ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-09
    Description: RNA silencing is a conserved mechanism in which small RNAs trigger various forms of sequence-specific gene silencing by guiding Argonaute complexes to target RNAs by means of base pairing. RNA silencing is thought to have evolved as a form of nucleic-acid-based immunity to inactivate viruses and transposable elements. Although the activity of transposable elements in animals has been thought largely to be restricted to the germ line, recent studies have shown that they may also actively transpose in somatic cells, creating somatic mosaicism in animals. In the Drosophila germ line, Piwi-interacting RNAs arise from repetitive intergenic elements including retrotransposons by a Dicer-independent pathway and function through the Piwi subfamily of Argonautes to ensure silencing of retrotransposons. Here we show that, in cultured Drosophila S2 cells, Argonaute 2 (AGO2), an AGO subfamily member of Argonautes, associates with endogenous small RNAs of 20-22 nucleotides in length, which we have collectively named endogenous short interfering RNAs (esiRNAs). esiRNAs can be divided into two groups: one that mainly corresponds to a subset of retrotransposons, and the other that arises from stem-loop structures. esiRNAs are produced in a Dicer-2-dependent manner from distinctive genomic loci, are modified at their 3' ends and can direct AGO2 to cleave target RNAs. Mutations in Dicer-2 caused an increase in retrotransposon transcripts. Together, our findings indicate that different types of small RNAs and Argonautes are used to repress retrotransposons in germline and somatic cells in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawamura, Yoshinori -- Saito, Kuniaki -- Kin, Taishin -- Ono, Yukiteru -- Asai, Kiyoshi -- Sunohara, Takafumi -- Okada, Tomoko N -- Siomi, Mikiko C -- Siomi, Haruhiko -- England -- Nature. 2008 Jun 5;453(7196):793-7. doi: 10.1038/nature06938. Epub 2008 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18463636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Cell Line ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*cytology/enzymology/genetics/*metabolism ; Eukaryotic Initiation Factors ; Germ Cells/metabolism ; Mosaicism ; Polymerase Chain Reaction ; Protein Binding ; RNA Helicases/genetics/metabolism ; RNA Interference ; RNA, Small Interfering/genetics/*metabolism ; RNA-Induced Silencing Complex/*metabolism ; Retroelements/genetics ; Ribonuclease III
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-09
    Description: PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saito, Kuniaki -- Inagaki, Sachi -- Mituyama, Toutai -- Kawamura, Yoshinori -- Ono, Yukiteru -- Sakota, Eri -- Kotani, Hazuki -- Asai, Kiyoshi -- Siomi, Haruhiko -- Siomi, Mikiko C -- England -- Nature. 2009 Oct 29;461(7268):1296-9. doi: 10.1038/nature08501. Epub 2009 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Keio University School of Medicine, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Cell Adhesion Molecules, Neuronal/metabolism ; Cell Line ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endoribonucleases/metabolism ; Female ; Genes, Insect/genetics ; Genetic Loci/genetics ; Maf Transcription Factors, Large/genetics/*metabolism ; Male ; Ovary/cytology/metabolism ; Phenotype ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA/biosynthesis/genetics/*metabolism ; RNA Interference ; RNA Processing, Post-Transcriptional ; RNA-Induced Silencing Complex/genetics/*metabolism ; Testis/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-01-23
    Description: The finding that sequence-specific gene silencing occurs in response to the presence of double-stranded RNAs has had an enormous impact on biology, uncovering an unsuspected level of regulation of gene expression. This process, known as RNA interference (RNAi) or RNA silencing, involves small non-coding RNAs, which associate with nuclease-containing regulatory complexes and then pair with complementary messenger RNA targets, thereby preventing the expression of these mRNAs. Remarkable progress has been made towards understanding the underlying mechanisms of RNAi, raising the prospect of deciphering the 'RNAi code' that, like transcription factors, allows the fine-tuning and networking of complex suites of gene activity, thereby specifying cellular physiology and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siomi, Haruhiko -- Siomi, Mikiko C -- England -- Nature. 2009 Jan 22;457(7228):396-404. doi: 10.1038/nature07754.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158785" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; MicroRNAs/biosynthesis/genetics/metabolism ; RNA Interference/*physiology ; RNA, Double-Stranded/biosynthesis/genetics/metabolism ; RNA, Small Interfering/biosynthesis/genetics/metabolism ; RNA, Untranslated/biosynthesis/*genetics/*metabolism ; RNA-Induced Silencing Complex/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-08
    Description: RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cernilogar, Filippo M -- Onorati, Maria Cristina -- Kothe, Greg O -- Burroughs, A Maxwell -- Parsi, Krishna Mohan -- Breiling, Achim -- Lo Sardo, Federica -- Saxena, Alka -- Miyoshi, Keita -- Siomi, Haruhiko -- Siomi, Mikiko C -- Carninci, Piero -- Gilmour, David S -- Corona, Davide F V -- Orlando, Valerio -- GM47477/GM/NIGMS NIH HHS/ -- R01 GM047477/GM/NIGMS NIH HHS/ -- TCR09002/Telethon/Italy -- TCR11001/Telethon/Italy -- England -- Nature. 2011 Nov 6;480(7377):391-5. doi: 10.1038/nature10492.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dulbecco Telethon Institute, Epigenetics and Genome Reprogramming, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22056986" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/deficiency/genetics/*metabolism ; Chromatin/*genetics/metabolism ; Drosophila Proteins/deficiency/genetics/*metabolism ; Drosophila melanogaster/*genetics ; *Gene Expression Regulation ; HSP70 Heat-Shock Proteins/genetics ; Heat-Shock Response/genetics ; MicroRNAs/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Protein Binding ; RNA Helicases/deficiency/genetics/*metabolism ; *RNA Interference ; RNA Polymerase II/metabolism ; RNA, Double-Stranded/genetics/metabolism ; RNA-Binding Proteins/metabolism ; Ribonuclease III/deficiency/genetics/*metabolism ; Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-16
    Description: PIWI-interacting RNAs (piRNAs) silence transposons to maintain genome integrity in animal germ lines. piRNAs are classified as primary and secondary piRNAs, depending on their biogenesis machinery. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters in the genome through the primary processing pathway. Although the existence of a ribonuclease participating in this pathway has been predicted, its molecular identity remained unknown. Here we show that Zucchini (Zuc), a mitochondrial phospholipase D (PLD) superfamily member, is an endoribonuclease essential for primary piRNA biogenesis. We solved the crystal structure of Drosophila melanogaster Zuc (DmZuc) at 1.75 A resolution. The structure revealed that DmZuc has a positively charged, narrow catalytic groove at the dimer interface, which could accommodate a single-stranded, but not a double-stranded, RNA. DmZuc and the mouse homologue MmZuc (also known as Pld6 and MitoPLD) showed endoribonuclease activity for single-stranded RNAs in vitro. The RNA cleavage products bear a 5'-monophosphate group, a hallmark of mature piRNAs. Mutational analyses revealed that the conserved active-site residues of DmZuc are critical for the ribonuclease activity in vitro, and for piRNA maturation and transposon silencing in vivo. We propose a model for piRNA biogenesis in animal germ lines, in which the Zuc endoribonuclease has a key role in primary piRNA maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimasu, Hiroshi -- Ishizu, Hirotsugu -- Saito, Kuniaki -- Fukuhara, Satoshi -- Kamatani, Miharu K -- Bonnefond, Luc -- Matsumoto, Naoki -- Nishizawa, Tomohiro -- Nakanaga, Keita -- Aoki, Junken -- Ishitani, Ryuichiro -- Siomi, Haruhiko -- Siomi, Mikiko C -- Nureki, Osamu -- England -- Nature. 2012 Nov 8;491(7423):284-7. doi: 10.1038/nature11509. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064230" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA Transposable Elements/genetics ; Drosophila Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*enzymology/genetics ; Endoribonucleases/*chemistry/*metabolism ; Gene Silencing ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; RNA, Small Interfering/biosynthesis/chemistry/genetics/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-02-27
    Description: In Drosophila, repeat-associated small interfering RNAs (rasiRNAs) are produced in the germ line by a Dicer-independent pathway and function through the PIWI subfamily of Argonautes to ensure silencing of retrotransposons. We sequenced small RNAs associated with the PIWI subfamily member AGO3. Although other members of PIWI, Aubergine (Aub) and Piwi, associated with rasiRNAs derived mainly from the antisense strand of retrotransposons, AGO3-associated rasiRNAs arose mainly from the sense strand. Aub- and Piwi-associated rasiRNAs showed a strong preference for uracil at their 5' ends, and AGO3-associated rasiRNAs showed a strong preference for adenine at nucleotide 10. Comparisons between AGO3- and Aub-associated rasiRNAs revealed pairs of rasiRNAs showing complementarities in their first 10 nucleotides. Aub and AGO3 exhibited Slicer activity in vitro. These data support a model in which formation of a 5' terminus within rasiRNA precursors is guided by rasiRNAs originating from transcripts of the other strand in concert with the Slicer activity of PIWI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gunawardane, Lalith S -- Saito, Kuniaki -- Nishida, Kazumichi M -- Miyoshi, Keita -- Kawamura, Yoshinori -- Nagami, Tomoko -- Siomi, Haruhiko -- Siomi, Mikiko C -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1587-90. Epub 2007 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322028" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Female ; Gene Library ; Male ; Models, Genetic ; Molecular Sequence Data ; Ovary/metabolism ; Peptide Initiation Factors/chemistry/genetics/*metabolism ; Proteins/genetics/metabolism ; RNA Interference ; RNA, Small Interfering/chemistry/genetics/*metabolism ; RNA-Induced Silencing Complex ; Recombinant Fusion Proteins/metabolism ; Retroelements ; Testis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siomi, Haruhiko -- Siomi, Mikiko C -- New York, N.Y. -- Science. 2015 May 15;348(6236):756-7. doi: 10.1126/science.aab3004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan. awa403@keio.jp siomim@bs.s.u-tokyo.ac.jp. ; Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan. awa403@keio.jp siomim@bs.s.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*metabolism ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/*enzymology/*metabolism ; Endoribonucleases/*metabolism ; Female ; Male ; Peptide Initiation Factors/*metabolism ; *RNA Cleavage ; RNA, Guide/*metabolism ; RNA, Small Interfering/*metabolism ; *Retroelements ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 162 (1989), S. 963-970 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-06-04
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...