ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (110)
  • American Association for the Advancement of Science (AAAS)  (110)
  • Cell Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • PANGAEA
  • 2005-2009  (110)
  • 2007  (110)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (110)
  • Cell Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • PANGAEA
  • +
Years
  • 2005-2009  (110)
Year
  • 1
    Publication Date: 2007-09-29
    Description: The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-Chin -- Lam, Son N -- Acharya, Priyamvada -- Tang, Min -- Xiang, Shi-Hua -- Hussan, Syed Shahzad-Ul -- Stanfield, Robyn L -- Robinson, James -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Bewley, Carole A -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-03/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/*chemistry/immunology ; Crystallography, X-Ray ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/metabolism ; Humans ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments/chemistry/metabolism ; Receptors, CCR5/*chemistry/metabolism ; Sulfates/metabolism ; Tyrosine/metabolism ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-08-04
    Description: In flowering plants, signaling between the male pollen tube and the synergid cells of the female gametophyte is required for fertilization. In the Arabidopsis thaliana mutant feronia (fer), fertilization is impaired; the pollen tube fails to arrest and thus continues to grow inside the female gametophyte. FER encodes a synergid-expressed, plasma membrane-localized receptor-like kinase. We found that the FER protein accumulates asymmetrically in the synergid membrane at the filiform apparatus. Interspecific crosses using pollen from Arabidopsis lyrata and Cardamine flexuosa on A. thaliana stigmas resulted in a fer-like phenotype that correlates with sequence divergence in the extracellular domain of FER. Our findings show that the female control of pollen tube reception is based on a FER-dependent signaling pathway, which may play a role in reproductive isolation barriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Escobar-Restrepo, Juan-Miguel -- Huck, Norbert -- Kessler, Sharon -- Gagliardini, Valeria -- Gheyselinck, Jacqueline -- Yang, Wei-Cai -- Grossniklaus, Ueli -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):656-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673660" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Brassicaceae/genetics/physiology ; Cell Membrane/enzymology ; Crosses, Genetic ; Evolution, Molecular ; Flowers/cytology/enzymology/*physiology ; Gene Expression ; Genes, Plant ; Germination ; Ligands ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphotransferases/chemistry/*genetics/*metabolism ; Plant Epidermis/enzymology ; Pollen Tube/growth & development/*physiology ; Recombinant Fusion Proteins/metabolism ; Reproduction ; Seeds/growth & development ; Signal Transduction ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-04
    Description: BtuCD is an adenosine triphosphate-binding cassette (ABC) transporter that translocates vitamin B12 from the periplasmic binding protein BtuF into the cytoplasm of Escherichia coli. The 2.6 angstrom crystal structure of a complex BtuCD-F reveals substantial conformational changes as compared with the previously reported structures of BtuCD and BtuF. The lobes of BtuF are spread apart, and B12 is displaced from the binding pocket. The transmembrane BtuC subunits reveal two distinct conformations, and the translocation pathway is closed to both sides of the membrane. Electron paramagnetic resonance spectra of spin-labeled cysteine mutants reconstituted in proteoliposomes are consistent with the conformation of BtuCD-F that was observed in the crystal structure. A comparison with BtuCD and the homologous HI1470/71 protein suggests that the structure of BtuCD-F may reflect a posttranslocation intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hvorup, Rikki N -- Goetz, Birke A -- Niederer, Martina -- Hollenstein, Kaspar -- Perozo, Eduardo -- Locher, Kaspar P -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1387-90. Epub 2007 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, HPK D14.3, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673622" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry ; Amino Acid Sequence ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli ; Escherichia coli Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Periplasmic Binding Proteins/*chemistry ; Protein Binding ; Protein Conformation ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-24
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrangou, Rodolphe -- Fremaux, Christophe -- Deveau, Helene -- Richards, Melissa -- Boyaval, Patrick -- Moineau, Sylvain -- Romero, Dennis A -- Horvath, Philippe -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379808" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial/genetics ; DNA, Intergenic/*genetics ; Evolution, Molecular ; *Genes, Bacterial ; Genome, Viral ; Molecular Sequence Data ; Mutation ; Polymorphism, Single Nucleotide ; *Repetitive Sequences, Nucleic Acid ; Streptococcus Phages/genetics/*physiology ; Streptococcus thermophilus/*genetics/*virology ; Viral Plaque Assay ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-03-24
    Description: The nucleoporins Nup58 and Nup45 are part of the central transport channel of the nuclear pore complex, which is thought to have a flexible diameter. In the crystal structure of an alpha-helical region of mammalian Nup58/45, we identified distinct tetramers, each consisting of two antiparallel hairpin dimers. The intradimeric interface is hydrophobic, whereas dimer-dimer association occurs through large hydrophilic residues. These residues are laterally displaced in various tetramer conformations, which suggests an intermolecular sliding by 11 angstroms. We propose that circumferential sliding plays a role in adjusting the diameter of the central transport channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melcak, Ivo -- Hoelz, Andre -- Blobel, Gunter -- R01 GM111461/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1729-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379812" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/chemistry ; Molecular Sequence Data ; Nuclear Pore Complex Proteins/*chemistry ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rats ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-05-26
    Description: The advent of biotechnology-derived, herbicide-resistant crops has revolutionized farming practices in many countries. Facile, highly effective, environmentally sound, and profitable weed control methods have been rapidly adopted by crop producers who value the benefits associated with biotechnology-derived weed management traits. But a rapid rise in the populations of several troublesome weeds that are tolerant or resistant to herbicides currently used in conjunction with herbicide-resistant crops may signify that the useful lifetime of these economically important weed management traits will be cut short. We describe the development of soybean and other broadleaf plant species resistant to dicamba, a widely used, inexpensive, and environmentally safe herbicide. The dicamba resistance technology will augment current herbicide resistance technologies and extend their effective lifetime. Attributes of both nuclear- and chloroplast-encoded dicamba resistance genes that affect the potency and expected durability of the herbicide resistance trait are examined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behrens, Mark R -- Mutlu, Nedim -- Chakraborty, Sarbani -- Dumitru, Razvan -- Jiang, Wen Zhi -- Lavallee, Bradley J -- Herman, Patricia L -- Clemente, Thomas E -- Weeks, Donald P -- New York, N.Y. -- Science. 2007 May 25;316(5828):1185-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525337" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Arabidopsis/drug effects/genetics ; Chloroplasts/genetics ; Dicamba/*pharmacology ; Drug Resistance/genetics ; Genetic Engineering ; Genetic Vectors ; Herbicides/*pharmacology ; Lycopersicon esculentum/drug effects/genetics ; Mixed Function Oxygenases/*genetics/metabolism ; Molecular Sequence Data ; Oxidoreductases, O-Demethylating/metabolism ; Plants, Genetically Modified/drug effects/genetics ; Pseudomonas/enzymology/genetics ; Soybeans/*drug effects/genetics ; Tobacco/drug effects/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-04-14
    Description: We report crystal structures of the 2.6-megadalton alpha6beta6 heterododecameric fatty acid synthase from Thermomyces lanuginosus at 3.1 angstrom resolution. The alpha and beta polypeptide chains form the six catalytic domains required for fatty acid synthesis and numerous expansion segments responsible for extensive intersubunit connections. Detailed views of all active sites provide insights into substrate specificities and catalytic mechanisms and reveal their unique characteristics, which are due to the integration into the multienzyme. The mode of acyl carrier protein attachment in the reaction chamber, together with the spatial distribution of active sites, suggests that iterative substrate shuttling is achieved by a relatively restricted circular motion of the carrier domain in the multifunctional enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Boehringer, Daniel -- Frick, Christian -- Mikolasek, Bohdan -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):254-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431175" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism ; Acetyltransferases/metabolism ; Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/metabolism ; Amino Acid Sequence ; Ascomycota/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism ; Fatty Acid Synthases/*chemistry/metabolism ; Fungal Proteins/*chemistry/metabolism ; Hydro-Lyases/metabolism ; Models, Molecular ; Molecular Sequence Data ; NADP/chemistry ; Protein Conformation ; Protein Subunits/chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2007-03-31
    Description: Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast function and is essential for the photoautotrophic life-style of plants. Three retrograde signals have been described, but little is known of their signaling pathways. We show here that GUN1, a chloroplast-localized pentatricopeptide-repeat protein, and ABI4, an Apetala 2 (AP2)-type transcription factor, are common to all three pathways. ABI4 binds the promoter of a retrograde-regulated gene through a conserved motif found in close proximity to a light-regulatory element. We propose a model in which multiple indicators of aberrant plastid function in Arabidopsis are integrated upstream of GUN1 within plastids, which leads to ABI4-mediated repression of nuclear-encoded genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koussevitzky, Shai -- Nott, Ajit -- Mockler, Todd C -- Hong, Fangxin -- Sachetto-Martins, Gilberto -- Surpin, Marci -- Lim, Jason -- Mittler, Ron -- Chory, Joanne -- DRG-1865-05/PHS HHS/ -- F32 GM 18172/GM/NIGMS NIH HHS/ -- F32 GM 69090/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 4;316(5825):715-9. Epub 2007 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395793" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/*metabolism/*microbiology ; Chloroplasts/*metabolism ; DNA, Plant/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Electron Transport ; *Gene Expression Regulation, Plant ; Light-Harvesting Protein Complexes/genetics ; Lincomycin/pharmacology ; Models, Biological ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protoporphyrins/metabolism ; Pyridazines/pharmacology ; Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-08-19
    Description: In Gram-negative bacteria and eukaryotic organelles, beta-barrel proteins of the outer membrane protein 85-two-partner secretion B (Omp85-TpsB) superfamily are essential components of protein transport machineries. The TpsB transporter FhaC mediates the secretion of Bordetella pertussis filamentous hemagglutinin (FHA). We report the 3.15 A crystal structure of FhaC. The transporter comprises a 16-stranded beta barrel that is occluded by an N-terminal alpha helix and an extracellular loop and a periplasmic module composed of two aligned polypeptide-transport-associated (POTRA) domains. Functional data reveal that FHA binds to the POTRA 1 domain via its N-terminal domain and likely translocates the adhesin-repeated motifs in an extended hairpin conformation, with folding occurring at the cell surface. General features of the mechanism obtained here are likely to apply throughout the superfamily.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clantin, Bernard -- Delattre, Anne-Sophie -- Rucktooa, Prakash -- Saint, Nathalie -- Meli, Albano C -- Locht, Camille -- Jacob-Dubuisson, Francoise -- Villeret, Vincent -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):957-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UMR8161 CNRS, Institut de Biologie de Lille, Universite de Lille 1, Universite de Lille 2, 1 rue du Prof. Calmette, F-59021 Lille cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702945" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/chemistry/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Bordetella pertussis/*chemistry/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Virulence Factors, Bordetella/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-12-15
    Description: The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berg, Ivan A -- Kockelkorn, Daniel -- Buckel, Wolfgang -- Fuchs, Georg -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1782-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mikrobiologie, Fakultat Biologie, Universitat Freiburg, Schanzlestrasse 1, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079405" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetyl-CoA Carboxylase/metabolism ; Acyl Coenzyme A/metabolism ; Amino Acid Sequence ; Anaerobiosis ; Archaea/genetics/metabolism ; Autotrophic Processes ; Bicarbonates/metabolism ; Carbon Dioxide/*metabolism ; Genes, Archaeal ; Hydro-Lyases/genetics/metabolism ; Hydroxybutyrates/*metabolism ; Kinetics ; Lactic Acid/*analogs & derivatives/metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Oxidation-Reduction ; Photosynthesis ; Phylogeny ; Sulfolobaceae/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-11-10
    Description: Liu et al. (Reports, 23 March 2007, p. 1712) reported that the Arabidopsis thaliana gene GCR2 encodes a seven-transmembrane, G protein-coupled receptor for abscisic acid. We argue that GCR2 is not likely to be a transmembrane protein nor a G protein-coupled receptor. Instead, GCR2 is most likely a plant homolog of bacterial lanthionine synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, Christopher A -- Temple, Brenda R -- Chen, Jin-Gui -- Gao, Yajun -- Moriyama, Etsuko N -- Jones, Alan M -- Siderovski, David P -- Willard, Francis S -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):914; author reply 914.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991845" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Algorithms ; Amino Acid Sequence ; Arabidopsis/chemistry/*metabolism ; Arabidopsis Proteins/*chemistry/isolation & purification/*metabolism ; GTP-Binding Protein alpha Subunits/metabolism ; Hydro-Lyases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/metabolism ; Plant Growth Regulators/*metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry/isolation & purification/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2007-09-29
    Description: The SAX-3/roundabout (Robo) receptor has SLT-1/Slit-dependent and -independent functions in guiding cell and axon migrations. We identified enhancer of ventral-axon guidance defects of unc-40 mutants (EVA-1) as a Caenorhabditis elegans transmembrane receptor for SLT-1. EVA-1 has two predicted galactose-binding ectodomains, acts cell-autonomously for SLT-1/Slit-dependent axon migration functions of SAX-3/Robo, binds to SLT-1 and SAX-3, colocalizes with SAX-3 on cells, and provides cell specificity to the activation of SAX-3 signaling by SLT-1. Double mutants of eva-1 or slt-1 with sax-3 mutations suggest that SAX-3 can (when slt-1 or eva-1 function is reduced) inhibit a parallel-acting guidance mechanism, which involves UNC-40/deleted in colorectal cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujisawa, Kazuko -- Wrana, Jeffrey L -- Culotti, Joseph G -- NS41397/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1934-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Caenorhabditis elegans/cytology/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/*chemistry/genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Movement ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*metabolism ; Nervous System/growth & development/metabolism ; Neurons/physiology ; Protein Structure, Tertiary ; Receptors, Immunologic/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2007-05-26
    Description: Mutations affecting the BRCT domains of the breast cancer-associated tumor suppressor BRCA1 disrupt the recruitment of this protein to DNA double-strand breaks (DSBs). The molecular structures at DSBs recognized by BRCA1 are presently unknown. We report the interaction of the BRCA1 BRCT domain with RAP80, a ubiquitin-binding protein. RAP80 targets a complex containing the BRCA1-BARD1 (BRCA1-associated ring domain protein 1) E3 ligase and the deubiquitinating enzyme (DUB) BRCC36 to MDC1-gammaH2AX-dependent lysine(6)- and lysine(63)-linked ubiquitin polymers at DSBs. These events are required for cell cycle checkpoint and repair responses to ionizing radiation, implicating ubiquitin chain recognition and turnover in the BRCA1-mediated repair of DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sobhian, Bijan -- Shao, Genze -- Lilli, Dana R -- Culhane, Aedin C -- Moreau, Lisa A -- Xia, Bing -- Livingston, David M -- Greenberg, Roger A -- K08 CA106597/CA/NCI NIH HHS/ -- K08 CA106597-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1198-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Genetics and Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525341" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA1 Protein/*metabolism ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Line ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair/physiology ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Tumor Suppressor Proteins/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2007-10-27
    Description: The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lalueza-Fox, Carles -- Rompler, Holger -- Caramelli, David -- Staubert, Claudia -- Catalano, Giulio -- Hughes, David -- Rohland, Nadin -- Pilli, Elena -- Longo, Laura -- Condemi, Silvana -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Stoneking, Mark -- Schoneberg, Torsten -- Bertranpetit, Jaume -- Hofreiter, Michael -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1453-5. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Animal, Universitat de Barcelona, Spain. clalueza@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962522" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Cell Line ; DNA/genetics ; *Fossils ; Hair Color/*genetics ; Hominidae/*genetics ; Humans ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Receptor, Melanocortin, Type 1/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-10-20
    Description: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soma, Akiko -- Onodera, Akinori -- Sugahara, Junichi -- Kanai, Akio -- Yachie, Nozomu -- Tomita, Masaru -- Kawamura, Fujio -- Sekine, Yasuhiko -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):450-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947580" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Algal/chemistry/genetics ; *Genes ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Algal/*genetics/metabolism ; RNA, Transfer/*genetics/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Rhodophyta/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2007-10-13
    Description: Theory suggests it should be difficult for asexual organisms to adapt to a changing environment because genetic diversity can only arise from mutations accumulating within direct antecedents and not through sexual exchange. In an asexual microinvertebrate, the bdelloid rotifer, we have observed a mechanism by which such organisms could acquire the diversity needed for adaptation. Gene copies most likely representing former alleles have diverged in function so that the proteins they encode play complementary roles in survival of dry conditions. One protein prevents desiccation-sensitive enzymes from aggregating during drying, whereas its counterpart does not have this activity, but is able to associate with phospholipid bilayers and is potentially involved in maintenance of membrane integrity. The functional divergence of former alleles observed here suggests that adoption of asexual reproduction could itself be an evolutionary mechanism for the generation of diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pouchkina-Stantcheva, Natalia N -- McGee, Brian M -- Boschetti, Chiara -- Tolleter, Dimitri -- Chakrabortee, Sohini -- Popova, Antoaneta V -- Meersman, Filip -- Macherel, David -- Hincha, Dirk K -- Tunnacliffe, Alan -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932297" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; *Alleles ; Amino Acid Sequence ; Animals ; Biological Evolution ; Chromosomes/genetics ; DNA, Complementary ; Dehydration ; Gene Dosage ; *Genes, Helminth ; *Genetic Variation ; Helminth Proteins/chemistry/genetics/*physiology ; Lipid Bilayers ; Molecular Sequence Data ; Protein Structure, Secondary ; *Reproduction, Asexual ; Rotifera/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2007-06-30
    Description: As a step toward propagation of synthetic genomes, we completely replaced the genome of a bacterial cell with one from another species by transplanting a whole genome as naked DNA. Intact genomic DNA from Mycoplasma mycoides large colony (LC), virtually free of protein, was transplanted into Mycoplasma capricolum cells by polyethylene glycol-mediated transformation. Cells selected for tetracycline resistance, carried by the M. mycoides LC chromosome, contain the complete donor genome and are free of detectable recipient genomic sequences. These cells that result from genome transplantation are phenotypically identical to the M. mycoides LC donor strain as judged by several criteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lartigue, Carole -- Glass, John I -- Alperovich, Nina -- Pieper, Rembert -- Parmar, Prashanth P -- Hutchison, Clyde A 3rd -- Smith, Hamilton O -- Venter, J Craig -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):632-8. Epub 2007 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600181" target="_blank"〉PubMed〈/a〉
    Keywords: Acetate Kinase/chemistry/genetics ; Amino Acid Sequence ; DNA, Bacterial/*genetics/isolation & purification ; *Genome, Bacterial ; Genotype ; Molecular Sequence Data ; Mycoplasma/chemistry/*genetics ; Mycoplasma mycoides/chemistry/*genetics ; Phenotype ; Polyethylene Glycols ; Proteome/analysis ; Recombination, Genetic ; Sequence Analysis, DNA ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-07-14
    Description: Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miled, Nabil -- Yan, Ying -- Hon, Wai-Ching -- Perisic, Olga -- Zvelebil, Marketa -- Inbar, Yuval -- Schneidman-Duhovny, Dina -- Wolfson, Haim J -- Backer, Jonathan M -- Williams, Roger L -- GM55692/GM/NIGMS NIH HHS/ -- MC_U105184308/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626883" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Catalytic Domain ; Cattle ; Cell Line ; Cell Transformation, Neoplastic ; Crystallography, X-Ray ; Dimerization ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/antagonists & ; inhibitors/chemistry/*genetics/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-03-31
    Description: Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on the enzyme's ability to catalyze nucleotide addition onto a DNA oligonucleotide of telomeric sequence, thereby providing specificity for catalytically active telomerase. Mass spectrometric sequencing of the protein components and molecular size determination indicated an enzyme composition of two molecules each of telomerase reverse transcriptase, telomerase RNA, and dyskerin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Scott B -- Graham, Mark E -- Lovrecz, George O -- Bache, Nicolai -- Robinson, Phillip J -- Reddel, Roger R -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1850-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead NSW 2145, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395830" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Cycle Proteins/*chemistry/isolation & purification ; Cell Line ; Cell Line, Tumor ; Centrifugation, Density Gradient ; Humans ; Molecular Sequence Data ; Molecular Weight ; Multienzyme Complexes/chemistry ; Nuclear Proteins/*chemistry/isolation & purification ; RNA/*chemistry/isolation & purification ; Tandem Mass Spectrometry ; Telomerase/*chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-08-11
    Description: Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zheng -- Zhen, Juan -- Karpowich, Nathan K -- Goetz, Regina M -- Law, Christopher J -- Reith, Maarten E A -- Wang, Da-Neng -- DA013261/DA/NIDA NIH HHS/ -- DA019676/DA/NIDA NIH HHS/ -- GM075026/GM/NIGMS NIH HHS/ -- GM075936/GM/NIGMS NIH HHS/ -- R01 DA013261/DA/NIDA NIH HHS/ -- R01 DA019676/DA/NIDA NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R21 DK060841/DK/NIDDK NIH HHS/ -- R21 GM075936/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1390-3. Epub 2007 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690258" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antidepressive Agents, Tricyclic/chemistry/*metabolism ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Caenorhabditis elegans Proteins/chemistry/metabolism ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Desipramine/chemistry/*metabolism ; Dopamine/chemistry/metabolism ; Dopamine Uptake Inhibitors/chemistry/metabolism ; Drosophila Proteins/chemistry/metabolism ; Humans ; Leucine/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Uptake Inhibitors/chemistry/*metabolism ; Norepinephrine/chemistry/metabolism ; Norepinephrine Plasma Membrane Transport Proteins/antagonists & ; inhibitors/chemistry/metabolism ; Plasma Membrane Neurotransmitter Transport Proteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid ; Serotonin/chemistry/metabolism ; Serotonin Uptake Inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2007-09-29
    Description: Although the application of sequencing-by-synthesis techniques to DNA extracted from bones has revolutionized the study of ancient DNA, it has been plagued by large fractions of contaminating environmental DNA. The genetic analyses of hair shafts could be a solution: We present 10 previously unexamined Siberian mammoth (Mammuthus primigenius) mitochondrial genomes, sequenced with up to 48-fold coverage. The observed levels of damage-derived sequencing errors were lower than those observed in previously published frozen bone samples, even though one of the specimens was 〉50,000 14C years old and another had been stored for 200 years at room temperature. The method therefore sets the stage for molecular-genetic analysis of museum collections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, M Thomas P -- Tomsho, Lynn P -- Rendulic, Snjezana -- Packard, Michael -- Drautz, Daniela I -- Sher, Andrei -- Tikhonov, Alexei -- Dalen, Love -- Kuznetsova, Tatyana -- Kosintsev, Pavel -- Campos, Paula F -- Higham, Thomas -- Collins, Matthew J -- Wilson, Andrew S -- Shidlovskiy, Fyodor -- Buigues, Bernard -- Ericson, Per G P -- Germonpre, Mietje -- Gotherstrom, Anders -- Iacumin, Paola -- Nikolaev, Vladimir -- Nowak-Kemp, Malgosia -- Willerslev, Eske -- Knight, James R -- Irzyk, Gerard P -- Perbost, Clotilde S -- Fredrikson, Karin M -- Harkins, Timothy T -- Sheridan, Sharon -- Miller, Webb -- Schuster, Stephan C -- HG002238/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1927-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone and Bones/chemistry ; DNA Damage ; DNA, Mitochondrial/chemistry/genetics/*history ; Elephants/*genetics ; Genes, Mitochondrial ; *Genome ; *Hair/chemistry/ultrastructure ; History, Ancient ; Mitochondria/*genetics ; Molecular Sequence Data ; Preservation, Biological ; *Sequence Analysis, DNA ; Siberia ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-12-08
    Description: Many bacterial pathogens have long, slender pili through which they adhere to host cells. The crystal structure of the major pilin subunit from the Gram-positive human pathogen Streptococcus pyogenes at 2.2 angstroms resolution reveals an extended structure comprising two all-beta domains. The molecules associate in columns through the crystal, with each carboxyl terminus adjacent to a conserved lysine of the next molecule. This lysine forms the isopeptide bonds that link the subunits in native pili, validating the relevance of the crystal assembly. Each subunit contains two lysine-asparagine isopeptide bonds generated by an intramolecular reaction, and we find evidence for similar isopeptide bonds in other cell surface proteins of Gram-positive bacteria. The present structure explains the strength and stability of such Gram-positive pili and could facilitate vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Hae Joo -- Coulibaly, Fasseli -- Clow, Fiona -- Proft, Thomas -- Baker, Edward N -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1625-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063798" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Asparagine/chemistry ; Chemistry, Physical ; Crystallography, X-Ray ; Fimbriae Proteins/*chemistry ; Fimbriae, Bacterial/*chemistry/ultrastructure ; Hydrogen Bonding ; Lysine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Streptococcus pyogenes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-01-27
    Description: Vitamin A has diverse biological functions. It is transported in the blood as a complex with retinol binding protein (RBP), but the molecular mechanism by which vitamin A is absorbed by cells from the vitamin A-RBP complex is not clearly understood. We identified in bovine retinal pigment epithelium cells STRA6, a multitransmembrane domain protein, as a specific membrane receptor for RBP. STRA6 binds to RBP with high affinity and has robust vitamin A uptake activity from the vitamin A-RBP complex. It is widely expressed in embryonic development and in adult organ systems. The RBP receptor represents a major physiological mediator of cellular vitamin A uptake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaguchi, Riki -- Yu, Jiamei -- Honda, Jane -- Hu, Jane -- Whitelegge, Julian -- Ping, Peipei -- Wiita, Patrick -- Bok, Dean -- Sun, Hui -- 5T32EY07026/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):820-5. Epub 2007 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255476" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Blood-Retinal Barrier ; COS Cells ; Cattle ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Embryonic Development ; Endocytosis ; Humans ; Molecular Sequence Data ; Mutation, Missense ; Pigment Epithelium of Eye/*metabolism ; Placenta/metabolism ; Receptors, Cell Surface/*metabolism ; Retinal Vessels/metabolism ; Retinol-Binding Proteins/*metabolism ; Spleen/metabolism ; Transfection ; Vitamin A/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-10-27
    Description: Pathogenicity of many Gram-negative bacteria relies on the injection of effector proteins by type III secretion into eukaryotic cells, where they modulate host signaling pathways to the pathogen's benefit. One such effector protein injected by Xanthomonas into plants is AvrBs3, which localizes to the plant cell nucleus and causes hypertrophy of plant mesophyll cells. We show that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain. AvrBs3 binds to a conserved element in the upa20 promoter via its central repeat region and induces gene expression through its activation domain. Thus, AvrBs3 and likely other members of this family provoke developmental reprogramming of host cells by mimicking eukaryotic transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, Sabine -- Hahn, Simone -- Marois, Eric -- Hause, Gerd -- Bonas, Ulla -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):648-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962565" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/*physiology ; Basic Helix-Loop-Helix Transcription Factors/chemistry/genetics/*physiology ; Capsicum/cytology/*genetics/*microbiology ; Cell Enlargement ; Cell Size ; Chromatin Immunoprecipitation ; Gene Expression Regulation, Plant ; Gene Silencing ; Molecular Sequence Data ; Plant Leaves/cytology/genetics/metabolism ; Plant Proteins/chemistry/genetics/metabolism/*physiology ; Promoter Regions, Genetic ; Tobacco/genetics ; Transcription, Genetic ; Xanthomonas campestris/genetics/*metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-04-14
    Description: In the multifunctional fungal fatty acid synthase (FAS), the acyl carrier protein (ACP) domain shuttles reaction intermediates covalently attached to its prosthetic phosphopantetheine group between the different enzymatic centers of the reaction cycle. Here, we report the structure of the Saccharomyces cerevisiae FAS determined at 3.1 angstrom resolution with its ACP stalled at the active site of ketoacyl synthase. The ACP contacts the base of the reaction chamber through conserved, charge-complementary surfaces, which optimally position the ACP toward the catalytic cleft of ketoacyl synthase. The conformation of the prosthetic group suggests a switchblade mechanism for acyl chain delivery to the active site of the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leibundgut, Marc -- Jenni, Simon -- Frick, Christian -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):288-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431182" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/*chemistry/metabolism ; Acyltransferases/metabolism ; Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Fatty Acid Synthases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-06-02
    Description: Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraud, Eric -- Moulin, Lionel -- Vallenet, David -- Barbe, Valerie -- Cytryn, Eddie -- Avarre, Jean-Christophe -- Jaubert, Marianne -- Simon, Damien -- Cartieaux, Fabienne -- Prin, Yves -- Bena, Gilles -- Hannibal, Laure -- Fardoux, Joel -- Kojadinovic, Mila -- Vuillet, Laurie -- Lajus, Aurelie -- Cruveiller, Stephane -- Rouy, Zoe -- Mangenot, Sophie -- Segurens, Beatrice -- Dossat, Carole -- Franck, William L -- Chang, Woo-Suk -- Saunders, Elizabeth -- Bruce, David -- Richardson, Paul -- Normand, Philippe -- Dreyfus, Bernard -- Pignol, David -- Stacey, Gary -- Emerich, David -- Vermeglio, Andre -- Medigue, Claudine -- Sadowsky, Michael -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1307-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherche pour le Developpement, Centre de Cooperation International en Recherche Agronomique pour le Developpement, Institut National de la Recherche Agronomique, Universite Montpellier 2, France. giraud@mpl.ird.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540897" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics/metabolism ; Amidohydrolases/genetics/metabolism ; Bacterial Proteins/genetics/metabolism ; Bradyrhizobium/*genetics/growth & development/*physiology ; Cytokinins/metabolism ; Fabaceae/*microbiology ; Genes, Bacterial ; Genome, Bacterial ; Genomics ; Lipopolysaccharides/metabolism ; Molecular Sequence Data ; Mutation ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Photosynthesis ; Plant Roots/microbiology ; Plant Stems/*microbiology ; Purines/biosynthesis ; Root Nodules, Plant/microbiology/*physiology ; Signal Transduction ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-05-19
    Description: The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682417/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682417/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoltowski, Brian D -- Schwerdtfeger, Carsten -- Widom, Joanne -- Loros, Jennifer J -- Bilwes, Alexandrine M -- Dunlap, Jay C -- Crane, Brian R -- GM079879-01/GM/NIGMS NIH HHS/ -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R01 GM034985-24/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 18;316(5827):1054-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510367" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Amino Acid Substitution ; Binding Sites ; Crystallography, X-Ray ; Darkness ; Dimerization ; Flavin-Adenine Dinucleotide/chemistry ; Fungal Proteins/*chemistry/genetics/metabolism ; Light ; Molecular Sequence Data ; Mutagenesis ; Neurospora crassa/*chemistry ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-11-10
    Description: Production of type I interferon (IFN-I) is a critical host defense triggered by pattern-recognition receptors (PRRs) of the innate immune system. Deubiquitinating enzyme A (DUBA), an ovarian tumor domain-containing deubiquitinating enzyme, was discovered in a small interfering RNA-based screen as a regulator of IFN-I production. Reduction of DUBA augmented the PRR-induced IFN-I response, whereas ectopic expression of DUBA had the converse effect. DUBA bound tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein essential for the IFN-I response. TRAF3 is an E3 ubiquitin ligase that preferentially assembled lysine-63-linked polyubiquitin chains. DUBA selectively cleaved the lysine-63-linked polyubiquitin chains on TRAF3, resulting in its dissociation from the downstream signaling complex containing TANK-binding kinase 1. A discrete ubiquitin interaction motif within DUBA was required for efficient deubiquitination of TRAF3 and optimal suppression of IFN-I. Our data identify DUBA as a negative regulator of innate immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Phung, Qui -- Chan, Salina -- Chaudhari, Ruchir -- Quan, Casey -- O'Rourke, Karen M -- Eby, Michael -- Pietras, Eric -- Cheng, Genhong -- Bazan, J Fernando -- Zhang, Zemin -- Arnott, David -- Dixit, Vishva M -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1628-32. Epub 2007 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991829" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Endopeptidases/*metabolism ; Humans ; Interferon Type I/*biosynthesis/genetics ; Interferon-alpha/genetics ; Molecular Sequence Data ; NF-kappa B/metabolism ; Protein Structure, Tertiary ; RNA, Small Interfering ; Signal Transduction ; TNF Receptor-Associated Factor 3/metabolism ; Toll-Like Receptor 3/metabolism ; Ubiquitin/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-04-28
    Description: By screening N-ethyl-N-nitrosourea-mutagenized animals for alterations in rhythms of wheel-running activity, we identified a mouse mutation, after hours (Afh). The mutation, a Cys(358)Ser substitution in Fbxl3, an F-box protein with leucine-rich repeats, results in long free-running rhythms of about 27 hours in homozygotes. Circadian transcriptional and translational oscillations are attenuated in Afh mice. The Afh allele significantly affected Per2 expression and delayed the rate of Cry protein degradation in Per2::Luciferase tissue slices. Our in vivo and in vitro studies reveal a central role for Fbxl3 in mammalian circadian timekeeping.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godinho, Sofia I H -- Maywood, Elizabeth S -- Shaw, Linda -- Tucci, Valter -- Barnard, Alun R -- Busino, Luca -- Pagano, Michele -- Kendall, Rachel -- Quwailid, Mohamed M -- Romero, M Rosario -- O'neill, John -- Chesham, Johanna E -- Brooker, Debra -- Lalanne, Zuzanna -- Hastings, Michael H -- Nolan, Patrick M -- MC_U105170643/Medical Research Council/United Kingdom -- MC_U142684172/Medical Research Council/United Kingdom -- MC_U142684173/Medical Research Council/United Kingdom -- MC_U142684175/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 May 11;316(5826):897-900. Epub 2007 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463252" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; CLOCK Proteins ; COS Cells ; Cell Cycle Proteins/genetics/metabolism ; Cercopithecus aethiops ; *Circadian Rhythm/genetics ; Crosses, Genetic ; Cryptochromes ; F-Box Proteins/*genetics/*physiology ; Female ; Flavoproteins/genetics/metabolism ; Gene Expression Regulation ; Liver/metabolism ; Lung/metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Point Mutation ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-02-17
    Description: Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newton, I L G -- Woyke, T -- Auchtung, T A -- Dilly, G F -- Dutton, R J -- Fisher, M C -- Fontanez, K M -- Lau, E -- Stewart, F J -- Richardson, P M -- Barry, K W -- Saunders, E -- Detter, J C -- Wu, D -- Eisen, J A -- Cavanaugh, C M -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):998-1000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University, 16 Divinity Avenue, Biolabs 4080, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bivalvia/*microbiology ; Carbon/metabolism ; Chemoautotrophic Growth ; Gammaproteobacteria/*genetics/isolation & purification/metabolism/ultrastructure ; *Genome, Bacterial ; Molecular Sequence Data ; Photosynthesis ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-03-10
    Description: Peptidoglycan glycosyltransferases (GTs) catalyze the polymerization step of cell-wall biosynthesis, are membrane-bound, and are highly conserved across all bacteria. Long considered the "holy grail" of antibiotic research, they represent an essential and easily accessible drug target for antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus. We have determined the 2.8 angstrom structure of a bifunctional cell-wall cross-linking enzyme, including its transpeptidase and GT domains, both unliganded and complexed with the substrate analog moenomycin. The peptidoglycan GTs adopt a fold distinct from those of other GT classes. The structures give insight into critical features of the catalytic mechanism and key interactions required for enzyme inhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lovering, Andrew L -- de Castro, Liza H -- Lim, Daniel -- Strynadka, Natalie C J -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1402-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Aminoacyltransferases/*chemistry/metabolism ; Anti-Bacterial Agents/chemistry/metabolism ; Apoenzymes/chemistry ; Binding Sites ; Carbohydrate Conformation ; Carbohydrate Sequence ; Catalytic Domain ; Cell Wall/*metabolism ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/pharmacology ; Glycosylation ; Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/chemistry/metabolism ; Oligosaccharides/chemistry/metabolism/pharmacology ; Penicillin-Binding Proteins/*chemistry/metabolism ; Peptidoglycan/*biosynthesis ; Peptidoglycan Glycosyltransferase/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Staphylococcus aureus/*enzymology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2007-02-03
    Description: Acetylation of histone H3 lysine 56 (H3-K56) occurs in S phase, and cells lacking H3-K56 acetylation are sensitive to DNA-damaging agents. However, the histone acetyltransferase (HAT) that catalyzes global H3-K56 acetylation has not been found. Here we show that regulation of Ty1 transposition gene product 109 (Rtt109) is an H3-K56 HAT. Cells lacking Rtt109 or expressing rtt109 mutants with alterations at a conserved aspartate residue lose H3-K56 acetylation and exhibit increased sensitivity toward genotoxic agents, as well as elevated levels of spontaneous chromosome breaks. Thus, Rtt109, which shares no sequence homology with any other known HATs, is a unique HAT that acetylates H3-K56.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Junhong -- Zhou, Hui -- Horazdovsky, Bruce -- Zhang, Kangling -- Xu, Rui-Ming -- Zhang, Zhiguo -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):653-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272723" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Camptothecin/pharmacology ; Catalytic Domain ; Chromosome Breakage ; DNA Damage ; *DNA Replication ; Histone Acetyltransferases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Hydroxyurea/pharmacology ; Lysine/*metabolism ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutagens/pharmacology ; Mutation ; Recombinant Proteins/metabolism ; S Phase ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-25
    Description: YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Min -- Fu, Dax -- R01 GM065137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1746-8. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717154" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sequence Alignment ; Zinc/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2007-09-18
    Description: Membrane attack is important for mammalian immune defense against invading microorganisms and infected host cells. Proteins of the complement membrane attack complex (MAC) and the protein perforin share a common MACPF domain that is responsible for membrane insertion and pore formation. We determined the crystal structure of the MACPF domain of complement component C8alpha at 2.5 angstrom resolution and show that it is structurally homologous to the bacterial, pore-forming, cholesterol-dependent cytolysins. The structure displays two regions that (in the bacterial cytolysins) refold into transmembrane beta hairpins, forming the lining of a barrel pore. Local hydrophobicity explains why C8alpha is the first complement protein to insert into the membrane. The size of the MACPF domain is consistent with known C9 pore sizes. These data imply that these mammalian and bacterial cytolytic proteins share a common mechanism of membrane insertion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hadders, Michael A -- Beringer, Dennis X -- Gros, Piet -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1552-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/immunology/metabolism ; Complement C8/*chemistry/immunology/*metabolism ; Complement Membrane Attack Complex/*chemistry/immunology/*metabolism ; Crystallography, X-Ray ; Cytotoxins/chemistry/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Perforin ; Pore Forming Cytotoxic Proteins/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2007-04-07
    Description: The carbon skeletons of over 55,000 naturally occurring isoprenoid compounds are constructed from four fundamental coupling reactions: chain elongation, cyclopropanation, branching, and cyclobutanation. Enzymes that catalyze chain elongation and cyclopropanation are well studied, whereas those that catalyze branching and cyclobutanation are unknown. We have catalyzed the four reactions with chimeric proteins generated by replacing segments of a chain-elongation enzyme with corresponding sequences from a cyclopropanation enzyme. Stereochemical and mechanistic considerations suggest that the four coupling enzymes could have evolved from a common ancestor through relatively small changes in the catalytic site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thulasiram, Hirekodathakallu V -- Erickson, Hans K -- Poulter, C Dale -- GM 21328/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):73-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412950" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Artemisia/enzymology ; Catalysis ; Catalytic Domain ; Chrysanthemum cinerariifolium/enzymology ; Cyclopropanes/chemistry ; Evolution, Molecular ; Geranyltranstransferase/chemistry/genetics/*metabolism ; Kinetics ; Molecular Conformation ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis, Site-Directed ; Recombinant Fusion Proteins/chemistry/metabolism ; Stereoisomerism ; Terpenes/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2007-07-28
    Description: Only five bacterial phyla with members capable of chlorophyll (Chl)-based phototrophy are presently known. Metagenomic data from the phototrophic microbial mats of alkaline siliceous hot springs in Yellowstone National Park revealed the existence of a distinctive bacteriochlorophyll (BChl)-synthesizing, phototrophic bacterium. A highly enriched culture of this bacterium grew photoheterotrophically, synthesized BChls a and c under oxic conditions, and had chlorosomes and type 1 reaction centers. "Candidatus Chloracidobacterium thermophilum" is a BChl-producing member of the poorly characterized phylum Acidobacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryant, Donald A -- Costas, Amaya M Garcia -- Maresca, Julia A -- Chew, Aline Gomez Maqueo -- Klatt, Christian G -- Bateson, Mary M -- Tallon, Luke J -- Hostetler, Jessica -- Nelson, William C -- Heidelberg, John F -- Ward, David M -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):523-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. dab14@psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17656724" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria, Aerobic/*classification/*isolation & ; purification/physiology/ultrastructure ; Bacterial Chromatophores/ultrastructure ; Bacteriochlorophylls/biosynthesis ; Computational Biology ; Ecosystem ; Genome, Bacterial ; Genomics ; Hot Springs/*microbiology ; Molecular Sequence Data ; Photosystem I Protein Complex/analysis ; *Phototrophic Processes ; RNA, Ribosomal, 16S/genetics ; Temperature ; Wyoming
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2007-09-01
    Description: Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. Human RPTPmu is a type IIB receptor protein tyrosine phosphatase that both forms an adhesive contact itself and is involved in regulating adhesion by dephosphorylating components of cadherin-catenin complexes. Here we describe a 3.1 angstrom crystal structure of the RPTPmu ectodomain that forms a homophilic trans (antiparallel) dimer with an extended and rigid architecture, matching the dimensions of adherens junctions. Cell surface expression of deletion constructs induces intercellular spacings that correlate with the ectodomain length. These data suggest that the RPTPmu ectodomain acts as a distance gauge and plays a key regulatory function, locking the phosphatase to its appropriate functional location.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aricescu, A Radu -- Siebold, Christian -- Choudhuri, Kaushik -- Chang, Veronica T -- Lu, Weixian -- Davis, Simon J -- van der Merwe, P Anton -- Jones, E Yvonne -- 081894/Wellcome Trust/United Kingdom -- G9722488/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Receptor Structure Research Group, University of Oxford, Henry Wellcome Building of Genomic Medicine, Division of Structural Biology, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761881" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/chemistry/*physiology/ultrastructure ; Amino Acid Sequence ; Cell Adhesion ; Cell Adhesion Molecules/*chemistry/metabolism ; Cell Membrane/chemistry/enzymology ; Conserved Sequence ; Dimerization ; Fibronectins/chemistry ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulins/chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/*chemistry/genetics/*metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 2
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-20
    Description: Arginine methylation occurs on a number of proteins involved in a variety of cellular functions. Histone tails are known to be mono- and dimethylated on multiple arginine residues where they influence chromatin remodeling and gene expression. To date, no enzyme has been shown to reverse these regulatory modifications. We demonstrate that the Jumonji domain-containing 6 protein (JMJD6) is a JmjC-containing iron- and 2-oxoglutarate-dependent dioxygenase that demethylates histone H3 at arginine 2 (H3R2) and histone H4 at arginine 3 (H4R3) in both biochemical and cell-based assays. These findings may help explain the many developmental defects observed in the JMJD6(-/-) knockout mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Bingsheng -- Chen, Yue -- Zhao, Yingming -- Bruick, Richard K -- C06-RR15437-01/RR/NCRR NIH HHS/ -- CA107943/CA/NCI NIH HHS/ -- CA115962/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):444-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947579" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/*metabolism ; HeLa Cells ; Histones/*metabolism ; Humans ; Jumonji Domain-Containing Histone Demethylases ; Methylation ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Processing, Post-Translational ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-05-26
    Description: Mutations in the breast cancer susceptibility gene 1 (BRCA1) are associated with an increased risk of breast and ovarian cancers. BRCA1 participates in the cellular DNA damage response. We report the identification of receptor-associated protein 80 (RAP80) as a BRCA1-interacting protein in humans. RAP80 contains a tandem ubiquitin-interacting motif domain, which is required for its binding with ubiquitin in vitro and its damage-induced foci formation in vivo. Moreover, RAP80 specifically recruits BRCA1 to DNA damage sites and functions with BRCA1 in G2/M checkpoint control. Together, these results suggest the existence of a ubiquitination-dependent signaling pathway involved in the DNA damage response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Hongtae -- Chen, Junjie -- Yu, Xiaochun -- R01CA089239/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1202-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Therapeutic Radiology, Yale University School of Medicine, Post Office Box 208040, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525342" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; BRCA1 Protein/*metabolism ; Carrier Proteins/*metabolism ; Cell Cycle ; Cell Line, Tumor ; DNA/*metabolism/radiation effects ; *DNA Damage ; DNA Repair/*physiology ; HeLa Cells ; Humans ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Small Interfering ; Radiation, Ionizing ; Ubiquitin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2007-02-03
    Description: Dimethyl sulfide (DMS) is a key compound in global sulfur and carbon cycles. DMS oxidation products cause cloud nucleation and may affect weather and climate. DMS is generated largely by bacterial catabolism of dimethylsulfoniopropionate (DMSP), a secondary metabolite made by marine algae. We demonstrate that the bacterial gene dddD is required for this process and that its transcription is induced by the DMSP substrate. Cloned dddD from the marine bacterium Marinomonas and from two bacterial strains that associate with higher plants, the N(2)-fixing symbiont Rhizobium NGR234 and the root-colonizing Burkholderia cepacia AMMD, conferred to Escherichia coli the ability to make DMS from DMSP. The inferred enzymatic mechanism for DMS liberation involves an initial step in which DMSP is modified by addition of acyl coenzyme A, rather than the immediate release of DMS by a DMSP lyase, the previously suggested mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todd, Jonathan D -- Rogers, Rachel -- Li, You Guo -- Wexler, Margaret -- Bond, Philip L -- Sun, Lei -- Curson, Andrew R J -- Malin, Gill -- Steinke, Michael -- Johnston, Andrew W B -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):666-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272727" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/genetics/*metabolism ; Burkholderia cepacia/genetics/growth & development/metabolism ; Cloning, Molecular ; Coenzyme A-Transferases/genetics/*metabolism ; DNA Transposable Elements ; Escherichia coli/genetics/metabolism ; *Genes, Bacterial ; *Genes, Regulator ; Marinomonas/*genetics/growth & development/*metabolism ; Molecular Sequence Data ; Operon ; Oxidation-Reduction ; Phenotype ; Poaceae/microbiology ; Promoter Regions, Genetic ; Rhizobium/genetics/growth & development/metabolism ; Sulfides/*metabolism ; Sulfonium Compounds/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2007-07-14
    Description: The ratio of males to females in a species is often considered to be relatively constant, at least over ecological time. Hamilton noted that the spread of "selfish" sex ratio-distorting elements could be rapid and produce a switch to highly biased population sex ratios. Selection against a highly skewed sex ratio should promote the spread of mutations that suppress the sex ratio distortion. We show that in the butterfly Hypolimnas bolina the suppression of sex biases occurs extremely fast, with a switch from a 100:1 population sex ratio to 1:1 occurring in fewer than 10 generations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Charlat, Sylvain -- Hornett, Emily A -- Fullard, James H -- Davies, Neil -- Roderick, George K -- Wedell, Nina -- Hurst, Gregory D D -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK. s.charlat@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626876" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Butterflies/genetics/*microbiology/*physiology ; Female ; Genes, Insect ; Male ; Molecular Sequence Data ; Reproduction ; Samoa ; Selection, Genetic ; *Sex Ratio ; Wolbachia/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2007-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asara, John M -- Garavelli, John S -- Slatter, David A -- Schweitzer, Mary H -- Freimark, Lisa M -- Phillips, Matthew -- Cantley, Lewis C -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1324-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17823333" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone and Bones/chemistry ; Collagen/*chemistry ; *Dinosaurs ; *Elephants ; *Fossils ; Glycine/chemistry ; Mass Spectrometry ; Molecular Sequence Data ; Proline/chemistry ; Tandem Mass Spectrometry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2007-04-14
    Description: Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asara, John M -- Schweitzer, Mary H -- Freimark, Lisa M -- Phillips, Matthew -- Cantley, Lewis C -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):280-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. jasara@bidmc.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431180" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone and Bones/*chemistry ; Collagen/chemistry ; *Dinosaurs ; *Elephants ; Evolution, Molecular ; *Fossils ; Humans ; *Mass Spectrometry ; Molecular Sequence Data ; Proteins/analysis/*chemistry ; Reptilian Proteins/analysis/*chemistry ; Sequence Alignment ; Sequence Analysis, Protein ; Struthioniformes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2007-01-16
    Description: We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jane M -- Hirt, Robert P -- Silva, Joana C -- Delcher, Arthur L -- Schatz, Michael -- Zhao, Qi -- Wortman, Jennifer R -- Bidwell, Shelby L -- Alsmark, U Cecilia M -- Besteiro, Sebastien -- Sicheritz-Ponten, Thomas -- Noel, Christophe J -- Dacks, Joel B -- Foster, Peter G -- Simillion, Cedric -- Van de Peer, Yves -- Miranda-Saavedra, Diego -- Barton, Geoffrey J -- Westrop, Gareth D -- Muller, Sylke -- Dessi, Daniele -- Fiori, Pier Luigi -- Ren, Qinghu -- Paulsen, Ian -- Zhang, Hanbang -- Bastida-Corcuera, Felix D -- Simoes-Barbosa, Augusto -- Brown, Mark T -- Hayes, Richard D -- Mukherjee, Mandira -- Okumura, Cheryl Y -- Schneider, Rachel -- Smith, Alias J -- Vanacova, Stepanka -- Villalvazo, Maria -- Haas, Brian J -- Pertea, Mihaela -- Feldblyum, Tamara V -- Utterback, Terry R -- Shu, Chung-Li -- Osoegawa, Kazutoyo -- de Jong, Pieter J -- Hrdy, Ivan -- Horvathova, Lenka -- Zubacova, Zuzana -- Dolezal, Pavel -- Malik, Shehre-Banoo -- Logsdon, John M Jr -- Henze, Katrin -- Gupta, Arti -- Wang, Ching C -- Dunne, Rebecca L -- Upcroft, Jacqueline A -- Upcroft, Peter -- White, Owen -- Salzberg, Steven L -- Tang, Petrus -- Chiu, Cheng-Hsun -- Lee, Ying-Shiung -- Embley, T Martin -- Coombs, Graham H -- Mottram, Jeremy C -- Tachezy, Jan -- Fraser-Liggett, Claire M -- Johnson, Patricia J -- 072031/Wellcome Trust/United Kingdom -- G0000508/Medical Research Council/United Kingdom -- G0000508(56841)/Medical Research Council/United Kingdom -- G9722968/Medical Research Council/United Kingdom -- G9722968(65078)/Medical Research Council/United Kingdom -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R01 LM007938/LM/NLM NIH HHS/ -- R01 LM007938-04/LM/NLM NIH HHS/ -- U01 AI050913/AI/NIAID NIH HHS/ -- U01 AI050913-01A1/AI/NIAID NIH HHS/ -- U01 AI050913-02/AI/NIAID NIH HHS/ -- UO1 AI50913-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):207-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Research Drive, Rockville, MD 20850, USA. jane.carlton@med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/genetics ; DNA Transposable Elements ; DNA, Protozoan/genetics ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Humans ; Hydrogen/metabolism ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Multigene Family ; Organelles/metabolism ; Oxidative Stress/genetics ; Peptide Hydrolases/genetics/metabolism ; Protozoan Proteins/genetics/physiology ; RNA Processing, Post-Transcriptional ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sexually Transmitted Diseases/parasitology ; Trichomonas Infections/parasitology/transmission ; Trichomonas vaginalis/cytology/*genetics/metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2007-01-16
    Description: Environmental sequencing has revealed unimagined diversity among eukaryotic picoplankton. A distinct picoplanktonic algal group, initially detected from 18S ribosomal DNA (rDNA) sequences, was hybridized with rRNA-targeted probes, detected by tyramide signal amplification-fluorescent in situ hybridization, and showed an organelle-like body with orange fluorescence indicative of phycobilins. Using this fluorescence signal, cells were sorted by flow cytometry and probed. Hybridized cells contained a 4',6'-diamidino-2-phenylindole-stained organelle resembling a plastid with a nucleomorph. This suggests that they may be secondary endosymbiotic algae. Pending the isolation of living cells and their formal description, these algae have been termed picobiliphytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Not, Fabrice -- Valentin, Klaus -- Romari, Khadidja -- Lovejoy, Connie -- Massana, Ramon -- Tobe, Kerstin -- Vaulot, Daniel -- Medlin, Linda K -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):253-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Station Biologique de Roscoff, UMR 7144 CNRS and Universite Pierre et Marie Curie, Boite Postale 74, 29682 Roscoff Cedex, France. not@icm.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218530" target="_blank"〉PubMed〈/a〉
    Keywords: Bayes Theorem ; DNA, Ribosomal/genetics ; *Eukaryota/classification/cytology/genetics/isolation & purification ; Flow Cytometry ; Fluorescence ; In Situ Hybridization, Fluorescence ; Molecular Sequence Data ; Organelles/ultrastructure ; Phycobiliproteins/analysis ; Phylogeny ; *Phytoplankton/classification/cytology/genetics/isolation & purification ; Seasons ; Seawater/*microbiology ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2007-08-19
    Description: Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seokhee -- Malinverni, Juliana C -- Sliz, Piotr -- Silhavy, Thomas J -- Harrison, Stephen C -- Kahne, Daniel -- GM34821/GM/NIGMS NIH HHS/ -- GM66174/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipoproteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2007-02-10
    Description: The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Townley, Robert -- Shapiro, Lawrence -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1726-9. Epub 2007 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289942" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Binding, Competitive ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/metabolism ; Protein Kinases/*chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein-Serine-Threonine Kinases/*chemistry/metabolism ; Schizosaccharomyces/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2007-10-06
    Description: Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes, are essential for chromosome stability. Until now, telomeres have been considered to be transcriptionally silent. We demonstrate that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA molecules are heterogeneous in length, are transcribed from several subtelomeric loci toward chromosome ends, and localize to telomeres. We also show that suppressors with morphogenetic defects in genitalia (SMG) proteins, which are effectors of nonsense-mediated messenger RNA decay, are enriched at telomeres in vivo, negatively regulate TERRA association with chromatin, and protect chromosome ends from telomere loss. Thus, telomeres are actively transcribed into TERRA, and SMG factors represent a molecular link between TERRA regulation and the maintenance of telomere integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azzalin, Claus M -- Reichenbach, Patrick -- Khoriauli, Lela -- Giulotto, Elena -- Lingner, Joachim -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):798-801. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cells, Cultured ; Chromosomes, Human ; Chromosomes, Mammalian ; HeLa Cells ; Humans ; In Situ Hybridization, Fluorescence ; Mice ; Molecular Sequence Data ; Proteins/metabolism ; RNA/*genetics ; Repetitive Sequences, Nucleic Acid ; Telomerase/physiology ; Telomere/*genetics ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2007-09-01
    Description: Although common among bacteria, lateral gene transfer-the movement of genes between distantly related organisms-is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (〉1 megabase) to short (〈500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dunning Hotopp, Julie C -- Clark, Michael E -- Oliveira, Deodoro C S G -- Foster, Jeremy M -- Fischer, Peter -- Munoz Torres, Monica C -- Giebel, Jonathan D -- Kumar, Nikhil -- Ishmael, Nadeeza -- Wang, Shiliang -- Ingram, Jessica -- Nene, Rahul V -- Shepard, Jessica -- Tomkins, Jeffrey -- Richards, Stephen -- Spiro, David J -- Ghedin, Elodie -- Slatko, Barton E -- Tettelin, Herve -- Werren, John H -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1753-6. Epub 2007 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA. jhotopp@som.umaryland.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Crosses, Genetic ; DNA, Bacterial ; Drosophila/genetics/microbiology ; Female ; *Gene Transfer, Horizontal ; Genes, Bacterial ; In Situ Hybridization, Fluorescence ; Insects/*genetics/microbiology ; Male ; Molecular Sequence Data ; Nematoda/*genetics/microbiology ; Retroelements ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Symbiosis ; Wolbachia/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2007
    Description: After amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. We found that in the planarian Schmidtea mediterranea, RNA interference (RNAi) of beta-catenin or dishevelled causes the inappropriate regeneration of a head instead of a tail at posterior amputations. Conversely, RNAi of the beta-catenin antagonist adenomatous polyposis coli results in the regeneration of a tail at anterior wounds. In addition, the silencing of beta-catenin is sufficient to transform the tail of uncut adult animals into a head. We suggest that beta-catenin functions as a molecular switch to specify and maintain anteroposterior identity during regeneration and homeostasis in planarians.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gurley, Kyle A -- Rink, Jochen C -- Sanchez Alvarado, Alejandro -- F32GM082016/GM/NIGMS NIH HHS/ -- R0-1 GM57260/GM/NIGMS NIH HHS/ -- R01 GM057260/GM/NIGMS NIH HHS/ -- R01 GM057260-08/GM/NIGMS NIH HHS/ -- T32CA093247/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):323-7. Epub 2007 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, 401 MREB, 20N 1900E, Salt Lake City, UT 84132, USA. sanchez@neuro.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063757" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/physiology ; Adenomatous Polyposis Coli Protein/chemistry/physiology ; Amino Acid Sequence ; Animals ; Body Patterning ; Gene Expression Profiling ; Genes, APC ; Head ; Helminth Proteins/chemistry/genetics/physiology ; Homeostasis ; Molecular Sequence Data ; Phosphoproteins/chemistry/genetics/physiology ; Planarians/genetics/*physiology ; RNA Interference ; *Regeneration ; Signal Transduction ; Tail ; beta Catenin/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2007-12-15
    Description: PIK3CA, one of the two most frequently mutated oncogenes in human tumors, codes for p110alpha, the catalytic subunit of a phosphatidylinositol 3-kinase, isoform alpha (PI3Kalpha, p110alpha/p85). Here, we report a 3.0 angstrom resolution structure of a complex between p110alpha and a polypeptide containing the p110alpha-binding domains of p85alpha, a protein required for its enzymatic activity. The structure shows that many of the mutations occur at residues lying at the interfaces between p110alpha and p85alpha or between the kinase domain of p110alpha and other domains within the catalytic subunit. Disruptions of these interactions are likely to affect the regulation of kinase activity by p85 or the catalytic activity of the enzyme, respectively. In addition to providing new insights about the structure of PI3Kalpha, these results suggest specific mechanisms for the effect of oncogenic mutations in p110alpha and p85alpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chuan-Hsiang -- Mandelker, Diana -- Schmidt-Kittler, Oleg -- Samuels, Yardena -- Velculescu, Victor E -- Kinzler, Kenneth W -- Vogelstein, Bert -- Gabelli, Sandra B -- Amzel, L Mario -- CA 43460/CA/NCI NIH HHS/ -- GM 07184/GM/NIGMS NIH HHS/ -- GM066895/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1744-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079394" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2007-05-26
    Description: The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)-containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G(2)-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Bin -- Matsuoka, Shuhei -- Ballif, Bryan A -- Zhang, Dong -- Smogorzewska, Agata -- Gygi, Steven P -- Elledge, Stephen J -- 1KO1, CA116275-01/CA/NCI NIH HHS/ -- 1U19A1067751/PHS HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1194-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525340" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; BRCA1 Protein/*physiology ; Carrier Proteins/*physiology ; Cell Line, Tumor ; *DNA Damage ; *DNA Repair ; HeLa Cells ; Humans ; Mass Spectrometry ; Molecular Sequence Data ; Nuclear Proteins/*physiology ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2007-12-08
    Description: Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue approximately 14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices alpha1 and alpha6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Yan, Hanchi -- Wu, Zhuoru -- Yan, Nieng -- Wang, Zhe -- Jeffrey, Philip D -- Shi, Yigong -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1608-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063795" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Membrane Proteins/*chemistry/metabolism ; Metalloendopeptidases/*chemistry/metabolism ; Methanococcus/*enzymology ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Water ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2007-11-17
    Description: Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430610/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430610/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolas, Nadine K -- Chapman, J Ross -- Nakada, Shinichiro -- Ylanko, Jarkko -- Chahwan, Richard -- Sweeney, Frederic D -- Panier, Stephanie -- Mendez, Megan -- Wildenhain, Jan -- Thomson, Timothy M -- Pelletier, Laurence -- Jackson, Stephen P -- Durocher, Daniel -- A5290/Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1637-40. Epub 2007 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G1X5, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006705" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/metabolism ; Cell Cycle Proteins/metabolism ; Cell Line, Tumor ; Cell Nucleus Structures/*genetics ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/chemistry/*metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Molecular Sequence Data ; Nuclear Proteins/chemistry/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Small Interfering ; Trans-Activators/chemistry/metabolism ; Tumor Suppressor Proteins/metabolism ; Ubiquitin/metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2007-06-02
    Description: Sponges (phylum Porifera) were prolific reef-building organisms during the Paleozoic and Mesozoic approximately 542 to 65 million years ago. These ancient animals inherited components of the first multicellular skeletogenic toolkit from the last common ancestor of the Metazoa. Using a paleogenomics approach, including gene- and protein-expression techniques and phylogenetic reconstruction, we show that a molecular component of this toolkit was the precursor to the alpha-carbonic anhydrases (alpha-CAs), a gene family used by extant animals in a variety of fundamental physiological processes. We used the coralline demosponge Astrosclera willeyana, a "living fossil" that has survived from the Mesozoic, to provide insight into the evolution of the ability to biocalcify, and show that the alpha-CA family expanded from a single ancestral gene through several independent gene-duplication events in sponges and eumetazoans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, Daniel J -- Macis, Luciana -- Reitner, Joachim -- Degnan, Bernard M -- Worheide, Gert -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1893-5. Epub 2007 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geoscience Centre Gottingen, Department of Geobiology, Goldschmidtstrasse 3, D-37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540861" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Bicarbonates/metabolism ; *Calcification, Physiologic ; Calcium Carbonate/analysis/metabolism ; Carbonic Anhydrases/chemistry/*genetics/*metabolism ; Computational Biology ; Evolution, Molecular ; Gene Duplication ; Genes ; Genomics ; Molecular Sequence Data ; Porifera/anatomy & histology/enzymology/*genetics/*physiology ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2007-11-03
    Description: A full understanding of primate morphological and genomic evolution requires the identification of their closest living relative. In order to resolve the ancestral relationships among primates and their closest relatives, we searched multispecies genome alignments for phylogenetically informative rare genomic changes within the superordinal group Euarchonta, which includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews). We also constructed phylogenetic trees from 14 kilobases of nuclear genes for representatives from most major primate lineages, both extant colugos, and multiple treeshrews, including the pentail treeshrew, Ptilocercus lowii, the only living member of the family Ptilocercidae. A relaxed molecular clock analysis including Ptilocercus suggests that treeshrews arose approximately 63 million years ago. Our data show that colugos are the closest living relatives of primates and indicate that their divergence occurred in the Cretaceous.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janecka, Jan E -- Miller, Webb -- Pringle, Thomas H -- Wiens, Frank -- Zitzmann, Annette -- Helgen, Kristofer M -- Springer, Mark S -- Murphy, William J -- HG02238/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dna ; Evolution, Molecular ; Fossils ; Genome ; Humans ; Mammals/classification/genetics ; Molecular Sequence Data ; Phylogeny ; Primates/classification/*genetics ; Scandentia/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2007-06-09
    Description: Root hairs and rhizoids are cells with rooting functions in land plants. We describe two basic helix-loop-helix transcription factors that control root hair development in the sporophyte (2n) of the angiosperm Arabidopsis thaliana and rhizoid development in the gametophytes (n) of the bryophyte Physcomitrella patens. The phylogeny of land plants supports the hypothesis that early land plants were bryophyte-like and possessed a dominant gametophyte and later the sporophyte rose to dominance. If this hypothesis is correct, our data suggest that the increase in morphological complexity of the sporophyte body in the Paleozoic resulted at least in part from the recruitment of regulatory genes from gametophyte to sporophyte.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menand, Benoit -- Yi, Keke -- Jouannic, Stefan -- Hoffmann, Laurent -- Ryan, Eoin -- Linstead, Paul -- Schaefer, Didier G -- Dolan, Liam -- BBS/E/J/0000A218/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1477-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich NR47UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556585" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/cytology/genetics/growth & development/*physiology ; Arabidopsis Proteins/genetics/*physiology ; Basic Helix-Loop-Helix Transcription Factors/genetics/*physiology ; Biological Evolution ; Bryopsida/cytology/genetics/growth & development/*physiology ; Diploidy ; Genes, Plant ; Haploidy ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Epidermis/cytology/physiology ; Plant Proteins/genetics/physiology ; Plant Roots/*cytology/growth & development ; Plants, Genetically Modified
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2007-07-07
    Description: A major evolutionary divide occurs in the animal kingdom between the so-called radially symmetric animals, which includes the cnidarians, and the bilaterally symmetric animals, which includes all worm phyla. Buddenbrockia plumatellae is an active, muscular, parasitic worm that belongs to the phylum Myxozoa, a group of morphologically simplified microscopic endoparasites that has proved difficult to place phylogenetically. Phylogenetic analyses of multiple protein-coding genes demonstrate that Buddenbrockia is a cnidarian. This active muscular worm increases the known diversity in cnidarian body plans and demonstrates that a muscular, wormlike form can evolve in the absence of overt bilateral symmetry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jimenez-Guri, Eva -- Philippe, Herve -- Okamura, Beth -- Holland, Peter W H -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):116-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615357" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Cnidaria/anatomy & histology/*classification/*genetics/physiology ; DNA, Ribosomal/genetics ; Genes ; Genes, Homeobox ; Locomotion ; Molecular Sequence Data ; Muscles/anatomy & histology/ultrastructure ; *Phylogeny ; Polymerase Chain Reaction ; Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2007-07-21
    Description: The genomes of individuals from the same species vary in sequence as a result of different evolutionary processes. To examine the patterns of, and the forces shaping, sequence variation in Arabidopsis thaliana, we performed high-density array resequencing of 20 diverse strains (accessions). More than 1 million nonredundant single-nucleotide polymorphisms (SNPs) were identified at moderate false discovery rates (FDRs), and approximately 4% of the genome was identified as being highly dissimilar or deleted relative to the reference genome sequence. Patterns of polymorphism are highly nonrandom among gene families, with genes mediating interaction with the biotic environment having exceptional polymorphism levels. At the chromosomal scale, regional variation in polymorphism was readily apparent. A scan for recent selective sweeps revealed several candidate regions, including a notable example in which almost all variation was removed in a 500-kilobase window. Analyzing the polymorphisms we describe in larger sets of accessions will enable a detailed understanding of forces shaping population-wide sequence variation in A. thaliana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Richard M -- Schweikert, Gabriele -- Toomajian, Christopher -- Ossowski, Stephan -- Zeller, Georg -- Shinn, Paul -- Warthmann, Norman -- Hu, Tina T -- Fu, Glenn -- Hinds, David A -- Chen, Huaming -- Frazer, Kelly A -- Huson, Daniel H -- Scholkopf, Bernhard -- Nordborg, Magnus -- Ratsch, Gunnar -- Ecker, Joseph R -- Weigel, Detlef -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):338-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17641193" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Arabidopsis/*genetics ; Base Sequence ; Chromosomes, Plant/genetics ; Computational Biology ; Gene Frequency ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Molecular Sequence Data ; *Polymorphism, Genetic ; *Polymorphism, Single Nucleotide ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2007-01-20
    Description: Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by searching for sporadic selenocysteine-Cys pairs in sequence databases. This method is independent of protein family, structure, and taxon. We used it to selectively detect the majority of known proteins with redox-active Cys and to make additional predictions, one of which was verified. Rapid accumulation of sequence information from genomic and metagenomic projects should allow detection of many additional oxidoreductase families as well as identification of redox-active Cys in these proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fomenko, Dmitri E -- Xing, Weibing -- Adair, Blakely M -- Thomas, David J -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- GM061603/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):387-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry ; Bacterial Proteins/chemistry ; Base Sequence ; Catalysis ; Computational Biology ; Cysteine/analysis/*chemistry ; *Databases, Nucleic Acid ; *Databases, Protein ; Enzymes/*chemistry ; Eukaryotic Cells ; Evolution, Molecular ; Methyltransferases/chemistry ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/chemistry ; Proteins/*chemistry ; Selenocysteine/chemistry ; Selenoproteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2007-11-10
    Description: Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668859/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668859/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerken, Thomas -- Girard, Christophe A -- Tung, Yi-Chun Loraine -- Webby, Celia J -- Saudek, Vladimir -- Hewitson, Kirsty S -- Yeo, Giles S H -- McDonough, Michael A -- Cunliffe, Sharon -- McNeill, Luke A -- Galvanovskis, Juris -- Rorsman, Patrik -- Robins, Peter -- Prieur, Xavier -- Coll, Anthony P -- Ma, Marcella -- Jovanovic, Zorica -- Farooqi, I Sadaf -- Sedgwick, Barbara -- Barroso, Ines -- Lindahl, Tomas -- Ponting, Chris P -- Ashcroft, Frances M -- O'Rahilly, Stephen -- Schofield, Christopher J -- 068086/Wellcome Trust/United Kingdom -- 077016/Wellcome Trust/United Kingdom -- G108/617/Medical Research Council/United Kingdom -- G9824984/Medical Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- U54 GM064346/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1469-72. Epub 2007 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford, Oxon OX1 3TA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991826" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/enzymology/metabolism ; Cell Nucleus/enzymology ; Computational Biology ; DNA/*metabolism ; DNA Methylation ; DNA, Single-Stranded/metabolism ; Eating ; Energy Metabolism ; Fasting ; Ferrous Compounds/metabolism ; Hypothalamus/enzymology/metabolism ; Ketoglutaric Acids/*metabolism ; Male ; Mice ; Mixed Function Oxygenases ; Molecular Sequence Data ; Oxo-Acid-Lyases/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Proteins/metabolism ; Succinic Acid/metabolism ; Thymine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2007-08-11
    Description: Influenza virus entry is mediated by the receptor binding domain (RBD) of its spike, the hemagglutinin (HA). Adaptation of avian viruses to humans is associated with HA specificity for alpha2,6- rather than alpha2,3-linked sialic acid (SA) receptors. Here, we define mutations in influenza A subtype H5N1 (avian) HA that alter its specificity for SA either by decreasing alpha2,3- or increasing alpha2,6-SA recognition. RBD mutants were used to develop vaccines and monoclonal antibodies that neutralized new variants. Structure-based modification of HA specificity can guide the development of preemptive vaccines and therapeutic monoclonal antibodies that can be evaluated before the emergence of human-adapted H5N1 strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367145/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367145/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Zhi-Yong -- Wei, Chih-Jen -- Kong, Wing-Pui -- Wu, Lan -- Xu, Ling -- Smith, David F -- Nabel, Gary J -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):825-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Building 40, Room 4502, Mailstop Code MSC-3005, 40 Convent Drive, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology ; Antibodies, Viral/immunology ; Carbohydrate Conformation ; Cell Line ; Female ; Genes, Viral ; Hemagglutination Inhibition Tests ; Hemagglutinin Glycoproteins, Influenza Virus/*genetics/*immunology/metabolism ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*immunology/metabolism ; Influenza Vaccines/immunology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; *Mutation ; Neutralization Tests ; Receptors, Virus/*metabolism ; Sialic Acids/*metabolism ; Vaccination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2007-09-22
    Description: Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghedin, Elodie -- Wang, Shiliang -- Spiro, David -- Caler, Elisabet -- Zhao, Qi -- Crabtree, Jonathan -- Allen, Jonathan E -- Delcher, Arthur L -- Guiliano, David B -- Miranda-Saavedra, Diego -- Angiuoli, Samuel V -- Creasy, Todd -- Amedeo, Paolo -- Haas, Brian -- El-Sayed, Najib M -- Wortman, Jennifer R -- Feldblyum, Tamara -- Tallon, Luke -- Schatz, Michael -- Shumway, Martin -- Koo, Hean -- Salzberg, Steven L -- Schobel, Seth -- Pertea, Mihaela -- Pop, Mihai -- White, Owen -- Barton, Geoffrey J -- Carlow, Clotilde K S -- Crawford, Michael J -- Daub, Jennifer -- Dimmic, Matthew W -- Estes, Chris F -- Foster, Jeremy M -- Ganatra, Mehul -- Gregory, William F -- Johnson, Nicholas M -- Jin, Jinming -- Komuniecki, Richard -- Korf, Ian -- Kumar, Sanjay -- Laney, Sandra -- Li, Ben-Wen -- Li, Wen -- Lindblom, Tim H -- Lustigman, Sara -- Ma, Dong -- Maina, Claude V -- Martin, David M A -- McCarter, James P -- McReynolds, Larry -- Mitreva, Makedonka -- Nutman, Thomas B -- Parkinson, John -- Peregrin-Alvarez, Jose M -- Poole, Catherine -- Ren, Qinghu -- Saunders, Lori -- Sluder, Ann E -- Smith, Katherine -- Stanke, Mario -- Unnasch, Thomas R -- Ware, Jenna -- Wei, Aguan D -- Weil, Gary -- Williams, Deryck J -- Zhang, Yinhua -- Williams, Steven A -- Fraser-Liggett, Claire -- Slatko, Barton -- Blaxter, Mark L -- Scott, Alan L -- R01 AI048562/AI/NIAID NIH HHS/ -- R01 AI048562-09/AI/NIAID NIH HHS/ -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R01 LM007938/LM/NLM NIH HHS/ -- R01 LM007938-04/LM/NLM NIH HHS/ -- R15 ES013128/ES/NIEHS NIH HHS/ -- R15 ES013128-01/ES/NIEHS NIH HHS/ -- U01 AI048828/AI/NIAID NIH HHS/ -- U01-AI50903/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1756-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. GhedinE@dom.pitt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17885136" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brugia malayi/*genetics/physiology ; Caenorhabditis/genetics ; Drosophila melanogaster/genetics ; Drug Resistance/genetics ; Filariasis/parasitology ; *Genome, Helminth ; Humans ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2007-03-31
    Description: A variety of methods exist for the design or selection of antibodies and other proteins that recognize the water-soluble regions of proteins; however, companion methods for targeting transmembrane (TM) regions are not available. Here, we describe a method for the computational design of peptides that target TM helices in a sequence-specific manner. To illustrate the method, peptides were designed that specifically recognize the TM helices of two closely related integrins (alphaIIbbeta3 and alphavbeta3) in micelles, bacterial membranes, and mammalian cells. These data show that sequence-specific recognition of helices in TM proteins can be achieved through optimization of the geometric complementarity of the target-host complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Hang -- Slusky, Joanna S -- Berger, Bryan W -- Walters, Robin S -- Vilaire, Gaston -- Litvinov, Rustem I -- Lear, James D -- Caputo, Gregory A -- Bennett, Joel S -- DeGrado, William F -- 5T32 CA101968/CA/NCI NIH HHS/ -- 5T32 GM08275/GM/NIGMS NIH HHS/ -- GM54616/GM/NIGMS NIH HHS/ -- GM60610/GM/NIGMS NIH HHS/ -- HL40387/HL/NHLBI NIH HHS/ -- HL54500/HL/NHLBI NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1817-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395823" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Blood Platelets/physiology ; Cell Membrane/*chemistry ; Databases, Protein ; Dimerization ; Escherichia coli/chemistry ; Fluorescence Resonance Energy Transfer ; Humans ; Integrin alphaVbeta3/*chemistry/metabolism ; Lipid Bilayers/chemistry ; Models, Molecular ; Molecular Sequence Data ; Optical Tweezers ; Osteopontin/metabolism ; Peptides/*chemistry/metabolism ; Platelet Adhesiveness ; Platelet Aggregation ; Platelet Glycoprotein GPIIb-IIIa Complex/*chemistry/metabolism ; *Protein Engineering ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2007-06-26
    Description: Primate genomes contain a large number of endogenous retroviruses and encode evolutionarily dynamic proteins that provide intrinsic immunity to retroviral infections. We report here the resurrection of the core protein of a 4-million-year-old endogenous virus from the chimpanzee genome and show that the human variant of the intrinsic immune protein TRIM5alpha can actively prevent infection by this virus. However, we suggest that selective changes that have occurred in the human lineage during the acquisition of resistance to this virus, and perhaps similar viruses, may have left our species more susceptible to infection by human immunodeficiency virus type 1 (HIV-1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Shari M -- Malik, Harmit S -- Emerman, Michael -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1756-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Carrier Proteins/genetics/*physiology ; Cats ; Cell Line ; Dna ; Disease Susceptibility ; Endogenous Retroviruses/genetics/*physiology ; Evolution, Molecular ; Gorilla gorilla ; HIV Infections/genetics/immunology ; Hiv-1 ; Humans ; Immunity, Innate/genetics ; Macaca mulatta ; Molecular Sequence Data ; Pan troglodytes/genetics/virology ; Retroviridae Infections/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2007-02-27
    Description: Primary transcripts of certain microRNA (miRNA) genes are subject to RNA editing that converts adenosine to inosine. However, the importance of miRNA editing remains largely undetermined. Here we report that tissue-specific adenosine-to-inosine editing of miR-376 cluster transcripts leads to predominant expression of edited miR-376 isoform RNAs. One highly edited site is positioned in the middle of the 5'-proximal half "seed" region critical for the hybridization of miRNAs to targets. We provide evidence that the edited miR-376 RNA silences specifically a different set of genes. Repression of phosphoribosyl pyrophosphate synthetase 1, a target of the edited miR-376 RNA and an enzyme involved in the uric-acid synthesis pathway, contributes to tight and tissue-specific regulation of uric-acid levels, revealing a previously unknown role for RNA editing in miRNA-mediated gene silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953418/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953418/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawahara, Yukio -- Zinshteyn, Boris -- Sethupathy, Praveen -- Iizasa, Hisashi -- Hatzigeorgiou, Artemis G -- Nishikura, Kazuko -- P01 CA072765/CA/NCI NIH HHS/ -- P01 CA072765-050002/CA/NCI NIH HHS/ -- R01 GM040536/GM/NIGMS NIH HHS/ -- R01 GM040536-16/GM/NIGMS NIH HHS/ -- R01 HL070045/HL/NHLBI NIH HHS/ -- R01 HL070045-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1137-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. ykawahara@wistar.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322061" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/*metabolism ; Adenosine Deaminase/genetics/metabolism ; Animals ; Base Sequence ; Brain/metabolism ; HeLa Cells ; Humans ; Inosine/*metabolism ; Liver/metabolism ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Organ Specificity ; Protein-Serine-Threonine Kinases/genetics/metabolism ; *RNA Editing ; *RNA Interference ; RNA-Binding Proteins ; Ribose-Phosphate Pyrophosphokinase/genetics/metabolism ; Uric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2007-01-27
    Description: How do integral membrane proteins evolve in size and complexity? Using the small multidrug-resistance protein EmrE from Escherichia coli as a model, we experimentally demonstrated that the evolution of membrane proteins composed of two homologous but oppositely oriented domains can occur in a small number of steps: An original dual-topology protein evolves, through a gene-duplication event, to a heterodimer formed by two oppositely oriented monomers. This simple evolutionary pathway can explain the frequent occurrence of membrane proteins with an internal pseudo-two-fold symmetry axis in the plane of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rapp, Mikaela -- Seppala, Susanna -- Granseth, Erik -- von Heijne, Gunnar -- New York, N.Y. -- Science. 2007 Mar 2;315(5816):1282-4. Epub 2007 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255477" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiporters/*chemistry/genetics ; Cell Membrane/*chemistry ; Dimerization ; Directed Molecular Evolution ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry/drug effects/genetics/growth & development ; Escherichia coli Proteins/*chemistry/genetics ; Ethidium/pharmacology ; *Evolution, Molecular ; Gene Duplication ; Membrane Transport Proteins/*chemistry/genetics ; Molecular Sequence Data ; Mutation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2007-01-06
    Description: Wilms tumor is a pediatric kidney cancer associated with inactivation of the WT1 tumor-suppressor gene in 5 to 10% of cases. Using a high-resolution screen for DNA copy-number alterations in Wilms tumor, we identified somatic deletions targeting a previously uncharacterized gene on the X chromosome. This gene, which we call WTX, is inactivated in approximately one-third of Wilms tumors (15 of 51 tumors). Tumors with mutations in WTX lack WT1 mutations, and both genes share a restricted temporal and spatial expression pattern in normal renal precursors. In contrast to biallelic inactivation of autosomal tumor-suppressor genes, WTX is inactivated by a monoallelic "single-hit" event targeting the single X chromosome in tumors from males and the active X chromosome in tumors from females.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, Miguel N -- Kim, Woo Jae -- Wells, Julie -- Driscoll, David R -- Brannigan, Brian W -- Han, Moonjoo -- Kim, James C -- Feinberg, Andrew P -- Gerald, William L -- Vargas, Sara O -- Chin, Lynda -- Iafrate, A John -- Bell, Daphne W -- Haber, Daniel A -- P01-CA101942/CA/NCI NIH HHS/ -- R37 CA054358/CA/NCI NIH HHS/ -- R37 CA054358-17/CA/NCI NIH HHS/ -- R37-CA058596/CA/NCI NIH HHS/ -- T32-CA009216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):642-5. Epub 2007 Jan 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical Center, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204608" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Deletion ; Chromosomes, Human, X/*genetics ; Female ; Gene Expression ; *Gene Silencing ; *Genes, Wilms Tumor ; Heterozygote ; Humans ; In Situ Hybridization, Fluorescence ; Kidney/embryology/metabolism ; Kidney Neoplasms/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Point Mutation ; Tumor Suppressor Proteins/chemistry/*genetics/physiology ; Wilms Tumor/*genetics ; beta Catenin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2007-09-22
    Description: Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range dissociation constants (Kd spanning six decades) and unmatched sensitivity (picomolar Kd's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G, interleukin-2 with its monoclonal antibody, and calmodulin with calcium ion Ca2+, a small molecule inhibitor, the protein calcineurin, and the M13 peptide. The high sensitivity of back-scattering interferometry and small volumes of microfluidics allowed the entire calmodulin assay to be performed with 200 picomoles of solute.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bornhop, Darryl J -- Latham, Joey C -- Kussrow, Amanda -- Markov, Dmitry A -- Jones, Richard D -- Sorensen, Henrik S -- R-01 EB0003537-01A2/EB/NIBIB NIH HHS/ -- T32 GM065086/GM/NIGMS NIH HHS/ -- T32-EY07135/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1732-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, VU Station B 351822, Nashville, TN 37235-1822, USA. darryl.bornhop@vanderbilt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17885132" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcineurin/chemistry ; Calcium/chemistry ; Calmodulin/chemistry ; Dimethylpolysiloxanes ; Humans ; Immunoglobulin G/chemistry ; Interferometry/*methods ; Kinetics ; Molecular Sequence Data ; Myosin-Light-Chain Kinase/chemistry ; Peptide Fragments/chemistry ; *Protein Binding ; Rabbits ; Refractometry ; Silicones ; Solutions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2007-09-29
    Description: The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, Hilary G -- McArthur, Andrew G -- Gillin, Frances D -- Aley, Stephen B -- Adam, Rodney D -- Olsen, Gary J -- Best, Aaron A -- Cande, W Zacheus -- Chen, Feng -- Cipriano, Michael J -- Davids, Barbara J -- Dawson, Scott C -- Elmendorf, Heidi G -- Hehl, Adrian B -- Holder, Michael E -- Huse, Susan M -- Kim, Ulandt U -- Lasek-Nesselquist, Erica -- Manning, Gerard -- Nigam, Anuranjini -- Nixon, Julie E J -- Palm, Daniel -- Passamaneck, Nora E -- Prabhu, Anjali -- Reich, Claudia I -- Reiner, David S -- Samuelson, John -- Svard, Staffan G -- Sogin, Mitchell L -- AI42488/AI/NIAID NIH HHS/ -- AI43273/AI/NIAID NIH HHS/ -- AI51687/AI/NIAID NIH HHS/ -- R01 AI043273/AI/NIAID NIH HHS/ -- R01 AI048082/AI/NIAID NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1921-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA. morrison@mbl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; DNA Replication/genetics ; *Eukaryotic Cells ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Giardia lamblia/classification/*genetics/physiology ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Kinases/genetics/metabolism ; Protozoan Proteins/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2007-10-20
    Description: Hundreds of species of reef-building corals spawn synchronously over a few nights each year, and moonlight regulates this spawning event. However, the molecular elements underpinning the detection of moonlight remain unknown. Here we report the presence of an ancient family of blue-light-sensing photoreceptors, cryptochromes, in the reef-building coral Acropora millepora. In addition to being cryptochrome genes from one of the earliest-diverging eumetazoan phyla, cry1 and cry2 were expressed preferentially in light. Consistent with potential roles in the synchronization of fundamentally important behaviors such as mass spawning, cry2 expression increased on full moon nights versus new moon nights. Our results demonstrate phylogenetically broad roles of these ancient circadian clock-related molecules in the animal kingdom.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, O -- Appelbaum, L -- Leggat, W -- Gothlif, Y -- Hayward, D C -- Miller, D J -- Hoegh-Guldberg, O -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):467-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Marine Studies, University of Queensland, St. Lucia 4072 QLD, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947585" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/*genetics/*metabolism ; Base Sequence ; Circadian Rhythm ; Cryptochromes ; Flavoproteins/analysis/*genetics/*metabolism ; Gene Expression Regulation ; *Light ; Molecular Sequence Data ; Moon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2007-04-07
    Description: Inositol pyrophosphates are a diverse group of high-energy signaling molecules whose cellular roles remain an active area of study. We report a previously uncharacterized class of inositol pyrophosphate synthase and find it is identical to yeast Vip1 and Asp1 proteins, regulators of actin-related protein-2/3 (ARP 2/3) complexes. Vip1 and Asp1 acted as enzymes that encode inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase activities. Alterations in kinase activity led to defects in cell growth, morphology, and interactions with ARP complex members. The functionality of Asp1 and Vip1 may provide cells with increased signaling capacity through metabolism of IP6.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulugu, Sashidhar -- Bai, Wenli -- Fridy, Peter C -- Bastidas, Robert J -- Otto, James C -- Dollins, D Eric -- Haystead, Timothy A -- Ribeiro, Anthony A -- York, John D -- 2-P30-CA14236-3/CA/NCI NIH HHS/ -- P30-CA-14236/CA/NCI NIH HHS/ -- R01-HL-55672/HL/NHLBI NIH HHS/ -- R33-DK-070272/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412958" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 3/metabolism ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Chromatography, High Pressure Liquid ; Conserved Sequence ; Cytoskeletal Proteins/chemistry/genetics/isolation & purification/*metabolism ; Humans ; Inositol Phosphates/metabolism ; Molecular Sequence Data ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/chemistry/genetics/isolation & ; purification/*metabolism ; Phytic Acid/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/isolation & purification/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/chemistry/genetics/isolation & ; purification/metabolism ; Schizosaccharomyces/cytology/*enzymology/genetics/growth & development ; Schizosaccharomyces pombe Proteins/chemistry/genetics/isolation & ; purification/*metabolism ; *Sequence Alignment ; Substrate Specificity ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2007-09-08
    Description: We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuomo, Christina A -- Guldener, Ulrich -- Xu, Jin-Rong -- Trail, Frances -- Turgeon, B Gillian -- Di Pietro, Antonio -- Walton, Jonathan D -- Ma, Li-Jun -- Baker, Scott E -- Rep, Martijn -- Adam, Gerhard -- Antoniw, John -- Baldwin, Thomas -- Calvo, Sarah -- Chang, Yueh-Long -- Decaprio, David -- Gale, Liane R -- Gnerre, Sante -- Goswami, Rubella S -- Hammond-Kosack, Kim -- Harris, Linda J -- Hilburn, Karen -- Kennell, John C -- Kroken, Scott -- Magnuson, Jon K -- Mannhaupt, Gertrud -- Mauceli, Evan -- Mewes, Hans-Werner -- Mitterbauer, Rudolf -- Muehlbauer, Gary -- Munsterkotter, Martin -- Nelson, David -- O'donnell, Kerry -- Ouellet, Therese -- Qi, Weihong -- Quesneville, Hadi -- Roncero, M Isabel G -- Seong, Kye-Yong -- Tetko, Igor V -- Urban, Martin -- Waalwijk, Cees -- Ward, Todd J -- Yao, Jiqiang -- Birren, Bruce W -- Kistler, H Corby -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1400-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17823352" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Fungal ; Evolution, Molecular ; Fusarium/*genetics/physiology ; *Genome, Fungal ; Hordeum/microbiology ; Molecular Sequence Data ; Plant Diseases/microbiology ; Point Mutation ; *Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2007-06-02
    Description: Proteasomes are responsible for generating peptides presented by the class I major histocompatibility complex (MHC) molecules of the immune system. Here, we report the identification of a previously unrecognized catalytic subunit called beta5t. beta5t is expressed exclusively in cortical thymic epithelial cells, which are responsible for the positive selection of developing thymocytes. Although the chymotrypsin-like activity of proteasomes is considered to be important for the production of peptides with high affinities for MHC class I clefts, incorporation of beta5t into proteasomes in place of beta5 or beta5i selectively reduces this activity. We also found that beta5t-deficient mice displayed defective development of CD8(+) T cells in the thymus. Our results suggest a key role for beta5t in generating the MHC class I-restricted CD8(+) T cell repertoire during thymic selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murata, Shigeo -- Sasaki, Katsuhiro -- Kishimoto, Toshihiko -- Niwa, Shin-Ichiro -- Hayashi, Hidemi -- Takahama, Yousuke -- Tanaka, Keiji -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1349-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan. smurata@rinshoken.or.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540904" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autoantigens/immunology/metabolism ; CD4-Positive T-Lymphocytes/cytology/immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Catalytic Domain ; Epithelial Cells/enzymology ; Green Fluorescent Proteins/genetics/metabolism ; Histocompatibility Antigens Class I/immunology/metabolism ; Humans ; Lymphopoiesis ; Molecular Sequence Data ; Peptides/chemistry/metabolism ; Proteasome Endopeptidase Complex/chemistry/genetics/*metabolism ; Spleen/cytology/immunology ; T-Lymphocyte Subsets/cytology/immunology ; Thymus Gland/*cytology/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2007-02-17
    Description: Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the alpha proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Hongtao -- Xu, Hao -- Zhou, Yan -- Zhang, Jie -- Long, Chengzu -- Li, Shuqin -- Chen, She -- Zhou, Jian-Min -- Shao, Feng -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):1000-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, Beijing, 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/genetics/*metabolism ; Cell Line ; HeLa Cells ; Humans ; JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism ; Molecular Sequence Data ; Mutagenesis ; NF-kappa B/metabolism ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Salmonella typhimurium ; Shigella flexneri/*metabolism/physiology ; Tyrosine/metabolism ; p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2007-02-10
    Description: Glycoprotein G of the vesicular stomatitis virus triggers membrane fusion via a low pH-induced structural rearrangement. Despite the equilibrium between the pre- and postfusion states, the structure of the prefusion form, determined to 3.0 angstrom resolution, shows that the fusogenic transition entails an extensive structural reorganization of G. Comparison with the structure of the postfusion form suggests a pathway for the conformational change. In the prefusion form, G has the shape of a tripod with the fusion loops exposed, which point toward the viral membrane, and with the antigenic sites located at the distal end of the molecule. A large number of G glycoproteins, perhaps organized as in the crystals, act cooperatively to induce membrane merging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roche, Stephane -- Rey, Felix A -- Gaudin, Yves -- Bressanelli, Stephane -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):843-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Unite Mixte de Recherche (UMR) 2472, Institut National de la Recherche Agronomique (INRA), UMR 1157, Institut Federatif de Recherche 115, Laboratoire de Virologie Moleculaire et Structurale, 91198, Gif sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289996" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vesicular stomatitis Indiana virus/*chemistry ; Viral Envelope Proteins/*chemistry ; Viral Fusion Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2007-06-30
    Description: Circadian and other natural clock-like endogenous rhythms may have evolved to anticipate regular temporal changes in the environment. We report that a mutation in the circadian clock gene timeless in Drosophila melanogaster has arisen and spread by natural selection relatively recently in Europe. We found that, when introduced into different genetic backgrounds, natural and artificial alleles of the timeless gene affect the incidence of diapause in response to changes in light and temperature. The natural mutant allele alters an important life history trait that may enhance the fly's adaptation to seasonal conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tauber, Eran -- Zordan, Mauro -- Sandrelli, Federica -- Pegoraro, Mirko -- Osterwalder, Nicolo -- Breda, Carlo -- Daga, Andrea -- Selmin, Alessandro -- Monger, Karen -- Benna, Clara -- Rosato, Ezio -- Kyriacou, Charalambos P -- Costa, Rodolfo -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600215" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Circadian Rhythm/genetics ; Drosophila Proteins/*genetics/physiology ; Drosophila melanogaster/*genetics/*physiology ; Europe ; Evolution, Molecular ; Female ; Geography ; Haplotypes ; Molecular Sequence Data ; Mutation ; *Photoperiod ; Phylogeny ; Polymorphism, Genetic ; Protein Isoforms/genetics/physiology ; Reproduction ; *Seasons ; *Selection, Genetic ; Temperature ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2007-11-10
    Description: An unexpected biochemical strategy for chain initiation is described for the loading module of the polyketide synthase of curacin A, an anticancer lead derived from the marine cyanobacterium Lyngbya majuscula. A central GCN5-related N-acetyltransferase (GNAT) domain bears bifunctional decarboxylase/S-acetyltransferase activity, both unprecedented for the GNAT superfamily. A CurA loading tridomain, consisting of an adaptor domain, the GNAT domain, and an acyl carrier protein, was assessed biochemically, revealing that a domain showing homology to GNAT (GNAT(L)) catalyzes (i) decarboxylation of malonyl-coenzyme A (malonyl-CoA) to acetyl-CoA and (ii) direct S-acetyl transfer from acetyl-CoA to load an adjacent acyl carrier protein domain (ACP(L)). Moreover, the N-terminal adapter domain was shown to facilitate acetyl-group transfer. Crystal structures of GNAT(L) were solved at 1.95 angstroms (ligand-free form) and 2.75 angstroms (acyl-CoA complex), showing distinct substrate tunnels for acyl-CoA and holo-ACP(L) binding. Modeling and site-directed mutagenesis experiments demonstrated that histidine-389 and threonine-355, at the convergence of the CoA and ACP tunnels, participate in malonyl-CoA decarboxylation but not in acetyl-group transfer. Decarboxylation precedes acetyl-group transfer, leading to acetyl-ACP(L) as the key curacin A starter unit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Liangcai -- Geders, Todd W -- Wang, Bo -- Gerwick, William H -- Hakansson, Kristina -- Smith, Janet L -- Sherman, David H -- DK42303/DK/NIDDK NIH HHS/ -- GM076477/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):970-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991863" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetyltransferases/*chemistry/*metabolism ; Acyl Carrier Protein/chemistry/metabolism ; Amino Acid Sequence ; Carboxy-Lyases/chemistry/metabolism ; Crystallography, X-Ray ; Cyanobacteria/*enzymology/genetics ; Cyclopropanes/*metabolism ; Decarboxylation ; Malonyl Coenzyme A/metabolism ; Models, Molecular ; Molecular Sequence Data ; Polyketide Synthases/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Thiazoles/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2007-11-24
    Description: Plants use light to optimize growth and development. The photoreceptor phytochrome A (phyA) mediates various far-red light-induced responses. We show that Arabidopsis FHY3 and FAR1, which encode two proteins related to Mutator-like transposases, act together to modulate phyA signaling by directly activating the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. FHY3 and FAR1 have separable DNA binding and transcriptional activation domains that are highly conserved in Mutator-like transposases. Further, expression of FHY3 and FAR1 is negatively regulated by phyA signaling. We propose that FHY3 and FAR1 represent transcription factors that have been co-opted from an ancient Mutator-like transposase(s) to modulate phyA-signaling homeostasis in higher plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151751/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151751/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Rongcheng -- Ding, Lei -- Casola, Claudio -- Ripoll, Daniel R -- Feschotte, Cedric -- Wang, Haiyang -- R01 GM077582/GM/NIGMS NIH HHS/ -- R01 GM077582-01A1/GM/NIGMS NIH HHS/ -- R01 GM77582-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1302-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyce Thompson Institute for Plant Research (BTI), Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18033885" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/metabolism ; Gene Expression Regulation, Plant ; *Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Phylogeny ; Phytochrome/chemistry/genetics/*metabolism ; Phytochrome A/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Transcriptional Activation ; Transposases/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2007-10-27
    Description: Plant disease resistance (R) proteins recognize matching pathogen avirulence proteins. Alleles of the pepper R gene Bs3 mediate recognition of the Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Pepper Bs3 and its allelic variant Bs3-E encode flavin monooxygenases with a previously unknown structure and are transcriptionally activated by the Xcv effector proteins AvrBs3 and AvrBs3Deltarep16, respectively. We found that recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by binding of AvrBs3 or AvrBs3Deltarep16 to a defined promoter region. Our data suggest a recognition mechanism in which the Avr protein binds and activates the promoter of the cognate R gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Romer, Patrick -- Hahn, Simone -- Jordan, Tina -- Strauss, Tina -- Bonas, Ulla -- Lahaye, Thomas -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):645-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962564" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Bacterial Proteins/genetics/*metabolism ; Base Sequence ; Capsicum/*genetics/*microbiology ; Chromosomes, Artificial, Bacterial ; Gene Expression Regulation, Plant ; *Genes, Plant ; Mixed Function Oxygenases/chemistry/*genetics ; Molecular Sequence Data ; Plant Diseases/immunology/microbiology ; Plant Leaves/genetics/metabolism ; Plant Proteins/chemistry/genetics ; *Promoter Regions, Genetic ; Tobacco/genetics ; Transcription, Genetic ; Transformation, Genetic ; Xanthomonas campestris/genetics/metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2007-08-25
    Description: Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosado, Carlos J -- Buckle, Ashley M -- Law, Ruby H P -- Butcher, Rebecca E -- Kan, Wan-Ting -- Bird, Catherina H -- Ung, Kheng -- Browne, Kylie A -- Baran, Katherine -- Bashtannyk-Puhalovich, Tanya A -- Faux, Noel G -- Wong, Wilson -- Porter, Corrine J -- Pike, Robert N -- Ellisdon, Andrew M -- Pearce, Mary C -- Bottomley, Stephen P -- Emsley, Jonas -- Smith, A Ian -- Rossjohn, Jamie -- Hartland, Elizabeth L -- Voskoboinik, Ilia -- Trapani, Joseph A -- Bird, Phillip I -- Dunstone, Michelle A -- Whisstock, James C -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1548-51. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717151" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/metabolism ; Complement Membrane Attack Complex/chemistry/metabolism ; Crystallography, X-Ray ; Cytotoxins/chemistry ; Membrane Glycoproteins/chemistry/genetics/metabolism ; Molecular Sequence Data ; Perforin ; Photorhabdus/*chemistry ; Pore Forming Cytotoxic Proteins/chemistry/genetics/metabolism ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2007-10-20
    Description: Nonhomologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway required to maintain genome stability. Many prokaryotes possess a minimalist NHEJ apparatus required to repair DSBs during stationary phase, composed of two conserved core proteins, Ku and ligase D (LigD). The crystal structure of Mycobacterium tuberculosis polymerase domain of LigD mediating the synapsis of two noncomplementary DNA ends revealed a variety of interactions, including microhomology base pairing, mismatched and flipped-out bases, and 3' termini forming hairpin-like ends. Biochemical and biophysical studies confirmed that polymerase-induced end synapsis also occurs in solution. We propose that this DNA synaptic structure reflects an intermediate bridging stage of the NHEJ process, before end processing and ligation, with both the polymerase and the DNA sequence playing pivotal roles in determining the sequential order of synapsis and remodeling before end joining.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brissett, Nigel C -- Pitcher, Robert S -- Juarez, Raquel -- Picher, Angel J -- Green, Andrew J -- Dafforn, Timothy R -- Fox, Gavin C -- Blanco, Luis -- Doherty, Aidan J -- BB/D522746/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G120/738/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):456-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947582" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Crystallography, X-Ray ; DNA Ligases/*chemistry/genetics/metabolism ; *DNA Repair ; DNA, Bacterial/*chemistry/metabolism ; Dimerization ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium tuberculosis/*chemistry/enzymology/genetics/metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2007-02-27
    Description: In Drosophila, repeat-associated small interfering RNAs (rasiRNAs) are produced in the germ line by a Dicer-independent pathway and function through the PIWI subfamily of Argonautes to ensure silencing of retrotransposons. We sequenced small RNAs associated with the PIWI subfamily member AGO3. Although other members of PIWI, Aubergine (Aub) and Piwi, associated with rasiRNAs derived mainly from the antisense strand of retrotransposons, AGO3-associated rasiRNAs arose mainly from the sense strand. Aub- and Piwi-associated rasiRNAs showed a strong preference for uracil at their 5' ends, and AGO3-associated rasiRNAs showed a strong preference for adenine at nucleotide 10. Comparisons between AGO3- and Aub-associated rasiRNAs revealed pairs of rasiRNAs showing complementarities in their first 10 nucleotides. Aub and AGO3 exhibited Slicer activity in vitro. These data support a model in which formation of a 5' terminus within rasiRNA precursors is guided by rasiRNAs originating from transcripts of the other strand in concert with the Slicer activity of PIWI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gunawardane, Lalith S -- Saito, Kuniaki -- Nishida, Kazumichi M -- Miyoshi, Keita -- Kawamura, Yoshinori -- Nagami, Tomoko -- Siomi, Haruhiko -- Siomi, Mikiko C -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1587-90. Epub 2007 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322028" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Female ; Gene Library ; Male ; Models, Genetic ; Molecular Sequence Data ; Ovary/metabolism ; Peptide Initiation Factors/chemistry/genetics/*metabolism ; Proteins/genetics/metabolism ; RNA Interference ; RNA, Small Interfering/chemistry/genetics/*metabolism ; RNA-Induced Silencing Complex ; Recombinant Fusion Proteins/metabolism ; Retroelements ; Testis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2007-12-01
    Description: Molecular patterns in pathogenic RNAs can be recognized by the innate immune system, and a component of this response is the interferon-induced enzyme RNA-activated protein kinase (PKR). The major activators of PKR have been proposed to be long double-stranded RNAs. We report that RNAs with very limited secondary structures activate PKR in a 5'-triphosphate-dependent fashion in vitro and in vivo. Activation of PKR by 5'-triphosphate RNA is independent of RIG-I and is enhanced by treatment with type 1 interferon (IFN-alpha). Surveillance of molecular features at the 5' end of transcripts by PKR presents a means of allowing pathogenic RNA to be distinguished from self-RNA. The evidence presented here suggests that this form of RNA-based discrimination may be a critical step in mounting an early immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nallagatla, Subba Rao -- Hwang, Jungwook -- Toroney, Rebecca -- Zheng, Xiaofeng -- Cameron, Craig E -- Bevilacqua, Philip C -- GM58709/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1455-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048689" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line, Tumor ; Cercopithecus aethiops ; DEAD-box RNA Helicases/metabolism ; Enzyme Activation ; Eukaryotic Initiation Factor-2/metabolism ; Humans ; Immunity, Innate ; Interferon-alpha/immunology/metabolism ; Interferon-beta/metabolism ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphoric Monoester Hydrolases/metabolism ; Polyphosphates/metabolism ; RNA/chemistry/genetics/*metabolism ; RNA, Double-Stranded/chemistry/genetics/*metabolism ; Transfection ; Vero Cells ; eIF-2 Kinase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2007-12-01
    Description: Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sutton, Tim -- Baumann, Ute -- Hayes, Julie -- Collins, Nicholas C -- Shi, Bu-Jun -- Schnurbusch, Thorsten -- Hay, Alison -- Mayo, Gwenda -- Pallotta, Margaret -- Tester, Mark -- Langridge, Peter -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1446-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Private Mail Bag 1, Glen Osmond, South Australia 5064, Australia. tim.sutton@acpfg.com.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048688" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Transport ; Boron/metabolism/*toxicity ; Boron Compounds/*metabolism/*toxicity ; Chromosome Mapping ; *Genes, Plant ; Hordeum/*drug effects/*genetics/metabolism ; Membrane Transport Proteins/chemistry/*genetics/metabolism ; Molecular Sequence Data ; Plant Lectins/genetics/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Plant Roots/genetics/metabolism ; Quantitative Trait Loci ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2007-10-27
    Description: The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenbaum, Daniel M -- Cherezov, Vadim -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Yao, Xiao-Jie -- Weis, William I -- Stevens, Raymond C -- Kobilka, Brian K -- F32 GM082028/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM62411/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1266-73. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962519" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/chemistry/metabolism ; Adrenergic beta-Antagonists/chemistry/metabolism ; Amino Acid Sequence ; Bacteriophage T4/enzymology ; Binding Sites ; Cell Line ; Cell Membrane/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2007-04-07
    Description: Although highly homologous, the spliceosomal hPrp31 and the nucleolar Nop56 and Nop58 (Nop56/58) proteins recognize different ribonucleoprotein (RNP) particles. hPrp31 interacts with complexes containing the 15.5K protein and U4 or U4atac small nuclear RNA (snRNA), whereas Nop56/58 associate with 15.5K-box C/D small nucleolar RNA complexes. We present structural and biochemical analyses of hPrp31-15.5K-U4 snRNA complexes that show how the conserved Nop domain in hPrp31 maintains high RNP binding selectivity despite relaxed RNA sequence requirements. The Nop domain is a genuine RNP binding module, exhibiting RNA and protein binding surfaces. Yeast two-hybrid analyses suggest a link between retinitis pigmentosa and an aberrant hPrp31-hPrp6 interaction that blocks U4/U6-U5 tri-snRNP formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Sunbin -- Li, Ping -- Dybkov, Olexandr -- Nottrott, Stephanie -- Hartmuth, Klaus -- Luhrmann, Reinhard -- Carlomagno, Teresa -- Wahl, Markus C -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):115-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Zellulare Biochemie, Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg 11, D-37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Carrier Proteins/chemistry/metabolism ; Eye Proteins/*chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Small Nuclear/*chemistry/*metabolism ; RNA-Binding Proteins ; Retinitis Pigmentosa/genetics ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry/*metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2007-12-22
    Description: The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric guanine nucleotide-binding protein (G protein) Galphaq and thereby links Galphaq-coupled receptors (GPCRs) to the activation of the small-molecular-weight G protein RhoA. We determined the crystal structure of the Galphaq-p63RhoGEF-RhoA complex, detailing the interactions of Galphaq with the Dbl and pleckstrin homology (DH and PH) domains of p63RhoGEF. These interactions involve the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. We propose that this structure represents the crux of an ancient signal transduction pathway that is expected to be important in an array of physiological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Susanne -- Shankaranarayanan, Aruna -- Coco, Cassandra -- Ridilla, Marc -- Nance, Mark R -- Vettel, Christiane -- Baltus, Doris -- Evelyn, Chris R -- Neubig, Richard R -- Wieland, Thomas -- Tesmer, John J G -- HL071818/HL/NHLBI NIH HHS/ -- HL086865/HL/NHLBI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1923-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096806" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; rhoA GTP-Binding Protein/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2007-08-25
    Description: Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swartz, Trevor E -- Tseng, Tong-Seung -- Frederickson, Marcus A -- Paris, Gaston -- Comerci, Diego J -- Rajashekara, Gireesh -- Kim, Jung-Gun -- Mudgett, Mary Beth -- Splitter, Gary A -- Ugalde, Rodolfo A -- Goldbaum, Fernando A -- Briggs, Winslow R -- Bogomolni, Roberto A -- 1.U54-AI-057153/AI/NIAID NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- R01-GM068886/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1090-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717187" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Brucella abortus/*enzymology/growth & development/pathogenicity ; Brucella melitensis/*enzymology ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Flavin Mononucleotide/metabolism ; *Light ; Macrophages/*microbiology ; Mice ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Photochemistry ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Pseudomonas syringae/*enzymology ; Signal Transduction ; Sphingomonadaceae/*enzymology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2007-05-19
    Description: We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nene, Vishvanath -- Wortman, Jennifer R -- Lawson, Daniel -- Haas, Brian -- Kodira, Chinnappa -- Tu, Zhijian Jake -- Loftus, Brendan -- Xi, Zhiyong -- Megy, Karyn -- Grabherr, Manfred -- Ren, Quinghu -- Zdobnov, Evgeny M -- Lobo, Neil F -- Campbell, Kathryn S -- Brown, Susan E -- Bonaldo, Maria F -- Zhu, Jingsong -- Sinkins, Steven P -- Hogenkamp, David G -- Amedeo, Paolo -- Arensburger, Peter -- Atkinson, Peter W -- Bidwell, Shelby -- Biedler, Jim -- Birney, Ewan -- Bruggner, Robert V -- Costas, Javier -- Coy, Monique R -- Crabtree, Jonathan -- Crawford, Matt -- Debruyn, Becky -- Decaprio, David -- Eiglmeier, Karin -- Eisenstadt, Eric -- El-Dorry, Hamza -- Gelbart, William M -- Gomes, Suely L -- Hammond, Martin -- Hannick, Linda I -- Hogan, James R -- Holmes, Michael H -- Jaffe, David -- Johnston, J Spencer -- Kennedy, Ryan C -- Koo, Hean -- Kravitz, Saul -- Kriventseva, Evgenia V -- Kulp, David -- Labutti, Kurt -- Lee, Eduardo -- Li, Song -- Lovin, Diane D -- Mao, Chunhong -- Mauceli, Evan -- Menck, Carlos F M -- Miller, Jason R -- Montgomery, Philip -- Mori, Akio -- Nascimento, Ana L -- Naveira, Horacio F -- Nusbaum, Chad -- O'leary, Sinead -- Orvis, Joshua -- Pertea, Mihaela -- Quesneville, Hadi -- Reidenbach, Kyanne R -- Rogers, Yu-Hui -- Roth, Charles W -- Schneider, Jennifer R -- Schatz, Michael -- Shumway, Martin -- Stanke, Mario -- Stinson, Eric O -- Tubio, Jose M C -- Vanzee, Janice P -- Verjovski-Almeida, Sergio -- Werner, Doreen -- White, Owen -- Wyder, Stefan -- Zeng, Qiandong -- Zhao, Qi -- Zhao, Yongmei -- Hill, Catherine A -- Raikhel, Alexander S -- Soares, Marcelo B -- Knudson, Dennis L -- Lee, Norman H -- Galagan, James -- Salzberg, Steven L -- Paulsen, Ian T -- Dimopoulos, George -- Collins, Frank H -- Birren, Bruce -- Fraser-Liggett, Claire M -- Severson, David W -- 079059/Wellcome Trust/United Kingdom -- 5 R01 AI61576-2/AI/NIAID NIH HHS/ -- R01 AI059492/AI/NIAID NIH HHS/ -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R37 AI024716/AI/NIAID NIH HHS/ -- UO1 AI50936/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1718-23. Epub 2007 May 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. nene@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510324" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/*genetics/metabolism ; Animals ; Anopheles gambiae/genetics/metabolism ; Arboviruses ; Base Sequence ; DNA Transposable Elements ; Dengue/prevention & control/transmission ; Drosophila melanogaster/genetics ; Female ; Genes, Insect ; *Genome, Insect ; Humans ; Insect Proteins/genetics ; Insect Vectors/*genetics/metabolism ; Male ; Membrane Transport Proteins/genetics ; Molecular Sequence Data ; Multigene Family ; Protein Structure, Tertiary/genetics ; Sequence Analysis, DNA ; Sex Characteristics ; Sex Determination Processes ; Species Specificity ; Synteny ; Transcription, Genetic ; Yellow Fever/prevention & control/transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2007-07-28
    Description: Unlike most of its close relatives, Arabidopsis thaliana is capable of self-pollination. In other members of the mustard family, outcrossing is ensured by the complex self-incompatibility (S) locus,which harbors multiple diverged specificity haplotypes that effectively prevent selfing. We investigated the role of the S locus in the evolution of and transition to selfing in A. thaliana. We found that the S locus of A. thaliana harbored considerable diversity, which is an apparent remnant of polymorphism in the outcrossing ancestor. Thus, the fixation of a single inactivated S-locus allele cannot have been a key step in the transition to selfing. An analysis of the genome-wide pattern of linkage disequilibrium suggests that selfing most likely evolved roughly a million years ago or more.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Chunlao -- Toomajian, Christopher -- Sherman-Broyles, Susan -- Plagnol, Vincent -- Guo, Ya-Long -- Hu, Tina T -- Clark, Richard M -- Nasrallah, June B -- Weigel, Detlef -- Nordborg, Magnus -- GM62932/GM/NIGMS NIH HHS/ -- P50 HG002790/HG/NHGRI NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1070-2. Epub 2007 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17656687" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*genetics/*physiology ; Arabidopsis Proteins/*genetics ; *Biological Evolution ; Chromosomes, Artificial, Bacterial ; *Genes, Plant ; Genetic Drift ; Haplotypes ; Linkage Disequilibrium ; Molecular Sequence Data ; Nuclear Proteins/*genetics ; Plant Proteins/*genetics ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/*genetics ; *Pseudogenes ; Reproduction/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2007-10-20
    Description: Genetic analysis of mammalian color variation has provided fundamental insight into human biology and disease. In most vertebrates, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls pigment type-switching, but in domestic dogs, a third gene is implicated, the K locus, whose genetic characteristics predict a previously unrecognized component of the melanocortin pathway. We identify the K locus as beta-defensin 103 (CBD103) and show that its protein product binds with high affinity to the Mc1r and has a simple and strong effect on pigment type-switching in domestic dogs and transgenic mice. These results expand the functional role of beta-defensins, a protein family previously implicated in innate immunity, and identify an additional class of ligands for signaling through melanocortin receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Candille, Sophie I -- Kaelin, Christopher B -- Cattanach, Bruce M -- Yu, Bin -- Thompson, Darren A -- Nix, Matthew A -- Kerns, Julie A -- Schmutz, Sheila M -- Millhauser, Glenn L -- Barsh, Gregory S -- R01 DK064265/DK/NIDDK NIH HHS/ -- R01 DK064265-08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1418-23. Epub 2007 Oct 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Pediatrics, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947548" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/genetics/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Mapping ; Dogs/*genetics/metabolism ; Female ; Hair Color/*genetics ; Haplotypes ; Humans ; Keratinocytes/metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Receptor, Melanocortin, Type 1/*metabolism ; Sequence Analysis, DNA ; Sequence Deletion ; Signal Transduction ; Skin/metabolism ; beta-Defensins/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2007-01-16
    Description: The bacterial endosymbiont of the deep-sea tube worm Riftia pachyptila has never been successfully cultivated outside its host. In the absence of cultivation data, we have taken a proteomic approach based on the metagenome sequence to study the metabolism of this peculiar microorganism in detail. As one result, we found that three major sulfide oxidation proteins constitute approximately 12% of the total cytosolic proteome, which highlights the essential role of these enzymes for the symbiont's energy metabolism. Unexpectedly, the symbiont uses the reductive tricarboxylic acid cycle in addition to the previously identified Calvin cycle for CO2 fixation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Markert, Stephanie -- Arndt, Cordelia -- Felbeck, Horst -- Becher, Dorte -- Sievert, Stefan M -- Hugler, Michael -- Albrecht, Dirk -- Robidart, Julie -- Bench, Shellie -- Feldman, Robert A -- Hecker, Michael -- Schweder, Thomas -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):247-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Marine Biotechnology, Walther-Rathenau-Strasse 49, D-17489 Greifswald, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/analysis/*metabolism ; Carbon/metabolism ; Carbon Dioxide/metabolism ; Chemoautotrophic Growth ; Citric Acid Cycle ; Cytosol/metabolism ; *Ecosystem ; Energy Metabolism ; Gammaproteobacteria/enzymology/genetics/*metabolism ; Genome, Bacterial ; Hydrogen Sulfide/metabolism ; Hydrogen-Ion Concentration ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Oxidation-Reduction ; Pacific Ocean ; Polychaeta/*microbiology ; Proteome ; *Proteomics ; Sulfur/metabolism ; *Symbiosis ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2007-01-06
    Description: A key gene involved in plant senescence, mutations of which partially disable chlorophyll catabolism and confer stay-green leaf and cotyledon phenotypes, has been identified in Pisum sativum, Arabidopsis thaliana, and Festuca pratensis by using classical and molecular genetics and comparative genomics. A stay-green locus in F. pratensis is syntenically equivalent to a similar stay-green locus on rice chromosome 9. Functional testing in Arabidopsis of a homolog of the rice candidate gene revealed (i) senescence-associated gene expression and (ii) a stay-green phenotype after RNA interference silencing. Genetic mapping in pea demonstrated cosegregation with the yellow/green cotyledon polymorphism (I/i) first reported by Gregor Mendel in 1866.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armstead, Ian -- Donnison, Iain -- Aubry, Sylvain -- Harper, John -- Hortensteiner, Stefan -- James, Caron -- Mani, Jan -- Moffet, Matt -- Ougham, Helen -- Roberts, Luned -- Thomas, Ann -- Weeden, Norman -- Thomas, Howard -- King, Ian -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Grassland and Environmental Research, Aberystwyth SY23 3EB, UK. ian.armstead@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*genetics/physiology ; Arabidopsis Proteins/genetics ; Chlorophyll/analysis/*metabolism ; Chromosome Mapping ; Cotyledon/physiology ; Festuca/*genetics/physiology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Molecular Sequence Data ; Peas/*genetics/physiology ; Phenotype ; Plant Leaves/physiology ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...