ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (515)
  • Latest Papers from Table of Contents or Articles in Press  (515)
  • Cells, Cultured  (515)
  • Cell & Developmental Biology
  • Occupational Health and Environmental Toxicology
  • 2010-2014  (310)
  • 1980-1984  (205)
  • 1920-1924
  • Biology  (515)
  • Geography
Collection
  • Articles  (515)
Source
Keywords
Years
Year
Topic
  • 1
    Publication Date: 2010-01-19
    Description: Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlas, Alexander -- Machuy, Nikolaus -- Shin, Yujin -- Pleissner, Klaus-Peter -- Artarini, Anita -- Heuer, Dagmar -- Becker, Daniel -- Khalil, Hany -- Ogilvie, Lesley A -- Hess, Simone -- Maurer, Andre P -- Muller, Elke -- Wolff, Thorsten -- Rudel, Thomas -- Meyer, Thomas F -- England -- Nature. 2010 Feb 11;463(7282):818-22. doi: 10.1038/nature08760. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Factors/genetics/metabolism ; Cell Line ; Cells, Cultured ; Chick Embryo ; Cyclin-Dependent Kinase Inhibitor p27/deficiency/genetics/metabolism ; Epithelial Cells/virology ; Genome, Human/genetics ; *Host-Pathogen Interactions/genetics/physiology ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*growth & development ; Influenza, Human/*genetics/*virology ; Lung/cytology ; Mice ; Mice, Inbred C57BL ; Protein-Serine-Threonine Kinases/genetics ; Protein-Tyrosine Kinases/genetics ; *RNA Interference ; Virus Replication/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-29
    Description: Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierbuchen, Thomas -- Ostermeier, Austin -- Pang, Zhiping P -- Kokubu, Yuko -- Sudhof, Thomas C -- Wernig, Marius -- 1018438-142-PABCA/PHS HHS/ -- 5T32NS007280/NS/NINDS NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 25;463(7284):1035-41. doi: 10.1038/nature08797. Epub 2010 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, California 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20107439" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biomarkers/analysis ; Cell Line ; *Cell Lineage ; *Cell Transdifferentiation ; Cells, Cultured ; Embryo, Mammalian/cytology ; Fibroblasts/*cytology ; Mice ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/*cytology/metabolism/*physiology ; POU Domain Factors/genetics/metabolism ; Regenerative Medicine ; Synapses/metabolism ; Tail/cytology ; Time Factors ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-19
    Description: Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sen, George L -- Reuter, Jason A -- Webster, Daniel E -- Zhu, Lilly -- Khavari, Paul A -- AR055849/AR/NIAMS NIH HHS/ -- AR45192/AR/NIAMS NIH HHS/ -- F32 AR055849/AR/NIAMS NIH HHS/ -- F32 AR055849-02/AR/NIAMS NIH HHS/ -- K01 AR057828/AR/NIAMS NIH HHS/ -- R01 AR045192/AR/NIAMS NIH HHS/ -- R01 AR045192-11A2/AR/NIAMS NIH HHS/ -- R01 AR049737/AR/NIAMS NIH HHS/ -- R01 AR049737-05/AR/NIAMS NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):563-7. doi: 10.1038/nature08683. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Programs in Epithelial Biology and Cancer Biology and the Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; DNA Methylation ; Down-Regulation ; Epidermis/*cytology/*metabolism ; Female ; Gene Silencing ; Humans ; Mice ; Mice, SCID ; Repressor Proteins/deficiency/genetics/*metabolism ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-02-23
    Description: Sequence polymorphisms in a 58-kilobase (kb) interval on chromosome 9p21 confer a markedly increased risk of coronary artery disease (CAD), the leading cause of death worldwide. The variants have a substantial effect on the epidemiology of CAD and other life-threatening vascular conditions because nearly one-quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein-coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70-kb non-coding interval on mouse chromosome 4 affects cardiac expression of neighbouring genes, as well as proliferation properties of vascular cells. Chr4(Delta70kb/Delta70kb) mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the non-coding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4(Delta70kb/Delta70kb) mice, indicating that distant-acting gene regulatory functions are located in the non-coding CAD risk interval. Allele-specific expression of Cdkn2b transcripts in heterozygous mice showed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4(Delta70kb/Delta70kb) aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval has a pivotal role in regulation of cardiac Cdkn2a/b expression, and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Visel, Axel -- Zhu, Yiwen -- May, Dalit -- Afzal, Veena -- Gong, Elaine -- Attanasio, Catia -- Blow, Matthew J -- Cohen, Jonathan C -- Rubin, Edward M -- Pennacchio, Len A -- DK59630/DK/NIDDK NIH HHS/ -- R01 HG003988/HG/NHGRI NIH HHS/ -- R01 HG003988-04/HG/NHGRI NIH HHS/ -- R01 HL082896/HL/NHLBI NIH HHS/ -- R01 HL082896-03/HL/NHLBI NIH HHS/ -- R21 HL098940/HL/NHLBI NIH HHS/ -- R21 HL098940-01/HL/NHLBI NIH HHS/ -- U01 HL066681/HL/NHLBI NIH HHS/ -- U01 HL066681-08/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):409-12. doi: 10.1038/nature08801. Epub 2010 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20173736" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/pathology ; Cell Aging/genetics ; Cell Proliferation ; Cells, Cultured ; *Chromosome Deletion ; Chromosomes, Human, Pair 9/genetics ; Chromosomes, Mammalian/*genetics ; Coronary Artery Disease/*genetics/pathology ; Cyclin-Dependent Kinase Inhibitor p15/deficiency/genetics ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics ; Embryo, Mammalian/embryology ; Gene Expression Regulation/genetics ; Genetic Predisposition to Disease/genetics ; Humans ; Mice ; Myocytes, Smooth Muscle/pathology ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-12
    Description: The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-delta (PKC-delta). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-delta(+) neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-delta(-) neurons in CEl. Electrical silencing of PKC-delta(+) neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEl(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597095/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597095/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haubensak, Wulf -- Kunwar, Prabhat S -- Cai, Haijiang -- Ciocchi, Stephane -- Wall, Nicholas R -- Ponnusamy, Ravikumar -- Biag, Jonathan -- Dong, Hong-Wei -- Deisseroth, Karl -- Callaway, Edward M -- Fanselow, Michael S -- Luthi, Andreas -- Anderson, David J -- 1 R01 MH085082-01A1/MH/NIMH NIH HHS/ -- R01 MH063912/MH/NIMH NIH HHS/ -- R01 MH063912-09/MH/NIMH NIH HHS/ -- R01 MH063912-09S1/MH/NIMH NIH HHS/ -- R01 MH063912-10/MH/NIMH NIH HHS/ -- R01 MH085082/MH/NIMH NIH HHS/ -- R01 MH085082-01A1/MH/NIMH NIH HHS/ -- RC2 NS069464/NS/NINDS NIH HHS/ -- RC2 NS069464-01/NS/NINDS NIH HHS/ -- RC2 NS069464-02/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 11;468(7321):270-6. doi: 10.1038/nature09553.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 216-76, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068836" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/anatomy & histology/cytology/enzymology/*physiology ; Animals ; Axonal Transport ; Cells, Cultured ; Conditioning, Classical/*physiology ; Fear/*physiology ; Female ; Freezing Reaction, Cataleptic ; Genetic Techniques ; Humans ; Male ; Mice ; Mice, Transgenic ; Neural Inhibition/*physiology ; Neural Pathways/cytology/enzymology/*physiology ; Neurons/enzymology/metabolism ; Protein Kinase C-delta/deficiency/genetics/metabolism ; Synapses/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-08-06
    Description: Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Musunuru, Kiran -- Strong, Alanna -- Frank-Kamenetsky, Maria -- Lee, Noemi E -- Ahfeldt, Tim -- Sachs, Katherine V -- Li, Xiaoyu -- Li, Hui -- Kuperwasser, Nicolas -- Ruda, Vera M -- Pirruccello, James P -- Muchmore, Brian -- Prokunina-Olsson, Ludmila -- Hall, Jennifer L -- Schadt, Eric E -- Morales, Carlos R -- Lund-Katz, Sissel -- Phillips, Michael C -- Wong, Jamie -- Cantley, William -- Racie, Timothy -- Ejebe, Kenechi G -- Orho-Melander, Marju -- Melander, Olle -- Koteliansky, Victor -- Fitzgerald, Kevin -- Krauss, Ronald M -- Cowan, Chad A -- Kathiresan, Sekar -- Rader, Daniel J -- K99 HL098364/HL/NHLBI NIH HHS/ -- K99 HL098364-01/HL/NHLBI NIH HHS/ -- K99 HL098364-02/HL/NHLBI NIH HHS/ -- K99-HL098364/HL/NHLBI NIH HHS/ -- P01 HL059407/HL/NHLBI NIH HHS/ -- P01 HL059407-13/HL/NHLBI NIH HHS/ -- P01-HL059407/HL/NHLBI NIH HHS/ -- RC2 HL101864/HL/NHLBI NIH HHS/ -- RC2 HL101864-02/HL/NHLBI NIH HHS/ -- RC2-HL101864/HL/NHLBI NIH HHS/ -- T32 HL007954/HL/NHLBI NIH HHS/ -- T32 HL007954-10/HL/NHLBI NIH HHS/ -- U01 HL069757/HL/NHLBI NIH HHS/ -- U01 HL069757-09/HL/NHLBI NIH HHS/ -- U01-HL069757/HL/NHLBI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):714-9. doi: 10.1038/nature09266.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20686566" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular ; Transport/biosynthesis/deficiency/genetics/*metabolism ; Animals ; Base Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins/metabolism ; Cells, Cultured ; Cholesterol, LDL/blood/*metabolism ; Chromosomes, Human, Pair 1/*genetics ; Cohort Studies ; Coronary Artery Disease/blood/genetics ; Europe/ethnology ; Gene Expression Regulation ; Gene Knockdown Techniques ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Haplotypes/genetics ; Hepatocytes/metabolism/secretion ; Humans ; Lipids/blood ; Lipoproteins, VLDL/blood/secretion ; Liver/cytology/metabolism/secretion ; Mice ; Myocardial Infarction/blood/genetics ; Phenotype ; Polymorphism, Single Nucleotide/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-12
    Description: Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026603/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026603/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, Yang -- Yuan, Quan -- Vogt, Nina -- Looger, Loren L -- Jan, Lily Yeh -- Jan, Yuh Nung -- R01 MH084234/MH/NIMH NIH HHS/ -- R37 NS040929/NS/NINDS NIH HHS/ -- R37 NS040929-11/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 16;468(7326):921-6. doi: 10.1038/nature09576. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068723" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/cytology/metabolism/radiation effects ; Animals ; Avoidance Learning/physiology/radiation effects ; Cells, Cultured ; Dermis/metabolism/radiation effects ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*anatomy & histology/cytology/physiology/*radiation ; effects ; Larva/anatomy & histology/cytology/radiation effects ; *Light ; Light Signal Transduction/radiation effects ; Neurons/physiology/radiation effects ; Photoreceptor Cells, Invertebrate/*metabolism/*radiation effects ; Receptors, Cell Surface/metabolism ; TRPC Cation Channels/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-03-05
    Description: Innate immunity provides the first line of defence against invading pathogens and provides important cues for the development of adaptive immunity. Type-2 immunity-responsible for protective immune responses to helminth parasites and the underlying cause of the pathogenesis of allergic asthma-consists of responses dominated by the cardinal type-2 cytokines interleukin (IL)4, IL5 and IL13 (ref. 5). T cells are an important source of these cytokines in adaptive immune responses, but the innate cell sources remain to be comprehensively determined. Here, through the use of novel Il13-eGFP reporter mice, we present the identification and functional characterization of a new innate type-2 immune effector leukocyte that we have named the nuocyte. Nuocytes expand in vivo in response to the type-2-inducing cytokines IL25 and IL33, and represent the predominant early source of IL13 during helminth infection with Nippostrongylus brasiliensis. In the combined absence of IL25 and IL33 signalling, nuocytes fail to expand, resulting in a severe defect in worm expulsion that is rescued by the adoptive transfer of in vitro cultured wild-type, but not IL13-deficient, nuocytes. Thus, nuocytes represent a critically important innate effector cell in type-2 immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neill, Daniel R -- Wong, See Heng -- Bellosi, Agustin -- Flynn, Robin J -- Daly, Maria -- Langford, Theresa K A -- Bucks, Christine -- Kane, Colleen M -- Fallon, Padraic G -- Pannell, Richard -- Jolin, Helen E -- McKenzie, Andrew N J -- MC_U105178805/Medical Research Council/United Kingdom -- U.1051.03.007(78805)/Medical Research Council/United Kingdom -- England -- Nature. 2010 Apr 29;464(7293):1367-70. doi: 10.1038/nature08900. Epub 2010 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20200518" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Cells, Cultured ; Immunity, Innate/*immunology ; Interleukin-13/biosynthesis/deficiency/genetics ; Interleukin-17/deficiency/genetics ; Interleukins/biosynthesis/deficiency/genetics/*immunology ; Leukocytes/cytology/*immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nippostrongylus/immunology ; Strongylida Infections/immunology ; Th2 Cells/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-11
    Description: Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced inhibitory activity, indicating that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of human USP14. Treatment of cultured cells with this compound enhanced degradation of several proteasome substrates that have been implicated in neurodegenerative disease. USP14 inhibition accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. Enhancement of proteasome activity through inhibition of USP14 may offer a strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939003/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939003/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Byung-Hoon -- Lee, Min Jae -- Park, Soyeon -- Oh, Dong-Chan -- Elsasser, Suzanne -- Chen, Ping-Chung -- Gartner, Carlos -- Dimova, Nevena -- Hanna, John -- Gygi, Steven P -- Wilson, Scott M -- King, Randall W -- Finley, Daniel -- DK082906/DK/NIDDK NIH HHS/ -- GM65592/GM/NIGMS NIH HHS/ -- GM66492/GM/NIGMS NIH HHS/ -- NS047533/NS/NINDS NIH HHS/ -- P30 NS057098/NS/NINDS NIH HHS/ -- P30 NS057098-049002/NS/NINDS NIH HHS/ -- R01 GM066492/GM/NIGMS NIH HHS/ -- R01 GM067945/GM/NIGMS NIH HHS/ -- R01 NS047533/NS/NINDS NIH HHS/ -- R01 NS047533-06A2/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):179-84. doi: 10.1038/nature09299.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Humans ; Mice ; Proteasome Endopeptidase Complex/*metabolism ; Proteins/*metabolism ; Ubiquitin Thiolesterase/*antagonists & inhibitors ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-05-28
    Description: The differential formation of excitatory (glutamate-mediated) and inhibitory (GABA-mediated) synapses is a critical step for the proper functioning of the brain. An imbalance in these synapses may lead to various neurological disorders such as autism, schizophrenia, Tourette's syndrome and epilepsy. Synapses are formed through communication between the appropriate synaptic partners. However, the molecular mechanisms that mediate the formation of specific synaptic types are not known. Here we show that two members of the fibroblast growth factor (FGF) family, FGF22 and FGF7, promote the organization of excitatory and inhibitory presynaptic terminals, respectively, as target-derived presynaptic organizers. FGF22 and FGF7 are expressed by CA3 pyramidal neurons in the hippocampus. The differentiation of excitatory or inhibitory nerve terminals on dendrites of CA3 pyramidal neurons is specifically impaired in mutants lacking FGF22 or FGF7. These presynaptic defects are rescued by postsynaptic expression of the appropriate FGF. FGF22-deficient mice are resistant to epileptic seizures, and FGF7-deficient mice are prone to them, as expected from the alterations in excitatory/inhibitory balance. Differential effects of FGF22 and FGF7 involve both their distinct synaptic localizations and their use of different signalling pathways. These results demonstrate that specific FGFs act as target-derived presynaptic organizers and help to organize specific presynaptic terminals in the mammalian brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137042/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137042/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terauchi, Akiko -- Johnson-Venkatesh, Erin M -- Toth, Anna B -- Javed, Danish -- Sutton, Michael A -- Umemori, Hisashi -- R01 NS070005/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):783-7. doi: 10.1038/nature09041. Epub 2010 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505669" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cells, Cultured ; Dendrites/metabolism ; Disease Susceptibility ; Epilepsy/chemically induced/genetics/physiopathology ; Excitatory Postsynaptic Potentials/*physiology ; Fibroblast Growth Factor 7/deficiency/genetics/*metabolism ; Fibroblast Growth Factors/deficiency/genetics/*metabolism ; Gene Expression Profiling ; Glutamic Acid/metabolism ; Hippocampus/cytology/embryology/metabolism/pathology ; In Situ Hybridization ; Inhibitory Postsynaptic Potentials/*physiology ; Kindling, Neurologic ; Mice ; Mice, Knockout ; Miniature Postsynaptic Potentials/physiology ; Presynaptic Terminals/classification/metabolism/pathology/ultrastructure ; Pyramidal Cells/cytology/metabolism/pathology ; Receptors, Fibroblast Growth Factor/metabolism ; Seizures/chemically induced/genetics/radiotherapy ; Synapses/*classification/*metabolism/pathology/ultrastructure ; Synaptic Transmission ; Synaptic Vesicles/metabolism/pathology/ultrastructure ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-11-12
    Description: Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicodeme, Edwige -- Jeffrey, Kate L -- Schaefer, Uwe -- Beinke, Soren -- Dewell, Scott -- Chung, Chun-Wa -- Chandwani, Rohit -- Marazzi, Ivan -- Wilson, Paul -- Coste, Herve -- White, Julia -- Kirilovsky, Jorge -- Rice, Charles M -- Lora, Jose M -- Prinjha, Rab K -- Lee, Kevin -- Tarakhovsky, Alexander -- England -- Nature. 2010 Dec 23;468(7327):1119-23. doi: 10.1038/nature09589. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche GSK, 27 Avenue du Quebec, 91140 Villebon Sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Animals ; Anti-Inflammatory Agents/chemistry/*pharmacology/therapeutic use ; Benzodiazepines ; Cells, Cultured ; Epigenomics ; Gene Expression Regulation/*drug effects ; Genome-Wide Association Study ; Heterocyclic Compounds with 4 or More Rings/chemistry/*pharmacology/therapeutic ; use ; Histone Deacetylase Inhibitors/pharmacology ; Hydroxamic Acids/pharmacology ; *Inflammation/drug therapy/prevention & control ; Kaplan-Meier Estimate ; Lipopolysaccharides/pharmacology ; Macrophages/*drug effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Salmonella Infections/drug therapy/immunology/physiopathology/prevention & ; control ; Salmonella typhimurium ; Sepsis/drug therapy/prevention & control ; Shock, Septic/drug therapy/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-06-11
    Description: The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carvajal-Vergara, Xonia -- Sevilla, Ana -- D'Souza, Sunita L -- Ang, Yen-Sin -- Schaniel, Christoph -- Lee, Dung-Fang -- Yang, Lei -- Kaplan, Aaron D -- Adler, Eric D -- Rozov, Roye -- Ge, Yongchao -- Cohen, Ninette -- Edelmann, Lisa J -- Chang, Betty -- Waghray, Avinash -- Su, Jie -- Pardo, Sherly -- Lichtenbelt, Klaske D -- Tartaglia, Marco -- Gelb, Bruce D -- Lemischka, Ihor R -- 5R01GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):808-12. doi: 10.1038/nature09005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA. xcarvajal@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535210" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/metabolism ; Enzyme Activation ; Female ; Fibroblasts/metabolism/pathology ; Gene Expression Profiling ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/enzymology/metabolism/*pathology ; LEOPARD Syndrome/drug therapy/metabolism/*pathology ; Male ; Mitogen-Activated Protein Kinases/metabolism ; *Models, Biological ; Myocytes, Cardiac/metabolism/pathology ; NFATC Transcription Factors/genetics/metabolism ; Octamer Transcription Factor-3/genetics ; Phosphoproteins/analysis ; Polymerase Chain Reaction ; *Precision Medicine ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics/metabolism ; SOXB1 Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-03-06
    Description: Injury causes a systemic inflammatory response syndrome (SIRS) that is clinically much like sepsis. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors. Similarly, cellular injury can release endogenous 'damage'-associated molecular patterns (DAMPs) that activate innate immunity. Mitochondria are evolutionary endosymbionts that were derived from bacteria and so might bear bacterial molecular motifs. Here we show that injury releases mitochondrial DAMPs (MTDs) into the circulation with functionally important immune consequences. MTDs include formyl peptides and mitochondrial DNA. These activate human polymorphonuclear neutrophils (PMNs) through formyl peptide receptor-1 and Toll-like receptor (TLR) 9, respectively. MTDs promote PMN Ca(2+) flux and phosphorylation of mitogen-activated protein (MAP) kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTDs can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These signal through innate immune pathways identical to those activated in sepsis to create a sepsis-like state. The release of such mitochondrial 'enemies within' by cellular injury is a key link between trauma, inflammation and SIRS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qin -- Raoof, Mustafa -- Chen, Yu -- Sumi, Yuka -- Sursal, Tolga -- Junger, Wolfgang -- Brohi, Karim -- Itagaki, Kiyoshi -- Hauser, Carl J -- R01 GM059179/GM/NIGMS NIH HHS/ -- R01 GM059179-08/GM/NIGMS NIH HHS/ -- R01 GM059179-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Mar 4;464(7285):104-7. doi: 10.1038/nature08780.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Division of Trauma, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203610" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Lung Injury/immunology/pathology ; Animals ; Calcium Signaling ; Cells, Cultured ; CpG Islands/immunology ; DNA, Mitochondrial/blood/immunology ; Femur/injuries ; Fractures, Bone/immunology/pathology ; Humans ; Immunity, Innate/immunology ; Liver/immunology/injuries/pathology ; Male ; Mitochondria/*immunology/*secretion ; Mitogen-Activated Protein Kinases/metabolism ; Muscle, Skeletal/immunology/pathology ; N-Formylmethionine Leucyl-Phenylalanine/immunology/metabolism ; Neutrophils/enzymology/immunology/metabolism ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; Receptors, Formyl Peptide/metabolism ; Sepsis/immunology/metabolism/microbiology ; Systemic Inflammatory Response ; Syndrome/blood/*complications/*immunology/pathology ; Toll-Like Receptor 9/metabolism ; Wounds and Injuries/blood/*complications/*immunology/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-05-14
    Description: Phosphorylated derivatives of phosphatidylinositol, collectively referred to as phosphoinositides, occur in the cytoplasmic leaflet of cellular membranes and regulate activities such as vesicle transport, cytoskeletal reorganization and signal transduction. Recent studies have indicated an important role for phosphoinositide metabolism in the aetiology of diseases such as cancer, diabetes, myopathy and inflammation. Although the biological functions of the phosphatases that regulate phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) have been well characterized, little is known about the functions of the phosphatases regulating the closely related molecule phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)). Here we show that inositol polyphosphate phosphatase 4A (INPP4A), a PtdIns(3,4)P(2) phosphatase, is a suppressor of glutamate excitotoxicity in the central nervous system. Targeted disruption of the Inpp4a gene in mice leads to neurodegeneration in the striatum, the input nucleus of the basal ganglia that has a central role in motor and cognitive behaviours. Notably, Inpp4a(-/-) mice show severe involuntary movement disorders. In vitro, Inpp4a gene silencing via short hairpin RNA renders cultured primary striatal neurons vulnerable to cell death mediated by N-methyl-d-aspartate-type glutamate receptors (NMDARs). Mechanistically, INPP4A is found at the postsynaptic density and regulates synaptic NMDAR localization and NMDAR-mediated excitatory postsynaptic current. Thus, INPP4A protects neurons from excitotoxic cell death and thereby maintains the functional integrity of the brain. Our study demonstrates that PtdIns(3,4)P(2), PtdIns(3,4,5)P(3) and the phosphatases acting on them can have distinct regulatory roles, and provides insight into the unique aspects and physiological significance of PtdIns(3,4)P(2) metabolism. INPP4A represents, to our knowledge, the first signalling protein with a function in neurons to suppress excitotoxic cell death. The discovery of a direct link between PtdIns(3,4)P(2) metabolism and the regulation of neurodegeneration and involuntary movements may aid the development of new approaches for the treatment of neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Junko -- Kofuji, Satoshi -- Itoh, Reietsu -- Momiyama, Toshihiko -- Takayama, Kiyohiko -- Murakami, Haruka -- Chida, Shinsuke -- Tsuya, Yuko -- Takasuga, Shunsuke -- Eguchi, Satoshi -- Asanuma, Ken -- Horie, Yasuo -- Miura, Kouichi -- Davies, Elizabeth Michele -- Mitchell, Christina -- Yamazaki, Masakazu -- Hirai, Hirokazu -- Takenawa, Tadaomi -- Suzuki, Akira -- Sasaki, Takehiko -- England -- Nature. 2010 May 27;465(7297):497-501. doi: 10.1038/nature09023. Epub 2010 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan. sasakij@med.akita-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death/drug effects ; Cell Survival ; Cells, Cultured ; Down-Regulation ; Dyskinesias/genetics/pathology/physiopathology ; Glutamic Acid/metabolism/pharmacology/*toxicity ; Humans ; Mice ; Mice, Inbred C57BL ; Neostriatum/drug effects/metabolism/pathology ; Neurodegenerative Diseases/genetics/pathology/physiopathology ; Neurons/*cytology/*drug effects/enzymology/pathology ; Phosphoric Monoester Hydrolases/deficiency/genetics/*metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Survival Rate ; Synapses/metabolism ; Weight Loss
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-05-07
    Description: The formation and guidance of specialized endothelial tip cells is essential for both developmental and pathological angiogenesis. Notch-1 signalling regulates the generation of tip cells, which respond to gradients of vascular endothelial growth factor (VEGF-A). The molecular cues and signalling pathways that control the guidance of tip cells are poorly understood. Bidirectional signalling by Eph receptors and ephrin ligands represents one of the most important guidance cues involved in axon path finding. Here we show that ephrin-B2 reverse signalling involving PDZ interactions regulates endothelial tip cell guidance to control angiogenic sprouting and branching in physiological and pathological angiogenesis. In vivo, ephrin-B2 PDZ-signalling-deficient mice (ephrin-B2DeltaV) exhibit a reduced number of tip cells with fewer filopodial extensions at the vascular front in the mouse retina. In pathological settings, impaired PDZ signalling decreases tumour vascularization and growth. Mechanistically, we show that ephrin-B2 controls VEGF receptor (VEGFR)-2 internalization and signalling. Importantly, internalization of VEGFR2 is necessary for activation and downstream signalling of the receptor and is required for VEGF-induced tip cell filopodial extension. Together, our results suggest that ephrin-B2 at the tip cell filopodia regulates the proper spatial activation of VEGFR2 endocytosis and signalling to direct filopodial extension. Blocking ephrin-B2 reverse signalling may be an attractive alternative or combinatorial anti-angiogenic therapy strategy to disrupt VEGFR2 function in tumour angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawamiphak, Suphansa -- Seidel, Sascha -- Essmann, Clara L -- Wilkinson, George A -- Pitulescu, Mara E -- Acker, Till -- Acker-Palmer, Amparo -- England -- Nature. 2010 May 27;465(7297):487-91. doi: 10.1038/nature08995. Epub 2010 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Frankfurt Institute for Molecular Life Sciences and Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytoma/*blood supply/*metabolism/pathology ; Brain/blood supply ; Cells, Cultured ; Endocytosis ; Endothelial Cells/cytology/metabolism ; Ephrin-B2/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; *Neovascularization, Pathologic ; Neovascularization, Physiologic ; Pseudopodia/metabolism ; Retina ; Retinal Vessels/cytology/physiology ; Signal Transduction ; Vascular Endothelial Growth Factor Receptor-2/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-12-24
    Description: Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(*-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(*-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(*-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(*-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Chun-An -- Wang, Tse-Yao -- Varadharaj, Saradhadevi -- Reyes, Levy A -- Hemann, Craig -- Talukder, M A Hassan -- Chen, Yeong-Renn -- Druhan, Lawrence J -- Zweier, Jay L -- K99 HL103846/HL/NHLBI NIH HHS/ -- K99 HL103846-02/HL/NHLBI NIH HHS/ -- R01 HL038324/HL/NHLBI NIH HHS/ -- R01 HL038324-20/HL/NHLBI NIH HHS/ -- R01 HL063744/HL/NHLBI NIH HHS/ -- R01 HL063744-09/HL/NHLBI NIH HHS/ -- R01HL103846/HL/NHLBI NIH HHS/ -- R01HL38324/HL/NHLBI NIH HHS/ -- R01HL63744/HL/NHLBI NIH HHS/ -- R01HL65608/HL/NHLBI NIH HHS/ -- R01HL83237/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1115-8. doi: 10.1038/nature09599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cells, Cultured ; Dithiothreitol/pharmacology ; Endothelial Cells/metabolism ; Endothelium, Vascular/*metabolism ; Glutathione/*metabolism ; Humans ; Male ; Mercaptoethanol/pharmacology ; Mutation ; Nitric Oxide Synthase Type III/genetics/*metabolism ; Oxidation-Reduction ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Rats, Sprague-Dawley ; Reducing Agents/pharmacology ; Signal Transduction ; Vasodilation/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-02-19
    Description: The recognition of foreign antigens by T lymphocytes is essential to most adaptive immune responses. It is driven by specific T-cell antigen receptors (TCRs) binding to antigenic peptide-major histocompatibility complex (pMHC) molecules on other cells. If productive, these interactions promote the formation of an immunological synapse. Here we show that synaptic TCR-pMHC binding dynamics differ significantly from TCR-pMHC binding in solution. We used single-molecule microscopy and fluorescence resonance energy transfer (FRET) between fluorescently tagged TCRs and their cognate pMHC ligands to measure the kinetics of TCR-pMHC binding in situ. When compared with solution measurements, the dissociation of this complex was increased significantly (4-12-fold). Disruption of actin polymers reversed this effect, indicating that cytoskeletal dynamics destabilize this interaction directly or indirectly. Nevertheless, TCR affinity for pMHC was significantly elevated as the result of a large (about 100-fold) increase in the association rate, a likely consequence of complementary molecular orientation and clustering. In helper T cells, the CD4 molecule has been proposed to bind cooperatively with the TCR to the same pMHC complex. However, CD4 blockade had no effect on the synaptic TCR affinity, nor did it destabilize TCR-pMHC complexes, indicating that the TCR binds pMHC independently of CD4.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273423/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273423/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huppa, Johannes B -- Axmann, Markus -- Mortelmaier, Manuel A -- Lillemeier, Bjorn F -- Newell, Evan W -- Brameshuber, Mario -- Klein, Lawrence O -- Schutz, Gerhard J -- Davis, Mark M -- R0 AI52211/AI/NIAID NIH HHS/ -- R01 AI022511/AI/NIAID NIH HHS/ -- R01 AI022511-23/AI/NIAID NIH HHS/ -- R01 AI022511-27/AI/NIAID NIH HHS/ -- T32 AI007290/AI/NIAID NIH HHS/ -- Y 250/Austrian Science Fund FWF/Austria -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 18;463(7283):963-7. doi: 10.1038/nature08746.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford School of Medicine, California 94305-5323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164930" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Antigens, CD4/drug effects/metabolism ; Cell Line ; Cells, Cultured ; Cytoskeleton/metabolism ; Drosophila melanogaster ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes ; Histocompatibility Antigens Class I/immunology/*metabolism ; Immunological Synapses/drug effects/*immunology/*metabolism ; Kinetics ; Ligands ; Mice ; Mice, Transgenic ; Peptides/*immunology/*metabolism ; Protein Binding/drug effects ; Receptors, Antigen, T-Cell/immunology/*metabolism ; Signal Transduction ; Surface Plasmon Resonance ; T-Lymphocytes, Helper-Inducer/drug effects/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-01-08
    Description: The life cycle of mammals begins when a sperm enters an egg. Immediately after fertilization, both the maternal and paternal genomes undergo dramatic reprogramming to prepare for the transition from germ cell to somatic cell transcription programs. One of the molecular events that takes place during this transition is the demethylation of the paternal genome. Despite extensive efforts, the factors responsible for paternal DNA demethylation have not been identified. To search for such factors, we developed a live cell imaging system that allows us to monitor the paternal DNA methylation state in zygotes. Through short-interfering-RNA-mediated knockdown in mouse zygotes, we identified Elp3 (also called KAT9), a component of the elongator complex, to be important for paternal DNA demethylation. We demonstrate that knockdown of Elp3 impairs paternal DNA demethylation as indicated by reporter binding, immunostaining and bisulphite sequencing. Similar results were also obtained when other elongator components, Elp1 and Elp4, were knocked down. Importantly, injection of messenger RNA encoding the Elp3 radical SAM domain mutant, but not the HAT domain mutant, into MII oocytes before fertilization also impaired paternal DNA demethylation, indicating that the SAM radical domain is involved in the demethylation process. Our study not only establishes a critical role for the elongator complex in zygotic paternal genome demethylation, but also indicates that the demethylation process may be mediated through a reaction that requires an intact radical SAM domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Yuki -- Yamagata, Kazuo -- Hong, Kwonho -- Wakayama, Teruhiko -- Zhang, Yi -- R01 GM068804/GM/NIGMS NIH HHS/ -- R01 GM068804-07/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):554-8. doi: 10.1038/nature08732. Epub 2010 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Chapel Hill, North Carolina 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; *DNA Methylation ; Embryonic Development/*genetics ; Female ; Gene Knockdown Techniques ; Genome/*genetics ; Histone Acetyltransferases/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Protein Structure, Tertiary/genetics ; Zygote/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-05-21
    Description: Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge. This process regulates various cellular functions such as plasma membrane repair in plants and animals, the discharge of defensive spikes in Paramecium, and the secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons. In animal cells, serine/threonine kinases including cAMP-dependent protein kinase, protein kinase C and calmodulin kinases have been implicated in calcium-signal transduction leading to regulated secretion. Although plants and protozoa also regulate secretion by means of intracellular calcium, the method by which these signals are relayed has not been explained. Here we show that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. These phenotypes were recapitulated by using a chemical biology approach in which pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite's life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, because expression of a resistant mutant kinase reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates, suggesting that related CDPKs may have a function in calcium-regulated secretion in other organisms. Because this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lourido, Sebastian -- Shuman, Joel -- Zhang, Chao -- Shokat, Kevan M -- Hui, Raymond -- Sibley, L David -- R01 AI034036/AI/NIAID NIH HHS/ -- R01 AI034036-17/AI/NIAID NIH HHS/ -- England -- Nature. 2010 May 20;465(7296):359-62. doi: 10.1038/nature09022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485436" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cells, Cultured ; *Exocytosis ; Fibroblasts/parasitology ; Foreskin ; Gene Knockout Techniques ; Host-Pathogen Interactions/physiology ; Humans ; Male ; Molecular Sequence Data ; Organelles/metabolism ; Phenotype ; Protein Kinases/deficiency/genetics/*metabolism ; Protein Phosphatase 1/chemistry/metabolism ; Toxoplasma/*cytology/*enzymology/pathogenicity/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-03-20
    Description: Cellular senescence has been recently shown to have an important role in opposing tumour initiation and promotion. Senescence induced by oncogenes or by loss of tumour suppressor genes is thought to critically depend on induction of the p19(Arf)-p53 pathway. The Skp2 E3-ubiquitin ligase can act as a proto-oncogene and its aberrant overexpression is frequently observed in human cancers. Here we show that although Skp2 inactivation on its own does not induce cellular senescence, aberrant proto-oncogenic signals as well as inactivation of tumour suppressor genes do trigger a potent, tumour-suppressive senescence response in mice and cells devoid of Skp2. Notably, Skp2 inactivation and oncogenic-stress-driven senescence neither elicit activation of the p19(Arf)-p53 pathway nor DNA damage, but instead depend on Atf4, p27 and p21. We further demonstrate that genetic Skp2 inactivation evokes cellular senescence even in oncogenic conditions in which the p19(Arf)-p53 response is impaired, whereas a Skp2-SCF complex inhibitor can trigger cellular senescence in p53/Pten-deficient cells and tumour regression in preclinical studies. Our findings therefore provide proof-of-principle evidence that pharmacological inhibition of Skp2 may represent a general approach for cancer prevention and therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Hui-Kuan -- Chen, Zhenbang -- Wang, Guocan -- Nardella, Caterina -- Lee, Szu-Wei -- Chan, Chia-Hsin -- Yang, Wei-Lei -- Wang, Jing -- Egia, Ainara -- Nakayama, Keiichi I -- Cordon-Cardo, Carlos -- Teruya-Feldstein, Julie -- Pandolfi, Pier Paolo -- R01 CA082328/CA/NCI NIH HHS/ -- R01 CA082328-13/CA/NCI NIH HHS/ -- R01 MD004038/MD/NIMHD NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):374-9. doi: 10.1038/nature08815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237562" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 4/metabolism ; Adenovirus E1A Proteins/genetics/metabolism ; Animals ; *Cell Aging/drug effects ; *Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/metabolism ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; Cyclin-Dependent Kinase Inhibitor p27/metabolism ; Fibroblasts ; Male ; Mice ; PTEN Phosphohydrolase/deficiency/genetics/metabolism ; Prostate/cytology/metabolism ; Prostatic Neoplasms/drug therapy/pathology/prevention & control ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; S-Phase Kinase-Associated Proteins/antagonists & inhibitors/genetics/*metabolism ; SKP Cullin F-Box Protein Ligases/metabolism ; Tumor Suppressor Protein p53/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-02-19
    Description: Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Cynthia M -- Hoffmann, Steve -- Darfeuille, Fabien -- Reignier, Jeremy -- Findeiss, Sven -- Sittka, Alexandra -- Chabas, Sandrine -- Reiche, Kristin -- Hackermuller, Jorg -- Reinhardt, Richard -- Stadler, Peter F -- Vogel, Jorg -- England -- Nature. 2010 Mar 11;464(7286):250-5. doi: 10.1038/nature08756. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Infection Biology, RNA Biology Group, D-10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164839" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Amino Acid Sequence ; Base Sequence ; Cells, Cultured ; *Gene Expression Profiling ; Genome, Bacterial/*genetics ; Helicobacter Infections/*microbiology ; Helicobacter pylori/*genetics ; Humans ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operon/genetics ; RNA, Bacterial/chemistry/*genetics/metabolism ; RNA, Messenger/genetics ; RNA, Untranslated ; Sequence Alignment ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-08-21
    Description: The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of the thymic medulla express stratified-epithelium markers, interpreted as promiscuous gene expression. Here we show that the thymus of the rat contains a population of clonogenic TECs that can be extensively cultured while conserving the capacity to integrate in a thymic epithelial network and to express major histocompatibility complex class II (MHC II) molecules and Aire. These cells can irreversibly adopt the fate of hair follicle multipotent stem cells when exposed to an inductive skin microenvironment; this change in fate is correlated with robust changes in gene expression. Hence, microenvironmental cues are sufficient here to re-direct epithelial cell fate, allowing crossing of primitive germ layer boundaries and an increase in potency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonfanti, Paola -- Claudinot, Stephanie -- Amici, Alessandro W -- Farley, Alison -- Blackburn, C Clare -- Barrandon, Yann -- England -- Nature. 2010 Aug 19;466(7309):978-82. doi: 10.1038/nature09269.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725041" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques ; *Cell Dedifferentiation ; Cell Lineage/physiology ; *Cell Transdifferentiation ; Cells, Cultured ; *Cellular Reprogramming ; Clone Cells/cytology/metabolism ; Epithelial Cells/*cytology/metabolism ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Hair Follicle/cytology ; Histocompatibility Antigens Class II/metabolism ; Male ; Mice ; Multipotent Stem Cells/*cytology/metabolism ; Rats ; Rats, Sprague-Dawley ; Skin/*cytology/embryology ; Thymus Gland/*cytology/embryology ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-10-15
    Description: Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to the endothelial cells, but is induced by interactions with the neural cells. Owing to the close spatial relationship between astrocytes and endothelial cells, it has been hypothesized that astrocytes induce this critical barrier postnatally, but the timing of BBB formation has been controversial. Here we demonstrate that the barrier is formed during embryogenesis as endothelial cells invade the CNS and pericytes are recruited to the nascent vessels, over a week before astrocyte generation. Analysing mice with null and hypomorphic alleles of Pdgfrb, which have defects in pericyte generation, we demonstrate that pericytes are necessary for the formation of the BBB, and that absolute pericyte coverage determines relative vascular permeability. We demonstrate that pericytes regulate functional aspects of the BBB, including the formation of tight junctions and vesicle trafficking in CNS endothelial cells. Pericytes do not induce BBB-specific gene expression in CNS endothelial cells, but inhibit the expression of molecules that increase vascular permeability and CNS immune cell infiltration. These data indicate that pericyte-endothelial cell interactions are critical to regulate the BBB during development, and disruption of these interactions may lead to BBB dysfunction and neuroinflammation during CNS injury and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daneman, Richard -- Zhou, Lu -- Kebede, Amanuel A -- Barres, Ben A -- R01 NS045621/NS/NINDS NIH HHS/ -- R01 NS045621-04/NS/NINDS NIH HHS/ -- R01-NS045621/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Nov 25;468(7323):562-6. doi: 10.1038/nature09513. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCSF Department of Anatomy, 513 Parnassus Avenue, HSW1301, San Francisco, California 94143-0452, USA. Richard.daneman@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944625" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood-Brain Barrier/*cytology/*embryology/ultrastructure ; Cells, Cultured ; Central Nervous System/blood supply/cytology/*embryology ; Gene Expression Regulation, Developmental ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Pericytes/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-01-30
    Description: Ageing in multicellular organisms typically involves a progressive decline in cell replacement and repair processes, resulting in several physiological deficiencies, including inefficient muscle repair, reduced bone mass, and dysregulation of blood formation (haematopoiesis). Although defects in tissue-resident stem cells clearly contribute to these phenotypes, it is unclear to what extent they reflect stem cell intrinsic alterations or age-related changes in the stem cell supportive microenvironment, or niche. Here, using complementary in vivo and in vitro heterochronic models, we show that age-associated changes in stem cell supportive niche cells deregulate normal haematopoiesis by causing haematopoietic stem cell dysfunction. Furthermore, we find that age-dependent defects in niche cells are systemically regulated and can be reversed by exposure to a young circulation or by neutralization of the conserved longevity regulator, insulin-like growth factor-1, in the marrow microenvironment. Together, these results show a new and critical role for local and systemic factors in signalling age-related haematopoietic decline, and highlight a new model in which blood-borne factors in aged animals act through local niche cells to induce age-dependent disruption of stem cell function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayack, Shane R -- Shadrach, Jennifer L -- Kim, Francis S -- Wagers, Amy J -- 1 DP2 OD004345-01/OD/NIH HHS/ -- DP2 OD004345/OD/NIH HHS/ -- P30 DK036836/DK/NIDDK NIH HHS/ -- P30DK036836/DK/NIDDK NIH HHS/ -- T32DK07260-29/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):495-500. doi: 10.1038/nature08749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110993" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/blood/*physiology ; Animals ; Blood Cells/cytology/*physiology ; Bone Marrow/metabolism ; Cell Count ; Cells, Cultured ; Hematopoiesis/physiology ; Insulin-Like Growth Factor I/metabolism ; Mice ; Mice, Inbred C57BL ; Osteoblasts/cytology ; Rejuvenation/*physiology ; *Signal Transduction ; Stem Cells/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-10-09
    Description: The neutralizing antibody response to influenza virus is dominated by antibodies that bind to the globular head of haemagglutinin, which undergoes a continuous antigenic drift, necessitating the re-formulation of influenza vaccines on an annual basis. Recently, several laboratories have described a new class of rare influenza-neutralizing antibodies that target a conserved site in the haemagglutinin stem. Most of these antibodies use the heavy-chain variable region VH1-69 gene, and structural data demonstrate that they bind to the haemagglutinin stem through conserved heavy-chain complementarity determining region (HCDR) residues. However, the VH1-69 antibodies are highly mutated and are produced by some but not all individuals, suggesting that several somatic mutations may be required for their development. To address this, here we characterize 197 anti-stem antibodies from a single donor, reconstruct the developmental pathways of several VH1-69 clones and identify two key elements that are required for the initial development of most VH1-69 antibodies: a polymorphic germline-encoded phenylalanine at position 54 and a conserved tyrosine at position 98 in HCDR3. Strikingly, in most cases a single proline to alanine mutation at position 52a in HCDR2 is sufficient to confer high affinity binding to the selecting H1 antigen, consistent with rapid affinity maturation. Surprisingly, additional favourable mutations continue to accumulate, increasing the breadth of reactivity and making both the initial mutations and phenylalanine at position 54 functionally redundant. These results define VH1-69 allele polymorphism, rearrangement of the VDJ gene segments and single somatic mutations as the three requirements for generating broadly neutralizing VH1-69 antibodies and reveal an unexpected redundancy in the affinity maturation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappas, Leontios -- Foglierini, Mathilde -- Piccoli, Luca -- Kallewaard, Nicole L -- Turrini, Filippo -- Silacci, Chiara -- Fernandez-Rodriguez, Blanca -- Agatic, Gloria -- Giacchetto-Sasselli, Isabella -- Pellicciotta, Gabriele -- Sallusto, Federica -- Zhu, Qing -- Vicenzi, Elisa -- Corti, Davide -- Lanzavecchia, Antonio -- U19 AI-057266/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):418-22. doi: 10.1038/nature13764. Epub 2014 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. ; Department of Infectious Diseases and Vaccines MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland 20878, USA. ; Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland. ; Unit of Preventive Medicine, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland [3]. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Insitute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296253" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Neutralizing/*genetics ; Cells, Cultured ; Complementarity Determining Regions/chemistry/*genetics ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunoglobulin Heavy Chains/genetics ; Influenza, Human/*immunology/virology ; Male ; Middle Aged ; Models, Molecular ; Mutation/*genetics ; Orthomyxoviridae/*immunology/metabolism ; Polymorphism, Genetic ; Protein Binding/genetics ; Protein Structure, Tertiary ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-07-22
    Description: During cap-dependent eukaryotic translation initiation, ribosomes scan messenger RNA from the 5' end to the first AUG start codon with favourable sequence context. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF), and translation of the main downstream ORF requires re-initiation, an incompletely understood process. Re-initiation is thought to involve the same factors as standard initiation. It is unknown whether any factors specifically affect translation re-initiation without affecting standard cap-dependent translation. Here we uncover the non-canonical initiation factors density regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT-1; also called MCTS1 in humans) as the first selective regulators of eukaryotic re-initiation. mRNAs containing upstream ORFs with strong Kozak sequences selectively require DENR-MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleich, Sibylle -- Strassburger, Katrin -- Janiesch, Philipp Christoph -- Koledachkina, Tatyana -- Miller, Katharine K -- Haneke, Katharina -- Cheng, Yong-Sheng -- Kuchler, Katrin -- Stoecklin, Georg -- Duncan, Kent E -- Teleman, Aurelio A -- 260602/European Research Council/International -- England -- Nature. 2014 Aug 14;512(7513):208-12. doi: 10.1038/nature13401. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2]. ; 1] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany [2]. ; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. ; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Cells, Cultured ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/growth & development ; Eukaryotic Initiation Factors/genetics/*metabolism ; Gene Expression Regulation/*genetics ; Open Reading Frames ; Protein Biosynthesis/*genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-01-30
    Description: Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism. In acidic environments Hsp70 binds with high affinity and specificity to BMP, thereby facilitating the BMP binding and activity of acid sphingomyelinase (ASM). The inhibition of the Hsp70-BMP interaction by BMP antibodies or a point mutation in Hsp70 (Trp90Phe), as well as the pharmacological and genetic inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM-is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds that enter the lysosomal lumen by the endocytic delivery pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkegaard, Thomas -- Roth, Anke G -- Petersen, Nikolaj H T -- Mahalka, Ajay K -- Olsen, Ole Dines -- Moilanen, Irina -- Zylicz, Alicja -- Knudsen, Jens -- Sandhoff, Konrad -- Arenz, Christoph -- Kinnunen, Paavo K J -- Nylandsted, Jesper -- Jaattela, Marja -- England -- Nature. 2010 Jan 28;463(7280):549-53. doi: 10.1038/nature08710.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Apoptosis Department and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20111001" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cells, Cultured ; HSP70 Heat-Shock Proteins/*metabolism ; Humans ; Hydrogen-Ion Concentration ; Intracellular Membranes/metabolism ; Lysophospholipids/metabolism ; Lysosomes/*metabolism/*pathology ; Monoglycerides/metabolism ; Niemann-Pick Diseases/*metabolism/*pathology ; Sphingomyelin Phosphodiesterase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-05-07
    Description: In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yingdi -- Nakayama, Masanori -- Pitulescu, Mara E -- Schmidt, Tim S -- Bochenek, Magdalena L -- Sakakibara, Akira -- Adams, Susanne -- Davy, Alice -- Deutsch, Urban -- Luthi, Urs -- Barberis, Alcide -- Benjamin, Laura E -- Makinen, Taija -- Nobes, Catherine D -- Adams, Ralf H -- Cancer Research UK/United Kingdom -- England -- Nature. 2010 May 27;465(7297):483-6. doi: 10.1038/nature09002.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Embryo Loss ; Embryo, Mammalian/blood supply/metabolism ; Endocytosis ; Endothelial Cells/cytology/metabolism ; Ephrin-B2/deficiency/genetics/*metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Female ; Humans ; *Lymphangiogenesis/genetics ; Lymphatic Vessels ; Mice ; Mice, Transgenic ; *Neovascularization, Physiologic/genetics ; Neuropeptides/metabolism ; Pregnancy ; Proto-Oncogene Proteins c-akt/metabolism ; Receptor, EphB4/deficiency/genetics/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor C/*metabolism ; Vascular Endothelial Growth Factor Receptor-3/metabolism ; Zebrafish ; rac GTP-Binding Proteins/metabolism ; rac1 GTP-Binding Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-06-19
    Description: Glucocorticoids are widely used to treat patients with autoimmune diseases such as systemic lupus erythematosus (SLE). However, regimens used to treat many such conditions cannot maintain disease control in the majority of SLE patients and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reductions in disease activity. The primary anti-inflammatory mechanism of glucocorticoids is thought to be NF-kappaB inhibition. Recognition of self nucleic acids by toll-like receptors TLR7 and TLR9 on B cells and plasmacytoid dendritic cells (PDCs) is an important step in the pathogenesis of SLE, promoting anti-nuclear antibodies and the production of type I interferon (IFN), both correlated with the severity of disease. Following their activation by self-nucleic acid-associated immune complexes, PDCs migrate to the tissues. We demonstrate, in vitro and in vivo, that stimulation of PDCs through TLR7 and 9 can account for the reduced activity of glucocorticoids to inhibit the IFN pathway in SLE patients and in two lupus-prone mouse strains. The triggering of PDCs through TLR7 and 9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-kappaB pathway essential for PDC survival. Glucocorticoids do not affect NF-kappaB activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-alpha levels. These findings unveil a new role for self nucleic acid recognition by TLRs and indicate that inhibitors of TLR7 and 9 signalling could prove to be effective corticosteroid-sparing drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964153/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964153/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guiducci, Cristiana -- Gong, Mei -- Xu, Zhaohui -- Gill, Michelle -- Chaussabel, Damien -- Meeker, Thea -- Chan, Jean H -- Wright, Tracey -- Punaro, Marilynn -- Bolland, Silvia -- Soumelis, Vassili -- Banchereau, Jacques -- Coffman, Robert L -- Pascual, Virginia -- Barrat, Franck J -- 2R44AI066483-02/AI/NIAID NIH HHS/ -- P50 AR054083/AR/NIAMS NIH HHS/ -- P50 AR054083-01/AR/NIAMS NIH HHS/ -- P50 AR054083-010001/AR/NIAMS NIH HHS/ -- P50 AR054083-010002/AR/NIAMS NIH HHS/ -- P50 AR054083-019001/AR/NIAMS NIH HHS/ -- P50 AR054083-02/AR/NIAMS NIH HHS/ -- P50 AR054083-020001/AR/NIAMS NIH HHS/ -- P50 AR054083-020002/AR/NIAMS NIH HHS/ -- P50 AR054083-029001/AR/NIAMS NIH HHS/ -- P50 AR054083-03/AR/NIAMS NIH HHS/ -- P50 AR054083-030001/AR/NIAMS NIH HHS/ -- P50 AR054083-030002/AR/NIAMS NIH HHS/ -- P50 AR054083-04/AR/NIAMS NIH HHS/ -- P50 AR054083-040001/AR/NIAMS NIH HHS/ -- P50 AR054083-040002/AR/NIAMS NIH HHS/ -- P50 AR054083-04S1/AR/NIAMS NIH HHS/ -- P50 AR054083-05/AR/NIAMS NIH HHS/ -- P50 AR054083-050001/AR/NIAMS NIH HHS/ -- P50 AR054083-050002/AR/NIAMS NIH HHS/ -- P50-ARO54083-01CORT/PHS HHS/ -- R44 AI066483/AI/NIAID NIH HHS/ -- R44 AI066483-02/AI/NIAID NIH HHS/ -- U19 AI082715/AI/NIAID NIH HHS/ -- U19 AI082715-01/AI/NIAID NIH HHS/ -- U19 AI082715-017348/AI/NIAID NIH HHS/ -- U19 AI082715-017351/AI/NIAID NIH HHS/ -- U19 AI082715-02/AI/NIAID NIH HHS/ -- U19 AI082715-027348/AI/NIAID NIH HHS/ -- U19 AI082715-027351/AI/NIAID NIH HHS/ -- U19 AI082715-03/AI/NIAID NIH HHS/ -- U19-AI082715-01/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):937-41. doi: 10.1038/nature09102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dynavax Technologies Corporation, 2929 Seventh Street, Suite 100, Berkeley, California 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559388" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Autoantibodies/immunology ; Cell Survival/drug effects ; Cells, Cultured ; Child ; Dendritic Cells/*drug effects ; Disease Models, Animal ; Female ; Glucocorticoids/*pharmacology ; Humans ; Interferon-alpha/immunology ; Interferons/immunology ; Lupus Erythematosus, Systemic/*physiopathology ; Male ; Membrane Glycoproteins/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/immunology ; Nucleic Acids/*immunology ; Toll-Like Receptor 7/*immunology ; Toll-Like Receptor 9/*immunology ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-12-18
    Description: The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of beta-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating beta-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Youngsup -- Altarejos, Judith -- Goodarzi, Mark O -- Inoue, Hiroshi -- Guo, Xiuqing -- Berdeaux, Rebecca -- Kim, Jeong-Ho -- Goode, Jason -- Igata, Motoyuki -- Paz, Jose C -- Hogan, Meghan F -- Singh, Pankaj K -- Goebel, Naomi -- Vera, Lili -- Miller, Nina -- Cui, Jinrui -- Jones, Michelle R -- CHARGE Consortium -- GIANT Consortium -- Chen, Yii-Der I -- Taylor, Kent D -- Hsueh, Willa A -- Rotter, Jerome I -- Montminy, Marc -- M01 RR000425-36/RR/NCRR NIH HHS/ -- M01-RR00425/RR/NCRR NIH HHS/ -- N01 HC095159/HC/NHLBI NIH HHS/ -- N01-HC95159/HC/NHLBI NIH HHS/ -- N02 HL64278/HL/NHLBI NIH HHS/ -- N02-HL64278/HL/NHLBI NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- P30 DK063491-09/DK/NIDDK NIH HHS/ -- P30-DK063491/DK/NIDDK NIH HHS/ -- R01 DK033651/DK/NIDDK NIH HHS/ -- R01 DK049777/DK/NIDDK NIH HHS/ -- R01 DK049777-18/DK/NIDDK NIH HHS/ -- R01 DK079888/DK/NIDDK NIH HHS/ -- R01 DK079888-05/DK/NIDDK NIH HHS/ -- R01 HL071205/HL/NHLBI NIH HHS/ -- R01 HL071205-05/HL/NHLBI NIH HHS/ -- R01 HL088457/HL/NHLBI NIH HHS/ -- R01 HL088457-04/HL/NHLBI NIH HHS/ -- R01-DK049777/DK/NIDDK NIH HHS/ -- R01-DK083834/DK/NIDDK NIH HHS/ -- R01-DK79888/DK/NIDDK NIH HHS/ -- R01-HL088457/HL/NHLBI NIH HHS/ -- R01-L071205/PHS HHS/ -- R37 DK083834/DK/NIDDK NIH HHS/ -- R37 DK083834-26/DK/NIDDK NIH HHS/ -- R37 DK083834-27/DK/NIDDK NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):933-9. doi: 10.1038/nature09564.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164481" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism ; Adipose Tissue/drug effects/metabolism ; Animals ; Body Temperature ; Catecholamines/*metabolism ; Cells, Cultured ; Cyclic AMP/metabolism ; Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors/metabolism ; Dietary Fats/pharmacology ; *Energy Metabolism/genetics ; Female ; Genome-Wide Association Study ; Humans ; Insulin Resistance ; Mexican Americans/genetics ; Mice ; Obesity/chemically induced/genetics/metabolism ; Phosphorylation ; RGS Proteins/biosynthesis/genetics ; Receptors, Adrenergic, beta/metabolism ; Signal Transduction/drug effects/*physiology ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-08-27
    Description: The transcription factor p53 (also known as TP53) guards against tumour and virus replication and is inactivated in almost all cancers. p53-activated transcription of target genes is thought to be synonymous with the stabilization of p53 in response to oncogenes and DNA damage. During adenovirus replication, the degradation of p53 by E1B-55k is considered essential for p53 inactivation, and is the basis for p53-selective viral cancer therapies. Here we reveal a dominant epigenetic mechanism that silences p53-activated transcription, irrespective of p53 phosphorylation and stabilization. We show that another adenoviral protein, E4-ORF3, inactivates p53 independently of E1B-55k by forming a nuclear structure that induces de novo H3K9me3 heterochromatin formation at p53 target promoters, preventing p53-DNA binding. This suppressive nuclear web is highly selective in silencing p53 promoters and operates in the backdrop of global transcriptional changes that drive oncogenic replication. These findings are important for understanding how high levels of wild-type p53 might also be inactivated in cancer as well as the mechanisms that induce aberrant epigenetic silencing of tumour-suppressor loci. Our study changes the longstanding definition of how p53 is inactivated in adenovirus infection and provides key insights that could enable the development of true p53-selective oncolytic viral therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soria, Conrado -- Estermann, Fanny E -- Espantman, Kristen C -- O'Shea, Clodagh C -- R01 CA137094/CA/NCI NIH HHS/ -- R01 CA137094-01/CA/NCI NIH HHS/ -- R01CA137094/CA/NCI NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1076-81. doi: 10.1038/nature09307.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037-1099, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20740008" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*metabolism ; Cell Proliferation ; Cells, Cultured ; Epigenesis, Genetic ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; *Gene Silencing ; HCT116 Cells ; Heterochromatin/*metabolism ; Histones/metabolism ; Humans ; Methylation ; Neoplasms/metabolism/virology ; Oncogene Proteins, Viral/*metabolism ; Protein Binding ; Tumor Suppressor Protein p53/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sauvageau, Guy -- Humphries, R Keith -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1291-2. doi: 10.1126/science.1195173.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics of Stem Cells Laboratory, Institute of Research in Immunology and Cancer, University of Montreal, Montreal, QC H3C 3J7, Canada. guy.sauvageau@umontreal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/analysis ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Fetal Blood/cytology ; *Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/*drug effects/physiology ; Humans ; Mice ; Purines/chemistry/metabolism/*pharmacology ; Receptors, Aryl Hydrocarbon/*antagonists & inhibitors/metabolism ; Small Molecule Libraries ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatia, Mickie -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1024-5. doi: 10.1126/science.1194919.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada. mbhatia@mcmaster.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798306" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques/*methods ; Cell Differentiation ; Cell Division ; Cells, Cultured ; Elasticity ; Humans ; Hydrogels ; Mice ; Muscle Fibers, Skeletal/*cytology/physiology ; Myoblasts, Skeletal/cytology/physiology ; Regeneration ; Stem Cell Niche/*physiology ; Stem Cell Transplantation ; Stem Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-07-22
    Description: Astrocytes provide structural and metabolic support for neuronal networks, but direct evidence demonstrating their active role in complex behaviors is limited. Central respiratory chemosensitivity is an essential mechanism that, via regulation of breathing, maintains constant levels of blood and brain pH and partial pressure of CO2. We found that astrocytes of the brainstem chemoreceptor areas are highly chemosensitive. They responded to physiological decreases in pH with vigorous elevations in intracellular Ca2+ and release of adenosine triphosphate (ATP). ATP propagated astrocytic Ca2+ excitation, activated chemoreceptor neurons, and induced adaptive increases in breathing. Mimicking pH-evoked Ca2+ responses by means of optogenetic stimulation of astrocytes expressing channelrhodopsin-2 activated chemoreceptor neurons via an ATP-dependent mechanism and triggered robust respiratory responses in vivo. This demonstrates a potentially crucial role for brain glial cells in mediating a fundamental physiological reflex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160742/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160742/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gourine, Alexander V -- Kasymov, Vitaliy -- Marina, Nephtali -- Tang, Feige -- Figueiredo, Melina F -- Lane, Samantha -- Teschemacher, Anja G -- Spyer, K Michael -- Deisseroth, Karl -- Kasparov, Sergey -- 079040/Wellcome Trust/United Kingdom -- PG/09/064/27886/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):571-5. doi: 10.1126/science.1190721. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK. a.gourine@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647426" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Astrocytes/*physiology ; Brain Stem/cytology/*physiology ; Calcium/metabolism ; Carbon Dioxide/analysis/blood ; Cells, Cultured ; Chemoreceptor Cells/*physiology ; Exocytosis ; Gap Junctions/metabolism ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Light ; Medulla Oblongata/cytology/*physiology ; Membrane Potentials ; Rats ; Rats, Sprague-Dawley ; Receptors, Purinergic P2/metabolism ; *Respiration ; Rhodopsin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-01-30
    Description: In addition to their pivotal role in thrombosis and wound repair, platelets participate in inflammatory responses. We investigated the role of platelets in the autoimmune disease rheumatoid arthritis. We identified platelet microparticles--submicrometer vesicles elaborated by activated platelets--in joint fluid from patients with rheumatoid arthritis and other forms of inflammatory arthritis, but not in joint fluid from patients with osteoarthritis. Platelet microparticles were proinflammatory, eliciting cytokine responses from synovial fibroblasts via interleukin-1. Consistent with these findings, depletion of platelets attenuated murine inflammatory arthritis. Using both pharmacologic and genetic approaches, we identified the collagen receptor glycoprotein VI as a key trigger for platelet microparticle generation in arthritis pathophysiology. Thus, these findings demonstrate a previously unappreciated role for platelets and their activation-induced microparticles in inflammatory joint diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927861/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927861/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boilard, Eric -- Nigrovic, Peter A -- Larabee, Katherine -- Watts, Gerald F M -- Coblyn, Jonathan S -- Weinblatt, Michael E -- Massarotti, Elena M -- Remold-O'Donnell, Eileen -- Farndale, Richard W -- Ware, Jerry -- Lee, David M -- G0500707/Medical Research Council/United Kingdom -- HL091269/HL/NHLBI NIH HHS/ -- HL50545/HL/NHLBI NIH HHS/ -- K08AR051321/AR/NIAMS NIH HHS/ -- P01 AI065858/AI/NIAID NIH HHS/ -- R01 HL050545/HL/NHLBI NIH HHS/ -- R01 HL050545-16/HL/NHLBI NIH HHS/ -- R01 HL050545-18/HL/NHLBI NIH HHS/ -- R21 HL091269/HL/NHLBI NIH HHS/ -- R21 HL091269-01A2/HL/NHLBI NIH HHS/ -- RG/09/003/27122/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):580-3. doi: 10.1126/science.1181928.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/blood/immunology ; Arthritis, Rheumatoid/*blood/*immunology/physiopathology ; Blood Platelets/cytology/*physiology/ultrastructure ; Cell-Derived Microparticles/metabolism/*physiology ; Cells, Cultured ; Collagen/*metabolism ; Cytokines/*metabolism ; Extracellular Matrix/metabolism ; Fibroblasts/immunology/metabolism ; Humans ; Interleukin-1/metabolism ; Mice ; Mice, Transgenic ; Platelet Activation ; Platelet Membrane Glycoproteins/metabolism ; Receptors, Collagen/metabolism ; Synovial Fluid/cytology/*immunology ; Synovial Membrane/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-07-22
    Description: Stem cells that naturally reside in adult tissues, such as muscle stem cells (MuSCs), exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a highly automated single-cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (approximately 10(6) kilopascals), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12 kilopascals) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by noninvasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle-wasting diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, P M -- Havenstrite, K L -- Magnusson, K E G -- Sacco, A -- Leonardi, N A -- Kraft, P -- Nguyen, N K -- Thrun, S -- Lutolf, M P -- Blau, H M -- 2 T32 HD007249/HD/NICHD NIH HHS/ -- 52005886/Howard Hughes Medical Institute/ -- AG009521/AG/NIA NIH HHS/ -- AG020961/AG/NIA NIH HHS/ -- CA09151/CA/NCI NIH HHS/ -- HL096113/HL/NHLBI NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG020961/AG/NIA NIH HHS/ -- R01 AG020961-06A2/AG/NIA NIH HHS/ -- R01 AG020961-07/AG/NIA NIH HHS/ -- R01 HL096113/HL/NHLBI NIH HHS/ -- R01 HL096113-03/HL/NHLBI NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA009151-35/CA/NCI NIH HHS/ -- T32 HD007249/HD/NICHD NIH HHS/ -- T32 HD007249-25/HD/NICHD NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- U01 HL100397-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1078-81. doi: 10.1126/science.1191035. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647425" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cell Count ; Cell Culture Techniques/*methods ; Cell Death ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Separation ; Cell Survival ; Cells, Cultured ; Elastic Modulus ; Hydrogels ; Mice ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, SCID ; Mice, Transgenic ; Muscle Fibers, Skeletal/*cytology/physiology ; Muscle, Skeletal/*cytology ; Polyethylene Glycols ; Regeneration ; Satellite Cells, Skeletal Muscle/cytology ; Stem Cell Niche/*physiology ; Stem Cell Transplantation ; Stem Cells/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-03-27
    Description: Shelterin is an essential telomeric protein complex that prevents DNA damage signaling and DNA repair at mammalian chromosome ends. Here we report on the role of the TRF2-interacting factor Rap1, a conserved shelterin subunit of unknown function. We removed Rap1 from mouse telomeres either through gene deletion or by replacing TRF2 with a mutant that does not bind Rap1. Rap1 was dispensable for the essential functions of TRF2--repression of ATM kinase signaling and nonhomologous end joining (NHEJ)--and mice lacking telomeric Rap1 were viable and fertile. However, Rap1 was critical for the repression of homology-directed repair (HDR), which can alter telomere length. The data reveal that HDR at telomeres can take place in the absence of DNA damage foci and underscore the functional compartmentalization within shelterin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- Kabir, Shaheen -- van Overbeek, Megan -- Celli, Giulia B -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM049046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 AG016642-01/AG/NIA NIH HHS/ -- R01 AG016642-02/AG/NIA NIH HHS/ -- R01 AG016642-03/AG/NIA NIH HHS/ -- R01 AG016642-04/AG/NIA NIH HHS/ -- R01 AG016642-05/AG/NIA NIH HHS/ -- R01 AG016642-06/AG/NIA NIH HHS/ -- R01 AG016642-07/AG/NIA NIH HHS/ -- R01 AG016642-08/AG/NIA NIH HHS/ -- R01 AG016642-09/AG/NIA NIH HHS/ -- R01 AG016642-10/AG/NIA NIH HHS/ -- R01 AG016642-11/AG/NIA NIH HHS/ -- R01 GM049046/GM/NIGMS NIH HHS/ -- R01 GM049046-07/GM/NIGMS NIH HHS/ -- R01 GM049046-08/GM/NIGMS NIH HHS/ -- R01 GM049046-09/GM/NIGMS NIH HHS/ -- R01 GM049046-10/GM/NIGMS NIH HHS/ -- R01 GM049046-11/GM/NIGMS NIH HHS/ -- R01 GM049046-12/GM/NIGMS NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- R37 GM049046-13/GM/NIGMS NIH HHS/ -- R37 GM049046-14/GM/NIGMS NIH HHS/ -- R37 GM049046-15/GM/NIGMS NIH HHS/ -- R37 GM049046-16/GM/NIGMS NIH HHS/ -- R37 GM049046-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1657-61. doi: 10.1126/science.1185100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Proliferation ; Cells, Cultured ; Checkpoint Kinase 2 ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Gene Deletion ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Recombination, Genetic ; Signal Transduction ; Sister Chromatid Exchange ; Telomere/*genetics/metabolism ; Telomere-Binding Proteins/chemistry/*genetics/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-08-28
    Description: Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as alpha-synuclein, remain unclear. Here, we show that maintenance of continuous presynaptic SNARE-complex assembly required a nonclassical chaperone activity mediated by synucleins. Specifically, alpha-synuclein directly bound to the SNARE-protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) and promoted SNARE-complex assembly. Moreover, triple-knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and died prematurely. Thus, synucleins may function to sustain normal SNARE-complex assembly in a presynaptic terminal during aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235365/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235365/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burre, Jacqueline -- Sharma, Manu -- Tsetsenis, Theodoros -- Buchman, Vladimir -- Etherton, Mark R -- Sudhof, Thomas C -- 075615/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 24;329(5999):1663-7. doi: 10.1126/science.1195227. Epub 2010 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798282" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Line ; Cells, Cultured ; HSP40 Heat-Shock Proteins/metabolism ; Humans ; Membrane Fusion ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Nerve Degeneration/*metabolism ; Neurons/*metabolism ; Presynaptic Terminals/*metabolism ; Protein Binding ; Rats ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins/*metabolism ; Vesicle-Associated Membrane Protein 2/metabolism ; alpha-Synuclein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-02-27
    Description: A20 negatively regulates inflammation by inhibiting the nuclear factor kappaB (NF-kappaB) transcription factor in the tumor necrosis factor-receptor (TNFR) and Toll-like receptor (TLR) pathways. A20 contains deubiquitinase and E3 ligase domains and thus has been proposed to function as a ubiquitin-editing enzyme downstream of TNFR1 by inactivating ubiquitinated RIP1. However, it remains unclear how A20 terminates NF-kappaB signaling downstream of TLRs. We have shown that A20 inhibited the E3 ligase activities of TRAF6, TRAF2, and cIAP1 by antagonizing interactions with the E2 ubiquitin conjugating enzymes Ubc13 and UbcH5c. A20, together with the regulatory molecule TAX1BP1, interacted with Ubc13 and UbcH5c and triggered their ubiquitination and proteasome-dependent degradation. These findings suggest mechanism of A20 action in the inhibition of inflammatory signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shembade, Noula -- Ma, Averil -- Harhaj, Edward W -- R01 CA135362/CA/NCI NIH HHS/ -- R01 CA135362-04/CA/NCI NIH HHS/ -- R01 DK071939/DK/NIDDK NIH HHS/ -- R01 DK071939-07/DK/NIDDK NIH HHS/ -- R01 GM083143/GM/NIGMS NIH HHS/ -- R01 GM083143-03/GM/NIGMS NIH HHS/ -- R01CA135362/CA/NCI NIH HHS/ -- R01GM083143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1135-9. doi: 10.1126/science.1182364.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL 33136, USA. nshembade@med.miami.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185725" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cells, Cultured ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Gene Products, tax/metabolism ; Inflammation/*metabolism ; Inhibitor of Apoptosis Proteins/antagonists & inhibitors/metabolism ; Interleukin-1/immunology/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Mice ; NF-kappa B/*metabolism ; Neoplasm Proteins/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Receptors, Tumor Necrosis Factor, Type I/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 2/antagonists & inhibitors/metabolism ; TNF Receptor-Associated Factor 6/antagonists & inhibitors/metabolism ; Tumor Necrosis Factor-alpha/immunology/metabolism ; Ubiquitin-Conjugating Enzymes/*metabolism ; Ubiquitin-Protein Ligases/*antagonists & inhibitors/metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-05-08
    Description: Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henne, William Mike -- Boucrot, Emmanuel -- Meinecke, Michael -- Evergren, Emma -- Vallis, Yvonne -- Mittal, Rohit -- McMahon, Harvey T -- MC_U105178795/Medical Research Council/United Kingdom -- U.1051.02.007(78795)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1281-4. doi: 10.1126/science.1188462. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448150" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 2/metabolism ; Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport/metabolism ; Animals ; Calcium-Binding Proteins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Clathrin/*metabolism ; Clathrin-Coated Vesicles/*metabolism ; *Endocytosis ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins ; Mice ; Models, Molecular ; Neurons/cytology/metabolism ; Phosphoproteins/metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-09-04
    Description: Leukotriene A(4) hydrolase (LTA(4)H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene B(4) (LTB(4)). LTA(4)H also possesses aminopeptidase activity with unknown substrate and physiological importance; we identified the neutrophil chemoattractant proline-glycine-proline (PGP) as this physiological substrate. PGP is a biomarker for chronic obstructive pulmonary disease (COPD) and is implicated in neutrophil persistence in the lung. In acute neutrophil-driven inflammation, PGP was degraded by LTA(4)H, which facilitated the resolution of inflammation. In contrast, cigarette smoke, a major risk factor for the development of COPD, selectively inhibited LTA(4)H aminopeptidase activity, which led to the accumulation of PGP and neutrophils. These studies imply that therapeutic strategies inhibiting LTA(4)H to prevent LTB(4) generation may not reduce neutrophil recruitment because of elevated levels of PGP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snelgrove, Robert J -- Jackson, Patricia L -- Hardison, Matthew T -- Noerager, Brett D -- Kinloch, Andrew -- Gaggar, Amit -- Shastry, Suresh -- Rowe, Steven M -- Shim, Yun M -- Hussell, Tracy -- Blalock, J Edwin -- 082727/Z/07/Z/Wellcome Trust/United Kingdom -- 1K23DK075788/DK/NIDDK NIH HHS/ -- 1R03DK084110-01/DK/NIDDK NIH HHS/ -- G0400795/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- HL07783/HL/NHLBI NIH HHS/ -- HL087824/HL/NHLBI NIH HHS/ -- HL090999/HL/NHLBI NIH HHS/ -- HL102371-A1/HL/NHLBI NIH HHS/ -- K08HL091127/HL/NHLBI NIH HHS/ -- P171/03/C1/048/Medical Research Council/United Kingdom -- P30 DK079337/DK/NIDDK NIH HHS/ -- P30AR050948/AR/NIAMS NIH HHS/ -- P30CA13148/CA/NCI NIH HHS/ -- P50 AT00477/AT/NCCIH NIH HHS/ -- R01 HL077783/HL/NHLBI NIH HHS/ -- R01 HL077783-05/HL/NHLBI NIH HHS/ -- R01 HL087824/HL/NHLBI NIH HHS/ -- R01 HL087824-02/HL/NHLBI NIH HHS/ -- R01 HL090999/HL/NHLBI NIH HHS/ -- R01 HL090999-02S1/HL/NHLBI NIH HHS/ -- R01 HL090999-04/HL/NHLBI NIH HHS/ -- R01 HL102371/HL/NHLBI NIH HHS/ -- RR19231/RR/NCRR NIH HHS/ -- U54CA100949/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):90-4. doi: 10.1126/science.1190594. Epub 2010 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA. rjs198@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813919" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Bronchoalveolar Lavage Fluid/chemistry ; Cells, Cultured ; Chemokines, CXC/metabolism ; Chemotaxis, Leukocyte ; Epoxide Hydrolases/antagonists & inhibitors/isolation & purification/*metabolism ; Female ; Humans ; Inflammation ; Leukotriene B4/metabolism ; Lung/*immunology/metabolism/pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophils/enzymology/immunology/*physiology ; Oligopeptides/*metabolism ; Orthomyxoviridae Infections/immunology/metabolism/pathology ; Pneumococcal Infections/immunology/metabolism/pathology ; Pneumonia/*immunology/metabolism/pathology/therapy ; Proline/*analogs & derivatives/metabolism ; Pulmonary Disease, Chronic Obstructive/immunology/metabolism/pathology ; *Smoke ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-07-22
    Description: The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bungard, David -- Fuerth, Benjamin J -- Zeng, Ping-Yao -- Faubert, Brandon -- Maas, Nancy L -- Viollet, Benoit -- Carling, David -- Thompson, Craig B -- Jones, Russell G -- Berger, Shelley L -- CA078831/CA/NCI NIH HHS/ -- CA09171/CA/NCI NIH HHS/ -- CA105463/CA/NCI NIH HHS/ -- MC_U120027537/Medical Research Council/United Kingdom -- MOP-93799/Canadian Institutes of Health Research/Canada -- P01 AG031862/AG/NIA NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1201-5. doi: 10.1126/science.1191241. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647423" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adaptation, Physiological ; Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Enzyme Activation ; Gene Expression Regulation ; Histones/chemistry/*metabolism ; Humans ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Serine/metabolism ; Signal Transduction ; *Stress, Physiological ; *Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Harinder -- Demarco, Ignacio A -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):914-5. doi: 10.1126/science.1194316.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Immunology, Genentech, San Francisco, CA 94080, USA. singh.harinder@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724627" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Antibody Specificity/*genetics ; B-Lymphocytes/*immunology ; Carrier Proteins/genetics/*physiology ; Cells, Cultured ; Chromatin/metabolism ; Cytidine Deaminase/*metabolism ; Dna ; DNA Breaks, Double-Stranded ; DNA Modification Methylases/metabolism ; Histone-Lysine N-Methyltransferase/genetics ; Histones/metabolism ; Immunoglobulin Class Switching/genetics/*physiology ; Immunoglobulin Switch Region ; Lymphocyte Activation ; Methylation ; Mice ; Mice, Knockout ; Nuclear Proteins/genetics/*physiology ; Promoter Regions, Genetic ; Recombination, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Santo, James P -- R01 AR060723/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):44-5. doi: 10.1126/science.1191664.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Innate Immunity Unit, Institut Pasteur, Paris F-75724, France. james.di-santo@pasteur.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595605" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Cells, Cultured ; Cytokines/metabolism ; Gene Deletion ; Gene Expression Regulation ; Interleukin-7/physiology ; Killer Cells, Natural/cytology/immunology/*physiology ; *Lymphopoiesis/genetics ; Mice ; Models, Biological ; Precursor Cells, T-Lymphoid/cytology/physiology ; Repressor Proteins/*genetics/*metabolism ; Signal Transduction ; T-Lymphocytes/cytology/immunology/*physiology ; Tumor Suppressor Proteins/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-06-26
    Description: Here, we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung. This bioinspired microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines introduced into the alveolar space. In nanotoxicology studies, this lung mimic revealed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances epithelial and endothelial uptake of nanoparticulates and stimulates their transport into the underlying microvascular channel. Similar effects of physiological breathing on nanoparticle absorption are observed in whole mouse lung. Mechanically active "organ-on-a-chip" microdevices that reconstitute tissue-tissue interfaces critical to organ function may therefore expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huh, Dongeun -- Matthews, Benjamin D -- Mammoto, Akiko -- Montoya-Zavala, Martin -- Hsin, Hong Yuan -- Ingber, Donald E -- R01-ES016665/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1662-8. doi: 10.1126/science.1188302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576885" target="_blank"〉PubMed〈/a〉
    Keywords: Air ; Animals ; *Biomimetic Materials ; Blood-Air Barrier ; Capillaries/*physiology ; Capillary Permeability ; Cells, Cultured ; Endothelial Cells/*physiology ; Escherichia coli/immunology ; Humans ; Immunity, Innate ; Inflammation ; Lung/blood supply/physiology ; Mice ; *Microfluidic Analytical Techniques ; Microtechnology ; Nanoparticles/toxicity ; Neutrophil Infiltration ; Oxidative Stress ; Pneumocytes/*physiology ; Pulmonary Alveoli/*blood supply/cytology/immunology/*physiology ; Respiration ; Silicon Dioxide/toxicity ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-12-04
    Description: Although the proteins BAX and BAK are required for initiation of apoptosis at the mitochondria, how BAX and BAK are activated remains unsettled. We provide in vivo evidence demonstrating an essential role of the proteins BID, BIM, and PUMA in activating BAX and BAK. Bid, Bim, and Puma triple-knockout mice showed the same developmental defects that are associated with deficiency of Bax and Bak, including persistent interdigital webs and imperforate vaginas. Genetic deletion of Bid, Bim, and Puma prevented the homo-oligomerization of BAX and BAK, and thereby cytochrome c-mediated activation of caspases in response to diverse death signals in neurons and T lymphocytes, despite the presence of other BH3-only molecules. Thus, many forms of apoptosis require direct activation of BAX and BAK at the mitochondria by a member of the BID, BIM, or PUMA family of proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, Decheng -- Tu, Ho-Chou -- Kim, Hyungjin -- Wang, Gary X -- Bean, Gregory R -- Takeuchi, Osamu -- Jeffers, John R -- Zambetti, Gerard P -- Hsieh, James J-D -- Cheng, Emily H-Y -- P30CA21765/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- R01 CA125562-03/CA/NCI NIH HHS/ -- R01 CA125562-04/CA/NCI NIH HHS/ -- R01CA125562/CA/NCI NIH HHS/ -- R01GM083159/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1390-3. doi: 10.1126/science.1190217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/deficiency/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/deficiency/genetics/*metabolism ; Caspases/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Cytochromes c/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Knockout ; Mitochondria/metabolism ; Models, Biological ; Neurons/*physiology ; Permeability ; Protein Multimerization ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Stress, Physiological ; T-Lymphocytes/physiology ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism ; bcl-2 Homologous Antagonist-Killer Protein/chemistry/genetics/*metabolism ; bcl-2-Associated X Protein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray-Gallet, Dominique -- Almouzni, Genevieve -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):56-7. doi: 10.1126/science.1188653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Nuclear Dynamics and Genome Plasticity, UMR218 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360101" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Assembly and Disassembly ; DNA Replication ; Histones/*chemistry/*metabolism ; Humans ; Nucleosomes/*metabolism ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-11-15
    Description: Intestinal epithelial stem cell identity and location have been the subject of substantial research. Cells in the +4 niche are slow-cycling and label-retaining, whereas a different stem cell niche located at the crypt base is occupied by crypt base columnar (CBC) cells. CBCs are distinct from +4 cells, and the relationship between them is unknown, though both give rise to all intestinal epithelial lineages. We demonstrate that Hopx, an atypical homeobox protein, is a specific marker of +4 cells. Hopx-expressing cells give rise to CBCs and all mature intestinal epithelial lineages. Conversely, CBCs can give rise to +4 Hopx-positive cells. These findings demonstrate a bidirectional lineage relationship between active and quiescent stem cells in their niches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Norifumi -- Jain, Rajan -- LeBoeuf, Matthew R -- Wang, Qiaohong -- Lu, Min Min -- Epstein, Jonathan A -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1420-4. doi: 10.1126/science.1213214. Epub 2011 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22075725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epithelial Cells/*cytology ; Homeodomain Proteins/analysis/genetics ; Intestinal Mucosa/*cytology/drug effects ; Intestine, Small/*cytology/drug effects ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/physiology ; Paneth Cells/cytology ; *Stem Cell Niche ; Tamoxifen/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-03-19
    Description: In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suter, David M -- Molina, Nacho -- Gatfield, David -- Schneider, Kim -- Schibler, Ueli -- Naef, Felix -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):472-4. doi: 10.1126/science.1198817. Epub 2011 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Sciences III, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415320" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cells, Cultured ; Chromatin/physiology ; Circadian Rhythm/genetics ; Down-Regulation ; *Gene Expression ; Histones/metabolism ; Kinetics ; Luminescent Measurements ; Mice ; Models, Genetic ; NIH 3T3 Cells ; Promoter Regions, Genetic ; Protein Biosynthesis ; RNA, Messenger/genetics/metabolism ; Stochastic Processes ; *Transcription, Genetic ; Transcriptional Activation ; Transgenes ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-03-26
    Description: Axon-dendrite polarization is crucial for neural network wiring and information processing in the brain. Polarization begins with the transformation of a single neurite into an axon and its subsequent rapid extension, which requires coordination of cellular energy status to allow for transport of building materials to support axon growth. We found that activation of the energy-sensing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway suppressed axon initiation and neuronal polarization. Phosphorylation of the kinesin light chain of the Kif5 motor protein by AMPK disrupted the association of the motor with phosphatidylinositol 3-kinase (PI3K), preventing PI3K targeting to the axonal tip and inhibiting polarization and axon growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amato, Stephen -- Liu, Xiuxin -- Zheng, Bin -- Cantley, Lewis -- Rakic, Pasko -- Man, Heng-Ye -- GM41890/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- K99CA133245/CA/NCI NIH HHS/ -- MH07907/MH/NIMH NIH HHS/ -- R00 CA133245/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 NS014841/NS/NINDS NIH HHS/ -- R01 NS014841-32/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):247-51. doi: 10.1126/science.1201678. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436401" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Aminoimidazole Carboxamide/analogs & derivatives/pharmacology ; Animals ; Axons/enzymology/*physiology/ultrastructure ; *Cell Polarity/drug effects ; Cells, Cultured ; Hippocampus/cytology/embryology ; Metformin/pharmacology ; Mice ; Microtubule-Associated Proteins/metabolism ; Neurons/cytology/drug effects/enzymology/*physiology ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Ribonucleotides/pharmacology ; Signal Transduction ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-01-06
    Description: Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional overexpression of a catalytically inactive form produced a profound block in replication. This was completely rescued by expression of the cleaved cytoplasmic tail of Toxoplasma or Plasmodium apical membrane antigen 1 (AMA1). These results reveal an unexpected function for AMA1 in parasite replication and suggest that invasion proteins help to promote parasite switch from an invasive to a replicative mode.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Joana M -- Ferguson, David J P -- Blackman, Michael J -- Soldati-Favre, Dominique -- MC_U117532063/Medical Research Council/United Kingdom -- U117532063/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):473-7. doi: 10.1126/science.1199284. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Faculty of Medicine, University of Geneva, 1 rue-Michel Servet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205639" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Division ; Cell Membrane/metabolism ; Cells, Cultured ; Fibroblasts/parasitology ; Humans ; Membrane Proteins/chemistry/genetics/*metabolism ; Movement ; Mutant Proteins/metabolism ; Plasmodium falciparum ; Protozoan Proteins/chemistry/genetics/*metabolism ; Serine Proteases/genetics/metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-06
    Description: Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yasufumi -- Iketani, Masumi -- Kurihara, Yuji -- Yamaguchi, Megumi -- Yamashita, Naoya -- Nakamura, Fumio -- Arie, Yuko -- Kawasaki, Takahiko -- Hirata, Tatsumi -- Abe, Takaya -- Kiyonari, Hiroshi -- Strittmatter, Stephen M -- Goshima, Yoshio -- Takei, Kohtaro -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-19/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):769-73. doi: 10.1126/science.1204144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; GPI-Linked Proteins/genetics/metabolism ; Growth Cones/metabolism ; Humans ; Immunohistochemistry ; Ligands ; Mice ; Mice, Inbred ICR ; Myelin Proteins/genetics/*metabolism ; Olfactory Pathways/*cytology/*growth & development/metabolism ; Prosencephalon/embryology/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Araque, Alfonso -- Navarrete, Marta -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1587-8. doi: 10.1126/science.1212525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid 28002, Spain. araque@cajal.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921188" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adenosine Triphosphate/metabolism ; Animals ; Axons/*physiology ; Calcium Signaling ; Cells, Cultured ; Electric Stimulation ; Ganglia, Spinal/cytology ; Glutamic Acid/metabolism ; Myelin Basic Protein/*metabolism ; Myelin Sheath/*physiology ; Neural Stem Cells/cytology/metabolism ; Oligodendroglia/cytology/*metabolism ; Signal Transduction ; Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-01-06
    Description: CD4(+) T regulatory cells (T(regs)), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, T(regs) were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted T(reg) cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor-beta and affected Foxp3(+) T(reg) number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atarashi, Koji -- Tanoue, Takeshi -- Shima, Tatsuichiro -- Imaoka, Akemi -- Kuwahara, Tomomi -- Momose, Yoshika -- Cheng, Genhong -- Yamasaki, Sho -- Saito, Takashi -- Ohba, Yusuke -- Taniguchi, Tadatsugu -- Takeda, Kiyoshi -- Hori, Shohei -- Ivanov, Ivaylo I -- Umesaki, Yoshinori -- Itoh, Kikuji -- Honda, Kenya -- R00 DK085329/DK/NIDDK NIH HHS/ -- R01 AI052359/AI/NIAID NIH HHS/ -- R01 AI056154/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):337-41. doi: 10.1126/science.1198469. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205640" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Cecum/microbiology ; Cells, Cultured ; Clostridium/growth & development/*immunology ; Colitis/immunology/pathology/prevention & control ; Colon/*immunology/metabolism/*microbiology ; Feces/microbiology ; Forkhead Transcription Factors/metabolism ; Germ-Free Life ; Immunity, Innate ; Immunoglobulin E/biosynthesis ; Interleukin-10/immunology/metabolism ; Intestinal Mucosa/*immunology/metabolism ; Intestine, Small/immunology ; Metagenome ; Mice ; Mice, Inbred A ; Mice, Inbred BALB C ; Receptors, Pattern Recognition/physiology ; Specific Pathogen-Free Organisms ; T-Lymphocytes, Helper-Inducer/immunology ; T-Lymphocytes, Regulatory/*immunology/metabolism ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):17. doi: 10.1126/science.331.6013.17.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212329" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/biosynthesis ; Blood/virology ; Cells, Cultured ; DNA Contamination ; Fatigue Syndrome, Chronic/*virology ; Humans ; Mice ; Polymerase Chain Reaction ; Retroviridae Infections/*virology ; Sensitivity and Specificity ; Viremia ; Xenotropic murine leukemia virus-related virus/immunology/*isolation & ; purification/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-05-28
    Description: Two broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence. In addition, the system we have developed, combining in vitro and in vivo culture, opens the door to a new level of analysis of patterning mechanisms in the limb.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Kimberly L -- Hu, Jimmy Kuang-Hsien -- ten Berge, Derk -- Fernandez-Teran, Marian -- Ros, Maria A -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37 HD032443-17/HD/NICHD NIH HHS/ -- R37HD032443/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1083-6. doi: 10.1126/science.1199499.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Proliferation ; Cells, Cultured ; Chick Embryo ; Chondrogenesis ; Culture Media ; Extremities/*embryology ; Fibroblast Growth Factors/metabolism/pharmacology ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics/metabolism ; Limb Buds/cytology/*embryology/metabolism ; Mesoderm/cytology/embryology/metabolism ; Neoplasm Proteins/genetics/metabolism ; Signal Transduction ; Tretinoin/metabolism/pharmacology ; Wnt Proteins/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-10-29
    Description: Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this mutant Brca1 prevents tumor formation to the same degree as does wild-type Brca1 in three different genetically engineered mouse (GEM) models of cancer. In contrast, a mutation that ablates phosphoprotein recognition by the BRCA C terminus (BRCT) domains of BRCA1 elicits tumors in each of the three GEM models. Thus, BRCT phosphoprotein recognition, but not the E3 ligase activity, is required for BRCA1 tumor suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904783/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904783/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shakya, Reena -- Reid, Latarsha J -- Reczek, Colleen R -- Cole, Francesca -- Egli, Dieter -- Lin, Chyuan-Sheng -- deRooij, Dirk G -- Hirsch, Steffen -- Ravi, Kandasamy -- Hicks, James B -- Szabolcs, Matthias -- Jasin, Maria -- Baer, Richard -- Ludwig, Thomas -- F31-CA132626/CA/NCI NIH HHS/ -- F32-HD51392/HD/NICHD NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- P01-CA97403/CA/NCI NIH HHS/ -- R01 CA137023/CA/NCI NIH HHS/ -- R01 HD040916/HD/NICHD NIH HHS/ -- R01 HD040916-10/HD/NICHD NIH HHS/ -- R01-CA137023/CA/NCI NIH HHS/ -- R01-HD40916/HD/NICHD NIH HHS/ -- T32-CA09503/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):525-8. doi: 10.1126/science.1209909.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/chemistry/*metabolism ; Basic-Leucine Zipper Transcription Factors/genetics/metabolism ; Cells, Cultured ; Disease Models, Animal ; Embryonic Stem Cells/metabolism ; *Genes, BRCA1 ; Ligands ; Mammary Neoplasms, Experimental/*genetics/metabolism ; Mice ; Mutant Proteins/chemistry/genetics/metabolism ; Pancreatic Neoplasms/*genetics/metabolism ; Phosphoproteins/*metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; RING Finger Domains ; Tumor Suppressor Proteins/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-01-29
    Description: Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-beta signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hellal, Farida -- Hurtado, Andres -- Ruschel, Jorg -- Flynn, Kevin C -- Laskowski, Claudia J -- Umlauf, Martina -- Kapitein, Lukas C -- Strikis, Dinara -- Lemmon, Vance -- Bixby, John -- Hoogenraad, Casper C -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 HD057632-04/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-03/NS/NINDS NIH HHS/ -- R01 NS059866-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):928-31. doi: 10.1126/science.1201148. Epub 2011 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/metabolism ; Cicatrix/pathology/*prevention & control ; Female ; Ganglia, Spinal/cytology ; Kinesin/metabolism ; Microtubules/drug effects/*metabolism ; Paclitaxel/*administration & dosage/pharmacology ; Protein Transport ; Rats ; Rats, Sprague-Dawley ; Sensory Receptor Cells/physiology ; Signal Transduction ; Smad2 Protein/metabolism ; Spinal Cord/cytology/drug effects ; Spinal Cord Injuries/*drug therapy/pathology/*physiopathology ; *Spinal Cord Regeneration ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-27
    Description: MED23 is a subunit of the Mediator complex, a key regulator of protein-coding gene expression. Here, we report a missense mutation (p. R617Q) in MED23 that cosegregates with nonsyndromic autosomal recessive intellectual disability. This mutation specifically impaired the response of JUN and FOS immediate early genes (IEGs) to serum mitogens by altering the interaction between enhancer-bound transcription factors (TCF4 and ELK1, respectively) and Mediator. Transcriptional dysregulation of these genes was also observed in cells derived from patients presenting with other neurological disorders linked to mutations in other Mediator subunits or proteins interacting with MED. These findings highlight the crucial role of Mediator in brain development and functioning and suggest that altered IEG expression might be a common molecular hallmark of cognitive deficit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashimoto, Satoru -- Boissel, Sarah -- Zarhrate, Mohammed -- Rio, Marlene -- Munnich, Arnold -- Egly, Jean-Marc -- Colleaux, Laurence -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1161-3. doi: 10.1126/science.1206638.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/Universite de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868677" target="_blank"〉PubMed〈/a〉
    Keywords: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Cells, Cultured ; Chromatin Immunoprecipitation ; Early Growth Response Protein 1/genetics ; Female ; *Gene Expression Regulation ; *Genes, Immediate-Early ; Genes, fos ; Genes, jun ; Histones/metabolism ; Humans ; Intellectual Disability/*genetics ; Male ; Mediator Complex/*genetics ; *Mutation, Missense ; Pedigree ; Promoter Regions, Genetic ; Transcription Factors/metabolism ; Transcriptional Activation ; ets-Domain Protein Elk-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-10-09
    Description: Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we show that the extracellular leucine-rich repeat fibronectin containing 1 (Elfn1) protein is selectively expressed by O-LM interneurons and regulates presynaptic release probability to direct the formation of highly facilitating pyramidal-O-LM synapses. Thus, postsynaptic expression of Elfn1 in O-LM interneurons regulates presynaptic release probability, which confers target-specific synaptic properties to pyramidal cell axons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sylwestrak, Emily L -- Ghosh, Anirvan -- R01 NS067216/NS/NINDS NIH HHS/ -- R01NS067216/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):536-40. doi: 10.1126/science.1222482. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; CA1 Region, Hippocampal/*metabolism ; Cells, Cultured ; Gene Knockdown Techniques ; Green Fluorescent Proteins/genetics/metabolism ; HEK293 Cells ; Humans ; Interneurons/*metabolism ; Mice ; Nerve Tissue Proteins/genetics/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Rats, Inbred LEC ; Synapses/genetics/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-07-24
    Description: Diseases of the esophageal epithelium (EE), such as reflux esophagitis and cancer, are rising in incidence. Despite this, the cellular behaviors underlying EE homeostasis and repair remain controversial. Here, we show that in mice, EE is maintained by a single population of cells that divide stochastically to generate proliferating and differentiating daughters with equal probability. In response to challenge with all-trans retinoic acid (atRA), the balance of daughter cell fate is unaltered, but the rate of cell division increases. However, after wounding, cells reversibly switch to producing an excess of proliferating daughters until the wound has closed. Such fate-switching enables a single progenitor population to both maintain and repair tissue without the need for a "reserve" slow-cycling stem cell pool.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527005/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527005/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doupe, David P -- Alcolea, Maria P -- Roshan, Amit -- Zhang, Gen -- Klein, Allon M -- Simons, Benjamin D -- Jones, Philip H -- 079249/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- G0601740/Medical Research Council/United Kingdom -- G0700600/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- MC_U105370181/Medical Research Council/United Kingdom -- U.1053.00.010(70181)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1091-3. doi: 10.1126/science.1218835. Epub 2012 Jul 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22821983" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Differentiation/drug effects ; Cell Division/drug effects ; Cell Proliferation/drug effects ; Cells, Cultured ; Doxycycline/pharmacology ; Epithelial Cells/*physiology ; Epithelium/drug effects/metabolism/*physiology ; Esophagus/*cytology/*physiology ; Green Fluorescent Proteins/biosynthesis ; Histones/biosynthesis ; Mice ; Mice, Inbred C57BL ; Recombinant Fusion Proteins/biosynthesis ; *Regeneration ; Stem Cells/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-08-28
    Description: Mucus clearance is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. In the current gel-on-liquid mucus clearance model, a mucus gel is propelled on top of a "watery" periciliary layer surrounding the cilia. However, this model fails to explain the formation of a distinct mucus layer in health or why mucus clearance fails in disease. We propose a gel-on-brush model in which the periciliary layer is occupied by membrane-spanning mucins and mucopolysaccharides densely tethered to the airway surface. This brush prevents mucus penetration into the periciliary space and causes mucus to form a distinct layer. The relative osmotic moduli of the mucus and periciliary brush layers explain both the stability of mucus clearance in health and its failure in airway disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633213/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633213/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Button, Brian -- Cai, Li-Heng -- Ehre, Camille -- Kesimer, Mehmet -- Hill, David B -- Sheehan, John K -- Boucher, Richard C -- Rubinstein, Michael -- HHSN268200900020/PHS HHS/ -- K01DK080847/DK/NIDDK NIH HHS/ -- P01HL108808/HL/NHLBI NIH HHS/ -- P01HL110873-01/HL/NHLBI NIH HHS/ -- P01HL34322/HL/NHLBI NIH HHS/ -- P30DK065988/DK/NIDDK NIH HHS/ -- P50HL107168/HL/NHLBI NIH HHS/ -- P50HL107168-01/HL/NHLBI NIH HHS/ -- R01 HL103940/HL/NHLBI NIH HHS/ -- R01HL077546/HL/NHLBI NIH HHS/ -- R01HL103940/HL/NHLBI NIH HHS/ -- UL1-RR025747/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):937-41. doi: 10.1126/science.1223012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cystic Fibrosis Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923574" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Cilia/*physiology/ultrastructure ; Gels ; Glycosaminoglycans/*physiology ; Humans ; Lung/*physiology ; Lung Diseases/physiopathology ; *Models, Biological ; Mucins/*physiology ; *Mucociliary Clearance ; Mucus/*physiology ; Osmotic Pressure ; Respiratory Mucosa/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):33-5. doi: 10.1126/science.335.6064.33.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223790" target="_blank"〉PubMed〈/a〉
    Keywords: Afghan Campaign 2001- ; Animals ; Axons/pathology ; Blast Injuries/pathology/*physiopathology ; Brain Injuries/epidemiology/pathology/*physiopathology ; Cells, Cultured ; History, 21st Century ; Humans ; Integrins/metabolism ; Iraq War, 2003-2011 ; Neurons/physiology ; Tissue Engineering ; Vasospasm, Intracranial/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-12-15
    Description: Mammalian imprinted genes often cluster with long noncoding (lnc) RNAs. Three lncRNAs that induce parental-specific silencing show hallmarks indicating that their transcription is more important than their product. To test whether Airn transcription or product silences the Igf2r gene, we shortened the endogenous lncRNA to different lengths. The results excluded a role for spliced and unspliced Airn lncRNA products and for Airn nuclear size and location in silencing Igf2r. Instead, silencing only required Airn transcriptional overlap of the Igf2r promoter, which interferes with RNA polymerase II recruitment in the absence of repressive chromatin. Such a repressor function for lncRNA transcriptional overlap reveals a gene silencing mechanism that may be widespread in the mammalian genome, given the abundance of lncRNA transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Latos, Paulina A -- Pauler, Florian M -- Koerner, Martha V -- Senergin, H Basak -- Hudson, Quanah J -- Stocsits, Roman R -- Allhoff, Wolfgang -- Stricker, Stefan H -- Klement, Ruth M -- Warczok, Katarzyna E -- Aumayr, Karin -- Pasierbek, Pawel -- Barlow, Denise P -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1469-72. doi: 10.1126/science.1228110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239737" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Cells, Cultured ; *Gene Silencing ; *Genomic Imprinting ; Mice ; Multigene Family ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA, Long Noncoding/genetics/*metabolism ; Receptor, IGF Type 2/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-01-28
    Description: During the activation of humoral immune responses, B cells acquire antigen for subsequent presentation to cognate T cells. Here we show that after mouse B cells accumulate antigen, it is maintained in a polarized distribution for extended periods in vivo. Using high-throughput imaging flow cytometry, we observed that this polarization is preserved during B cell division, promoting asymmetric antigen segregation among progeny. Antigen inheritance correlates with the ability of progeny to activate T cells: Daughter cells receiving larger antigen stores exhibit a prolonged capacity to present antigen, which renders them more effective in competing for T cell help. The generation of progeny with differential capacities for antigen presentation may have implications for somatic hypermutation and class switching during affinity maturation and as B cells commit to effector cell fates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thaunat, Olivier -- Granja, Aitor G -- Barral, Patricia -- Filby, Andrew -- Montaner, Beatriz -- Collinson, Lucy -- Martinez-Martin, Nuria -- Harwood, Naomi E -- Bruckbauer, Andreas -- Batista, Facundo D -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):475-9. doi: 10.1126/science.1214100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigens/*analysis/*immunology ; B-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cells, Cultured ; Coculture Techniques ; Computer Simulation ; Flow Cytometry ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Muramidase/analysis/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-09-08
    Description: Reestablishing homeostasis after tissue damage depends on the proper organization of stem cells and their progeny, though the repair mechanisms are unclear. The mammalian intestinal epithelium is well suited to approach this problem, as it is composed of well-delineated units called crypts of Lieberkuhn. We found that Wnt5a, a noncanonical Wnt ligand, was required for crypt regeneration after injury in mice. Unlike controls, Wnt5a-deficient mice maintained an expanded population of proliferative epithelial cells in the wound. We used an in vitro system to enrich for intestinal epithelial stem cells to discover that Wnt5a inhibited proliferation of these cells. Surprisingly, the effects of Wnt5a were mediated by activation of transforming growth factor-beta (TGF-beta) signaling. These findings suggest a Wnt5a-dependent mechanism for forming new crypt units to reestablish homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, Hiroyuki -- Ajima, Rieko -- Luo, Christine T -- Yamaguchi, Terry P -- Stappenbeck, Thaddeus S -- 5T35DK074375/DK/NIDDK NIH HHS/ -- DK90251/DK/NIDDK NIH HHS/ -- P30-DK52574/DK/NIDDK NIH HHS/ -- R01 DK071619/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):108-13. doi: 10.1126/science.1223821. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement/drug effects/physiology ; Cell Proliferation/drug effects ; Cells, Cultured ; Colon/embryology/*injuries/*physiology ; Culture Media, Conditioned/pharmacology ; Homeostasis/drug effects/physiology ; Intestinal Mucosa/embryology/injuries/physiology ; Ligands ; Mesoderm/cytology/embryology ; Mice ; Mice, Knockout ; Receptor Tyrosine Kinase-like Orphan Receptors/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Stem Cells/cytology/drug effects/physiology ; Tamoxifen/pharmacology ; Transforming Growth Factor beta/*metabolism ; Wnt Proteins/genetics/pharmacology/*physiology ; Wound Healing/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-02-11
    Description: Although recent experimental studies have suggested that the interactions among the pigment cells play a key role in the skin pattern formation, details of the mechanism remain largely unknown. By using an in vitro cell culture system, we have detected interactions between the two pigment cell types, melanophores and xanthophores, in the zebrafish skin. During primary culture, the melanophore membrane transiently depolarizes when contacted with the dendrites of a xanthophore. This depolarization triggers melanophore migration to avoid further contact with the xanthophores. Cell depolarization and repulsive movement were not observed in pigment cells with the jaguar mutant, which shows defective segregation of melanophores and xanthophores. The depolarization-repulsion of wild-type pigment cells may explain the pigment cell behaviors generating the stripe pattern of zebrafish.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inaba, Masafumi -- Yamanaka, Hiroaki -- Kondo, Shigeru -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):677. doi: 10.1126/science.1212821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Communication ; Cell Movement ; Cells, Cultured ; Chromatophores/*physiology ; Melanophores/*physiology ; Membrane Potentials ; Mutation ; Skin/cytology ; *Skin Pigmentation ; Zebrafish/*anatomy & histology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-12-17
    Description: Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Chia-Lin -- Lin, Weiyu -- Seshasayee, Dhaya -- Chen, Yung-Hsiang -- Ding, Xiao -- Lin, Zhonghua -- Suto, Eric -- Huang, Zhiyu -- Lee, Wyne P -- Park, Hyunjoo -- Xu, Min -- Sun, Mei -- Rangell, Linda -- Lutman, Jeff L -- Ulufatu, Sheila -- Stefanich, Eric -- Chalouni, Cecile -- Sagolla, Meredith -- Diehl, Lauri -- Fielder, Paul -- Dean, Brian -- Balazs, Mercedesz -- Martin, Flavius -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):89-92. doi: 10.1126/science.1213682. Epub 2011 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174130" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Animals ; Apoptosis ; Cell Count ; Cell Proliferation ; Cells, Cultured ; Histiocytosis/*physiopathology ; *Homeostasis ; Humans ; Hydrogen-Ion Concentration ; Listeriosis/immunology/microbiology ; Lysosomal Storage Diseases/physiopathology ; Lysosomes/*physiology/ultrastructure ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/immunology/*physiology/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myelopoiesis ; Nucleoside Transport Proteins/genetics/*physiology ; Phagocytosis ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Signal Transduction ; Thymocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-06-02
    Description: The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 A resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Nian -- Chelliah, Yogarany -- Shan, Yongli -- Taylor, Clinton A -- Yoo, Seung-Hee -- Partch, Carrie -- Green, Carla B -- Zhang, Hong -- Takahashi, Joseph S -- R01 GM081875/GM/NIGMS NIH HHS/ -- R01 GM090247/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):189-94. doi: 10.1126/science.1222804. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653727" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; CLOCK Proteins/*chemistry/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm ; Crystallography, X-Ray ; DNA/metabolism ; HEK293 Cells ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-10-09
    Description: The endoplasmic reticulum (ER) is the primary organelle for folding and maturation of secretory and transmembrane proteins. Inability to meet protein-folding demand leads to "ER stress," and activates IRE1alpha, an ER transmembrane kinase-endoribonuclease (RNase). IRE1alpha promotes adaptation through splicing Xbp1 mRNA or apoptosis through incompletely understood mechanisms. Here, we found that sustained IRE1alpha RNase activation caused rapid decay of select microRNAs (miRs -17, -34a, -96, and -125b) that normally repress translation of Caspase-2 mRNA, and thus sharply elevates protein levels of this initiator protease of the mitochondrial apoptotic pathway. In cell-free systems, recombinant IRE1alpha endonucleolytically cleaved microRNA precursors at sites distinct from DICER. Thus, IRE1alpha regulates translation of a proapoptotic protein through terminating microRNA biogenesis, and noncoding RNAs are part of the ER stress response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Upton, John-Paul -- Wang, Likun -- Han, Dan -- Wang, Eric S -- Huskey, Noelle E -- Lim, Lionel -- Truitt, Morgan -- McManus, Michael T -- Ruggero, Davide -- Goga, Andrei -- Papa, Feroz R -- Oakes, Scott A -- DK063720/DK/NIDDK NIH HHS/ -- DP2 OD001925/OD/NIH HHS/ -- DP2OD001925/OD/NIH HHS/ -- GM080783/GM/NIGMS NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 CA136577/CA/NCI NIH HHS/ -- R01 CA136717/CA/NCI NIH HHS/ -- R01 CA140456/CA/NCI NIH HHS/ -- R01 CA154916/CA/NCI NIH HHS/ -- R01 DK080955/DK/NIDDK NIH HHS/ -- R01 GM080783/GM/NIGMS NIH HHS/ -- R01CA136577/CA/NCI NIH HHS/ -- R01CA136717/CA/NCI NIH HHS/ -- R01CA140456/CA/NCI NIH HHS/ -- R01CA154916/CA/NCI NIH HHS/ -- R01DK080955/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):818-22. doi: 10.1126/science.1226191. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042294" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Apoptosis ; Brefeldin A/pharmacology ; Caspase 2/*genetics/*metabolism ; Cell-Free System ; Cells, Cultured ; Cysteine Endopeptidases/*genetics/*metabolism ; Down-Regulation ; Endoplasmic Reticulum/metabolism ; *Endoplasmic Reticulum Stress ; Endoribonucleases/chemistry/genetics/*metabolism ; Enzyme Activation ; HEK293 Cells ; Humans ; Mice ; Mice, Knockout ; MicroRNAs/*metabolism ; Mutant Proteins ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-05
    Description: The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not previously observed upon deletion of individual shelterin proteins. The shelterin-free telomeres are processed by microhomology-mediated alternative-NHEJ when Ku70/80 is absent and are attacked by nucleolytic degradation in the absence of 53BP1. The data establish that the end-protection problem is specified by six pathways [ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) signaling, classical-NHEJ, alt-NHEJ, homologous recombination, and resection] and show how shelterin acts with general DNA damage response factors to solve this problem.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM49046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 CA076027/CA/NCI NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 4;336(6081):593-7. doi: 10.1126/science.1218498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Nuclear/genetics/metabolism ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Ligases/metabolism ; DNA Repair ; DNA-Binding Proteins/genetics/metabolism ; Homologous Recombination ; Mice ; Mice, Knockout ; Poly(ADP-ribose) Polymerases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Telomere/*metabolism/ultrastructure ; *Telomere Homeostasis ; Telomere-Binding Proteins/genetics/*metabolism ; Telomeric Repeat Binding Protein 1/genetics/metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-06-09
    Description: Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile alpha/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osterloh, Jeannette M -- Yang, Jing -- Rooney, Timothy M -- Fox, A Nicole -- Adalbert, Robert -- Powell, Eric H -- Sheehan, Amy E -- Avery, Michelle A -- Hackett, Rachel -- Logan, Mary A -- MacDonald, Jennifer M -- Ziegenfuss, Jennifer S -- Milde, Stefan -- Hou, Ying-Ju -- Nathan, Carl -- Ding, Aihao -- Brown, Robert H Jr -- Conforti, Laura -- Coleman, Michael -- Tessier-Lavigne, Marc -- Zuchner, Stephan -- Freeman, Marc R -- 5R01-NS050557-05/NS/NINDS NIH HHS/ -- AI030165/AI/NIAID NIH HHS/ -- R01NS059991/NS/NINDS NIH HHS/ -- R01NS072248/NS/NINDS NIH HHS/ -- RC2-NS070-342/NS/NINDS NIH HHS/ -- U54NS065712/NS/NINDS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):481-4. doi: 10.1126/science.1223899. Epub 2012 Jun 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Apoptosis ; Armadillo Domain Proteins/analysis/*genetics/*physiology ; Axons/*physiology/ultrastructure ; Axotomy ; Cell Survival ; Cells, Cultured ; Cytoskeletal Proteins/analysis/*genetics/*physiology ; Denervation ; Drosophila/embryology/genetics/physiology ; Drosophila Proteins/analysis/*genetics/*physiology ; Mice ; Mutation ; Neurons/*physiology ; Sciatic Nerve/injuries/physiology ; Signal Transduction ; Superior Cervical Ganglion/cytology ; Tissue Culture Techniques ; *Wallerian Degeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelkmans, Lucas -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):425-6. doi: 10.1126/science.1222161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. lucas.pelkmans@imls.uzh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Biology ; Cell Communication ; *Cell Physiological Processes ; Cells, Cultured ; *Cellular Microenvironment ; *Cytological Techniques ; Humans ; Molecular Biology/methods ; Phenotype ; *Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keller, Ray -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):201-3. doi: 10.1126/science.1230718.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville, VA 22903, USA. rek3k@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura/anatomy & histology/embryology ; *Biophysical Phenomena ; Cell Adhesion/genetics ; Cell Culture Techniques ; *Cell Movement ; Cells, Cultured ; Cytoskeleton/physiology/ultrastructure ; Embryo, Nonmammalian/cytology/drug effects/physiology ; Gastrulation ; Green Fluorescent Proteins/analysis ; *Morphogenesis ; Recombinant Fusion Proteins/analysis ; Sodium Chloride/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-07-24
    Description: Evidence from confocal microscopic reconstruction of maize anther development in fertile, mac1 (excess germ cells), and msca1 (no germ cells) flowers indicates that the male germ line is multiclonal and uses the MAC1 protein to organize the somatic niche. Furthermore, we identified redox status as a determinant of germ cell fate, defining a mechanism distinct from the animal germ cell lineage. Decreasing oxygen or H(2)O(2) increases germ cell numbers, stimulates superficial germ cell formation, and rescues germinal differentiation in msca1 flowers. Conversely, oxidizing environments inhibit germ cell specification and cause ectopic differentiation in deeper tissues. We propose that hypoxia, arising naturally within growing anther tissue, acts as a positional cue to set germ cell fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101383/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101383/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelliher, Timothy -- Walbot, Virginia -- 5-T32-GM008412-17/GM/NIGMS NIH HHS/ -- T32 GM008412/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 20;337(6092):345-8. doi: 10.1126/science.1220080.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA. tkellih1@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22822150" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Cell Hypoxia ; Cells, Cultured ; Germ Cells/metabolism ; *Meiosis ; Oxygen/*metabolism/pharmacology ; Plant Epidermis/cytology/drug effects/metabolism ; Water/metabolism/pharmacology ; Zea mays/*cytology/drug effects/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-12-12
    Description: Platelets restrict the growth of intraerythrocytic malaria parasites by binding to parasitized cells and killing the parasite within. Here, we show that the platelet molecule platelet factor 4 (PF4 or CXCL4) and the erythrocyte Duffy-antigen receptor (Fy) are necessary for platelet-mediated killing of Plasmodium falciparum parasites. PF4 is released by platelets on contact with parasitized red cells, and the protein directly kills intraerythrocytic parasites. This function for PF4 is critically dependent on Fy, which binds PF4. Genetic disruption of Fy expression inhibits binding of PF4 to parasitized cells and concomitantly prevents parasite killing by both human platelets and recombinant human PF4. The protective function afforded by platelets during a malarial infection may therefore be compromised in Duffy-negative individuals, who do not express Fy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMorran, Brendan J -- Wieczorski, Laura -- Drysdale, Karen E -- Chan, Jo-Anne -- Huang, Hong Ming -- Smith, Clare -- Mitiku, Chalachew -- Beeson, James G -- Burgio, Gaetan -- Foote, Simon J -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1348-51. doi: 10.1126/science.1228892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia. brendan.mcmorran@mq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23224555" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Platelets/*immunology ; Cells, Cultured ; Duffy Blood-Group System/genetics/*immunology ; Erythrocytes/*parasitology ; Humans ; *Malaria, Falciparum/blood/immunology/parasitology ; Plasmodium falciparum/drug effects/growth & development/*immunology ; Platelet Factor 4/genetics/*immunology/pharmacology ; Receptors, Cell Surface/genetics/*immunology ; Recombinant Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-12-01
    Description: Notch signaling affects many developmental and cellular processes and has been implicated in congenital disorders, stroke, and numerous cancers. The Notch receptor binds its ligands Delta and Serrate and is able to discriminate between them in different contexts. However, the specific domains in Notch responsible for this selectivity are poorly defined. Through genetic screens in Drosophila, we isolated a mutation, Notch(jigsaw), that affects Serrate- but not Delta-dependent signaling. Notch(jigsaw) carries a missense mutation in epidermal growth factor repeat-8 (EGFr-8) and is defective in Serrate binding. A homologous point mutation in mammalian Notch2 also exhibits defects in signaling of a mammalian Serrate homolog, Jagged1. Hence, an evolutionarily conserved valine in EGFr-8 is essential for ligand selectivity and provides a molecular handle to study numerous Notch-dependent signaling events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamoto, Shinya -- Charng, Wu-Lin -- Rana, Nadia A -- Kakuda, Shinako -- Jaiswal, Manish -- Bayat, Vafa -- Xiong, Bo -- Zhang, Ke -- Sandoval, Hector -- David, Gabriela -- Wang, Hao -- Haltiwanger, Robert S -- Bellen, Hugo J -- 1RC4GM096355-01/GM/NIGMS NIH HHS/ -- 5K12GM084897/GM/NIGMS NIH HHS/ -- 5P30HD024064/HD/NICHD NIH HHS/ -- 5R01GM061126-12/GM/NIGMS NIH HHS/ -- 5R01GM067858/GM/NIGMS NIH HHS/ -- 5T32-HD055200/HD/NICHD NIH HHS/ -- K12 GM084897/GM/NIGMS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 GM061126/GM/NIGMS NIH HHS/ -- R01 GM067858/GM/NIGMS NIH HHS/ -- RC4 GM096355/GM/NIGMS NIH HHS/ -- T32 HD055200/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1229-32. doi: 10.1126/science.1228745.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium-Binding Proteins/*metabolism ; Cells, Cultured ; DNA Mutational Analysis ; Drosophila Proteins/*genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Epidermal Growth Factor/genetics ; Evolution, Molecular ; Humans ; Intercellular Signaling Peptides and Proteins/*metabolism ; Intracellular Signaling Peptides and Proteins/*metabolism ; Ligands ; Male ; Membrane Proteins/*metabolism ; Methionine/genetics ; Molecular Sequence Data ; Mutation ; Receptor, Notch2/genetics/metabolism ; Receptors, Notch/*genetics/*metabolism ; Tandem Repeat Sequences/genetics ; Valine/genetics ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-12-07
    Description: The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/beta-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Xinhong -- Tan, Si Hui -- Koh, Winston Lian Chye -- Chau, Rosanna Man Wah -- Yan, Kelley S -- Kuo, Calvin J -- van Amerongen, Renee -- Klein, Allon Moshe -- Nusse, Roel -- 1R01DK085720/DK/NIDDK NIH HHS/ -- 1U01DK085527/DK/NIDDK NIH HHS/ -- 5K08DK096048/DK/NIDDK NIH HHS/ -- K08 DK096048/DK/NIDDK NIH HHS/ -- P30 DK026743/DK/NIDDK NIH HHS/ -- R01 DK085720/DK/NIDDK NIH HHS/ -- U01 DK085527/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1226-30. doi: 10.1126/science.1239730.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autocrine Communication ; Axin Protein/genetics/metabolism ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epidermis/*cytology/injuries/metabolism ; Epithelial Cells/cytology/metabolism ; Gene Expression ; Homeostasis ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/cytology/metabolism ; Mice ; Regeneration ; Skin/injuries ; Stem Cell Niche ; Stem Cells/cytology/*physiology ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Wound Healing ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-05-21
    Description: The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear. Using fluid and flexible membrane substrates to mimic antigen-presenting cells, we showed that B cells acquire antigen by dynamic myosin IIa-mediated contractions that pull out and invaginate the presenting membranes. The forces generated by myosin IIa contractions ruptured most individual BCR-antigen bonds and promoted internalization of only high-affinity, multivalent BCR microclusters. Thus, B cell contractility contributes to affinity discrimination by mechanically testing the strength of antigen binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natkanski, Elizabeth -- Lee, Wing-Yiu -- Mistry, Bhakti -- Casal, Antonio -- Molloy, Justin E -- Tolar, Pavel -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117597138/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117597138/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1587-90. doi: 10.1126/science.1237572. Epub 2013 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23686338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; *Antigen Presentation ; Antigens/*immunology ; B-Lymphocytes/*immunology ; Cells, Cultured ; Mechanical Processes ; Mice ; Mice, Inbred C57BL ; Microscopy, Atomic Force ; Nonmuscle Myosin Type IIA/*physiology ; Receptors, Antigen, B-Cell/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-04-06
    Description: A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fang -- Travins, Jeremy -- DeLaBarre, Byron -- Penard-Lacronique, Virginie -- Schalm, Stefanie -- Hansen, Erica -- Straley, Kimberly -- Kernytsky, Andrew -- Liu, Wei -- Gliser, Camelia -- Yang, Hua -- Gross, Stefan -- Artin, Erin -- Saada, Veronique -- Mylonas, Elena -- Quivoron, Cyril -- Popovici-Muller, Janeta -- Saunders, Jeffrey O -- Salituro, Francesco G -- Yan, Shunqi -- Murray, Stuart -- Wei, Wentao -- Gao, Yi -- Dang, Lenny -- Dorsch, Marion -- Agresta, Sam -- Schenkein, David P -- Biller, Scott A -- Su, Shinsan M -- de Botton, Stephane -- Yen, Katharine E -- New York, N.Y. -- Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, MA 02139-4169, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23558173" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Antineoplastic Agents/chemistry/metabolism/pharmacology ; Catalytic Domain ; Cell Line, Tumor ; Cell Proliferation ; Cells, Cultured ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/*pharmacology ; Erythropoiesis/drug effects ; Gene Expression Regulation, Leukemic ; Glutarates/metabolism ; Hematopoiesis/*drug effects ; Humans ; Isocitrate Dehydrogenase/*antagonists & inhibitors/chemistry/*genetics/metabolism ; Leukemia, Erythroblastic, Acute ; Leukemia, Myeloid, Acute/drug therapy/*enzymology/genetics/pathology ; Molecular Targeted Therapy ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Phenylurea Compounds/chemistry/metabolism/*pharmacology ; Point Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Small Molecule Libraries ; Sulfonamides/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-12-18
    Description: Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping -- Dong, Suwei -- Shieh, Jae-Hung -- Peguero, Elizabeth -- Hendrickson, Ronald -- Moore, Malcolm A S -- Danishefsky, Samuel J -- HL025848/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM109760/GM/NIGMS NIH HHS/ -- R01 HL025848/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1357-60. doi: 10.1126/science.1245095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Cells, Cultured ; Consensus Sequence ; Dose-Response Relationship, Drug ; Erythrocyte Count ; Erythropoietin/*administration & dosage/*chemical synthesis/chemistry ; Glycophorin/chemistry ; Glycosylation ; Injections, Subcutaneous ; Mannose/chemistry ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; N-Acetylneuraminic Acid/chemistry ; Oligosaccharides/chemistry ; Reticulocytes/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-10-12
    Description: Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the beta-hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, Daniel E -- Kamran, Sophia C -- Lessard, Samuel -- Xu, Jian -- Fujiwara, Yuko -- Lin, Carrie -- Shao, Zhen -- Canver, Matthew C -- Smith, Elenoe C -- Pinello, Luca -- Sabo, Peter J -- Vierstra, Jeff -- Voit, Richard A -- Yuan, Guo-Cheng -- Porteus, Matthew H -- Stamatoyannopoulos, John A -- Lettre, Guillaume -- Orkin, Stuart H -- 123382/Canadian Institutes of Health Research/Canada -- K08 DK093705/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30 DK049216/DK/NIDDK NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 HG005085/HG/NHGRI NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HL032259/HL/NHLBI NIH HHS/ -- U54HG004594/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics ; Cell Line, Tumor ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosome Mapping ; *Enhancer Elements, Genetic ; Erythroid Cells/*metabolism ; Fetal Hemoglobin/*biosynthesis/genetics ; *Gene Expression Regulation ; Gene Targeting ; Genetic Engineering ; Genetic Variation ; Genome-Wide Association Study ; Hemoglobinopathies/*genetics/therapy ; Humans ; Mice ; Nuclear Proteins/*genetics ; Precursor Cells, B-Lymphoid/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-12-15
    Description: Actin and spectrin play important roles in neurons, but their organization in axons and dendrites remains unclear. We used stochastic optical reconstruction microscopy to study the organization of actin, spectrin, and associated proteins in neurons. Actin formed ringlike structures that wrapped around the circumference of axons and were evenly spaced along axonal shafts with a periodicity of ~180 to 190 nanometers. This periodic structure was not observed in dendrites, which instead contained long actin filaments running along dendritic shafts. Adducin, an actin-capping protein, colocalized with the actin rings. Spectrin exhibited periodic structures alternating with those of actin and adducin, and the distance between adjacent actin-adducin rings was comparable to the length of a spectrin tetramer. Sodium channels in axons were distributed in a periodic pattern coordinated with the underlying actin-spectrin-based cytoskeleton.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Ke -- Zhong, Guisheng -- Zhuang, Xiaowei -- R01 GM096450/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):452-6. doi: 10.1126/science.1232251. Epub 2012 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239625" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Capping Proteins/chemistry/ultrastructure ; Actin Cytoskeleton/chemistry/ultrastructure ; Actins/chemistry/*ultrastructure ; Animals ; Axons/*chemistry/*ultrastructure ; Calmodulin-Binding Proteins/chemistry/*ultrastructure ; Cells, Cultured ; Cytoskeleton/*chemistry/*ultrastructure ; Dendrites/chemistry/ultrastructure ; Hippocampus/ultrastructure ; Image Processing, Computer-Assisted ; Microscopy, Fluorescence/methods ; Neurons/chemistry/ultrastructure ; Protein Multimerization ; Rats ; Rats, Wistar ; Sodium Channels/chemistry/ultrastructure ; Spectrin/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-10-05
    Description: Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a(-/-)V1b(-/-)). Nevertheless, the behavior of V1a(-/-)V1b(-/-) mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Yoshiaki -- Suzuki, Toru -- Mizoro, Yasutaka -- Kori, Hiroshi -- Okada, Kazuki -- Chen, Yulin -- Fustin, Jean-Michel -- Yamazaki, Fumiyoshi -- Mizuguchi, Naoki -- Zhang, Jing -- Dong, Xin -- Tsujimoto, Gozoh -- Okuno, Yasushi -- Doi, Masao -- Okamura, Hitoshi -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):85-90. doi: 10.1126/science.1238599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidiuretic Hormone Receptor Antagonists ; Body Temperature/genetics ; CLOCK Proteins/genetics ; Cell Communication/drug effects/genetics ; Cells, Cultured ; Circadian Rhythm/genetics ; Gene Expression Regulation ; Jet Lag Syndrome/*genetics/physiopathology ; Mice ; Mice, Knockout ; Motor Activity/genetics ; Receptors, Vasopressin/*genetics ; Suprachiasmatic Nucleus/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-01-12
    Description: The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we identify Rif1 as the main factor used by 53BP1 to impair 5' end resection. Rif1 inhibits resection involving CtIP, BLM, and Exo1; limits accumulation of BRCA1/BARD1 complexes at sites of DNA damage; and defines one of the mechanisms by which 53BP1 causes chromosomal abnormalities in Brca1-deficient cells. These data establish Rif1 as an important contributor to the control of DSB repair by 53BP1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Michal -- Lottersberger, Francisca -- Buonomo, Sara B -- Sfeir, Agnel -- de Lange, Titia -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):700-4. doi: 10.1126/science.1231573. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; DNA/metabolism ; *DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; *DNA Repair ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Mice ; Replication Protein A/metabolism ; Telomere/*metabolism ; Telomere-Binding Proteins/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-01-12
    Description: DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5'-3' DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G(1) and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Virgilio, Michela -- Callen, Elsa -- Yamane, Arito -- Zhang, Wenzhu -- Jankovic, Mila -- Gitlin, Alexander D -- Feldhahn, Niklas -- Resch, Wolfgang -- Oliveira, Thiago Y -- Chait, Brian T -- Nussenzweig, Andre -- Casellas, Rafael -- Robbiani, Davide F -- Nussenzweig, Michel C -- AI037526/AI/NIAID NIH HHS/ -- GM007739/GM/NIGMS NIH HHS/ -- GM103314/GM/NIGMS NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):711-5. doi: 10.1126/science.1230624. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/immunology/metabolism ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; G1 Phase ; G2 Phase ; Genomic Instability ; *Immunoglobulin Class Switching ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; S Phase ; Telomere-Binding Proteins/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsieh, Jenny -- Schneider, Jay W -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1534-5. doi: 10.1126/science.1237576.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. jenny.hsieh@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/*physiology ; Calcium Channels/physiology ; Cells, Cultured ; Humans ; Neural Stem Cells/*physiology ; *Neurogenesis ; Receptors, N-Methyl-D-Aspartate/physiology ; *Synaptic Transmission ; gamma-Aminobutyric Acid/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-03-09
    Description: A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1alpha and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, Basil P -- Gomes, Ana P -- Dai, Han -- Li, Jun -- Case, April W -- Considine, Thomas -- Riera, Thomas V -- Lee, Jessica E -- E, Sook Yen -- Lamming, Dudley W -- Pentelute, Bradley L -- Schuman, Eli R -- Stevens, Linda A -- Ling, Alvin J Y -- Armour, Sean M -- Michan, Shaday -- Zhao, Huizhen -- Jiang, Yong -- Sweitzer, Sharon M -- Blum, Charles A -- Disch, Jeremy S -- Ng, Pui Yee -- Howitz, Konrad T -- Rolo, Anabela P -- Hamuro, Yoshitomo -- Moss, Joel -- Perni, Robert B -- Ellis, James L -- Vlasuk, George P -- Sinclair, David A -- P01 AG027916/AG/NIA NIH HHS/ -- R01 AG019719/AG/NIA NIH HHS/ -- R01 AG028730/AG/NIA NIH HHS/ -- R37 AG028730/AG/NIA NIH HHS/ -- ZIA HL000659-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23471411" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Enzyme Activation ; Forkhead Transcription Factors/chemistry/genetics ; Glutamic Acid/chemistry/genetics ; Heterocyclic Compounds with 4 or More Rings/chemistry/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Myoblasts/drug effects/enzymology ; Protein Structure, Tertiary ; Sirtuin 1/*chemistry/genetics/*metabolism ; Stilbenes/chemistry/*pharmacology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-11-16
    Description: Bacterial invasion of host tissues triggers polymorphonuclear leukocytes to release DNA [neutrophil extracellular traps (NETs)], thereby immobilizing microbes for subsequent clearance by innate defenses including macrophage phagocytosis. We report here that Staphylococcus aureus escapes these defenses by converting NETs to deoxyadenosine, which triggers the caspase-3-mediated death of immune cells. Conversion of NETs to deoxyadenosine requires two enzymes, nuclease and adenosine synthase, that are secreted by S. aureus and are necessary for the exclusion of macrophages from staphylococcal abscesses. Thus, the pathogenesis of S. aureus infections has evolved to anticipate host defenses and to repurpose them for the destruction of the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thammavongsa, Vilasack -- Missiakas, Dominique M -- Schneewind, Olaf -- AI038897/AI/NIAID NIH HHS/ -- AI052474/AI/NIAID NIH HHS/ -- AI057153/AI/NIAID NIH HHS/ -- R01 AI038897/AI/NIAID NIH HHS/ -- R01 AI052474/AI/NIAID NIH HHS/ -- T32 AI007090/AI/NIAID NIH HHS/ -- U54 AI057153/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):863-6. doi: 10.1126/science.1242255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233725" target="_blank"〉PubMed〈/a〉
    Keywords: Abscess/immunology/microbiology ; Animals ; Apoptosis/*immunology ; Cells, Cultured ; Cytotoxicity, Immunologic ; Deoxyadenosines/*metabolism ; Deoxyribonucleases/metabolism ; Host-Pathogen Interactions/*immunology ; Humans ; Macrophages/immunology/microbiology ; Mice, Inbred BALB C ; Neutrophils/*immunology/*microbiology ; Staphylococcal Infections/*immunology ; Staphylococcus aureus/enzymology/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-07-23
    Description: Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle-coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kueh, Hao Yuan -- Champhekar, Ameya -- Nutt, Stephen L -- Elowitz, Michael B -- Rothenberg, Ellen V -- R01 AI083514/AI/NIAID NIH HHS/ -- R01 CA090233/CA/NCI NIH HHS/ -- R01 CA90233/CA/NCI NIH HHS/ -- R33 HL089123/HL/NHLBI NIH HHS/ -- RC2 CA148278/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):670-3. doi: 10.1126/science.1240831. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA, USA. kueh@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868921" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/*genetics ; Cell Differentiation/*genetics ; Cells, Cultured ; Feedback, Physiological ; *Gene Expression Regulation ; *Gene Regulatory Networks ; Macrophages/cytology ; Mice ; Mice, Inbred Strains ; Myeloid Cells/*cytology ; Precursor Cells, B-Lymphoid/*cytology ; Proto-Oncogene Proteins/genetics/*physiology ; Trans-Activators/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-08-30
    Description: Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrie, Ryan J -- Koo, Hyun -- Yamada, Kenneth M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1062-5. doi: 10.1126/science.1256965.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. petrier@mail.nih.gov kyamada@mail.nih.gov. ; Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. Center for Oral Biology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA. Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104-6030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170155" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/physiology ; Cell Movement/*physiology ; Cell Nucleus/*physiology ; Cells, Cultured ; Cytoplasm/physiology ; Extracellular Matrix/*physiology/ultrastructure ; Fibroblasts/*physiology ; Humans ; Hydrostatic Pressure ; Microfilament Proteins ; Pseudopodia/*physiology ; Vimentin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-04-02
    Description: Cpdm (chronic proliferative dermatitis) mice develop chronic dermatitis and an immunodeficiency with increased serum IgM, symptoms that resemble those of patients with X-linked hyper-IgM syndrome and hypohydrotic ectodermal dysplasia (XHM-ED), which is caused by mutations in NEMO (NF-kappaB essential modulator; also known as IKBKG). Spontaneous null mutations in the Sharpin (SHANK-associated RH domain interacting protein in postsynaptic density) gene are responsible for the cpdm phenotype in mice. SHARPIN shows significant similarity to HOIL-1L (also known as RBCK1), a component of linear ubiquitin chain assembly complex (LUBAC), which induces NF-kappaB activation through conjugation of linear polyubiquitin chains to NEMO. Here, we identify SHARPIN as an additional component of LUBAC. SHARPIN-containing complexes can linearly ubiquitinate NEMO and activated NF-kappaB. Thus, we re-define LUBAC as a complex containing SHARPIN, HOIL-1L, and HOIP (also known as RNF31). Deletion of SHARPIN drastically reduced the amount of LUBAC, which resulted in attenuated TNF-alpha- and CD40-mediated activation of NF-kappaB in mouse embryonic fibroblasts (MEFs) or B cells from cpdm mice. Considering the pleomorphic phenotype of cpdm mice, these results confirm the predicted role of LUBAC-mediated linear polyubiquitination in NF-kappaB activation induced by various stimuli, and strongly suggest the involvement of LUBAC-induced NF-kappaB activation in various disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tokunaga, Fuminori -- Nakagawa, Tomoko -- Nakahara, Masaki -- Saeki, Yasushi -- Taniguchi, Masami -- Sakata, Shin-ichi -- Tanaka, Keiji -- Nakano, Hiroyasu -- Iwai, Kazuhiro -- England -- Nature. 2011 Mar 31;471(7340):633-6. doi: 10.1038/nature09815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21455180" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD40 Ligand/metabolism ; Carrier Proteins/metabolism ; Cells, Cultured ; HEK293 Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Mice ; Multiprotein Complexes/*chemistry/*metabolism ; NF-kappa B/*metabolism ; Nerve Tissue Proteins/deficiency/genetics/*metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligase Complexes/chemistry/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-05-13
    Description: The generation of functional hepatocytes independent of donor liver organs is of great therapeutic interest with regard to regenerative medicine and possible cures for liver disease. Induced hepatic differentiation has been achieved previously using embryonic stem cells or induced pluripotent stem cells. Particularly, hepatocytes generated from a patient's own induced pluripotent stem cells could theoretically avoid immunological rejection. However, the induction of hepatocytes from induced pluripotent stem cells is a complicated process that would probably be replaced with the arrival of improved technology. Overexpression of lineage-specific transcription factors directly converts terminally differentiated cells into some other lineages, including neurons, cardiomyocytes and blood progenitors; however, it remains unclear whether these lineage-converted cells could repair damaged tissues in vivo. Here we demonstrate the direct induction of functional hepatocyte-like (iHep) cells from mouse tail-tip fibroblasts by transduction of Gata4, Hnf1alpha and Foxa3, and inactivation of p19(Arf). iHep cells show typical epithelial morphology, express hepatic genes and acquire hepatocyte functions. Notably, transplanted iHep cells repopulate the livers of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice and rescue almost half of recipients from death by restoring liver functions. Our study provides a novel strategy to generate functional hepatocyte-like cells for the purpose of liver engineering and regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Pengyu -- He, Zhiying -- Ji, Shuyi -- Sun, Huawang -- Xiang, Dao -- Liu, Changcheng -- Hu, Yiping -- Wang, Xin -- Hui, Lijian -- England -- Nature. 2011 May 11;475(7356):386-9. doi: 10.1038/nature10116.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, Yueyang Road 320, 200031 Shanghai, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21562492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation/genetics ; Cell Lineage ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics ; DNA-Binding Proteins/deficiency ; Fibroblasts/*cytology/*metabolism ; GATA4 Transcription Factor/genetics/metabolism ; Gene Expression Profiling ; Hepatocyte Nuclear Factor 1-alpha/genetics/metabolism ; Hepatocyte Nuclear Factor 3-gamma/genetics/metabolism ; Hepatocytes/*cytology/*metabolism/physiology/transplantation ; Hydrolases/deficiency/genetics ; Liver/cytology/enzymology/physiology/physiopathology ; Liver Diseases/enzymology/pathology/physiopathology/therapy ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Regenerative Medicine/methods ; Survival Rate ; Tail/cytology ; Tissue Engineering/methods ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-05-24
    Description: Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289942/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289942/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sander, Leif E -- Davis, Michael J -- Boekschoten, Mark V -- Amsen, Derk -- Dascher, Christopher C -- Ryffel, Bernard -- Swanson, Joel A -- Muller, Michael -- Blander, J Magarian -- AI080959A/AI/NIAID NIH HHS/ -- R01 AI064668/AI/NIAID NIH HHS/ -- R01 AI095245/AI/NIAID NIH HHS/ -- R21 AI080959/AI/NIAID NIH HHS/ -- R21 AI080959-01A1/AI/NIAID NIH HHS/ -- England -- Nature. 2011 May 22;474(7351):385-9. doi: 10.1038/nature10072.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21602824" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/deficiency/immunology ; Animals ; Antibodies, Bacterial/immunology ; Bacteria/genetics/immunology/pathogenicity ; Bacterial Vaccines/genetics/immunology ; Carrier Proteins/metabolism ; Cells, Cultured ; Dendritic Cells/cytology/immunology/microbiology ; Immunity, Innate/*immunology ; Inflammasomes/immunology/metabolism ; Interferon-beta/genetics/immunology ; Macrophages/cytology/immunology/microbiology ; Mice ; Mice, Inbred C57BL ; Microbial Viability/*genetics/*immunology ; Phagocytosis ; Phagosomes/immunology/microbiology ; RNA, Bacterial/genetics/*immunology ; RNA, Messenger/genetics/*immunology ; Vaccines, Attenuated/genetics/immunology ; Vaccines, Inactivated/immunology ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-06-10
    Description: Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (T(reg)) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with T(reg) cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. T(reg) cells seem to participate in creating a localized zone where HSPCs reside and where T(reg) cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725645/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725645/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujisaki, Joji -- Wu, Juwell -- Carlson, Alicia L -- Silberstein, Lev -- Putheti, Prabhakar -- Larocca, Rafael -- Gao, Wenda -- Saito, Toshiki I -- Lo Celso, Cristina -- Tsuyuzaki, Hitoshi -- Sato, Tatsuyuki -- Cote, Daniel -- Sykes, Megan -- Strom, Terry B -- Scadden, David T -- Lin, Charles P -- AI041521/AI/NIAID NIH HHS/ -- CA111519/CA/NCI NIH HHS/ -- HL097748/HL/NHLBI NIH HHS/ -- HL97794/HL/NHLBI NIH HHS/ -- P01 AI041521/AI/NIAID NIH HHS/ -- P01 AI073748/AI/NIAID NIH HHS/ -- P01 CA111519/CA/NCI NIH HHS/ -- P01 CA111519-05/CA/NCI NIH HHS/ -- R01 HL097748/HL/NHLBI NIH HHS/ -- R01 HL097748-02/HL/NHLBI NIH HHS/ -- R01 HL097794/HL/NHLBI NIH HHS/ -- R01 HL097794-02/HL/NHLBI NIH HHS/ -- England -- Nature. 2011 Jun 8;474(7350):216-9. doi: 10.1038/nature10160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. jfujisaki@partners.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21654805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival/immunology ; Cells, Cultured ; Forkhead Transcription Factors/metabolism ; Graft Survival/*immunology ; Hematopoietic Stem Cells/cytology/*immunology ; Humans ; *Imaging, Three-Dimensional ; Interleukin-10/deficiency/genetics/immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Stem Cell Niche/cytology/*immunology ; T-Lymphocytes, Regulatory/*immunology/metabolism ; Time Factors ; Transplantation, Homologous/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-11-15
    Description: Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janich, Peggy -- Pascual, Gloria -- Merlos-Suarez, Anna -- Batlle, Eduard -- Ripperger, Jurgen -- Albrecht, Urs -- Cheng, Hai-Ying M -- Obrietan, Karl -- Di Croce, Luciano -- Benitah, Salvador Aznar -- England -- Nature. 2011 Nov 9;480(7376):209-14. doi: 10.1038/nature10649.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomic Regulation and UPF, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22080954" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/deficiency/genetics/metabolism ; Animals ; Carcinoma, Squamous Cell/genetics/pathology ; Cell Adhesion/genetics ; Cell Aging ; Cell Cycle/genetics ; Cells, Cultured ; Circadian Clocks/genetics/*physiology ; Circadian Rhythm/genetics/*physiology ; Cues ; Female ; Gene Expression Regulation/genetics ; Hair Follicle/*cytology ; Homeostasis/genetics/physiology ; Male ; Mice ; Mice, Knockout ; Skin Neoplasms/genetics/pathology ; Stem Cell Niche ; Stem Cells/*cytology/metabolism ; Transforming Growth Factor beta/genetics ; Wnt Signaling Pathway/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-09-09
    Description: Mutations in the tumour suppressor gene BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of Brca1 in mice results in transcriptional de-repression of the tandemly repeated satellite DNA. Brca1 deficiency is accompanied by a reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions and ubiquitylates H2A in vivo. Ectopic expression of H2A fused to ubiquitin reverses the effects of BRCA1 loss, indicating that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA de-repression was also observed in mouse and human BRCA1-deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell-cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumour suppressor functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Quan -- Pao, Gerald M -- Huynh, Alexis M -- Suh, Hoonkyo -- Tonnu, Nina -- Nederlof, Petra M -- Gage, Fred H -- Verma, Inder M -- NS50217/NS/NINDS NIH HHS/ -- NS52842/NS/NINDS NIH HHS/ -- R01 NS050217/NS/NINDS NIH HHS/ -- R01 NS050217-05/NS/NINDS NIH HHS/ -- R01 NS052842/NS/NINDS NIH HHS/ -- R01 NS052842-04/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Sep 7;477(7363):179-84. doi: 10.1038/nature10371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21901007" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/deficiency/genetics/*metabolism ; Breast/cytology ; Breast Neoplasms/*genetics/pathology ; Cell Line, Tumor ; Cells, Cultured ; DNA, Satellite/genetics ; Epithelial Cells/metabolism ; Female ; Gene Expression Regulation, Neoplastic ; *Gene Silencing ; Genes, BRCA1/*physiology ; Genomic Instability/genetics ; HeLa Cells ; Heterochromatin/*genetics/*metabolism ; Histones/metabolism ; Humans ; Mice ; Ovarian Neoplasms/genetics ; RNA, Messenger/genetics ; Transcription, Genetic/genetics ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-23
    Description: Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Daeho -- Han, Claudia Z -- Elliott, Michael R -- Kinchen, Jason M -- Trampont, Paul C -- Das, Soumita -- Collins, Sheila -- Lysiak, Jeffrey J -- Hoehn, Kyle L -- Ravichandran, Kodi S -- R01 GM064709/GM/NIGMS NIH HHS/ -- R01 HD057242/HD/NICHD NIH HHS/ -- T32 GM008136/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Aug 21;477(7363):220-4. doi: 10.1038/nature10340.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21857682" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Line ; Cell Size/drug effects ; Cells, Cultured ; Ion Channels/deficiency/genetics/*metabolism ; Membrane Potential, Mitochondrial/drug effects/physiology ; Mice ; Mitochondrial Proteins/deficiency/genetics/*metabolism ; Phagocytes/*cytology/drug effects/*metabolism ; Phagocytosis/drug effects/*physiology ; Thymus Gland/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-11-04
    Description: Advanced age is the main risk factor for most chronic diseases and functional deficits in humans, but the fundamental mechanisms that drive ageing remain largely unknown, impeding the development of interventions that might delay or prevent age-related disorders and maximize healthy lifespan. Cellular senescence, which halts the proliferation of damaged or dysfunctional cells, is an important mechanism to constrain the malignant progression of tumour cells. Senescent cells accumulate in various tissues and organs with ageing and have been hypothesized to disrupt tissue structure and function because of the components they secrete. However, whether senescent cells are causally implicated in age-related dysfunction and whether their removal is beneficial has remained unknown. To address these fundamental questions, we made use of a biomarker for senescence, p16(Ink4a), to design a novel transgene, INK-ATTAC, for inducible elimination of p16(Ink4a)-positive senescent cells upon administration of a drug. Here we show that in the BubR1 progeroid mouse background, INK-ATTAC removes p16(Ink4a)-positive senescent cells upon drug treatment. In tissues--such as adipose tissue, skeletal muscle and eye--in which p16(Ink4a) contributes to the acquisition of age-related pathologies, life-long removal of p16(Ink4a)-expressing cells delayed onset of these phenotypes. Furthermore, late-life clearance attenuated progression of already established age-related disorders. These data indicate that cellular senescence is causally implicated in generating age-related phenotypes and that removal of senescent cells can prevent or delay tissue dysfunction and extend healthspan.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Darren J -- Wijshake, Tobias -- Tchkonia, Tamar -- LeBrasseur, Nathan K -- Childs, Bennett G -- van de Sluis, Bart -- Kirkland, James L -- van Deursen, Jan M -- AG13925/AG/NIA NIH HHS/ -- CA96985/CA/NCI NIH HHS/ -- P30 DK050456/DK/NIDDK NIH HHS/ -- R01 AG013925/AG/NIA NIH HHS/ -- R01 AG013925-14/AG/NIA NIH HHS/ -- R01 CA096985/CA/NCI NIH HHS/ -- R01 CA096985-10/CA/NCI NIH HHS/ -- England -- Nature. 2011 Nov 2;479(7372):232-6. doi: 10.1038/nature10600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22048312" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/cytology/drug effects/pathology ; Aging/drug effects/*physiology ; Animals ; Bone Marrow Cells/cytology/drug effects ; Cell Aging/drug effects/*physiology ; Cell Count ; Cell Cycle Proteins ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/*metabolism ; Eye/cytology/drug effects/pathology ; Female ; Gene Expression ; Genotype ; Longevity/drug effects/physiology ; Male ; Mice ; Mice, Transgenic ; Muscle, Skeletal/cytology/drug effects/pathology ; Phenotype ; Progeria/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Tacrolimus/analogs & derivatives/pharmacology ; Time Factors ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...