ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-02
    Description: Endocytosis is a complex process fulfilling many cellular and developmental functions. Understanding how it is regulated and integrated with other cellular processes requires a comprehensive analysis of its molecular constituents and general design principles. Here, we developed a new strategy to phenotypically profile the human genome with respect to transferrin (TF) and epidermal growth factor (EGF) endocytosis by combining RNA interference, automated high-resolution confocal microscopy, quantitative multiparametric image analysis and high-performance computing. We identified several novel components of endocytic trafficking, including genes implicated in human diseases. We found that signalling pathways such as Wnt, integrin/cell adhesion, transforming growth factor (TGF)-beta and Notch regulate the endocytic system, and identified new genes involved in cargo sorting to a subset of signalling endosomes. A systems analysis by Bayesian networks further showed that the number, size, concentration of cargo and intracellular position of endosomes are not determined randomly but are subject to specific regulation, thus uncovering novel properties of the endocytic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collinet, Claudio -- Stoter, Martin -- Bradshaw, Charles R -- Samusik, Nikolay -- Rink, Jochen C -- Kenski, Denise -- Habermann, Bianca -- Buchholz, Frank -- Henschel, Robert -- Mueller, Matthias S -- Nagel, Wolfgang E -- Fava, Eugenio -- Kalaidzidis, Yannis -- Zerial, Marino -- England -- Nature. 2010 Mar 11;464(7286):243-9. doi: 10.1038/nature08779. Epub 2010 Feb 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Cell Biology and Genetics, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20190736" target="_blank"〉PubMed〈/a〉
    Keywords: Computing Methodologies ; Endocytosis/*physiology ; Endosomes/metabolism ; Epidermal Growth Factor/metabolism ; Gene Expression Profiling/*methods ; Genome-Wide Association Study ; Humans ; *Image Processing, Computer-Assisted ; Metabolic Networks and Pathways/physiology ; Microscopy, Confocal ; Phenotype ; Protein Transport/physiology ; RNA Interference ; Signal Transduction/physiology ; Transferrin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007
    Description: After amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. We found that in the planarian Schmidtea mediterranea, RNA interference (RNAi) of beta-catenin or dishevelled causes the inappropriate regeneration of a head instead of a tail at posterior amputations. Conversely, RNAi of the beta-catenin antagonist adenomatous polyposis coli results in the regeneration of a tail at anterior wounds. In addition, the silencing of beta-catenin is sufficient to transform the tail of uncut adult animals into a head. We suggest that beta-catenin functions as a molecular switch to specify and maintain anteroposterior identity during regeneration and homeostasis in planarians.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gurley, Kyle A -- Rink, Jochen C -- Sanchez Alvarado, Alejandro -- F32GM082016/GM/NIGMS NIH HHS/ -- R0-1 GM57260/GM/NIGMS NIH HHS/ -- R01 GM057260/GM/NIGMS NIH HHS/ -- R01 GM057260-08/GM/NIGMS NIH HHS/ -- T32CA093247/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):323-7. Epub 2007 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, 401 MREB, 20N 1900E, Salt Lake City, UT 84132, USA. sanchez@neuro.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063757" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/physiology ; Adenomatous Polyposis Coli Protein/chemistry/physiology ; Amino Acid Sequence ; Animals ; Body Patterning ; Gene Expression Profiling ; Genes, APC ; Head ; Helminth Proteins/chemistry/genetics/physiology ; Homeostasis ; Molecular Sequence Data ; Phosphoproteins/chemistry/genetics/physiology ; Planarians/genetics/*physiology ; RNA Interference ; *Regeneration ; Signal Transduction ; Tail ; beta Catenin/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-26
    Description: Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent. Why in the face of 'survival of the fittest' some animals regenerate but others do not remains a fascinating question. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians. Here we report the characterization of the regeneration defect in the planarian Dendrocoelum lacteum and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species. Notably, RNA interference (RNAi)-mediated knockdown of Dlac-beta-catenin-1, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing D. lacteum's regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of D. lacteum as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, S-Y -- Selck, C -- Friedrich, B -- Lutz, R -- Vila-Farre, M -- Dahl, A -- Brandl, H -- Lakshmanaperumal, N -- Henry, I -- Rink, J C -- England -- Nature. 2013 Aug 1;500(7460):81-4. doi: 10.1038/nature12414. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Head/*growth & development/physiology ; Models, Animal ; Molecular Sequence Data ; Planarians/*anatomy & histology/*physiology ; *Regeneration ; Tail/growth & development ; Wnt Proteins/metabolism ; Wnt Signaling Pathway ; beta Catenin/biosynthesis/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-11-26
    Description: The Hedgehog (Hh) signaling pathway plays multiple essential roles during metazoan development, homeostasis, and disease. Although core protein components are highly conserved, the variations in Hh signal transduction mechanisms exhibited by existing model systems (Drosophila, fish, and mammals) are difficult to understand. We characterized the Hh pathway in planarians. Hh signaling is essential for establishing the anterior/posterior axis during regeneration by modulating wnt expression. Moreover, RNA interference methods to reduce signal transduction proteins Cos2/Kif27/Kif7, Fused, or Iguana do not result in detectable Hh signaling defects; however, these proteins are essential for planarian ciliogenesis. Our study expands the understanding of Hh signaling in the animal kingdom and suggests an ancestral mechanistic link between Hh signaling and the function of cilia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861735/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861735/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rink, Jochen C -- Gurley, Kyle A -- Elliott, Sarah A -- Sanchez Alvarado, Alejandro -- F32GM082016/GM/NIGMS NIH HHS/ -- R0-1 GM57260/GM/NIGMS NIH HHS/ -- R37 GM057260/GM/NIGMS NIH HHS/ -- R37 GM057260-11/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1406-10. doi: 10.1126/science.1178712. Epub 2009 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, 401 MREB, 20 North 1900 East, Salt Lake City, UT 84103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Patterning ; Cilia/*physiology ; Genes, Helminth ; Hedgehog Proteins/genetics/*metabolism ; Helminth Proteins/genetics/metabolism ; Molecular Sequence Data ; Planarians/genetics/metabolism/*physiology ; RNA Interference ; *Regeneration ; *Signal Transduction ; Wnt Proteins/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-18
    Description: Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levin, Michal -- Anavy, Leon -- Cole, Alison G -- Winter, Eitan -- Mostov, Natalia -- Khair, Sally -- Senderovich, Naftalie -- Kovalev, Ekaterina -- Silver, David H -- Feder, Martin -- Fernandez-Valverde, Selene L -- Nakanishi, Nagayasu -- Simmons, David -- Simakov, Oleg -- Larsson, Tomas -- Liu, Shang-Yun -- Jerafi-Vider, Ayelet -- Yaniv, Karina -- Ryan, Joseph F -- Martindale, Mark Q -- Rink, Jochen C -- Arendt, Detlev -- Degnan, Sandie M -- Degnan, Bernard M -- Hashimshony, Tamar -- Yanai, Itai -- 310927/European Research Council/International -- R01 GM093116/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 31;531(7596):637-41. doi: 10.1038/nature16994. Epub 2016 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel. ; School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia. ; Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St Augustine, Florida 32080-8610 USA. ; Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26886793" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning/genetics ; Conserved Sequence/genetics ; *Embryonic Development/genetics ; Evolution, Molecular ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genes, Developmental/genetics ; Models, Biological ; Phenotype ; *Phylogeny ; Species Specificity ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-07
    Description: Planarian flatworms are in the midst of a renaissance as a model system for regeneration and stem cells. Besides two well-studied model species, hundreds of species exist worldwide that present a fascinating diversity of regenerative abilities, tissue turnover rates, reproductive strategies and other life history traits. PlanMine ( http://planmine.mpi-cbg.de/ ) aims to accomplish two primary missions: First, to provide an easily accessible platform for sharing, comparing and value-added mining of planarian sequence data. Second, to catalyze the comparative analysis of the phenotypic diversity amongst planarian species. Currently, PlanMine houses transcriptomes independently assembled by our lab and community contributors. Detailed assembly/annotation statistics, a custom-developed BLAST viewer and easy export options enable comparisons at the contig and assembly level. Consistent annotation of all transcriptomes by an automated pipeline, the integration of published gene expression information and inter-relational query tools provide opportunities for mining planarian gene sequences and functions. For inter-species comparisons, we include transcriptomes of, so far, six planarian species, along with images, expert-curated information on their biology and pre-calculated cross-species sequence homologies. PlanMine is based on the popular InterMine system in order to make the rich biology of planarians accessible to the general life sciences research community.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-24
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.
    Keywords: Life Sciences (General)
    Type: The Plant cell (ISSN 1040-4651); Volume 12; 12; 2425-2440
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); Volume 127; 1; 119-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...