.osd.mil〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065404" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Base Sequence ; *Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/genetics ; History, 20th Century ; Humans ; Influenza A virus/classification/*genetics/pathogenicity ; Influenza, Human/history/*virology ; Lung/virology ; Molecular Sequence Data ; Neuraminidase/genetics ; Nucleoproteins/genetics ; Phylogeny ; Polymerase Chain Reaction ; RNA, Viral/*genetics ; *RNA-Binding Proteins ; Viral Core Proteins/genetics ; Viral Matrix Proteins/genetics ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-23
    Description: During translation errors of aminoacylation are corrected in editing reactions which ensure that an amino acid is stably attached to its corresponding transfer RNA (tRNA). Previous studies have not shown whether the tRNA nucleotides needed for effecting translational editing are the same as or distinct from those required for aminoacylation, but several considerations have suggested that they are the same. Here, designed tRNAs that are highly active for aminoacylation but are not active in translational editing are presented. The editing reaction can be controlled by manipulation of nucleotides at the corner of the L-shaped tRNA. In contrast, these manipulations do not affect aminoacylation. These results demonstrate the segregation of nucleotide determinants for the editing and aminoacylation functions of tRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hale, S P -- Auld, D S -- Schmidt, E -- Schimmel, P -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 23;276(5316):1250-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157882" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Binding Sites ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Editing ; RNA, Transfer/*metabolism ; RNA, Transfer, Ile/chemistry/metabolism ; RNA, Transfer, Val/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorimer, B G -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):601-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9019811" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes ; Base Sequence ; DNA, Complementary/*genetics ; Databases, Factual ; *Genome, Human ; Humans ; Intellectual Property ; Publishing ; Research Support as Topic ; Sequence Analysis, DNA ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-08-22
    Description: Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobsen, S E -- Meyerowitz, E M -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9262479" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Arabidopsis/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Base Sequence ; Crosses, Genetic ; Cytosine/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics ; *DNA Methylation ; DNA, Antisense ; DNA, Plant/metabolism ; Gene Expression Regulation, Plant ; *Genes, Plant ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; RNA, Messenger/metabolism ; RNA, Plant/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-11-14
    Description: Pathogenic Yersinia species have a specialized secretion system (type III) to target cytotoxic Yop proteins during infection. The signals of YopE and YopN sufficient for the secretion of translational reporter fusions were mapped to the first 15 codons. No common amino acid or peptide sequence could be identified among the secretion signals. Systematic mutagenesis of the secretion signal yielded mutants defective in Yop translation; however, no point mutants could be identified that specifically abolished secretion. Frameshift mutations that completely altered the peptide sequences of these signals also failed to prevent secretion. Thus, the signal that leads to the type III secretion of Yop proteins appears to be encoded in their messenger RNA rather than the peptide sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, D M -- Schneewind, O -- AI 07323/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 7;278(5340):1140-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Molecular Biology Institute, University of California, Los Angeles, School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9353199" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/chemistry/genetics/*secretion ; Bacterial Proteins/chemistry/genetics/*secretion ; Base Sequence ; Codon ; Frameshift Mutation ; *Membrane Proteins ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Point Mutation ; Protein Biosynthesis ; RNA, Bacterial/chemistry/*genetics/metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Recombinant Fusion Proteins/biosynthesis/secretion ; Yersinia enterocolitica/*metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-11
    Description: The use of molecular phylogenies to examine evolutionary questions has become commonplace with the automation of DNA sequencing and the availability of efficient computer programs to perform phylogenetic analyses. The application of computer simulation and likelihood ratio tests to evolutionary hypotheses represents a recent methodological development in this field. Likelihood ratio tests have enabled biologists to address many questions in evolutionary biology that have been difficult to resolve in the past, such as whether host-parasite systems are cospeciating and whether models of DNA substitution adequately explain observed sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huelsenbeck, J P -- Rannala, B -- GM40282/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):227-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. john@mws4.biol.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092465" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Computer Simulation ; *DNA/genetics ; Electron Transport Complex IV/genetics ; *Evolution, Molecular ; Hantavirus/genetics ; Likelihood Functions ; Mutation ; Phthiraptera/genetics ; *Phylogeny ; RNA, Viral/genetics ; Rodentia/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, E -- New York, N.Y. -- Science. 1997 May 23;276(5316):1189-90.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9182326" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Communication Networks ; *Dna ; Europe ; Germany ; Humans ; *Information Dissemination ; Intellectual Property ; *Internationality ; *Patents as Topic ; Time Factors ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, S T -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):408-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005557" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; *Crossing Over, Genetic ; Homeodomain Proteins/chemistry/*genetics ; Humans ; Molecular Sequence Data ; Mutation ; Peptides/analysis/*genetics ; Polydactyly/*genetics ; Syndactyly/*genetics ; *Transcription Factors ; Trinucleotide Repeats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1997-06-27
    Description: Individual plastids of vascular plants have generally been considered to be discrete autonomous entities that do not directly communicate with each other. However, in transgenic plants in which the plastid stroma was labeled with green fluorescent protein (GFP), thin tubular projections emanated from individual plastids and sometimes connected to other plastids. Flow of GFP between interconnected plastids could be observed when a single plastid or an interconnecting plastid tubule was photobleached and the loss of green fluorescence by both plastids was seen. These tubules allow the exchange of molecules within an interplastid communication system, which may facilitate the coordination of plastid activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohler, R H -- Cao, J -- Zipfel, W R -- Webb, W W -- Hanson, M R -- R07719/PHS HHS/ -- RR04224/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 27;276(5321):2039-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Genetics and Development, Cornell University, Biotechnology Building, Ithaca, NY 14853-2703, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9197266" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chloroplasts/*metabolism/*ultrastructure ; Cytoplasm/metabolism ; Green Fluorescent Proteins ; Luminescent Proteins/*metabolism ; Microscopy/methods ; Microscopy, Fluorescence ; Molecular Sequence Data ; Plant Leaves/*ultrastructure ; Plants, Genetically Modified ; Plants, Toxic ; Recombinant Fusion Proteins/metabolism ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehrenstein, D -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):762.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9273696" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosome Mapping ; *Computer Communication Networks ; *Databases, Factual ; *Genes ; Genome, Human ; Humans ; National Institutes of Health (U.S.) ; National Library of Medicine (U.S.) ; Neoplasms/*genetics ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maley, L E -- Marshall, C R -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):505-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454349" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; DNA, Ribosomal/*genetics ; *Evolution, Molecular ; *Phylogeny ; Proteins/chemistry ; RNA, Ribosomal, 18S/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-24
    Description: Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast origin of bidirectional replication with the use of replication initiation point mapping. The ARS1 origin of Saccharomyces cerevisiae showed a transition from discontinuous to continuous DNA synthesis in an 18-base pair region (nucleotides 828 to 845) from within element B1 toward B2, adjacent to the binding site for the origin recognition complex, the putative initiator protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bielinsky, A K -- Gerbi, S A -- GM 35929/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):95-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417033" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; DNA Helicases/metabolism ; DNA Primers ; *DNA Replication ; DNA, Fungal/*biosynthesis ; *DNA-Binding Proteins ; Molecular Sequence Data ; *Replication Origin ; Saccharomyces cerevisiae/*metabolism ; Trans-Activators/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1998-08-26
    Description: Nitrogen-fixing bacteroids in legume root nodules are surrounded by the plant-derived peribacteroid membrane, which controls nutrient transfer between the symbionts. A nodule complementary DNA (GmSAT1) encoding an ammonium transporter has been isolated from soybean. GmSAT1 is preferentially transcribed in nodules and immunoblotting indicates that GmSAT1 is located on the peribacteroid membrane. [14C]methylammonium uptake and patch-clamp analysis of yeast expressing GmSAT1 demonstrated that it shares properties with a soybean peribacteroid membrane NH4〈SUP ARRANGE="STAGGER"〉+ channel described elsewhere. GmSAT1 is likely to be involved in the transfer of fixed nitrogen from the bacteroid to the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, B N -- Finnegan, P M -- Tyerman, S D -- Whitehead, L F -- Bergersen, F J -- Day, D A -- Udvardi, M K -- New York, N.Y. -- Science. 1998 Aug 21;281(5380):1202-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Molecular Biology, The Australian National University, Canberra ACT 0200, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9712587" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Transport ; Carrier Proteins/chemistry/*genetics/*metabolism/*secretion ; *Cation Transport Proteins ; Cell Membrane/metabolism ; DNA, Complementary ; Ion Channels/metabolism ; Kinetics ; Methylamines/metabolism ; Molecular Sequence Data ; Organelles/metabolism ; Patch-Clamp Techniques ; Plant Roots/genetics/metabolism/microbiology ; Potassium/metabolism ; Quaternary Ammonium Compounds/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; *Soybean Proteins ; Soybeans/chemistry/*genetics/metabolism/microbiology ; Spheroplasts/metabolism ; Symbiosis ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1998-05-02
    Description: Accuracy in transfer RNA (tRNA) splicing is essential for the formation of functional tRNAs, and hence for gene expression, in both Eukaryotes and Archaea. The specificity for recognition of the tRNA precursor (pre-tRNA) resides in the endonuclease, which removes the intron by making two independent endonucleolytic cleavages. Although the eukaryal and archaeal enzymes appear to use different features of pre-tRNAs to determine the sites of cleavage, analysis of hybrid pre-tRNA substrates containing eukaryal and archaeal sequences, described here, reveals that the eukaryal enzyme retains the ability to use the archaeal recognition signals. This result indicates that there may be a common ancestral mechanism for recognition of pre-tRNA by proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fabbri, S -- Fruscoloni, P -- Bufardeci, E -- Di Nicola Negri, E -- Baldi, M I -- Attardi, D G -- Mattoccia, E -- Tocchini-Valentini, G P -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):284-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EniChem, Istituto Guido Donegani SpA, Laboratori di Biotecnologie, 00015 Monterotondo, Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticodon ; Base Composition ; Base Sequence ; Endoribonucleases/chemistry/*metabolism ; Introns ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA Precursors/*chemistry/*metabolism ; *RNA Splicing ; RNA, Archaeal/*chemistry/*metabolism ; RNA, Transfer, Phe/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Substrate Specificity ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The transfer RNA (tRNA) multigene family comprises 20 amino acid-accepting groups, many of which contain isoacceptors. The addition of isoacceptors to the tRNA repertoire was critical to establishing the genetic code, yet the origin of isoacceptors remains largely unexplored. A model of tRNA evolution, termed "tRNA gene recruitment," was formulated. It proposes that a tRNA gene can be recruited from one isoaccepting group to another by a point mutation that concurrently changes tRNA amino acid identity and messenger RNA coupling capacity. A test of the model showed that an Escherichia coli strain, in which the essential tRNAUGUThr gene was inactivated, was rendered viable when a tRNAArg with a point mutation that changed its anticodon from UCU to UGU (threonine) was expressed. Insertion of threonine at threonine codons by the "recruited" tRNAArg was corroborated by in vitro aminoacylation assays showing that its specificity had been changed from arginine to threonine. Therefore, the recruitment model may account for the evolution of some tRNA genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saks, M E -- Sampson, J R -- Abelson, J -- GM 48560/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1665-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA. peggy@seqaxp.bio.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497276" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/*genetics ; Arginine/metabolism ; Base Composition ; Base Sequence ; Escherichia coli/*genetics ; *Evolution, Molecular ; Genes, Bacterial ; Haemophilus influenzae/genetics ; Models, Genetic ; Molecular Sequence Data ; Multigene Family ; Nucleic Acid Conformation ; *Point Mutation ; Polymerase Chain Reaction ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Transfer, Arg/chemistry/*genetics/metabolism ; RNA, Transfer, Thr/chemistry/*genetics/metabolism ; Recombination, Genetic ; Temperature ; Threonine/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1581-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9767017" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cells, Cultured ; DNA, Complementary ; Databases, Factual ; Gene Expression ; Humans ; Mass Spectrometry ; Proteins/*chemistry/genetics/isolation & purification ; *RNA Splicing ; Spliceosomes/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-09
    Description: Short RNA aptamers that specifically bind to a wide variety of ligands in vitro can be isolated from randomized pools of RNA. Here it is shown that small molecule aptamers also bound their ligand in vivo, enabling development of a method for controlling gene expression in living cells. Insertion of a small molecule aptamer into the 5' untranslated region of a messenger RNA allowed its translation to be repressible by ligand addition in vitro as well as in mammalian cells. The ability of small molecules to control expression of specific genes could facilitate studies in many areas of biology and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werstuck, G -- Green, M R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):296-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, 373 Plantation Street, Suite 309, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765156" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*metabolism/pharmacology ; Base Sequence ; Benzimidazoles/pharmacology ; Bisbenzimidazole/*metabolism/pharmacology ; CHO Cells ; Cricetinae ; Drug Resistance, Microbial ; Escherichia coli/genetics ; *Gene Expression Regulation/drug effects ; Kanamycin/metabolism/pharmacology ; Ligands ; Molecular Sequence Data ; Protein Biosynthesis/drug effects ; RNA/*metabolism ; RNA, Messenger/genetics ; Tobramycin/metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morell, V -- New York, N.Y. -- Science. 1997 May 2;276(5313):699-702.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157549" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*classification/genetics/physiology ; Bacteria/*classification/genetics ; Base Sequence ; Biological Evolution ; History, 20th Century ; Origin of Life ; *Phylogeny ; RNA, Bacterial/genetics ; RNA, Ribosomal/genetics ; Sequence Analysis, RNA ; Temperature ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-25
    Description: A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wright, M C -- Joyce, G F -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110984" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; DNA-Directed RNA Polymerases/genetics/metabolism ; *Directed Molecular Evolution ; Evolution, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; *RNA, Catalytic/chemistry/genetics/metabolism ; Saccharomyces cerevisiae/chemistry ; Templates, Genetic ; Transcription, Genetic ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doll, J J -- New York, N.Y. -- Science. 1998 May 1;280(5364):689-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Examination, U.S. Patent and Trademark Office, Washington, DC 20231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9599146" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biotechnology/*legislation & jurisprudence ; *Dna ; DNA, Complementary ; Databases, Factual ; Federal Government ; Genetic Research ; Genetic Techniques ; Human Genome Project ; *Patents as Topic ; Polymorphism, Genetic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2006-11-18
    Description: Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Revyakin, Andrey -- Liu, Chenyu -- Ebright, Richard H -- Strick, Terence R -- GM41376/GM/NIGMS NIH HHS/ -- R01 GM041376/GM/NIGMS NIH HHS/ -- R01 GM041376-15/GM/NIGMS NIH HHS/ -- R01 GM041376-16/GM/NIGMS NIH HHS/ -- R01 GM041376-17/GM/NIGMS NIH HHS/ -- R01 GM041376-18/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1139-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110577" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biomechanical Phenomena ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; RNA/biosynthesis ; Transcription Initiation Site/physiology ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2006-11-11
    Description: The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazantseva, Anastasiya -- Goltsov, Andrey -- Zinchenko, Rena -- Grigorenko, Anastasia P -- Abrukova, Anna V -- Moliaka, Yuri K -- Kirillov, Alexander G -- Guo, Zhiru -- Lyle, Stephen -- Ginter, Evgeny K -- Rogaev, Evgeny I -- K08-AR02179/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095700" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 3/genetics ; Exons ; Female ; Gene Deletion ; Gene Expression ; Genetic Markers ; Hair/*growth & development ; Hair Follicle/enzymology ; Heterozygote ; Homozygote ; Humans ; Hypotrichosis/*genetics ; Lipase/chemistry/*genetics/metabolism ; Lipid Metabolism ; Lod Score ; Male ; Molecular Sequence Data ; Pedigree ; Protein Structure, Tertiary ; Recombination, Genetic ; Retroelements ; Russia ; Tandem Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Birds ; Databases, Nucleic Acid ; Genetic Variation ; *Genome, Viral ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*pathogenicity ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Ligands ; Poultry ; RNA, Viral/genetics ; Viral Nonstructural Proteins/chemistry/*genetics/metabolism ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2006-10-07
    Description: A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagel, Mark -- Venditti, Chris -- Meade, Andrew -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):119-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. m.pagel@rdg.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bayes Theorem ; DNA/*genetics ; DNA, Fungal/genetics ; DNA, Plant/genetics ; *Evolution, Molecular ; Founder Effect ; Fungi/classification/genetics ; *Genetic Speciation ; Genetic Variation ; Likelihood Functions ; Mathematics ; Models, Statistical ; Mutation ; Phylogeny ; Plants/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2006-12-16
    Description: A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Mausmi P -- Baross, John A -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1783-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. mausmi@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/genetics/*isolation & purification/*metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Base Sequence ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Geologic Sediments/microbiology ; *Hot Temperature ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation/genetics ; Nitrogenase/chemistry/*genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/metabolism ; Pacific Ocean ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/*microbiology ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2006-12-23
    Description: Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Kirkness, Ewen F -- Loh, Yong-Hwee -- Halpern, Aaron L -- Lee, Alison P -- Johnson, Justin -- Dandona, Nidhi -- Viswanathan, Lakshmi D -- Tay, Alice -- Venter, J Craig -- Strausberg, Robert L -- Brenner, Sydney -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673. mcbbv@imcb.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA, Intergenic ; Enhancer Elements, Genetic ; Evolution, Molecular ; Genome ; *Genome, Human ; Humans ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sharks/*genetics ; Takifugu/genetics ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2007-10-20
    Description: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soma, Akiko -- Onodera, Akinori -- Sugahara, Junichi -- Kanai, Akio -- Yachie, Nozomu -- Tomita, Masaru -- Kawamura, Fujio -- Sekine, Yasuhiko -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):450-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947580" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Algal/chemistry/genetics ; *Genes ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Algal/*genetics/metabolism ; RNA, Transfer/*genetics/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Rhodophyta/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2007-01-16
    Description: A major goal of systems biology is to predict the function of biological networks. Although network topologies have been successfully determined in many cases, the quantitative parameters governing these networks generally have not. Measuring affinities of molecular interactions in high-throughput format remains problematic, especially for transient and low-affinity interactions. We describe a high-throughput microfluidic platform that measures such properties on the basis of mechanical trapping of molecular interactions. With this platform we characterized DNA binding energy landscapes for four eukaryotic transcription factors; these landscapes were used to test basic assumptions about transcription factor binding and to predict their in vivo function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maerkl, Sebastian J -- Quake, Stephen R -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):233-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Biophysics Option, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218526" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Computational Biology ; Computer Simulation ; DNA/*metabolism ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; E-Box Elements ; Gene Expression Regulation, Fungal ; Helix-Loop-Helix Motifs ; Humans ; *Microfluidic Analytical Techniques ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Protein Isoforms/metabolism ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; *Systems Biology ; Templates, Genetic ; Thermodynamics ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2008-01-26
    Description: We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Daniel G -- Benders, Gwynedd A -- Andrews-Pfannkoch, Cynthia -- Denisova, Evgeniya A -- Baden-Tillson, Holly -- Zaveri, Jayshree -- Stockwell, Timothy B -- Brownley, Anushka -- Thomas, David W -- Algire, Mikkel A -- Merryman, Chuck -- Young, Lei -- Noskov, Vladimir N -- Glass, John I -- Venter, J Craig -- Hutchison, Clyde A 3rd -- Smith, Hamilton O -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1215-20. doi: 10.1126/science.1151721. Epub 2008 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218864" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Bacterial/*chemical synthesis ; DNA, Recombinant ; Escherichia coli/genetics ; Genetic Vectors ; *Genome, Bacterial ; Genomics/*methods ; Mycoplasma genitalium/*genetics ; Oligodeoxyribonucleotides/chemical synthesis ; Plasmids ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics ; Sequence Analysis, DNA ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: Cadherin-mediated cell adhesion and signaling is essential for metazoan development and yet is absent from all other multicellular organisms. We found cadherin genes at numbers similar to those observed in complex metazoans in one of the closest single-celled relatives of metazoans, the choanoflagellate Monosiga brevicollis. Because the evolution of metazoans from a single-celled ancestor required novel cell adhesion and signaling mechanisms, the discovery of diverse cadherins in choanoflagellates suggests that cadherins may have contributed to metazoan origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abedin, Monika -- King, Nicole -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):946-8. doi: 10.1126/science.1151084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276888" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Cadherins/*chemistry/*genetics/physiology ; Cell Adhesion ; Ciona intestinalis/chemistry ; Cnidaria/chemistry ; Drosophila melanogaster/chemistry ; Eukaryota/*chemistry ; Eukaryotic Cells/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2008-12-20
    Description: Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Conjugation, Genetic ; DNA, Bacterial/*genetics/metabolism ; Deoxyribonuclease I/genetics/metabolism ; *Gene Silencing ; *Gene Transfer, Horizontal ; Plasmids/genetics ; RNA Splicing ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics ; Staphylococcus Phages/genetics ; Staphylococcus aureus/genetics ; Staphylococcus epidermidis/*genetics ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2008-01-19
    Description: Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down alpha-carotene versus beta-carotene branches of the carotenoid pathway. Four natural lcyE polymorphisms explained 58% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harjes, Carlos E -- Rocheford, Torbert R -- Bai, Ling -- Brutnell, Thomas P -- Kandianis, Catherine Bermudez -- Sowinski, Stephen G -- Stapleton, Ann E -- Vallabhaneni, Ratnakar -- Williams, Mark -- Wurtzel, Eleanore T -- Yan, Jianbing -- Buckler, Edward S -- S06-GM08225/GM/NIGMS NIH HHS/ -- SC1 GM081160/GM/NIGMS NIH HHS/ -- SC1 GM081160-01/GM/NIGMS NIH HHS/ -- SC1 GM081160-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):330-3. doi: 10.1126/science.1150255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202289" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breeding ; Carotenoids/*analysis/metabolism ; Crosses, Genetic ; Cryptoxanthins ; Gene Expression Regulation, Plant ; *Genetic Variation ; Haplotypes ; Intramolecular Lyases/*genetics/metabolism ; Molecular Sequence Data ; Mutagenesis ; Nutritive Value ; Polymorphism, Genetic ; Quantitative Trait Loci ; Xanthophylls/analysis/metabolism ; Zea mays/chemistry/enzymology/*genetics ; beta Carotene/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2008-05-24
    Description: Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, Anders F -- Banfield, Jillian F -- New York, N.Y. -- Science. 2008 May 23;320(5879):1047-50. doi: 10.1126/science.1157358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Earth and Planetary Science and Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/*genetics/physiology/*virology ; Archaeal Viruses/genetics/*physiology ; Bacteria/*genetics/*virology ; Bacterial Physiological Phenomena ; Bacteriophages/genetics/*physiology ; Base Sequence ; Biofilms ; DNA, Intergenic ; Ecosystem ; Genome, Archaeal ; Genome, Bacterial ; Genome, Viral ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Thermoplasmales/genetics/physiology/virology ; Viral Proteins/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-26
    Description: The statistical methods applied to the analysis of genomic data do not account for uncertainty in the sequence alignment. Indeed, the alignment is treated as an observation, and all of the subsequent inferences depend on the alignment being correct. This may not have been too problematic for many phylogenetic studies, in which the gene is carefully chosen for, among other things, ease of alignment. However, in a comparative genomics study, the same statistical methods are applied repeatedly on thousands of genes, many of which will be difficult to align. Using genomic data from seven yeast species, we show that uncertainty in the alignment can lead to several problems, including different alignment methods resulting in different conclusions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Karen M -- Suchard, Marc A -- Huelsenbeck, John P -- GM-069801/GM/NIGMS NIH HHS/ -- R01 GM069801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):473-6. doi: 10.1126/science.1151532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218900" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; Evolution, Molecular ; *Genome, Fungal ; *Genomics ; Models, Statistical ; Monte Carlo Method ; Open Reading Frames ; Phylogeny ; Saccharomyces/*genetics ; Selection, Genetic ; Sequence Alignment/*methods ; Software ; Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2008-12-06
    Description: Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repeat domains and document cytogenetic and functional polymorphism for drive within a population of M. guttatus. In conspecific crosses, D had a 58:42 transmission advantage over nondriving alternative alleles. However, individuals homozygous for the driving allele suffered reduced pollen viability. These fitness effects and molecular population genetic data suggest that balancing selection prevents the fixation or loss of D and that selfish chromosomal transmission may affect both individual fitness and population genetic load.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman, Lila -- Saunders, Arpiar -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1559-62. doi: 10.1126/science.1161406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA. lila.fishman@mso.umt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056989" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Biological Evolution ; Centromere/*physiology ; Chromosome Segregation ; Chromosomes, Plant/*physiology ; Crosses, Genetic ; Genetic Markers ; Heterozygote ; Hybridization, Genetic ; Linkage Disequilibrium ; *Meiosis ; Mimulus/*genetics/physiology ; Molecular Sequence Data ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strasser, Bruno J -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):537-8. doi: 10.1126/science.1163399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of the History of Medicine, Yale University, New Haven, CT 06520, USA. bruno.strasser@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948528" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Databases, Nucleic Acid/*history/organization & administration ; Editorial Policies ; History, 20th Century ; History, 21st Century ; National Institutes of Health (U.S.)/*history ; National Library of Medicine (U.S.)/history ; Natural History/history ; Publishing ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2008-07-19
    Description: Cyclic di-guanosine monophosphate (di-GMP) is a circular RNA dinucleotide that functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes, including cell differentiation, conversion between motile and biofilm lifestyles, and virulence gene expression. However, the mechanisms by which cyclic di-GMP regulates gene expression have remained a mystery. We found that cyclic di-GMP in many bacterial species is sensed by a riboswitch class in messenger RNA that controls the expression of genes involved in numerous fundamental cellular processes. A variety of cyclic di-GMP regulons are revealed, including some riboswitches associated with virulence gene expression, pilus formation, and flagellum biosynthesis. In addition, sequences matching the consensus for cyclic di-GMP riboswitches are present in the genome of a bacteriophage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudarsan, N -- Lee, E R -- Weinberg, Z -- Moy, R H -- Kim, J N -- Link, K H -- Breaker, R R -- GM 068819/GM/NIGMS NIH HHS/ -- HV28186/HV/NHLBI NIH HHS/ -- R33 DK07027/DK/NIDDK NIH HHS/ -- RR19895-02/RR/NCRR NIH HHS/ -- T32GM007223/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):411-3. doi: 10.1126/science.1159519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635805" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/*metabolism ; Bacillus cereus/genetics/metabolism ; Bacteria/*genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Clostridium difficile/genetics/metabolism ; Cyclic GMP/*analogs & derivatives/metabolism ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; Regulon ; *Second Messenger Systems ; Vibrio cholerae/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2009-03-17
    Description: The three-dimensional molecular structure of DNA, specifically the shape of the backbone and grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause differences in protein-binding affinity and phenotype. We developed an algorithm to measure constraint on the basis of similarity of DNA topography among multiple species, using hydroxyl radical cleavage patterns to interrogate the solvent-accessible surface area of DNA. This algorithm found that 12% of bases in the human genome are evolutionarily constrained-double the number detected by nucleotide sequence-based algorithms. Topography-informed constrained regions correlated with functional noncoding elements, including enhancers, better than did regions identified solely on the basis of nucleotide sequence. These results support the idea that the molecular shape of DNA is under selection and can identify evolutionary history.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Stephen C J -- Hansen, Loren -- Abaan, Hatice Ozel -- Tullius, Thomas D -- Margulies, Elliott H -- R01 HG003541/HG/NHGRI NIH HHS/ -- R01 HG003541-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):389-92. doi: 10.1126/science.1169050. Epub 2009 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics Program, Boston University, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286520" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Base Sequence ; Binding Sites ; Conserved Sequence ; DNA/*chemistry/genetics ; Deoxyribonuclease I/metabolism ; Early Growth Response Protein 1/genetics/metabolism ; Evolution, Molecular ; *Genome, Human ; Humans ; Mutant Proteins/metabolism ; Nucleic Acid Conformation ; Phenotype ; Polymorphism, Single Nucleotide ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-12-08
    Description: Hepatitis delta virus (HDV) and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) ribozymes form a family of self-cleaving RNAs characterized by a conserved nested double-pseudoknot and minimal sequence conservation. Secondary structure-based searches were used to identify sequences capable of forming this fold, and their self-cleavage activity was confirmed in vitro. Active sequences were uncovered in several marine organisms, two nematodes, an arthropod, a bacterium, and an insect virus, often in multiple sequence families and copies. Sequence searches based on identified ribozymes showed that plants, fungi, and a unicellular eukaryote also harbor the ribozymes. In Anopheles gambiae, the ribozymes were found differentially expressed and self-cleaved at basic developmental stages. Our results indicate that HDV-like ribozymes are abundant in nature and suggest that self-cleaving RNAs may play a variety of biological roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Chiu-Ho T -- Riccitelli, Nathan J -- Ruminski, Dana J -- Luptak, Andrej -- R01 GM094929/GM/NIGMS NIH HHS/ -- R01 GM094929-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):953. doi: 10.1126/science.1178084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/enzymology/*genetics/growth & development ; Base Sequence ; Catalysis ; Eukaryota/enzymology/*genetics ; Expressed Sequence Tags ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2008-11-22
    Description: We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eid, John -- Fehr, Adrian -- Gray, Jeremy -- Luong, Khai -- Lyle, John -- Otto, Geoff -- Peluso, Paul -- Rank, David -- Baybayan, Primo -- Bettman, Brad -- Bibillo, Arkadiusz -- Bjornson, Keith -- Chaudhuri, Bidhan -- Christians, Frederick -- Cicero, Ronald -- Clark, Sonya -- Dalal, Ravindra -- Dewinter, Alex -- Dixon, John -- Foquet, Mathieu -- Gaertner, Alfred -- Hardenbol, Paul -- Heiner, Cheryl -- Hester, Kevin -- Holden, David -- Kearns, Gregory -- Kong, Xiangxu -- Kuse, Ronald -- Lacroix, Yves -- Lin, Steven -- Lundquist, Paul -- Ma, Congcong -- Marks, Patrick -- Maxham, Mark -- Murphy, Devon -- Park, Insil -- Pham, Thang -- Phillips, Michael -- Roy, Joy -- Sebra, Robert -- Shen, Gene -- Sorenson, Jon -- Tomaney, Austin -- Travers, Kevin -- Trulson, Mark -- Vieceli, John -- Wegener, Jeffrey -- Wu, Dawn -- Yang, Alicia -- Zaccarin, Denis -- Zhao, Peter -- Zhong, Frank -- Korlach, Jonas -- Turner, Stephen -- R01HG003710/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):133-8. doi: 10.1126/science.1162986. Epub 2008 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Biosciences, 1505 Adams Drive, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023044" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Consensus Sequence ; DNA/biosynthesis ; DNA, Circular/chemistry ; DNA, Single-Stranded/chemistry ; DNA-Directed DNA Polymerase/*metabolism ; Deoxyribonucleotides/metabolism ; Enzymes, Immobilized ; Fluorescent Dyes ; Kinetics ; Nanostructures ; Sequence Analysis, DNA/*methods ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2009-05-09
    Description: Despite tremendous progress in understanding the nature of the immune system, the full diversity of an organism's antibody repertoire is unknown. We used high-throughput sequencing of the variable domain of the antibody heavy chain from 14 zebrafish to analyze VDJ usage and antibody sequence. Zebrafish were found to use between 50 and 86% of all possible VDJ combinations and shared a similar frequency distribution, with some correlation of VDJ patterns between individuals. Zebrafish antibodies retained a few thousand unique heavy chains that also exhibited a shared frequency distribution. We found evidence of convergence, in which different individuals made the same antibody. This approach provides insight into the breadth of the expressed antibody repertoire and immunological diversity at the level of an individual organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinstein, Joshua A -- Jiang, Ning -- White, Richard A 3rd -- Fisher, Daniel S -- Quake, Stephen R -- DP1 OD000251/OD/NIH HHS/ -- DP1 OD000251-04/OD/NIH HHS/ -- DP1 OD000251-05/OD/NIH HHS/ -- DP1 OD000251-06/OD/NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):807-10. doi: 10.1126/science.1170020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics ; Antibody Diversity ; Base Sequence ; Complementarity Determining Regions/*genetics ; Computational Biology ; Female ; Gene Library ; *Genes, Immunoglobulin Heavy Chain ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin Joining Region/genetics ; Immunoglobulin M/*genetics ; Male ; Molecular Sequence Data ; Recombination, Genetic ; Sequence Analysis, DNA ; VDJ Exons ; Zebrafish/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-03-03
    Description: Plants have distinct RNA polymerase complexes (Pol IV and Pol V) with largely unknown roles in maintaining small RNA-associated gene silencing. Curiously, the eudicot Arabidopsis thaliana is not affected when either function is lost. By use of mutation selection and positional cloning, we showed that the largest subunit of the presumed maize Pol IV is involved in paramutation, an inherited epigenetic change facilitated by an interaction between two alleles, as well as normal maize development. Bioinformatics analyses and nuclear run-on transcription assays indicate that Pol IV does not engage in the efficient RNA synthesis typical of the three major eukaryotic DNA-dependent RNA polymerases. These results indicate that Pol IV employs abnormal RNA polymerase activities to achieve genome-wide silencing and that its absence affects both maize development and heritable epigenetic changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erhard, Karl F Jr -- Stonaker, Jennifer L -- Parkinson, Susan E -- Lim, Jana P -- Hale, Christopher J -- Hollick, Jay B -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1201-5. doi: 10.1126/science.1164508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251626" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Epigenesis, Genetic ; Gene Silencing ; Genes, Plant ; Molecular Sequence Data ; *Mutation ; Phylogeny ; Protein Subunits/chemistry/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Transcription, Genetic ; Zea mays/*enzymology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-05-16
    Description: Sequence preferences of DNA binding proteins are a primary mechanism by which cells interpret the genome. Despite the central importance of these proteins in physiology, development, and evolution, comprehensive DNA binding specificities have been determined experimentally for only a few proteins. Here, we used microarrays containing all 10-base pair sequences to examine the binding specificities of 104 distinct mouse DNA binding proteins representing 22 structural classes. Our results reveal a complex landscape of binding, with virtually every protein analyzed possessing unique preferences. Roughly half of the proteins each recognized multiple distinctly different sequence motifs, challenging our molecular understanding of how proteins interact with their DNA binding sites. This complexity in DNA recognition may be important in gene regulation and in the evolution of transcriptional regulatory networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badis, Gwenael -- Berger, Michael F -- Philippakis, Anthony A -- Talukder, Shaheynoor -- Gehrke, Andrew R -- Jaeger, Savina A -- Chan, Esther T -- Metzler, Genita -- Vedenko, Anastasia -- Chen, Xiaoyu -- Kuznetsov, Hanna -- Wang, Chi-Fong -- Coburn, David -- Newburger, Daniel E -- Morris, Quaid -- Hughes, Timothy R -- Bulyk, Martha L -- R01 HG003985/HG/NHGRI NIH HHS/ -- R01 HG003985-01/HG/NHGRI NIH HHS/ -- R01 HG003985-02/HG/NHGRI NIH HHS/ -- R01 HG003985-03/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Gene Regulatory Networks ; Humans ; Mice ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-09-12
    Description: Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition. Although not directly related to its autonomous element, the MITE has less affinity for the transposase than does the autonomous element but lacks a motif repressing transposition in the autonomous element. The MITE contains internal sequences that enhance transposition. These findings suggest that MITEs achieve high transposition activity by scavenging transposases encoded by distantly related and self-restrained autonomous elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Guojun -- Nagel, Dawn Holligan -- Feschotte, Cedric -- Hancock, C Nathan -- Wessler, Susan R -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1391-4. doi: 10.1126/science.1175688.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745152" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA Transposable Elements ; *Genome, Plant ; Inverted Repeat Sequences ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oryza/*genetics/metabolism ; Transposases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2009-12-08
    Description: Although the nematode Caenorhabditis elegans produces self-fertile hermaphrodites, it descended from a male/female species, so hermaphroditism provides a model for the origin of novel traits. In the related species C. remanei, which has only male and female sexes, lowering the activity of tra-2 by RNA interference created XX animals that made spermatids as well as oocytes, but their spermatids could not activate without the addition of male seminal fluid. However, by lowering the expression of both tra-2 and swm-1, a gene that regulates sperm activation in C. elegans, we produced XX animals with active sperm that were self-fertile. Thus, the evolution of hermaphroditism in Caenorhabditis probably required two steps: a mutation in the sex-determination pathway that caused XX spermatogenesis and a mutation that allowed these spermatids to self-activate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldi, Chris -- Cho, Soochin -- Ellis, Ronald E -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):1002-5. doi: 10.1126/science.1176013.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Caenorhabditis/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Crosses, Genetic ; Disorders of Sex Development/genetics ; Female ; Genes, Helminth ; Germ Cells/physiology ; Male ; Membrane Proteins/genetics/physiology ; Molecular Sequence Data ; *Mutation ; Oogenesis ; Ovulation ; Phylogeny ; Reproduction ; Selection, Genetic ; Sex Determination Processes ; Spermatids/physiology ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-01-20
    Description: Combining biomolecular function with integrated circuit technology could usher in a new era of biologically enabled electronics. A key challenge has been coupling different molecular functions to specific chip locations for communication with the circuit. We used spatially confined electric fields to assemble different populations of DNA-coated nanowires to desired positions with an accuracy that enabled postassembly fabrication of contacts to each individual nanowire, with high yield and without loss of DNA function. This combination of off-chip synthesis and biofunctionalization with high-density, heterogeneous assembly and integration at the individual nanowire level points to new ways of incorporating biological functionality with silicon electronics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrow, Thomas J -- Li, Mingwei -- Kim, Jaekyun -- Mayer, Theresa S -- Keating, Christine D -- R01 EB000268/EB/NIBIB NIH HHS/ -- R01 EB000268-08/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):352. doi: 10.1126/science.1165921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150837" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA/chemistry ; Electricity ; Electronics/*instrumentation/methods ; Nanotechnology/methods ; *Nanowires/chemistry ; Oligodeoxyribonucleotides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-06-13
    Description: Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ura, Yasuyuki -- Beierle, John M -- Leman, Luke J -- Orgel, Leslie E -- Ghadiri, M Reza -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):73-7. doi: 10.1126/science.1174577. Epub 2009 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry ; Amino Acids/chemistry ; Base Pairing ; Base Sequence ; Biotinylation ; DNA/*chemistry ; Dipeptides/chemistry ; Models, Molecular ; Molecular Structure ; Nucleic Acid Conformation ; Oligonucleotides/chemistry ; Peptide Nucleic Acids/*chemistry ; Peptides/chemistry ; RNA/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-04-11
    Description: In vertebrates, the readily apparent left/right (L/R) anatomical asymmetries of the internal organs can be traced to molecular events initiated at or near the time of gastrulation. However, the earliest steps of this process do not seem to be universally conserved. In particular, how this axis is first defined in chicks has remained problematic. Here we show that asymmetric cell rearrangements take place within chick embryos, creating a leftward movement of cells around the node. It is the relative displacement of cells expressing sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8) that is responsible for establishing their asymmetric expression patterns. The creation of asymmetric expression domains as a passive effect of cell movements represents an alternative strategy for breaking L/R symmetry in gene activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, Jerome -- Feistel, Kerstin -- Viebahn, Christoph -- Blum, Martin -- Tabin, Clifford J -- R01 HD045499/HD/NICHD NIH HHS/ -- R01 HD045499-06/HD/NICHD NIH HHS/ -- R01-HD045499/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):941-4. doi: 10.1126/science.1172478. Epub 2009 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Body Patterning ; *Cell Movement ; Chick Embryo ; Fibroblast Growth Factor 8/genetics ; *Gastrulation ; *Gene Expression ; Gene Expression Profiling ; Hedgehog Proteins/genetics ; Molecular Sequence Data ; Organizers, Embryonic/*cytology/embryology/*metabolism ; Primitive Streak/*cytology/embryology/metabolism ; Swine/embryology ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2008-12-17
    Description: Might DNA sequence variation reflect germline genetic activity and underlying chromatin structure? We investigated this question using medaka (Japanese killifish, Oryzias latipes), by comparing the genomic sequences of two strains (Hd-rR and HNI) and by mapping approximately 37.3 million nucleosome cores from Hd-rR blastulae and 11,654 representative transcription start sites from six embryonic stages. We observed a distinctive approximately 200-base pair (bp) periodic pattern of genetic variation downstream of transcription start sites; the rate of insertions and deletions longer than 1 bp peaked at positions of approximately +200, +400, and +600 bp, whereas the point mutation rate showed corresponding valleys. This approximately 200-bp periodicity was correlated with the chromatin structure, with nucleosome occupancy minimized at positions 0, +200, +400, and +600 bp. These data exemplify the potential for genetic activity (transcription) and chromatin structure to contribute to molding the DNA sequence on an evolutionary time scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Shin -- Mello, Cecilia C -- Shimada, Atsuko -- Nakatani, Yoichiro -- Hashimoto, Shin-Ichi -- Ogawa, Masako -- Matsushima, Kouji -- Gu, Sam Guoping -- Kasahara, Masahiro -- Ahsan, Budrul -- Sasaki, Atsushi -- Saito, Taro -- Suzuki, Yutaka -- Sugano, Sumio -- Kohara, Yuji -- Takeda, Hiroyuki -- Fire, Andrew -- Morishita, Shinichi -- R01 GM037706/GM/NIGMS NIH HHS/ -- R01 GM037706-24/GM/NIGMS NIH HHS/ -- R01 GM37706/GM/NIGMS NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA09151/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):401-4. doi: 10.1126/science.1163183. Epub 2008 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, 277-0882, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Chromatin/*physiology/ultrastructure ; DNA/chemistry/*genetics ; DNA Repair ; *Genetic Variation ; Genome ; INDEL Mutation ; Mutagenesis ; Mutation ; Nucleosomes/*physiology/ultrastructure ; Oryzias/embryology/*genetics ; Point Mutation ; Promoter Regions, Genetic ; *Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-12-08
    Description: To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guell, Marc -- van Noort, Vera -- Yus, Eva -- Chen, Wei-Hua -- Leigh-Bell, Justine -- Michalodimitrakis, Konstantinos -- Yamada, Takuji -- Arumugam, Manimozhiyan -- Doerks, Tobias -- Kuhner, Sebastian -- Rode, Michaela -- Suyama, Mikita -- Schmidt, Sabine -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965477" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mycoplasma pneumoniae/*genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Operon ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/analysis/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, David G -- Kashi, Yechezkel -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):229-30. doi: 10.1126/science.326_229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Southern Illinois University, Carbondale, IL 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/chemistry/*genetics ; Evolution, Molecular ; Mutation ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otterstrom, Jason J -- van Oijen, Antoine M -- R01 GM077248/GM/NIGMS NIH HHS/ -- R01 GM077248-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):547-8. doi: 10.1126/science.1177311.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644099" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalytic Domain ; DNA/chemistry/*metabolism ; Diffusion ; Nucleosomes/*metabolism ; Optical Tweezers ; RNA Polymerase II/chemistry/*metabolism ; RNA, Messenger/metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-07-18
    Description: Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNA(Sec) in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate-dependent mechanism of Sec-tRNA(Sec) formation. Two tRNA(Sec) molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13-base pair acceptor-TPsiC arm (where Psi indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme's active site that allows a phosphoserine covalently attached to tRNA(Sec), but not free phosphoserine, to be oriented properly for the reaction to occur.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857584/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857584/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palioura, Sotiria -- Sherrer, R Lynn -- Steitz, Thomas A -- Soll, Dieter -- Simonovic, Miljan -- R01 GM022854/GM/NIGMS NIH HHS/ -- R01 GM022854-33/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):321-5. doi: 10.1126/science.1173755.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19608919" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/*metabolism ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/chemistry/metabolism ; Phosphoserine/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; RNA, Transfer, Amino Acid-Specific/*chemistry/*metabolism ; RNA, Transfer, Amino Acyl/*metabolism ; Selenocysteine/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...