ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-06
    Description: : Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement. The previously developed knowledge-based energy function STAP (Statistical Torsion Angle Potential) was used for NMRe refinement. With STAP, NMRe provides two refinement protocols using two types of distance restraints. If a user provides NOE (Nuclear Overhauser Effect) data, the refinement is performed with the NOE distance restraints as a conventional NMR structure refinement. Additionally, NMRe generates NOE-like distance restraints based on the inter-hydrogen distances derived from the input structure. The efficiency of NMRe refinement was validated on 20 NMR structures. Most of the quality assessment scores of the refined NMR structures were better than those of the original structures. The refinement results are provided as a three-dimensional structure view, a secondary structure scheme, and numerical and graphical structure validation scores. Availability and implementation: NMRe is available at http://psb.kobic.re.kr/nmre/ Contact: jinhyuk@kribb.re.kr Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Existing vital sign monitoring systems in the neonatal intensive care unit (NICU) require multiple wires connected to rigid sensors with strongly adherent interfaces to the skin. We introduce a pair of ultrathin, soft, skin-like electronic devices whose coordinated, wireless operation reproduces the functionality of these traditional technologies but bypasses their intrinsic limitations. The enabling advances in engineering science include designs that support wireless, battery-free operation; real-time, in-sensor data analytics; time-synchronized, continuous data streaming; soft mechanics and gentle adhesive interfaces to the skin; and compatibility with visual inspection and with medical imaging techniques used in the NICU. Preliminary studies on neonates admitted to operating NICUs demonstrate performance comparable to the most advanced clinical-standard monitoring systems.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract As part of the WINTER (Wintertime Investigation of Transport, Emissions, and Reactivity) campaign, a Particle‐into‐Liquid Sampler with a fraction collector was flown aboard the National Center for Atmospheric Research C‐130 aircraft. Two‐minute integrated liquid samples containing dissolved fine particulate matter (PM1) species were collected and analyzed off‐line for the smoke marker levoglucosan using high‐performance anion‐exchange chromatography‐pulsed amperometric detection to compare levoglucosan with aerosol mass spectrometer (AMS) biomass burning markers and investigate the contribution from residential burning during the study. Levoglucosan was correlated with AMS organic aerosol (R2 = 0.49) and with carbon monoxide (CO; R2 = 0.51) for all flights. Levoglucosan was not correlated with the inorganic smoke marker water‐soluble potassium but was correlated with the AMS markers ∆C2H4O2+ (high resolution, R2 = 0.60) and ∆m/z 60 (unit mass resolution, R2 = 0.61). However, at low levoglucosan, AMS markers deviated potentially due to interferences from other sources or differences with the species captured by the AMS markers. Analysis of levoglucosan changes relative to carbon monoxide as plumes advected from source regions showed no systematic levoglucosan loss for plumes up to 20 hr old. Based on literature residential burning source ratios and measured levoglucosan, contributions of organic carbon (OC) due to residential burning were estimated. The contribution ranged from ~30 to 100% of the OC, with significant variability depending on the source ratio used; however, the results show that biomass burning was a significant PM1 OC source across the entire sampling region. A GEOS‐Chem model simulation predicted significantly less smoke contribution.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-05-05
    Description: The proteasome is a protease that controls diverse processes in eukaryotic cells. Its regulatory particle (RP) initiates the degradation of ubiquitin-protein conjugates by unfolding the substrate and translocating it into the proteasome core particle (CP) to be degraded. The RP has 19 subunits, and their pathway of assembly is not understood. Here we show that in the yeast Saccharomyces cerevisiae three proteins are found associated with RP but not with the RP-CP holoenzyme: Nas6, Rpn14 and Hsm3. Mutations in the corresponding genes confer proteasome loss-of-function phenotypes, despite their virtual absence from the holoenzyme. These effects result from deficient RP assembly. Thus, Nas6, Rpn14 and Hsm3 are RP chaperones. The RP contains six ATPases-the Rpt proteins-and each RP chaperone binds to the carboxy-terminal domain of a specific Rpt. We show in an accompanying study that RP assembly is templated through the Rpt C termini, apparently by their insertion into binding pockets in the CP. Thus, RP chaperones may regulate proteasome assembly by directly restricting the accessibility of Rpt C termini to the CP. In addition, competition between the RP chaperones and the CP for Rpt engagement may explain the release of RP chaperones as proteasomes mature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727592/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727592/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roelofs, Jeroen -- Park, Soyeon -- Haas, Wilhelm -- Tian, Geng -- McAllister, Fiona E -- Huo, Ying -- Lee, Byung-Hoon -- Zhang, Fan -- Shi, Yigong -- Gygi, Steven P -- Finley, Daniel -- 5F32GM75737-2/GM/NIGMS NIH HHS/ -- GM043601/GM/NIGMS NIH HHS/ -- GM67945/GM/NIGMS NIH HHS/ -- R37 GM043601/GM/NIGMS NIH HHS/ -- R37 GM043601-19/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):861-5. doi: 10.1038/nature08063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19412159" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Carrier Proteins/genetics/metabolism ; Conserved Sequence ; Evolution, Molecular ; Holoenzymes/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Chaperones/genetics/*metabolism ; Mutation ; Phenotype ; Proteasome Endopeptidase Complex/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/genetics/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-09-11
    Description: Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced inhibitory activity, indicating that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of human USP14. Treatment of cultured cells with this compound enhanced degradation of several proteasome substrates that have been implicated in neurodegenerative disease. USP14 inhibition accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. Enhancement of proteasome activity through inhibition of USP14 may offer a strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939003/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939003/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Byung-Hoon -- Lee, Min Jae -- Park, Soyeon -- Oh, Dong-Chan -- Elsasser, Suzanne -- Chen, Ping-Chung -- Gartner, Carlos -- Dimova, Nevena -- Hanna, John -- Gygi, Steven P -- Wilson, Scott M -- King, Randall W -- Finley, Daniel -- DK082906/DK/NIDDK NIH HHS/ -- GM65592/GM/NIGMS NIH HHS/ -- GM66492/GM/NIGMS NIH HHS/ -- NS047533/NS/NINDS NIH HHS/ -- P30 NS057098/NS/NINDS NIH HHS/ -- P30 NS057098-049002/NS/NINDS NIH HHS/ -- R01 GM066492/GM/NIGMS NIH HHS/ -- R01 GM067945/GM/NIGMS NIH HHS/ -- R01 NS047533/NS/NINDS NIH HHS/ -- R01 NS047533-06A2/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):179-84. doi: 10.1038/nature09299.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Humans ; Mice ; Proteasome Endopeptidase Complex/*metabolism ; Proteins/*metabolism ; Ubiquitin Thiolesterase/*antagonists & inhibitors ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-03-29
    Description: Meiosis is a specialized cell division in which two chromosome segregation phases follow a single DNA replication phase. The budding yeast Polo-like kinase Cdc5 was found to be instrumental in establishing the meiosis I chromosome segregation program. Cdc5 was required to phosphorylate and remove meiotic cohesin from chromosomes. Furthermore, in the absence of CDC5 kinetochores were bioriented during meiosis I, and Mam1, a protein essential for coorientation, failed to associate with kinetochores. Thus, sister-kinetochore coorientation and chromosome segregation during meiosis I are coupled through their dependence on CDC5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Brian H -- Amon, Angelika -- GM62207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):482-6. Epub 2003 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663816" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cdc20 Proteins ; Cell Cycle Proteins/metabolism ; Cell Nucleus/metabolism ; Centromere/physiology ; Chromatids/physiology ; *Chromosome Segregation ; Chromosomes, Fungal/*physiology ; Kinetochores/physiology ; *Meiosis ; Metaphase ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Kinases/genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Saccharomyces cerevisiae/enzymology/genetics/*physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Securin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-11
    Description: To address how the configuration of conjugated ubiquitins determines the recognition of substrates by the proteasome, we analyzed the degradation kinetics of substrates with chemically defined ubiquitin configurations. Contrary to the view that a tetraubiquitin chain is the minimal signal for efficient degradation, we find that distributing the ubiquitins as diubiquitin chains provides a more efficient signal. To understand how the proteasome actually discriminates among ubiquitin configurations, we developed single-molecule assays that distinguished intermediate steps of degradation kinetically. The level of ubiquitin on a substrate drives proteasome-substrate interaction, whereas the chain structure of ubiquitin affects translocation into the axial channel on the proteasome. Together these two features largely determine the susceptibility of substrates for proteasomal degradation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450770/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450770/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ying -- Lee, Byung-hoon -- King, Randall W -- Finley, Daniel -- Kirschner, Marc W -- GM43601/GM/NIGMS NIH HHS/ -- GM66492/GM/NIGMS NIH HHS/ -- R01 GM039023/GM/NIGMS NIH HHS/ -- R01 GM066492/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):1250834. doi: 10.1126/science.1250834.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. ; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA. marc@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859050" target="_blank"〉PubMed〈/a〉
    Keywords: Cyclin B/metabolism ; Geminin/metabolism ; Humans ; Kinetics ; Proteasome Endopeptidase Complex/chemistry/*metabolism ; Protein Binding ; Protein Transport ; *Proteolysis ; Securin/metabolism ; Stochastic Processes ; Ubiquitin/chemistry/*metabolism ; Ubiquitinated Proteins/chemistry/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-26
    Description: Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Yuan -- Chen, Xiang -- Elsasser, Suzanne -- Stocks, Bradley B -- Tian, Geng -- Lee, Byung-Hoon -- Shi, Yanhong -- Zhang, Naixia -- de Poot, Stefanie A H -- Tuebing, Fabian -- Sun, Shuangwu -- Vannoy, Jacob -- Tarasov, Sergey G -- Engen, John R -- Finley, Daniel -- Walters, Kylie J -- New York, N.Y. -- Science. 2016 Feb 19;351(6275). pii: aad9421. doi: 10.1126/science.aad9421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Linganore High School, Frederick, MD 21701, USA. ; Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912900" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/metabolism ; Endopeptidases/metabolism ; Metabolic Networks and Pathways ; Models, Molecular ; Mutation ; Proteasome Endopeptidase Complex/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Ubiquitin-Specific Proteases/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-14
    Description: USP14 is a major regulator of the proteasome and one of three proteasome-associated deubiquitinating enzymes. Its effects on protein turnover are substrate-specific, for unknown reasons. We report that USP14 shows a marked preference for ubiquitin-cyclin B conjugates that carry more than one ubiquitin modification or chain. This specificity is conserved from yeast to humans and is independent of chain linkage type. USP14 has been thought to cleave single ubiquitin groups from the distal tip of a chain, but we find that it removes chains from cyclin B en bloc, proceeding until a single chain remains. The suppression of degradation by USP14's catalytic activity reflects its capacity to act on a millisecond time scale, before the proteasome can initiate degradation of the substrate. In addition, single-molecule studies showed that the dwell time of ubiquitin conjugates at the proteasome was reduced by USP14-dependent deubiquitination. In summary, the specificity of the proteasome can be regulated by rapid ubiquitin chain removal, which resolves substrates based on a novel aspect of ubiquitin conjugate architecture.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844788/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844788/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Byung-Hoon -- Lu, Ying -- Prado, Miguel A -- Shi, Yuan -- Tian, Geng -- Sun, Shuangwu -- Elsasser, Suzanne -- Gygi, Steven P -- King, Randall W -- Finley, Daniel -- 5R01GM039023-26/GM/NIGMS NIH HHS/ -- R01 GM026875/GM/NIGMS NIH HHS/ -- R01 GM066492/GM/NIGMS NIH HHS/ -- R01GM5660052/GM/NIGMS NIH HHS/ -- R01GM66492-9/GM/NIGMS NIH HHS/ -- R37-GM043601/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):398-401. doi: 10.1038/nature17433. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074503" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Cyclin B/chemistry/metabolism ; Humans ; Kinetics ; Models, Molecular ; Proteasome Endopeptidase Complex/*metabolism ; Proteolysis ; Substrate Specificity ; Ubiquitin/metabolism ; Ubiquitin Thiolesterase/*metabolism ; *Ubiquitination ; Yeasts/enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-14
    Description: Intracellular Ca2+ transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca2+ channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca2+ channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2−/−) show congenital tracheal stenosis because of incomplete...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...