ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Although data on nucleotide sequence variation in the human nuclear genome have begun to accumulate, little is known about genomic diversity in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). A 10,154-base pair sequence on the chimpanzee X chromosome is reported, representing all major subspecies and bonobos. Comparison to humans shows the diversity of the chimpanzee sequences to be almost four times as high and the age of the most recent common ancestor three times as great as the corresponding values of humans. Phylogenetic analyses show the sequences from the different chimpanzee subspecies to be intermixed and the distance between some chimpanzee sequences to be greater than the distance between them and the bonobo sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaessmann, H -- Wiebe, V -- Paabo, S -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1159-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Evolutionary Anthropology, Inselstrasse 22, D-04103 Leipzig, Germany. kaessmann@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/*genetics ; *Genetic Variation ; *Genome ; Gorilla gorilla/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Pan paniscus/classification/*genetics ; Pan troglodytes/classification/*genetics ; Phylogeny ; Recombination, Genetic ; Species Specificity ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaessmann, Henrik -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):958-9. doi: 10.1126/science.1178487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland. henrik.kaessmann@unil.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19696341" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chondrocytes/metabolism ; Dogs/anatomy & histology/embryology/*genetics ; Evolution, Molecular ; Extremities/*anatomy & histology/embryology ; Fibroblast Growth Factor 4/*genetics ; *Gene Duplication ; Gene Expression Regulation ; *Genes, Duplicate ; Humerus/embryology/metabolism ; Long Interspersed Nucleotide Elements ; Promoter Regions, Genetic ; Regulatory Sequences, Nucleic Acid ; Retroelements ; Selection, Genetic ; Species Specificity ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-01-24
    Description: Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Emerson, J J -- Kaessmann, Henrik -- Betran, Esther -- Long, Manyuan -- GM-065429-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739461" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Chromosomes, Human/genetics ; Chromosomes, Human, X/*genetics ; Chromosomes, Mammalian/genetics ; Computational Biology ; Dosage Compensation, Genetic ; Female ; Gene Expression Profiling ; Genes, Duplicate ; Genetic Linkage ; Genome ; Genome, Human ; Humans ; Introns ; Male ; Mice ; Monte Carlo Method ; Mutation ; Oligonucleotide Array Sequence Analysis ; Ovary/metabolism ; Pseudogenes/*genetics ; *Recombination, Genetic ; Retroelements/*genetics ; Selection, Genetic ; Sex Characteristics ; Testis/metabolism ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-21
    Description: Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brawand, David -- Soumillon, Magali -- Necsulea, Anamaria -- Julien, Philippe -- Csardi, Gabor -- Harrigan, Patrick -- Weier, Manuela -- Liechti, Angelica -- Aximu-Petri, Ayinuer -- Kircher, Martin -- Albert, Frank W -- Zeller, Ulrich -- Khaitovich, Philipp -- Grutzner, Frank -- Bergmann, Sven -- Nielsen, Rasmus -- Paabo, Svante -- Kaessmann, Henrik -- England -- Nature. 2011 Oct 19;478(7369):343-8. doi: 10.1038/nature10532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22012392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; *Gene Expression Profiling ; Humans ; Phylogeny ; Principal Component Analysis ; RNA, Messenger/*genetics ; X Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-28
    Description: Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Necsulea, Anamaria -- Soumillon, Magali -- Warnefors, Maria -- Liechti, Angelica -- Daish, Tasman -- Zeller, Ulrich -- Baker, Julie C -- Grutzner, Frank -- Kaessmann, Henrik -- 099175/Z/12/Z/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Jan 30;505(7485):635-40. doi: 10.1038/nature12943. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland [3] Laboratory of Developmental Genomics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland (A.N.); Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA, and Broad Institute, Cambridge, Massachusetts 02142, USA (M.S.). ; 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland. ; The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia. ; Department of Systematic Zoology, Faculty of Agriculture and Horticulture, Humboldt University Berlin, 10099 Berlin, Germany. ; Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463510" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura/genetics ; Chickens/genetics ; Conserved Sequence/genetics ; *Evolution, Molecular ; Gene Expression Regulation, Developmental/genetics ; Genomics ; Humans ; Mice ; MicroRNAs/genetics ; Multigene Family ; Primates/genetics ; Proteins/genetics ; RNA Precursors/genetics ; RNA, Long Noncoding/*genetics ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-25
    Description: Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortez, Diego -- Marin, Ray -- Toledo-Flores, Deborah -- Froidevaux, Laure -- Liechti, Angelica -- Waters, Paul D -- Grutzner, Frank -- Kaessmann, Henrik -- England -- Nature. 2014 Apr 24;508(7497):488-93. doi: 10.1038/nature13151.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland. ; The Robinson Research Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia. ; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland. ; School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales 2052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759410" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/genetics ; Conserved Sequence/genetics ; *Evolution, Molecular ; Female ; Gene Dosage/genetics ; Genes, sry/genetics ; Genomics ; High-Throughput Nucleotide Sequencing ; Male ; Mammals/*genetics ; Marsupialia/genetics ; Receptors, Peptide/genetics ; Receptors, Transforming Growth Factor beta/genetics ; Selection, Genetic/genetics ; Sex Chromosomes/genetics ; Spatio-Temporal Analysis ; Spermatogenesis/genetics ; Testis/metabolism ; Transcriptome/genetics ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-02-21
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-14
    Description: Divergence of protein sequences and gene expression patterns are two fundamental mechanisms that generate organismal diversity. Here, we have used genome and transcriptome data from eight mammals and one bird to study the positive correlation of these two processes throughout mammalian evolution. We demonstrate that the correlation is stable over time and most pronounced in neural tissues, which indicates that it is the result of strong negative selection. The correlation is not driven by genes with specific functions and may instead best be viewed as an evolutionary default state, which can nevertheless be evaded by certain gene types. In particular, genes with developmental and neural functions are skewed toward changes in gene expression, consistent with selection against pleiotropic effects associated with changes in protein sequences. Surprisingly, we find that the correlation between expression divergence and protein divergence is not explained by between-gene variation in expression level, tissue specificity, protein connectivity, or other investigated gene characteristics, suggesting that it arises independently of these gene traits. The selective constraints on protein sequences and gene expression patterns also fluctuate in a coordinate manner across phylogenetic branches: We find that gene-specific changes in the rate of protein evolution in a specific mammalian lineage tend to be accompanied by similar changes in the rate of expression evolution. Taken together, our findings highlight many new aspects of the correlation between protein divergence and expression divergence, and attest to its role as a fundamental property of mammalian genome evolution.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-30
    Description: Long noncoding RNAs (lncRNAs) are one of the most intensively studied groups of noncoding elements. Debate continues over what proportion of lncRNAs are functional or merely represent transcriptional noise. Although characterization of individual lncRNAs has identified approximately 200 functional loci across the Eukarya, general surveys have found only modest or no evidence of long-term evolutionary conservation. Although this lack of conservation suggests that most lncRNAs are nonfunctional, the possibility remains that some represent recent evolutionary innovations. We examine recent selection pressures acting on lncRNAs in mouse populations. We compare patterns of within-species nucleotide variation at approximately 10,000 lncRNA loci in a cohort of the wild house mouse, Mus musculus castaneus , with between-species nucleotide divergence from the rat ( Rattus norvegicus ). Loci under selective constraint are expected to show reduced nucleotide diversity and divergence. We find limited evidence of sequence conservation compared with putatively neutrally evolving ancestral repeats (ARs). Comparisons of sequence diversity and divergence between ARs, protein-coding (PC) exons and lncRNAs, and the associated flanking regions, show weak, but significantly lower levels of sequence diversity and divergence at lncRNAs compared with ARs. lncRNAs conserved deep in the vertebrate phylogeny show lower within-species sequence diversity than lncRNAs in general. A set of 74 functionally characterized lncRNAs show levels of diversity and divergence comparable to PC exons, suggesting that these lncRNAs are under substantial selective constraints. Our results suggest that, in mouse populations, most lncRNA loci evolve at rates similar to ARs, whereas older lncRNAs tend to show signals of selection similar to PC genes.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-06-24
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...