ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Structure, Tertiary  (193)
  • American Association for the Advancement of Science (AAAS)  (193)
  • PANGAEA
  • Springer Science + Business Media
  • American Association of Petroleum Geologists (AAPG)
  • 2010-2014  (193)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (193)
  • PANGAEA
  • Springer Science + Business Media
  • American Association of Petroleum Geologists (AAPG)
  • Nature Publishing Group (NPG)  (236)
Years
Year
  • 1
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-31
    Description: Netrins are secreted proteins that regulate axon guidance and neuronal migration. Deleted in colorectal cancer (DCC) is a well-established netrin-1 receptor mediating attractive responses. We provide evidence that its close relative neogenin is also a functional netrin-1 receptor that acts with DCC to mediate guidance in vivo. We determined the structures of a functional netrin-1 region, alone and in complexes with neogenin or DCC. Netrin-1 has a rigid elongated structure containing two receptor-binding sites at opposite ends through which it brings together receptor molecules. The ligand/receptor complexes reveal two distinct architectures: a 2:2 heterotetramer and a continuous ligand/receptor assembly. The differences result from different lengths of the linker connecting receptor domains fibronectin type III domain 4 (FN4) and FN5, which differs among DCC and neogenin splice variants, providing a basis for diverse signaling outcomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Kai -- Wu, Zhuhao -- Renier, Nicolas -- Antipenko, Alexander -- Tzvetkova-Robev, Dorothea -- Xu, Yan -- Minchenko, Maria -- Nardi-Dei, Vincenzo -- Rajashankar, Kanagalaghatta R -- Himanen, Juha -- Tessier-Lavigne, Marc -- Nikolov, Dimitar B -- P41 GM103403/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1275-9. doi: 10.1126/science.1255149. Epub 2014 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. ; Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA. ; Department of Chemistry and Chemical Biology, Cornell University and Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA. ; Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA. nikolovd@mskcc.org marctl@mail.rockefeller.edu. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. nikolovd@mskcc.org marctl@mail.rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876346" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Movement ; Fibronectins/chemistry ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nerve Growth Factors/*chemistry/genetics/ultrastructure ; Neurons/physiology ; Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/ultrastructure ; Tumor Suppressor Proteins/*chemistry/genetics/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-26
    Description: Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, Maude W -- Toda, Yasuka -- Nakagita, Tomoya -- O'Connell, Mary J -- Klasing, Kirk C -- Misaka, Takumi -- Edwards, Scott V -- Liberles, Stephen D -- R01 DC013289/DC/NIDCD NIH HHS/ -- R01DC013289/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):929-33. doi: 10.1126/science.1255097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu. ; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan. ; Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. ; Department of Animal Science, University of California, Davis, Davis, CA 95616, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Evolution, Molecular ; Mice ; Molecular Sequence Data ; Plant Nectar ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/classification/*genetics ; Taste/*physiology ; Taste Perception/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-01
    Description: One of the hallmark mechanisms activated by type I interferons (IFNs) in human tissues involves cleavage of intracellular RNA by the kinase homology endoribonuclease RNase L. We report 2.8 and 2.1 angstrom crystal structures of human RNase L in complexes with synthetic and natural ligands and a fragment of an RNA substrate. RNase L forms a crossed homodimer stabilized by ankyrin (ANK) and kinase homology (KH) domains, which positions two kinase extension nuclease (KEN) domains for asymmetric RNA recognition. One KEN protomer recognizes an identity nucleotide (U), whereas the other protomer cleaves RNA between nucleotides +1 and +2. The coordinated action of the ANK, KH, and KEN domains thereby provides regulated, sequence-specific cleavage of viral and host RNA targets by RNase L.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Yuchen -- Donovan, Jesse -- Rath, Sneha -- Whitney, Gena -- Chitrakar, Alisha -- Korennykh, Alexei -- R01 GM110161/GM/NIGMS NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1244-8. doi: 10.1126/science.1249845. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, 216 Schultz Laboratory, Princeton, NJ 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578532" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; HeLa Cells ; Hepatitis B virus/genetics ; Humans ; Interferon Type I/pharmacology/*physiology ; Protein Multimerization ; Protein Structure, Tertiary ; *RNA Cleavage ; *RNA Stability ; RNA, Viral/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-25
    Description: During cell entry, capsids of incoming influenza A viruses (IAVs) must be uncoated before viral ribonucleoproteins (vRNPs) can enter the nucleus for replication. After hemagglutinin-mediated membrane fusion in late endocytic vacuoles, the vRNPs and the matrix proteins dissociate from each other and disperse within the cytosol. Here, we found that for capsid disassembly, IAV takes advantage of the host cell's aggresome formation and disassembly machinery. The capsids mimicked misfolded protein aggregates by carrying unanchored ubiquitin chains that activated a histone deacetylase 6 (HDAC6)-dependent pathway. The ubiquitin-binding domain was essential for recruitment of HDAC6 to viral fusion sites and for efficient uncoating and infection. That other components of the aggresome processing machinery, including dynein, dynactin, and myosin II, were also required suggested that physical forces generated by microtubule- and actin-associated motors are essential for IAV entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Indranil -- Miyake, Yasuyuki -- Nobs, Samuel Philip -- Schneider, Christoph -- Horvath, Peter -- Kopf, Manfred -- Matthias, Patrick -- Helenius, Ari -- Yamauchi, Yohei -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):473-7. doi: 10.1126/science.1257037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland. ; Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. ; Institute of Molecular Health Sciences, ETH Zurich, Switzerland. ; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary. ; Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. Faculty of Sciences, University of Basel, Basel, Switzerland. ; Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland. ari.helenius@bc.biol.ethz.ch yohei.yamauchi@bc.biol.ethz.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342804" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/*metabolism ; Cell Line, Tumor ; Cell Nucleus/virology ; Dyneins/metabolism ; Gene Knockout Techniques ; Histone Deacetylases/genetics/*physiology ; Host-Pathogen Interactions ; Humans ; Influenza A virus/*physiology ; Influenza, Human/genetics/metabolism/*virology ; Membrane Fusion/genetics/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microtubule-Associated Proteins/metabolism ; Microtubules/metabolism ; Myosin Type II/metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; RNA Interference ; Ribonucleoproteins/metabolism ; Ubiquitin/chemistry/metabolism ; *Virus Internalization ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-26
    Description: Proteins that cap the ends of the actin filament are essential regulators of cytoskeleton dynamics. Whereas several proteins cap the rapidly growing barbed end, tropomodulin (Tmod) is the only protein known to cap the slowly growing pointed end. The lack of structural information severely limits our understanding of Tmod's capping mechanism. We describe crystal structures of actin complexes with the unstructured amino-terminal and the leucine-rich repeat carboxy-terminal domains of Tmod. The structures and biochemical analysis of structure-inspired mutants showed that one Tmod molecule interacts with three actin subunits at the pointed end, while also contacting two tropomyosin molecules on each side of the filament. We found that Tmod achieves high-affinity binding through several discrete low-affinity interactions, which suggests a mechanism for controlled subunit exchange at the pointed end.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, Jampani Nageswara -- Madasu, Yadaiah -- Dominguez, Roberto -- GM-0080/GM/NIGMS NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. droberto@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061212" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry ; Actins/*chemistry ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Tropomodulin/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-18
    Description: Transcription factors (TFs) are key players in evolution. Changes affecting their function can yield novel life forms but may also have deleterious effects. Consequently, gene duplication events that release one gene copy from selective pressure are thought to be the common mechanism by which TFs acquire new activities. Here, we show that LEAFY, a major regulator of flower development and cell division in land plants, underwent changes to its DNA binding specificity, even though plant genomes generally contain a single copy of the LEAFY gene. We examined how these changes occurred at the structural level and identify an intermediate LEAFY form in hornworts that appears to adopt all different specificities. This promiscuous intermediate could have smoothed the evolutionary transitions, thereby allowing LEAFY to evolve new binding specificities while remaining a single-copy gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sayou, Camille -- Monniaux, Marie -- Nanao, Max H -- Moyroud, Edwige -- Brockington, Samuel F -- Thevenon, Emmanuel -- Chahtane, Hicham -- Warthmann, Norman -- Melkonian, Michael -- Zhang, Yong -- Wong, Gane Ka-Shu -- Weigel, Detlef -- Parcy, Francois -- Dumas, Renaud -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):645-8. doi: 10.1126/science.1248229. Epub 2014 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Laboratoire de Physiologie Cellulaire et Vegetale (LPCV), UMR 5168, 38054 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/chemistry/classification/genetics ; DNA, Plant/*chemistry ; DNA-Binding Proteins/*chemistry/classification/*genetics ; Electrophoretic Mobility Shift Assay ; *Evolution, Molecular ; Gene Dosage ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Proteins/*chemistry/classification/*genetics ; Protein Binding/genetics ; Protein Structure, Tertiary ; Species Specificity ; Transcription Factors/chemistry/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-10
    Description: The HIV-1 envelope (Env) mediates viral entry into host cells. To enable the direct imaging of conformational dynamics within Env, we introduced fluorophores into variable regions of the glycoprotein gp120 subunit and measured single-molecule fluorescence resonance energy transfer within the context of native trimers on the surface of HIV-1 virions. Our observations revealed unliganded HIV-1 Env to be intrinsically dynamic, transitioning between three distinct prefusion conformations, whose relative occupancies were remodeled by receptor CD4 and antibody binding. The distinct properties of neutralization-sensitive and neutralization-resistant HIV-1 isolates support a dynamics-based mechanism of immune evasion and ligand recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304640/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304640/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Munro, James B -- Gorman, Jason -- Ma, Xiaochu -- Zhou, Zhou -- Arthos, James -- Burton, Dennis R -- Koff, Wayne C -- Courter, Joel R -- Smith, Amos B 3rd -- Kwong, Peter D -- Blanchard, Scott C -- Mothes, Walther -- P01 56550/PHS HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):759-63. doi: 10.1126/science.1254426. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA. walther.mothes@yale.edu scb2005@med.cornell.edu james.munro@tufts.edu. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. ; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Immunology and Microbial Science, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA. ; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. walther.mothes@yale.edu scb2005@med.cornell.edu james.munro@tufts.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25298114" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/immunology ; Antigens, CD4/immunology ; Fluorescence Resonance Energy Transfer/methods ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Humans ; *Immune Evasion ; Ligands ; Models, Chemical ; Molecular Imaging/methods ; Protein Multimerization ; Protein Structure, Tertiary ; Virion/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-22
    Description: Chromosome segregation depends on sister chromatid cohesion mediated by cohesin. The cohesin subunits Smc1, Smc3, and Scc1 form tripartite rings that are thought to open at distinct sites to allow entry and exit of DNA. However, direct evidence for the existence of open forms of cohesin is lacking. We found that cohesin's proposed DNA exit gate is formed by interactions between Scc1 and the coiled-coil region of Smc3. Mutation of this interface abolished cohesin's ability to stably associate with chromatin and to mediate cohesion. Electron microscopy revealed that weakening of the Smc3-Scc1 interface resulted in opening of cohesin rings, as did proteolytic cleavage of Scc1. These open forms may resemble intermediate states of cohesin normally generated by the release factor Wapl and the protease separase, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huis in 't Veld, Pim J -- Herzog, Franz -- Ladurner, Rene -- Davidson, Iain F -- Piric, Sabina -- Kreidl, Emanuel -- Bhaskara, Venugopal -- Aebersold, Ruedi -- Peters, Jan-Michael -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):968-72. doi: 10.1126/science.1256904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria. ; Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. Department of Biochemistry, Gene Center, Ludwig-Maximilian University, 81377 Munich, Germany. ; Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria. peters@imp.ac.at.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25414306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Chondroitin Sulfate Proteoglycans/chemistry/genetics/*metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; *Chromosome Segregation ; DNA/*metabolism ; DNA Replication ; Humans ; Mass Spectrometry ; Microscopy, Electron ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/genetics/metabolism ; Separase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-05-09
    Description: Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saio, Tomohide -- Guan, Xiao -- Rossi, Paolo -- Economou, Anastassios -- Kalodimos, Charalampos G -- GM073854/GM/NIGMS NIH HHS/ -- R01 GM073854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):1250494. doi: 10.1126/science.1250494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812405" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/*chemistry ; Binding Sites ; Escherichia coli Proteins/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins/*chemistry ; Molecular Chaperones/*chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Peptides/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-03-01
    Description: Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and young adults with no history of primary liver disease or cirrhosis. We identified a chimeric transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A. Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Honeyman, Joshua N -- Simon, Elana P -- Robine, Nicolas -- Chiaroni-Clarke, Rachel -- Darcy, David G -- Lim, Irene Isabel P -- Gleason, Caroline E -- Murphy, Jennifer M -- Rosenberg, Brad R -- Teegan, Lydia -- Takacs, Constantin N -- Botero, Sergio -- Belote, Rachel -- Germer, Soren -- Emde, Anne-Katrin -- Vacic, Vladimir -- Bhanot, Umesh -- LaQuaglia, Michael P -- Simon, Sanford M -- 2UL1RR024143/RR/NCRR NIH HHS/ -- UL1 RR024143/RR/NCRR NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1010-4. doi: 10.1126/science.1249484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578576" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular/enzymology/*genetics ; Chromosome Deletion ; Chromosomes, Human, Pair 19/genetics ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry/*genetics ; Gene Expression Regulation, Neoplastic ; HSP40 Heat-Shock Proteins/chemistry/*genetics ; Humans ; Liver Neoplasms/enzymology/*genetics ; Oncogene Proteins, Fusion/*genetics ; Protein Multimerization ; Protein Structure, Tertiary ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-10-18
    Description: Small molecules are useful tools for probing the biological function and therapeutic potential of individual proteins, but achieving selectivity is challenging when the target protein shares structural domains with other proteins. The Bromo and Extra-Terminal (BET) proteins have attracted interest because of their roles in transcriptional regulation, epigenetics, and cancer. The BET bromodomains (protein interaction modules that bind acetyl-lysine) have been targeted by potent small-molecule inhibitors, but these inhibitors lack selectivity for individual family members. We developed an ethyl derivative of an existing small-molecule inhibitor, I-BET/JQ1, and showed that it binds leucine/alanine mutant bromodomains with nanomolar affinity and achieves up to 540-fold selectivity relative to wild-type bromodomains. Cell culture studies showed that blockade of the first bromodomain alone is sufficient to displace a specific BET protein, Brd4, from chromatin. Expansion of this approach could help identify the individual roles of single BET proteins in human physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baud, Matthias G J -- Lin-Shiao, Enrique -- Cardote, Teresa -- Tallant, Cynthia -- Pschibul, Annica -- Chan, Kwok-Ho -- Zengerle, Michael -- Garcia, Jordi R -- Kwan, Terence T-L -- Ferguson, Fleur M -- Ciulli, Alessio -- 097945/Z/11/Z/Wellcome Trust/United Kingdom -- 100476/Z/12/Z/Wellcome Trust/United Kingdom -- BB/G023123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J001201/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):638-41. doi: 10.1126/science.1249830. Epub 2014 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. a.ciulli@dundee.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25323695" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azepines/chemistry/pharmacology ; Cell Line, Tumor ; Chromatin/chemistry ; Crystallography, X-Ray ; Humans ; Leucine/genetics ; Models, Molecular ; Molecular Probes/*chemistry ; Mutation ; Nuclear Proteins/antagonists & inhibitors/*chemistry/genetics ; Protein Engineering/*methods ; Protein Structure, Tertiary ; Transcription Factors/antagonists & inhibitors/*chemistry/genetics ; Triazoles/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-04-05
    Description: The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an alpha-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotwinkel, Jan Timo -- Wild, Klemens -- Segnitz, Bernd -- Sinning, Irmgard -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):101-4. doi: 10.1126/science.1249094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700861" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Protein Transport ; RNA, Ribosomal/chemistry/metabolism ; RNA, Small Cytoplasmic/*chemistry/*metabolism ; Ribosomes ; Signal Recognition Particle/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-02-08
    Description: We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the kappa and lambda light chains. Protein M blocks antibody-antigen union, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens. Similar to the other immunoglobulin-binding proteins such as Protein A, Protein M as well as its orthologs in other Mycoplasma species could become invaluable reagents in the antibody field.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grover, Rajesh K -- Zhu, Xueyong -- Nieusma, Travis -- Jones, Teresa -- Boero, Isabel -- MacLeod, Amanda S -- Mark, Adam -- Niessen, Sherry -- Kim, Helen J -- Kong, Leopold -- Assad-Garcia, Nacyra -- Kwon, Keehwan -- Chesi, Marta -- Smider, Vaughn V -- Salomon, Daniel R -- Jelinek, Diane F -- Kyle, Robert A -- Pyles, Richard B -- Glass, John I -- Ward, Andrew B -- Wilson, Ian A -- Lerner, Richard A -- 5 R21 AI098057-02/AI/NIAID NIH HHS/ -- K08 AR063729/AR/NIAMS NIH HHS/ -- K08 AR063729-01/AR/NIAMS NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AI042266/AI/NIAID NIH HHS/ -- R21 AI098057/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U19 AI06360/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):656-61. doi: 10.1126/science.1246135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503852" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Antibody Reactions/genetics/*immunology ; Antigens/*immunology ; Bacterial Proteins/chemistry/genetics/*immunology ; Crystallography, X-Ray ; Humans ; Immunoglobulin G/*immunology ; Immunoglobulin Variable Region/*immunology ; Immunoglobulin kappa-Chains/immunology ; Immunoglobulin lambda-Chains/immunology ; Lymphokines/chemistry/genetics/*immunology ; Membrane Proteins/chemistry/genetics/*immunology ; Mycoplasma/*immunology ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karakas, Erkan -- Furukawa, Hiro -- MH085926/MH/NIMH NIH HHS/ -- R01 GM105730/GM/NIGMS NIH HHS/ -- R01 MH085926/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. ; Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. furukawa@cshl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/chemistry/metabolism ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-11-22
    Description: Through their association with a kleisin subunit (Scc1), cohesin's Smc1 and Smc3 subunits are thought to form tripartite rings that mediate sister chromatid cohesion. Unlike the structure of Smc1/Smc3 and Smc1/Scc1 interfaces, that of Smc3/Scc1 is not known. Disconnection of this interface is thought to release cohesin from chromosomes in a process regulated by acetylation. We show here that the N-terminal domain of yeast Scc1 contains two alpha helices, forming a four-helix bundle with the coiled coil emerging from Smc3's adenosine triphosphatase head. Mutations affecting this interaction compromise cohesin's association with chromosomes. The interface is far from Smc3 residues, whose acetylation prevents cohesin's dissociation from chromosomes. Cohesin complexes holding chromatids together in vivo do indeed have the configuration of hetero-trimeric rings, and sister DNAs are entrapped within these.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gligoris, Thomas G -- Scheinost, Johanna C -- Burmann, Frank -- Petela, Naomi -- Chan, Kok-Lung -- Uluocak, Pelin -- Beckouet, Frederic -- Gruber, Stephan -- Nasmyth, Kim -- Lowe, Jan -- 091859/Z/10/Z/Wellcome Trust/United Kingdom -- 095514/Wellcome Trust/United Kingdom -- 095514/Z/11/Z/Wellcome Trust/United Kingdom -- C573/A 12386/Cancer Research UK/United Kingdom -- C573/A11625/Medical Research Council/United Kingdom -- MC_U105184326/Medical Research Council/United Kingdom -- U10518432/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):963-7. doi: 10.1126/science.1256917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. ; Max-Planck-Institut fur Biochemie, 82152, Martinsried, Germany. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. Medical Research Council (MRC) Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. Dunn School of Pathology, University of Oxford, Oxford OX1 3RF, UK. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. kim.nasmyth@bioch.ox.ac.uk jyl@mrc-lmb.cam.ac.uk. ; MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK. kim.nasmyth@bioch.ox.ac.uk jyl@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25414305" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry ; Amino Acid Sequence ; Cell Cycle Proteins/*chemistry/genetics ; Chromosomal Proteins, Non-Histone/*chemistry/genetics ; Conserved Sequence ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA/chemistry ; Mutation ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-02-22
    Description: Growth factors (GFs) are critical in tissue repair, but their translation to clinical use has been modest. Physiologically, GF interactions with extracellular matrix (ECM) components facilitate localized and spatially regulated signaling; therefore, we reasoned that the lack of ECM binding in their clinically used forms could underlie the limited translation. We discovered that a domain in placenta growth factor-2 (PlGF-2(123-144)) binds exceptionally strongly and promiscuously to ECM proteins. By fusing this domain to the GFs vascular endothelial growth factor-A, platelet-derived growth factor-BB, and bone morphogenetic protein-2, we generated engineered GF variants with super-affinity to the ECM. These ECM super-affinity GFs induced repair in rodent models of chronic wounds and bone defects that was greatly enhanced as compared to treatment with the wild-type GFs, demonstrating that this approach may be useful in several regenerative medicine applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martino, Mikael M -- Briquez, Priscilla S -- Guc, Esra -- Tortelli, Federico -- Kilarski, Witold W -- Metzger, Stephanie -- Rice, Jeffrey J -- Kuhn, Gisela A -- Muller, Ralph -- Swartz, Melody A -- Hubbell, Jeffrey A -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):885-8. doi: 10.1126/science.1247663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558160" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein 2/chemistry/genetics/metabolism ; Disease Models, Animal ; Extracellular Matrix/*metabolism ; Extracellular Matrix Proteins/chemistry/metabolism ; Heparitin Sulfate/chemistry/metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Pregnancy Proteins/chemistry/genetics/metabolism ; Protein Engineering ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-sis/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor A/chemistry/genetics/metabolism ; *Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-04-20
    Description: Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic beta-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Hiroshi -- Nishizawa, Tomohiro -- Tani, Kazutoshi -- Yamazaki, Yuji -- Tamura, Atsushi -- Ishitani, Ryuichiro -- Dohmae, Naoshi -- Tsukita, Sachiko -- Nureki, Osamu -- Fujiyoshi, Yoshinori -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):304-7. doi: 10.1126/science.1248571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744376" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Claudins/*chemistry ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Static Electricity ; Tight Junctions/*chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-08-12
    Description: Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yelshanskaya, Maria V -- Li, Minfen -- Sobolevsky, Alexander I -- NS083660/NS/NINDS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R01 NS083660/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1070-4. doi: 10.1126/science.1256508. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. as4005@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; Cysteine/chemistry ; Glutamic Acid/pharmacology ; HEK293 Cells ; Humans ; *Ion Channel Gating ; Models, Chemical ; Organophosphonates/chemistry/pharmacology ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrimidinones/*pharmacology ; Quinoxalines/chemistry/pharmacology ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-10-04
    Description: Organohalide-respiring microorganisms can use a variety of persistent pollutants, including trichloroethene (TCE), as terminal electron acceptors. The final two-electron transfer step in organohalide respiration is catalyzed by reductive dehalogenases. Here we report the x-ray crystal structure of PceA, an archetypal dehalogenase from Sulfurospirillum multivorans, as well as structures of PceA in complex with TCE and product analogs. The active site harbors a deeply buried norpseudo-B12 cofactor within a nitroreductase fold, also found in a mammalian B12 chaperone. The structures of PceA reveal how a cobalamin supports a reductive haloelimination exploiting a conserved B12-binding scaffold capped by a highly variable substrate-capturing region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bommer, Martin -- Kunze, Cindy -- Fesseler, Jochen -- Schubert, Torsten -- Diekert, Gabriele -- Dobbek, Holger -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):455-8. doi: 10.1126/science.1258118. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biologie, Strukturbiologie/Biochemie, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. ; Institut fur Mikrobiologie, Friedrich-Schiller-Universitat Jena, Lehrstuhl fur Angewandte und Okologische Mikrobiologie, Philosophenweg 12, 07743 Jena, Germany. ; Institut fur Mikrobiologie, Friedrich-Schiller-Universitat Jena, Lehrstuhl fur Angewandte und Okologische Mikrobiologie, Philosophenweg 12, 07743 Jena, Germany. holger.dobbek@biologie.hu-berlin.de gabriele.diekert@uni-jena.de. ; Institut fur Biologie, Strukturbiologie/Biochemie, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. holger.dobbek@biologie.hu-berlin.de gabriele.diekert@uni-jena.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278505" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacterial Proteins/*chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Electron Transport ; Epsilonproteobacteria/*enzymology ; Oxidoreductases/*chemistry ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity ; Trichloroethylene/*chemistry ; Vitamin B 12/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-08-02
    Description: Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Ilmin -- Xiang, Siheng -- Kato, Masato -- Wu, Leeju -- Theodoropoulos, Pano -- Wang, Tao -- Kim, Jiwoong -- Yun, Jonghyun -- Xie, Yang -- McKnight, Steven L -- U01 GM107623/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1139-45. doi: 10.1126/science.1254917. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Quantitative Biomedical Research Center, Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25081482" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amyotrophic Lateral Sclerosis/genetics/*metabolism/pathology ; Astrocytes/*metabolism/pathology ; Cell Death ; Cell Nucleolus/*metabolism ; Cells, Cultured ; Dipeptides/genetics/*metabolism/pharmacology ; Frontotemporal Dementia/genetics/*metabolism/pathology ; Glutamate Plasma Membrane Transport Proteins/genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Hydrogel ; Phosphorylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*genetics ; RNA, Antisense/antagonists & inhibitors/biosynthesis ; RNA, Messenger/antagonists & inhibitors/biosynthesis ; RNA, Ribosomal/antagonists & inhibitors/biosynthesis ; Repetitive Sequences, Amino Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-06-21
    Description: Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatziioannou, Theodora -- Del Prete, Gregory Q -- Keele, Brandon F -- Estes, Jacob D -- McNatt, Matthew W -- Bitzegeio, Julia -- Raymond, Alice -- Rodriguez, Anthony -- Schmidt, Fabian -- Mac Trubey, C -- Smedley, Jeremy -- Piatak, Michael Jr -- KewalRamani, Vineet N -- Lifson, Jeffrey D -- Bieniasz, Paul D -- HHSN261200800001E/PHS HHS/ -- R01 AI050111/AI/NIAID NIH HHS/ -- R01 AI078788/AI/NIAID NIH HHS/ -- R01AI078788/AI/NIAID NIH HHS/ -- R01AI50111/AI/NIAID NIH HHS/ -- R37 AI064003/AI/NIAID NIH HHS/ -- R37AI64003/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1401-5. doi: 10.1126/science.1250761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. ; Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. Howard Hughes Medical Institute, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948736" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology/transmission/*virology ; Amino Acid Sequence ; Animals ; Antigens, CD8/immunology ; CD4-Positive T-Lymphocytes/immunology ; *Disease Models, Animal ; HIV-1/genetics/*physiology ; Host-Pathogen Interactions/*immunology ; Human Immunodeficiency Virus Proteins/chemistry/genetics/metabolism ; Lymphocyte Depletion ; Macaca nemestrina/immunology/*virology ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Regulatory and Accessory Proteins/chemistry/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-05-03
    Description: Down-regulation and mutations of the nuclear-architecture proteins lamin A and C cause misshapen nuclei and altered chromatin organization associated with cancer and laminopathies, including the premature-aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we identified the small molecule "Remodelin" that improved nuclear architecture, chromatin organization, and fitness of both human lamin A/C-depleted cells and HGPS-derived patient cells and decreased markers of DNA damage in these cells. Using a combination of chemical, cellular, and genetic approaches, we identified the acetyl-transferase protein NAT10 as the target of Remodelin that mediated nuclear shape rescue in laminopathic cells via microtubule reorganization. These findings provide insights into how NAT10 affects nuclear architecture and suggest alternative strategies for treating laminopathies and aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246063/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246063/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrieu, Delphine -- Britton, Sebastien -- Demir, Mukerrem -- Rodriguez, Raphael -- Jackson, Stephen P -- 092096/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- A11224/Cancer Research UK/United Kingdom -- C6/A11224/Cancer Research UK/United Kingdom -- C6946/A14492/Cancer Research UK/United Kingdom -- MR/L019116/1/Medical Research Council/United Kingdom -- WT092096/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 May 2;344(6183):527-32. doi: 10.1126/science.1252651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust/Cancer Research UK (CRUK) Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786082" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Nucleus/*drug effects/genetics/ultrastructure ; Chromatin/metabolism ; Enzyme Inhibitors/chemistry/*pharmacology ; Humans ; Hydrazones/chemistry/*pharmacology ; Lamin Type A/genetics ; Microtubules/metabolism ; N-Terminal Acetyltransferase E/*antagonists & inhibitors/chemistry/genetics ; Nocodazole/pharmacology ; Progeria/*enzymology/genetics ; Protein Structure, Tertiary ; RNA, Small Interfering/genetics ; Thiazoles/chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-05-17
    Description: Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, Andrew J -- Dai, Wei -- O'Mara, Megan L -- Abankwa, Daniel -- Chhabra, Yash -- Pelekanos, Rebecca A -- Gardon, Olivier -- Tunny, Kathryn A -- Blucher, Kristopher M -- Morton, Craig J -- Parker, Michael W -- Sierecki, Emma -- Gambin, Yann -- Gomez, Guillermo A -- Alexandrov, Kirill -- Wilson, Ian A -- Doxastakis, Manolis -- Mark, Alan E -- Waters, Michael J -- New York, N.Y. -- Science. 2014 May 16;344(6185):1249783. doi: 10.1126/science.1249783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. m.waters@uq.edu.au a.brooks@uq.edu.au. ; Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA. ; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia. ; Scripps Research Institute, La Jolla, CA 92037, USA. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833397" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Cysteine/chemistry ; Enzyme Activation ; HEK293 Cells ; Humans ; Janus Kinase 2/antagonists & inhibitors/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Somatotropin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-08-12
    Description: AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Durr, Katharina L -- Gouaux, Eric -- F32 MH100331/MH/NIMH NIH HHS/ -- F32MH100331/MH/NIMH NIH HHS/ -- R01 NS038631/NS/NINDS NIH HHS/ -- R37 NS038631/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1021-6. doi: 10.1126/science.1258409. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. ; Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. gouauxe@ohsu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103405" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conotoxins/*chemistry ; Conus Snail ; Crystallography, X-Ray ; *Ion Channel Gating ; Ligands ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-08-12
    Description: Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4-guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagnon, Matthieu G -- Lin, Jinzhong -- Bulkley, David -- Steitz, Thomas A -- GM022778/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):684-7. doi: 10.1126/science.1253525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA. thomas.steitz@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104389" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry ; Nucleic Acid Conformation ; Peptide Initiation Factors ; Protein Structure, Tertiary ; RNA, Transfer/chemistry ; Ribosome Subunits, Small, Bacterial/*chemistry ; Thermus thermophilus ; Transcriptional Elongation Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-02-08
    Description: Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jinek, Martin -- Jiang, Fuguo -- Taylor, David W -- Sternberg, Samuel H -- Kaya, Emine -- Ma, Enbo -- Anders, Carolin -- Hauer, Michael -- Zhou, Kaihong -- Lin, Steven -- Kaplan, Matias -- Iavarone, Anthony T -- Charpentier, Emmanuelle -- Nogales, Eva -- Doudna, Jennifer A -- T32 GM066698/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1247997. doi: 10.1126/science.1247997. Epub 2014 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24505130" target="_blank"〉PubMed〈/a〉
    Keywords: Actinomyces/*enzymology ; Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Caspase 9/*chemistry ; Crystallography, X-Ray ; DNA Cleavage ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry ; Streptococcus pyogenes/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-09-13
    Description: Cyanobacteria are unique among bacteria in performing oxygenic photosynthesis, often together with nitrogen fixation and, thus, are major primary producers in many ecosystems. The cyanobacterium, Leptolyngbya sp. strain JSC-1, exhibits an extensive photoacclimative response to growth in far-red light that includes the synthesis of chlorophylls d and f. During far-red acclimation, transcript levels increase more than twofold for ~900 genes and decrease by more than half for ~2000 genes. Core subunits of photosystem I, photosystem II, and phycobilisomes are replaced by proteins encoded in a 21-gene cluster that includes a knotless red/far-red phytochrome and two response regulators. This acclimative response enhances light harvesting for wavelengths complementary to the growth light (lambda = 700 to 750 nanometers) and enhances oxygen evolution in far-red light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Fei -- Zhang, Shuyi -- Rockwell, Nathan C -- Martin, Shelley S -- Lagarias, J Clark -- Bryant, Donald A -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1312-7. doi: 10.1126/science.1256963. Epub 2014 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. ; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA. ; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. dab14@psu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214622" target="_blank"〉PubMed〈/a〉
    Keywords: *Acclimatization ; Chlorophyll/biosynthesis ; Cyanobacteria/enzymology/*physiology/radiation effects ; Light ; Molecular Sequence Data ; Multigene Family/physiology ; Oxygen/*physiology ; Photosynthesis/genetics/*physiology/radiation effects ; Photosystem I Protein Complex/genetics/*physiology ; Photosystem II Protein Complex/genetics/*physiology ; Phycobilisomes/metabolism/*physiology ; Phylogeny ; *Phytochrome/chemistry/classification/genetics ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-12-17
    Description: The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from 〈/=0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Straimer, Judith -- Gnadig, Nina F -- Witkowski, Benoit -- Amaratunga, Chanaki -- Duru, Valentine -- Ramadani, Arba Pramundita -- Dacheux, Melanie -- Khim, Nimol -- Zhang, Lei -- Lam, Stephen -- Gregory, Philip D -- Urnov, Fyodor D -- Mercereau-Puijalon, Odile -- Benoit-Vical, Francoise -- Fairhurst, Rick M -- Menard, Didier -- Fidock, David A -- R01 AI109023/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):428-31. doi: 10.1126/science.1260867. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. ; Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia. ; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination UPR8241, Toulouse, France. Universite de Toulouse, UPS, Institut National Polytechnique de Toulouse, Toulouse, France. ; Sangamo BioSciences, Richmond, CA, USA. ; Institut Pasteur, Parasite Molecular Immunology Unit, Paris, France. ; Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA. df2260@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25502314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antimalarials/*pharmacology ; Artemisinins/*pharmacology ; Cambodia ; Drug Resistance/*genetics ; Genetic Loci ; Humans ; Malaria, Falciparum/drug therapy/parasitology ; Molecular Sequence Data ; Mutation ; Plasmodium falciparum/*drug effects/*genetics ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-02-09
    Description: HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl-transverse relaxation-optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenzweig, Rina -- Moradi, Shoeib -- Zarrine-Afsar, Arash -- Glover, John R -- Kay, Lewis E -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1080-3. doi: 10.1126/science.1233066. Epub 2013 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. rina.rosenzweig@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393091" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/genetics ; Adenosine Triphosphate/chemistry/metabolism ; Bacterial Proteins/chemistry ; Heat-Shock Proteins/*chemistry/genetics ; Hydrolysis ; *Models, Chemical ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Interaction Domains and Motifs ; Protein Interaction Maps ; Protein Multimerization ; *Protein Refolding ; Protein Structure, Tertiary ; Protein Transport ; Thermus thermophilus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-04-06
    Description: The 21st amino acid, selenocysteine (Sec), is synthesized on its cognate transfer RNA (tRNA(Sec)). In bacteria, SelA synthesizes Sec from Ser-tRNA(Sec), whereas in archaea and eukaryotes SepSecS forms Sec from phosphoserine (Sep) acylated to tRNA(Sec). We determined the crystal structures of Aquifex aeolicus SelA complexes, which revealed a ring-shaped homodecamer that binds 10 tRNA(Sec) molecules, each interacting with four SelA subunits. The SelA N-terminal domain binds the tRNA(Sec)-specific D-arm structure, thereby discriminating Ser-tRNA(Sec) from Ser-tRNA(Ser). A large cleft is created between two subunits and accommodates the 3'-terminal region of Ser-tRNA(Sec). The SelA structures together with in vivo and in vitro enzyme assays show decamerization to be essential for SelA function. SelA catalyzes pyridoxal 5'-phosphate-dependent Sec formation involving Arg residues nonhomologous to those in SepSecS. Different protein architecture and substrate coordination of the bacterial enzyme provide structural evidence for independent evolution of the two Sec synthesis systems present in nature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, Yuzuru -- Brocker, Markus J -- Sekine, Shun-ichi -- Hammond, Gifty -- Suetsugu, Shiro -- Soll, Dieter -- Yokoyama, Shigeyuki -- GM22854/GM/NIGMS NIH HHS/ -- R01 GM022854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):75-8. doi: 10.1126/science.1229521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559248" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Bacteria/*enzymology ; Bacterial Proteins/*chemistry ; Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridoxal Phosphate/chemistry ; RNA, Transfer, Amino Acyl/*chemistry ; Selenocysteine/*biosynthesis ; Transferases/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-26
    Description: Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na(+) channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na(+) currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172297/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172297/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowe, Ashlee H -- Xiao, Yucheng -- Rowe, Matthew P -- Cummins, Theodore R -- Zakon, Harold H -- NS 053422/NS/NINDS NIH HHS/ -- R01 NS053422/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):441-6. doi: 10.1126/science.1236451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159039" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects/physiology ; Amino Acid Sequence ; Animals ; Arvicolinae/*metabolism ; *Food Chain ; Formaldehyde/pharmacology ; Mice ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/chemistry/genetics/*metabolism ; NAV1.8 Voltage-Gated Sodium Channel/chemistry/genetics/*metabolism ; Pain/chemically induced/*metabolism ; *Predatory Behavior ; Protein Structure, Tertiary ; Scorpion Venoms
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-05-25
    Description: Ca(2+)/cation antiporters catalyze the exchange of Ca(2+) with various cations across biological membranes to regulate cytosolic calcium levels. The recently reported structure of a prokaryotic Na(+)/Ca(2+) exchanger (NCX_Mj) revealed its overall architecture in an outward-facing state. Here, we report the crystal structure of a H(+)/Ca(2+) exchanger from Archaeoglobus fulgidus (CAX_Af) in the two representatives of the inward-facing conformation at 2.3 A resolution. The structures suggested Ca(2+) or H(+) binds to the cation-binding site mutually exclusively. Structural comparison of CAX_Af with NCX_Mj revealed that the first and sixth transmembrane helices alternately create hydrophilic cavities on the intra- and extracellular sides. The structures and functional analyses provide insight into the mechanism of how the inward- to outward-facing state transition is triggered by the Ca(2+) and H(+) binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishizawa, Tomohiro -- Kita, Satomi -- Maturana, Andres D -- Furuya, Noritaka -- Hirata, Kunio -- Kasuya, Go -- Ogasawara, Satoshi -- Dohmae, Naoshi -- Iwamoto, Takahiro -- Ishitani, Ryuichiro -- Nureki, Osamu -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):168-72. doi: 10.1126/science.1239002. Epub 2013 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704374" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Archaeal Proteins/*chemistry/genetics/metabolism ; Archaeoglobus fulgidus/*metabolism ; Binding Sites ; Calcium/chemistry/metabolism ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Hydrogen/chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-03-23
    Description: Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shnyrova, Anna V -- Bashkirov, Pavel V -- Akimov, Sergey A -- Pucadyil, Thomas J -- Zimmerberg, Joshua -- Schmid, Sandra L -- Frolov, Vadim A -- GM42455/GM/NIGMS NIH HHS/ -- R01 GM042455/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1433-6. doi: 10.1126/science.1233920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520112" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Dynamin I/*chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Lipid Bilayers/chemistry/*metabolism ; Models, Biological ; Nanotubes ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-11-02
    Description: The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo-electron microscopy reconstruction and structural model of a cleaved, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 angstrom resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1, and HR2 domains, as well as shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954647/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954647/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyumkis, Dmitry -- Julien, Jean-Philippe -- de Val, Natalia -- Cupo, Albert -- Potter, Clinton S -- Klasse, Per-Johan -- Burton, Dennis R -- Sanders, Rogier W -- Moore, John P -- Carragher, Bridget -- Wilson, Ian A -- Ward, Andrew B -- GM103310/GM/NIGMS NIH HHS/ -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI82362/AI/NIAID NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI36082/AI/NIAID NIH HHS/ -- R37 AI036082/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1484-90. doi: 10.1126/science.1245627. Epub 2013 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179160" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Antibodies, Neutralizing/chemistry ; Antibodies, Viral/chemistry ; Antigens, CD4/*chemistry/immunology ; Binding Sites ; Cryoelectron Microscopy ; Glycosylation ; Immunodominant Epitopes/chemistry/immunology ; *Models, Molecular ; Polysaccharides/chemistry ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; env Gene Products, Human Immunodeficiency Virus/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-21
    Description: The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 A resolution. Compared with the K(+)-bound form, large conformational changes are observed in the alpha subunit whereas the beta and gamma subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nyblom, Maria -- Poulsen, Hanne -- Gourdon, Pontus -- Reinhard, Linda -- Andersson, Magnus -- Lindahl, Erik -- Fedosova, Natalya -- Nissen, Poul -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):123-7. doi: 10.1126/science.1243352. Epub 2013 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Membrane Pumps in Cells and Disease-PUMPkin, Danish National Research Foundation, DK-8000 Aarhus, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24051246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/enzymology ; Crystallography, X-Ray ; *Models, Molecular ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium/*chemistry ; Sodium-Potassium-Exchanging ATPase/*chemistry/genetics ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-04-20
    Description: Helicases are ubiquitous adenosine triphosphatases (ATPases) with widespread roles in genome metabolism. Here, we report a previously undescribed functionality for ATPases with helicase-like domains; namely, that ATP hydrolysis can trigger ATP-independent long-range protein diffusion on DNA in one dimension (1D). Specifically, using single-molecule fluorescence microscopy we show that the Type III restriction enzyme EcoP15I uses its ATPase to switch into a distinct structural state that diffuses on DNA over long distances and long times. The switching occurs only upon binding to the target site and requires hydrolysis of ~30 ATPs. We define the mechanism for these enzymes and show how ATPase activity is involved in DNA target site verification and 1D signaling, roles that are common in DNA metabolism: for example, in nucleotide excision and mismatch repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwarz, Friedrich W -- Toth, Julia -- van Aelst, Kara -- Cui, Guanshen -- Clausing, Sylvia -- Szczelkun, Mark D -- Seidel, Ralf -- 084086/Wellcome Trust/United Kingdom -- 261224/European Research Council/International -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):353-6. doi: 10.1126/science.1231122.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA motors group, Biotechnology Center, Technische Universitat Dresden, 01062 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599494" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; DNA/chemistry/*metabolism ; *DNA Cleavage ; DNA Helicases/chemistry/*metabolism ; Deoxyribonucleases, Type III Site-Specific/chemistry/*metabolism ; Hydrolysis ; Microscopy, Fluorescence/methods ; Nucleic Acid Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-07
    Description: Organofluorines represent a rapidly expanding proportion of molecules that are used in pharmaceuticals, diagnostics, agrochemicals, and materials. Despite the prevalence of fluorine in synthetic compounds, the known biological scope is limited to a single pathway that produces fluoroacetate. Here, we demonstrate that this pathway can be exploited as a source of fluorinated building blocks for introduction of fluorine into natural-product scaffolds. Specifically, we have constructed pathways involving two polyketide synthase systems, and we show that fluoroacetate can be used to incorporate fluorine into the polyketide backbone in vitro. We further show that fluorine can be inserted site-selectively and introduced into polyketide products in vivo. These results highlight the prospects for the production of complex fluorinated natural products using synthetic biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Mark C -- Thuronyi, Benjamin W -- Charkoudian, Louise K -- Lowry, Brian -- Khosla, Chaitan -- Chang, Michelle C Y -- 1 DP2 OD008696/OD/NIH HHS/ -- 1 T32 GMO66698/PHS HHS/ -- 1S10RR023679-01/RR/NCRR NIH HHS/ -- F32 CA137994/CA/NCI NIH HHS/ -- R01 GM087934/GM/NIGMS NIH HHS/ -- S10 RR16634-01/RR/NCRR NIH HHS/ -- T32 GM066698/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1089-94. doi: 10.1126/science.1242345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009388" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/metabolism ; Base Sequence ; Biological Products/chemistry/*metabolism ; Burkholderia/enzymology ; Coenzyme A Ligases/chemistry/genetics/metabolism ; Escherichia coli ; Fluoroacetates/chemistry/*metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Polyketide Synthases/chemistry/genetics/*metabolism ; Polyketides/chemistry/*metabolism ; Protein Engineering ; Protein Structure, Tertiary ; Streptomyces coelicolor/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-02-16
    Description: Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangjin -- Brostromer, Erik -- Xing, Dong -- Jin, Jianshi -- Chong, Shasha -- Ge, Hao -- Wang, Siyuan -- Gu, Chan -- Yang, Lijiang -- Gao, Yi Qin -- Su, Xiao-dong -- Sun, Yujie -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413354" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Base Sequence ; Binding Sites ; DNA, B-Form/*chemistry ; DNA-Binding Proteins/*chemistry ; DNA-Directed RNA Polymerases/chemistry ; Escherichia coli/genetics/metabolism ; Gene Expression ; *Gene Expression Regulation, Bacterial ; Lac Repressors/chemistry ; Molecular Dynamics Simulation ; Nucleosomes/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/chemistry ; Transcription Factors/*chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-03-23
    Description: Kinesin-mediated cargo transport is required for many cellular functions and plays a key role in pathological processes. Structural information on how kinesins recognize their cargoes is required for a molecular understanding of this fundamental and ubiquitous process. Here, we present the crystal structure of the tetratricopeptide repeat domain of kinesin light chain 2 in complex with a cargo peptide harboring a "tryptophan-acidic" motif derived from SKIP (SifA-kinesin interacting protein), a critical host determinant in Salmonella pathogenesis and a regulator of lysosomal positioning. Structural data together with biophysical, biochemical, and cellular assays allow us to propose a framework for intracellular transport based on the binding by kinesin-1 of W-acidic cargo motifs through a combination of electrostatic interactions and sequence-specific elements, providing direct molecular evidence of the mechanisms for kinesin-1:cargo recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pernigo, Stefano -- Lamprecht, Anneri -- Steiner, Roberto A -- Dodding, Mark P -- 097316/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):356-9. doi: 10.1126/science.1234264. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519214" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Glycoproteins/*chemistry/metabolism ; HeLa Cells ; Humans ; Mice ; Microtubule-Associated Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Tryptophan/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-11-02
    Description: Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site O, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site O when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site O-stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Joyce, M Gordon -- Sastry, Mallika -- Stewart-Jones, Guillaume B E -- Yang, Yongping -- Zhang, Baoshan -- Chen, Lei -- Srivatsan, Sanjay -- Zheng, Anqi -- Zhou, Tongqing -- Graepel, Kevin W -- Kumar, Azad -- Moin, Syed -- Boyington, Jeffrey C -- Chuang, Gwo-Yu -- Soto, Cinque -- Baxa, Ulrich -- Bakker, Arjen Q -- Spits, Hergen -- Beaumont, Tim -- Zheng, Zizheng -- Xia, Ningshao -- Ko, Sung-Youl -- Todd, John-Paul -- Rao, Srinivas -- Graham, Barney S -- Kwong, Peter D -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):592-8. doi: 10.1126/science.1243283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179220" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antigens, Viral/*chemistry/genetics/immunology ; Crystallography, X-Ray ; Cysteine/chemistry/genetics ; Glycoproteins/*chemistry/genetics/immunology ; Humans ; Macaca ; Mice ; Protein Engineering ; Protein Multimerization ; Protein Stability ; Protein Structure, Tertiary ; Respiratory Syncytial Virus Infections/*prevention & control ; Respiratory Syncytial Virus Vaccines/*chemistry ; Vaccination ; Viral Fusion Proteins/*chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-06-08
    Description: Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Christian H -- Healey, Eleanor -- van Erp, Susan -- Bishop, Benjamin -- Tang, Chenxiang -- Gilbert, Robert J C -- Aricescu, A Radu -- Pasterkamp, R Jeroen -- Siebold, Christian -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 097301/Wellcome Trust/United Kingdom -- A14414/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):77-80. doi: 10.1126/science.1232322. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. christian@strubi.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biophysical Phenomena ; Cell Adhesion Molecules, Neuronal/*chemistry/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Membrane Proteins/*chemistry ; Mutation ; Oligopeptides/chemistry ; Protein Structure, Tertiary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-02-16
    Description: Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-beta-catenin network, where it acts as a regulatory subunit of CK1epsilon: In a Wnt-dependent manner, DDX3 binds CK1epsilon and directly stimulates its kinase activity, and promotes phosphorylation of the scaffold protein dishevelled. DDX3 is required for Wnt-beta-catenin signaling in mammalian cells and during Xenopus and Caenorhabditis elegans development. The results also suggest that the kinase-stimulatory function extends to other DDX and CK1 members, opening fresh perspectives for one of the longest-studied protein kinase families.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruciat, Cristina-Maria -- Dolde, Christine -- de Groot, Reinoud E A -- Ohkawara, Bisei -- Reinhard, Carmen -- Korswagen, Hendrik C -- Niehrs, Christof -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1436-41. doi: 10.1126/science.1231499. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413191" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Caenorhabditis elegans/genetics/growth & development/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Casein Kinase Iepsilon/chemistry/*metabolism ; DEAD-box RNA Helicases/chemistry/genetics/*metabolism ; HEK293 Cells ; Humans ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Xenopus/embryology/genetics/metabolism ; Xenopus Proteins/chemistry/genetics/*metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-07-03
    Description: Porins are beta-barrel outer-membrane proteins through which small solutes and metabolites diffuse that are also exploited during cell death. We have studied how the bacteriocin colicin E9 (ColE9) assembles a cytotoxic translocon at the surface of Escherichia coli that incorporates the trimeric porin OmpF. Formation of the translocon involved ColE9's unstructured N-terminal domain threading in opposite directions through two OmpF subunits, capturing its target TolB on the other side of the membrane in a fixed orientation that triggers colicin import. Thus, an intrinsically disordered protein can tunnel through the narrow pores of an oligomeric porin to deliver an epitope signal to the cell to initiate cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856478/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856478/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Housden, Nicholas G -- Hopper, Jonathan T S -- Lukoyanova, Natalya -- Rodriguez-Larrea, David -- Wojdyla, Justyna A -- Klein, Alexander -- Kaminska, Renata -- Bayley, Hagan -- Saibil, Helen R -- Robinson, Carol V -- Kleanthous, Colin -- 079605/Wellcome Trust/United Kingdom -- 079605/2/06/2/Wellcome Trust/United Kingdom -- 082045/Wellcome Trust/United Kingdom -- 294408/European Research Council/International -- BB/D008573/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D00873/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G020671/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G1000819/Medical Research Council/United Kingdom -- R0I HG003709/HG/NHGRI NIH HHS/ -- WT082045/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1570-4. doi: 10.1126/science.1237864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812713" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Colicins/chemistry/isolation & purification/*metabolism ; Escherichia coli/chemistry/*metabolism ; Escherichia coli Proteins/metabolism ; Periplasmic Proteins/metabolism ; Porins/*metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-06-15
    Description: Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important alpha-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zehan -- Yan, Chuangye -- Liu, Peiyuan -- Huang, Zhiwei -- Ma, Rui -- Zhang, Chenlu -- Wang, Ruiyong -- Zhang, Yueteng -- Martinon, Fabio -- Miao, Di -- Deng, Haiteng -- Wang, Jiawei -- Chang, Junbiao -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):172-5. doi: 10.1126/science.1236381. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765277" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Animals ; Apoptosis Regulatory Proteins/*antagonists & inhibitors/*chemistry ; Calcium-Binding Proteins/*antagonists & inhibitors/*chemistry ; Crystallography, X-Ray ; Mice ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-03-09
    Description: A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1alpha and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, Basil P -- Gomes, Ana P -- Dai, Han -- Li, Jun -- Case, April W -- Considine, Thomas -- Riera, Thomas V -- Lee, Jessica E -- E, Sook Yen -- Lamming, Dudley W -- Pentelute, Bradley L -- Schuman, Eli R -- Stevens, Linda A -- Ling, Alvin J Y -- Armour, Sean M -- Michan, Shaday -- Zhao, Huizhen -- Jiang, Yong -- Sweitzer, Sharon M -- Blum, Charles A -- Disch, Jeremy S -- Ng, Pui Yee -- Howitz, Konrad T -- Rolo, Anabela P -- Hamuro, Yoshitomo -- Moss, Joel -- Perni, Robert B -- Ellis, James L -- Vlasuk, George P -- Sinclair, David A -- P01 AG027916/AG/NIA NIH HHS/ -- R01 AG019719/AG/NIA NIH HHS/ -- R01 AG028730/AG/NIA NIH HHS/ -- R37 AG028730/AG/NIA NIH HHS/ -- ZIA HL000659-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23471411" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Enzyme Activation ; Forkhead Transcription Factors/chemistry/genetics ; Glutamic Acid/chemistry/genetics ; Heterocyclic Compounds with 4 or More Rings/chemistry/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Myoblasts/drug effects/enzymology ; Protein Structure, Tertiary ; Sirtuin 1/*chemistry/genetics/*metabolism ; Stilbenes/chemistry/*pharmacology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-12-07
    Description: Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazarus, Michael B -- Jiang, Jiaoyang -- Kapuria, Vaibhav -- Bhuiyan, Tanja -- Janetzko, John -- Zandberg, Wesley F -- Vocadlo, David J -- Herr, Winship -- Walker, Suzanne -- R01 GM094263/GM/NIGMS NIH HHS/ -- R01GM094263/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1235-9. doi: 10.1126/science.1243990.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311690" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Catalytic Domain ; Crystallography, X-Ray ; Glycosylation ; Host Cell Factor C1/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; N-Acetylglucosaminyltransferases/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Proteolysis ; Pyrrolidonecarboxylic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Uridine Diphosphate N-Acetylglucosamine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-31
    Description: Intraflagellar transport (IFT) of ciliary precursors such as tubulin from the cytoplasm to the ciliary tip is involved in the construction of the cilium, a hairlike organelle found on most eukaryotic cells. However, the molecular mechanisms of IFT are poorly understood. Here, we found that the two core IFT proteins IFT74 and IFT81 form a tubulin-binding module and mapped the interaction to a calponin homology domain of IFT81 and a highly basic domain in IFT74. Knockdown of IFT81 and rescue experiments with point mutants showed that tubulin binding by IFT81 was required for ciliogenesis in human cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhogaraju, Sagar -- Cajanek, Lukas -- Fort, Cecile -- Blisnick, Thierry -- Weber, Kristina -- Taschner, Michael -- Mizuno, Naoko -- Lamla, Stefan -- Bastin, Philippe -- Nigg, Erich A -- Lorentzen, Esben -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1009-12. doi: 10.1126/science.1240985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990561" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Chlamydomonas reinhardtii/genetics/metabolism ; Cilia/genetics/*physiology ; Crystallography, X-Ray ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; Gene Knockdown Techniques ; Humans ; Muscle Proteins/chemistry/genetics/*metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Point Mutation ; Protein Structure, Tertiary ; Protein Transport ; RNA, Small Interfering/genetics ; Tubulin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-10-12
    Description: Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1-associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Yadong -- Li, Lei -- Macho, Alberto P -- Han, Zhifu -- Hu, Zehan -- Zipfel, Cyril -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):624-8. doi: 10.1126/science.1243825. Epub 2013 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, Beijing 100084, China, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24114786" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Antibody Complex/*chemistry ; Arabidopsis/*immunology ; Arabidopsis Proteins/*chemistry ; Crystallography, X-Ray ; Flagellin/*chemistry ; Protein Kinases/*chemistry ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-03-30
    Description: Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1-infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689846/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689846/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph -- Julien, Jean-Philippe -- Menis, Sergey -- Ota, Takayuki -- Kalyuzhniy, Oleksandr -- McGuire, Andrew -- Sok, Devin -- Huang, Po-Ssu -- MacPherson, Skye -- Jones, Meaghan -- Nieusma, Travis -- Mathison, John -- Baker, David -- Ward, Andrew B -- Burton, Dennis R -- Stamatatos, Leonidas -- Nemazee, David -- Wilson, Ian A -- Schief, William R -- 5T32AI007606-10/AI/NIAID NIH HHS/ -- AI081625/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P30 AI027767-24/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI073148/AI/NIAID NIH HHS/ -- R01 AI081625/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R37 AI033292/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 May 10;340(6133):711-6. doi: 10.1126/science.1234150. Epub 2013 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539181" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/genetics/*immunology ; Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Antigens, CD4/immunology ; B-Lymphocytes/immunology ; Crystallography, X-Ray ; DNA Mutational Analysis ; Germ Cells/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV Infections/*prevention & control ; HIV-1/*immunology ; Humans ; Macaca ; Mice ; Models, Animal ; Molecular Sequence Data ; Nanoparticles ; Protein Engineering ; Protein Structure, Tertiary ; Receptors, Antigen, B-Cell/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-11-16
    Description: The mitochondrial uniporter is a highly selective calcium channel in the organelle's inner membrane. Its molecular components include the EF-hand-containing calcium-binding proteins mitochondrial calcium uptake 1 (MICU1) and MICU2 and the pore-forming subunit mitochondrial calcium uniporter (MCU). We sought to achieve a full molecular characterization of the uniporter holocomplex (uniplex). Quantitative mass spectrometry of affinity-purified uniplex recovered MICU1 and MICU2, MCU and its paralog MCUb, and essential MCU regulator (EMRE), a previously uncharacterized protein. EMRE is a 10-kilodalton, metazoan-specific protein with a single transmembrane domain. In its absence, uniporter channel activity was lost despite intact MCU expression and oligomerization. EMRE was required for the interaction of MCU with MICU1 and MICU2. Hence, EMRE is essential for in vivo uniporter current and additionally bridges the calcium-sensing role of MICU1 and MICU2 with the calcium-conducting role of MCU.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sancak, Yasemin -- Markhard, Andrew L -- Kitami, Toshimori -- Kovacs-Bogdan, Erika -- Kamer, Kimberli J -- Udeshi, Namrata D -- Carr, Steven A -- Chaudhuri, Dipayan -- Clapham, David E -- Li, Andrew A -- Calvo, Sarah E -- Goldberger, Olga -- Mootha, Vamsi K -- DK080261/DK/NIDDK NIH HHS/ -- F32 HL107021/HL/NHLBI NIH HHS/ -- F32HL107021/HL/NHLBI NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1379-82. doi: 10.1126/science.1242993. Epub 2013 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24231807" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium Channels/chemistry/genetics/*metabolism ; Calcium-Binding Proteins/genetics/*metabolism ; Cation Transport Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; EF Hand Motifs ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Proteomics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-10
    Description: Brassinosteroids, which control plant growth and development, are sensed by the leucine-rich repeat (LRR) domain of the membrane receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1), but it is unknown how steroid binding at the cell surface activates the cytoplasmic kinase domain of the receptor. A family of somatic embryogenesis receptor kinases (SERKs) has been genetically implicated in mediating early brassinosteroid signaling events. We found a direct and steroid-dependent interaction between the BRI1 and SERK1 LRR domains by analysis of their complex crystal structure at 3.3 angstrom resolution. We show that the SERK1 LRR domain is involved in steroid sensing and, through receptor-co-receptor heteromerization, in the activation of the BRI1 signaling pathway. Our work reveals how known missense mutations in BRI1 and in SERKs modulate brassinosteroid signaling and the targeting mechanism of BRI1 receptor antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santiago, Julia -- Henzler, Christine -- Hothorn, Michael -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):889-92. doi: 10.1126/science.1242468. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tubingen 72076, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Brassinosteroids/*metabolism ; Crystallography, X-Ray ; Molecular Sequence Data ; Mutation, Missense ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Steroid/*agonists
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-01-19
    Description: Metazoan replication-dependent histone messenger RNAs (mRNAs) have a conserved stem-loop (SL) at their 3'-end. The stem-loop binding protein (SLBP) specifically recognizes the SL to regulate histone mRNA metabolism, and the 3'-5' exonuclease 3'hExo trims its 3'-end after processing. We report the crystal structure of a ternary complex of human SLBP RNA binding domain, human 3'hExo, and a 26-nucleotide SL RNA. Only one base of the SL is recognized specifically by SLBP, and the two proteins primarily recognize the shape of the RNA. SLBP and 3'hExo have no direct contact with each other, and induced structural changes in the loop of the SL mediate their cooperative binding. The 3' flanking sequence is positioned in the 3'hExo active site, but the ternary complex limits the extent of trimming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552377/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552377/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Dazhi -- Marzluff, William F -- Dominski, Zbigniew -- Tong, Liang -- GM029832/GM/NIGMS NIH HHS/ -- GM077175/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM029832/GM/NIGMS NIH HHS/ -- R01 GM077175/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):318-21. doi: 10.1126/science.1228705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329046" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; Exoribonucleases/*chemistry ; Histones/chemistry ; Humans ; Nuclear Proteins/*chemistry ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; RNA, Messenger/*chemistry ; Ternary Complex Factors/*chemistry ; mRNA Cleavage and Polyadenylation Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-11-30
    Description: Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold beta sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Leopold -- Giang, Erick -- Nieusma, Travis -- Kadam, Rameshwar U -- Cogburn, Kristin E -- Hua, Yuanzi -- Dai, Xiaoping -- Stanfield, Robyn L -- Burton, Dennis R -- Ward, Andrew B -- Wilson, Ian A -- Law, Mansun -- AI071084/AI/NIAID NIH HHS/ -- AI079031/AI/NIAID NIH HHS/ -- AI080916/AI/NIAID NIH HHS/ -- AI084817/AI/NIAID NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI071084/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R21 AI080916/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1090-4. doi: 10.1126/science.1243876.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288331" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry ; Antigens, CD81/chemistry ; Antiviral Agents/chemistry ; Binding Sites ; Crystallography, X-Ray ; Drug Design ; Epitopes/chemistry/genetics ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Mutagenesis, Site-Directed ; Protein Folding ; Protein Structure, Tertiary ; Viral Envelope Proteins/*chemistry/immunology ; Viral Hepatitis Vaccines/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulk, Arto -- Cate, Jamie H D -- R01 GM065050/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- R01-GM65050/GM/NIGMS NIH HHS/ -- R01GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1235970. doi: 10.1126/science.1235970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812721" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*enzymology ; Guanosine Triphosphate/*chemistry ; Hydrolysis ; Models, Biological ; Peptide Elongation Factor G/*chemistry ; *Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosome Subunits, Large, Bacterial/*chemistry ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-07-03
    Description: A key step of translation by the ribosome is translocation, which involves the movement of messenger RNA (mRNA) and transfer RNA (tRNA) with respect to the ribosome. This allows a new round of protein chain elongation by placing the next mRNA codon in the A site of the 30S subunit. Translocation proceeds through an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to form hybrid states. The guanosine triphosphatase (GTPase) elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. Here, we present a crystal structure at 3 angstrom resolution of the Thermus thermophilus ribosome with a tRNA in the hybrid P/E state bound to EF-G with a GTP analog. The structure provides insights into structural changes that facilitate translocation and suggests a common GTPase mechanism for EF-G and elongation factor Tu.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836249/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836249/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tourigny, David S -- Fernandez, Israel S -- Kelley, Ann C -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- U105184332/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1235490. doi: 10.1126/science.1235490.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812720" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Guanosine Triphosphate/analogs & derivatives ; Molecular Sequence Data ; Peptide Elongation Factor G/*chemistry ; *Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosomes/*chemistry ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-05-11
    Description: Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trempe, Jean-Francois -- Sauve, Veronique -- Grenier, Karl -- Seirafi, Marjan -- Tang, Matthew Y -- Menade, Marie -- Al-Abdul-Wahid, Sameer -- Krett, Jonathan -- Wong, Kathy -- Kozlov, Guennadi -- Nagar, Bhushan -- Fon, Edward A -- Gehring, Kalle -- MOP-14219/Canadian Institutes of Health Research/Canada -- MOP-62714/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Parkinson Disease ; Parkinsonian Disorders ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Rats ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-31
    Description: Eggs and oocytes have a remarkable ability to induce transcription of sperm after normal fertilization and in somatic nuclei after somatic cell nuclear transfer. This ability of eggs and oocytes is essential for normal development. Nuclear actin and actin-binding proteins have been shown to contribute to transcription, although their mode of action is elusive. Here, we find that Xenopus Wave1, previously characterized as a protein involved in actin cytoskeleton organization, is present in the oocyte nucleus and is required for efficient transcriptional reprogramming. Moreover, Wave1 knockdown in embryos results in abnormal development and defective hox gene activation. Nuclear Wave1 binds by its WHD domain to active transcription components, and this binding contributes to the action of RNA polymerase II. We identify Wave1 as a maternal reprogramming factor that also has a necessary role in gene activation in development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824084/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824084/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, Kei -- Teperek, Marta -- Yusa, Kosuke -- Allen, George E -- Bradshaw, Charles R -- Gurdon, J B -- 088333/Wellcome Trust/United Kingdom -- 089613/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- 101050/Wellcome Trust/United Kingdom -- 101050/Z/13/Z/Wellcome Trust/United Kingdom -- G1001690/1/Medical Research Council/United Kingdom -- WT077187/Wellcome Trust/United Kingdom -- WT089613/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1002-5. doi: 10.1126/science.1240376.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK. k.miyamoto@gurdon.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/metabolism ; Cellular Reprogramming/*genetics ; Female ; *Gene Expression Regulation, Developmental ; Gene Knockdown Techniques ; Genes, Homeobox ; Mice ; Nuclear Proteins/genetics/*physiology ; Oocytes/*growth & development/metabolism ; Protein Structure, Tertiary ; RNA Polymerase II/metabolism ; *Transcription, Genetic ; *Transcriptional Activation ; Wiskott-Aldrich Syndrome Protein Family/genetics/*physiology ; Xenopus Proteins/genetics/*physiology ; Xenopus laevis/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-01-19
    Description: The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) melanoma differentiation-associated protein 5 (MDA5) senses cytoplasmic viral RNA and activates antiviral innate immunity. To reveal how paramyxoviruses counteract this response, we determined the crystal structure of the MDA5 adenosine 5'-triphosphate (ATP)-hydrolysis domain in complex with the viral inhibitor V protein. The V protein unfolded the ATP-hydrolysis domain of MDA5 via a beta-hairpin motif and recognized a structural motif of MDA5 that is normally buried in the conserved helicase fold. This leads to disruption of the MDA5 ATP-hydrolysis site and prevention of RNA-bound MDA5 filament formation. The structure explains why V proteins inactivate MDA5, but not RIG-I, and mutating only two amino acids in RIG-I induces robust V protein binding. Our results suggest an inhibition mechanism of RLR signalosome formation by unfolding of receptor and inhibitor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Motz, Carina -- Schuhmann, Kerstin Monika -- Kirchhofer, Axel -- Moldt, Manuela -- Witte, Gregor -- Conzelmann, Karl-Klaus -- Hopfner, Karl-Peter -- U19AI083025/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):690-3. doi: 10.1126/science.1230949. Epub 2013 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23328395" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; DEAD-box RNA Helicases/*chemistry/genetics/*metabolism ; HEK293 Cells ; Humans ; Hydrolysis ; Immunity, Innate ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Parainfluenza Virus 5/immunology ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; RNA, Double-Stranded/*metabolism ; Signal Transduction ; Sus scrofa ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-05-25
    Description: The Ski2-like RNA helicase Brr2 is a core component of the spliceosome that must be tightly regulated to ensure correct timing of spliceosome activation. Little is known about mechanisms of regulation of Ski2-like helicases by protein cofactors. Here we show by crystal structure and biochemical analyses that the Prp8 protein, a major regulator of the spliceosome, can insert its C-terminal tail into Brr2's RNA-binding tunnel, thereby intermittently blocking Brr2's RNA-binding, adenosine triphosphatase, and U4/U6 unwinding activities. Inefficient Brr2 repression is the only recognizable phenotype associated with certain retinitis pigmentosa-linked Prp8 mutations that map to its C-terminal tail. Our data show how a Ski2-like RNA helicase can be reversibly inhibited by a protein cofactor that directly competes with RNA substrate binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mozaffari-Jovin, Sina -- Wandersleben, Traudy -- Santos, Karine F -- Will, Cindy L -- Luhrmann, Reinhard -- Wahl, Markus C -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):80-4. doi: 10.1126/science.1237515. Epub 2013 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704370" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; *Binding, Competitive ; Carrier Proteins/genetics/*metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; RNA/*metabolism ; RNA Helicases/metabolism ; RNA-Binding Proteins ; Ribonucleoprotein, U4-U6 Small Nuclear/metabolism ; Ribonucleoprotein, U5 Small Nuclear/metabolism ; Ribonucleoproteins, Small Nuclear/*antagonists & inhibitors/chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Spliceosomes/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-04-21
    Description: Prion conversion from a soluble protein to an aggregated state may be involved in the cellular adaptation of yeast to the environment. However, it remains unclear whether and how cells actively use prion conversion to acquire a fitness advantage in response to environmental stress. We identified Mod5, a yeast transfer RNA isopentenyltransferase lacking glutamine/asparagine-rich domains, as a yeast prion protein and found that its prion conversion in yeast regulated the sterol biosynthetic pathway for acquired cellular resistance against antifungal agents. Furthermore, selective pressure by antifungal drugs on yeast facilitated the de novo appearance of Mod5 prion states for cell survival. Thus, phenotypic changes caused by active prion conversion under environmental selection may contribute to cellular adaptation in living organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Genjiro -- Shimazu, Naoyuki -- Tanaka, Motomasa -- New York, N.Y. -- Science. 2012 Apr 20;336(6079):355-9. doi: 10.1126/science.1219491.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517861" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/genetics/*metabolism ; Antifungal Agents/*pharmacology ; Biosynthetic Pathways ; Crosses, Genetic ; Drug Resistance, Fungal ; Ergosterol/biosynthesis ; Fluorouracil/pharmacology ; Microbial Viability ; Prions/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Fungal/metabolism ; RNA, Transfer/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/*drug effects/genetics/*physiology ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Selection, Genetic ; Solubility ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-03-24
    Description: Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, You-Qiang -- Sugiura, Koji -- Sun, Fengyun -- Pendola, Janice K -- Cox, Gregory A -- Handel, Mary Ann -- Schimenti, John C -- Eppig, John J -- CA34196/CA/NCI NIH HHS/ -- HD42137/HD/NICHD NIH HHS/ -- P01 HD042137/HD/NICHD NIH HHS/ -- P30 CA034196/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1496-9. doi: 10.1126/science.1214680.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442484" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Breaks, Double-Stranded ; Embryonic Development ; Female ; *Fertility ; Meiosis ; Mice ; Molecular Sequence Data ; Mutation ; Oocytes/*physiology ; *Oogenesis ; Phenotype ; Protein Phosphatase 2/genetics/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Retroelements ; Transcription, Genetic ; Transcriptome ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-09-22
    Description: Cytoplasmic dynein is a microtubule-based motor required for intracellular transport and cell division. Its movement involves coupling cycles of track binding and release with cycles of force-generating nucleotide hydrolysis. How this is accomplished given the ~25 nanometers separating dynein's track- and nucleotide-binding sites is not understood. Here, we present a subnanometer-resolution structure of dynein's microtubule-binding domain bound to microtubules by cryo-electron microscopy that was used to generate a pseudo-atomic model of the complex with molecular dynamics. We identified large rearrangements triggered by track binding and specific interactions, confirmed by mutagenesis and single-molecule motility assays, which tune dynein's affinity for microtubules. Our results provide a molecular model for how dynein's binding to microtubules is communicated to the rest of the motor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redwine, William B -- Hernandez-Lopez, Rogelio -- Zou, Sirui -- Huang, Julie -- Reck-Peterson, Samara L -- Leschziner, Andres E -- 1 DP2 OD004268-1/OD/NIH HHS/ -- DP2 OD004268/OD/NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1532-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22997337" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Cryoelectron Microscopy ; Cytoplasmic Dyneins/*chemistry/metabolism ; Hydrogen Bonding ; Microtubules/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Mutagenesis ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-05-15
    Description: Poly(ADP-ribose) polymerase-1 (PARP-1) (ADP, adenosine diphosphate) has a modular domain architecture that couples DNA damage detection to poly(ADP-ribosyl)ation activity through a poorly understood mechanism. Here, we report the crystal structure of a DNA double-strand break in complex with human PARP-1 domains essential for activation (Zn1, Zn3, WGR-CAT). PARP-1 engages DNA as a monomer, and the interaction with DNA damage organizes PARP-1 domains into a collapsed conformation that can explain the strong preference for automodification. The Zn1, Zn3, and WGR domains collectively bind to DNA, forming a network of interdomain contacts that links the DNA damage interface to the catalytic domain (CAT). The DNA damage-induced conformation of PARP-1 results in structural distortions that destabilize the CAT. Our results suggest that an increase in CAT protein dynamics underlies the DNA-dependent activation mechanism of PARP-1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langelier, Marie-France -- Planck, Jamie L -- Roy, Swati -- Pascal, John M -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30CA56036/CA/NCI NIH HHS/ -- R01 GM087282/GM/NIGMS NIH HHS/ -- R01087282/PHS HHS/ -- New York, N.Y. -- Science. 2012 May 11;336(6082):728-32. doi: 10.1126/science.1216338.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, The Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582261" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; *DNA Breaks, Double-Stranded ; Enzyme Stability ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleic Acid Conformation ; Poly Adenosine Diphosphate Ribose/*metabolism ; Poly(ADP-ribose) Polymerases/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-11-28
    Description: The plasma membrane protein Orai forms the pore of the calcium release-activated calcium (CRAC) channel and generates sustained cytosolic calcium signals when triggered by depletion of calcium from the endoplasmic reticulum. The crystal structure of Orai from Drosophila melanogaster, determined at 3.35 angstrom resolution, reveals that the calcium channel is composed of a hexameric assembly of Orai subunits arranged around a central ion pore. The pore traverses the membrane and extends into the cytosol. A ring of glutamate residues on its extracellular side forms the selectivity filter. A basic region near the intracellular side can bind anions that may stabilize the closed state. The architecture of the channel differs markedly from other ion channels and gives insight into the principles of selective calcium permeation and gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695727/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695727/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hou, Xiaowei -- Pedi, Leanne -- Diver, Melinda M -- Long, Stephen B -- GM094273/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM094273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1308-13. doi: 10.1126/science.1228757. Epub 2012 Nov 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180775" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/*chemistry ; Calcium Channels/*chemistry ; Crystallography, X-Ray ; Drosophila Proteins/agonists/*chemistry ; Glutamic Acid/chemistry ; Membrane Proteins/agonists/*chemistry ; Porosity ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-06-02
    Description: The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 A resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Nian -- Chelliah, Yogarany -- Shan, Yongli -- Taylor, Clinton A -- Yoo, Seung-Hee -- Partch, Carrie -- Green, Carla B -- Zhang, Hong -- Takahashi, Joseph S -- R01 GM081875/GM/NIGMS NIH HHS/ -- R01 GM090247/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):189-94. doi: 10.1126/science.1222804. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653727" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; CLOCK Proteins/*chemistry/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm ; Crystallography, X-Ray ; DNA/metabolism ; HEK293 Cells ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-01-17
    Description: Exocytosis is essential to the lytic cycle of apicomplexan parasites and required for the pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery required for exocytosis in a Ca(2+)-dependent fashion. Here, the phenotype of a Toxoplasma gondii conditional mutant impaired in host cell invasion and egress was pinpointed to a defect in secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins. Whole-genome sequencing identified the etiological point mutation in TgDOC2.1. A conditional allele of the orthologous gene engineered into Plasmodium falciparum was also defective in microneme secretion. However, the major effect was on invasion, suggesting that microneme secretion is dispensable for Plasmodium egress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farrell, Andrew -- Thirugnanam, Sivasakthivel -- Lorestani, Alexander -- Dvorin, Jeffrey D -- Eidell, Keith P -- Ferguson, David J P -- Anderson-White, Brooke R -- Duraisingh, Manoj T -- Marth, Gabor T -- Gubbels, Marc-Jan -- AI057919/AI/NIAID NIH HHS/ -- AI081220/AI/NIAID NIH HHS/ -- AI087874/AI/NIAID NIH HHS/ -- AI088314/AI/NIAID NIH HHS/ -- HG004719/HG/NHGRI NIH HHS/ -- K08 AI087874/AI/NIAID NIH HHS/ -- K08 AI087874-02/AI/NIAID NIH HHS/ -- R01 AI057919/AI/NIAID NIH HHS/ -- R01 HG004719/HG/NHGRI NIH HHS/ -- R21 AI081220/AI/NIAID NIH HHS/ -- R21 AI088314/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):218-21. doi: 10.1126/science.1210829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246776" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/*metabolism ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; *Exocytosis ; Genes, Protozoan ; Genetic Complementation Test ; Genome, Protozoan ; Humans ; Models, Molecular ; Molecular Sequence Data ; Movement ; Mutagenesis ; Organelles/*metabolism ; Plasmodium falciparum/genetics/growth & development/physiology ; Point Mutation ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Toxoplasma/genetics/growth & development/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-08-21
    Description: Stu2p/XMAP215/Dis1 family proteins are evolutionarily conserved regulatory factors that use alphabeta-tubulin-interacting tumor overexpressed gene (TOG) domains to catalyze fast microtubule growth. Catalysis requires that these polymerases discriminate between unpolymerized and polymerized forms of alphabeta-tubulin, but the mechanism by which they do so has remained unclear. Here, we report the structure of the TOG1 domain from Stu2p bound to yeast alphabeta-tubulin. TOG1 binds alphabeta-tubulin in a way that excludes equivalent binding of a second TOG domain. Furthermore, TOG1 preferentially binds a curved conformation of alphabeta-tubulin that cannot be incorporated into microtubules, contacting alpha- and beta-tubulin surfaces that do not participate in microtubule assembly. Conformation-selective interactions with alphabeta-tubulin explain how TOG-containing polymerases discriminate between unpolymerized and polymerized forms of alphabeta-tubulin and how they selectively recognize the growing end of the microtubule.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734851/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734851/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ayaz, Pelin -- Ye, Xuecheng -- Huddleston, Patrick -- Brautigam, Chad A -- Rice, Luke M -- GM-098543/GM/NIGMS NIH HHS/ -- R01 GM098543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 17;337(6096):857-60. doi: 10.1126/science.1221698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22904013" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Expression Regulation, Neoplastic ; Genes, Neoplasm ; Microtubule-Associated Proteins/*chemistry/genetics ; Microtubules/*enzymology ; Polymerization ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics ; Tubulin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-09-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Babu, M Madan -- Kriwacki, Richard W -- Pappu, Rohit V -- MC_U105185859/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1460-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. madanm@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22997313" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Computer Simulation ; Evolution, Molecular ; Mutation ; Protein Binding ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-05-26
    Description: Crystal structure analyses for biological macromolecules without known structural relatives entail solving the crystallographic phase problem. Typical de novo phase evaluations depend on incorporating heavier atoms than those found natively; most commonly, multi- or single-wavelength anomalous diffraction (MAD or SAD) experiments exploit selenomethionyl proteins. Here, we realize routine structure determination using intrinsic anomalous scattering from native macromolecules. We devised robust procedures for enhancing the signal-to-noise ratio in the slight anomalous scattering from generic native structures by combining data measured from multiple crystals at lower-than-usual x-ray energy. Using this multicrystal SAD method (5 to 13 equivalent crystals), we determined structures at modest resolution (2.8 to 2.3 angstroms) for native proteins varying in size (127 to 1148 unique residues) and number of sulfur sites (3 to 28). With no requirement for heavy-atom incorporation, such experiments provide an attractive alternative to selenomethionyl SAD experiments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Qun -- Dahmane, Tassadite -- Zhang, Zhen -- Assur, Zahra -- Brasch, Julia -- Shapiro, Lawrence -- Mancia, Filippo -- Hendrickson, Wayne A -- GM034102/GM/NIGMS NIH HHS/ -- GM062270/GM/NIGMS NIH HHS/ -- GM095315/GM/NIGMS NIH HHS/ -- R01 GM034102/GM/NIGMS NIH HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1033-7. doi: 10.1126/science.1218753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628655" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Crystallography, X-Ray/*methods ; Data Interpretation, Statistical ; GPI-Linked Proteins/chemistry ; Models, Molecular ; Nerve Tissue Proteins/chemistry ; *Protein Conformation ; Protein Kinases/chemistry ; Protein Structure, Tertiary ; Proteins/*chemistry ; Selenomethionine/chemistry ; Signal-To-Noise Ratio ; Sulfur/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-06-02
    Description: Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Tingting -- Liu, Zixu -- Song, Chuanjun -- Hu, Yunfei -- Han, Zhifu -- She, Ji -- Fan, Fangfang -- Wang, Jiawei -- Jin, Changwen -- Chang, Junbiao -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1160-4. doi: 10.1126/science.1218867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654057" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/immunology/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Chitin/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Plants, Genetically Modified ; Protein Multimerization ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/*chemistry/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-04-14
    Description: The mechanism of ion channel voltage gating-how channels open and close in response to voltage changes-has been debated since Hodgkin and Huxley's seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, we show how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD-pore linker, perturbing linker-S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. We propose a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jensen, Morten O -- Jogini, Vishwanath -- Borhani, David W -- Leffler, Abba E -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D E Shaw Research, New York, NY 10036, USA. morten.jensen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hydrophobic and Hydrophilic Interactions ; *Ion Channel Gating ; Kv1.2 Potassium Channel/*chemistry/*metabolism ; Membrane Potentials ; Models, Biological ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Shab Potassium Channels/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-03-01
    Description: The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs as the free-energy barrier between two states is crossed. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding, we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Forster resonance energy transfer experiments. Whereas the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by a factor of less than 5, which shows that a fast- and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- McHale, Kevin -- Louis, John M -- Eaton, William A -- Z99 DK999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):981-4. doi: 10.1126/science.1215768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA. chunghoi@niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363011" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Carrier Proteins/*chemistry ; Fluorescence Resonance Energy Transfer ; Kinetics ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Photons ; Protein Conformation ; *Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-06-02
    Description: C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by gamma-secretase to release the amyloid-beta polypeptides, which are associated with Alzheimer's disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded "N-helix" followed by a short "N-loop" connecting to the transmembrane domain (TMD). The TMD is a flexibly curved alpha helix, making it well suited for processive cleavage by gamma-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer's therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528355/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528355/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrett, Paul J -- Song, Yuanli -- Van Horn, Wade D -- Hustedt, Eric J -- Schafer, Johanna M -- Hadziselimovic, Arina -- Beel, Andrew J -- Sanders, Charles R -- F31 NS077681/NS/NINDS NIH HHS/ -- P01 GM080513/GM/NIGMS NIH HHS/ -- T32 GM008320/GM/NIGMS NIH HHS/ -- T32 GM08320/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1168-71. doi: 10.1126/science.1219988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654059" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amyloid beta-Protein Precursor/*chemistry/genetics/*metabolism ; Binding Sites ; Cholesterol/*metabolism ; Electron Spin Resonance Spectroscopy ; Humans ; Micelles ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-03-17
    Description: In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377438/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377438/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagnon, Matthieu G -- Seetharaman, Sai V -- Bulkley, David -- Steitz, Thomas A -- GM022778/GM/NIGMS NIH HHS/ -- P01 GM022778/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1370-2. doi: 10.1126/science.1217443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422986" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carboxylic Ester Hydrolases/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal/chemistry/metabolism ; RNA, Transfer, Amino Acyl/chemistry/metabolism ; RNA, Transfer, Met/chemistry/metabolism ; Ribosome Subunits, Large, Bacterial/chemistry/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism ; Ribosomes/*chemistry/metabolism ; Thermus thermophilus/*chemistry/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-05-26
    Description: Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westfall, Corey S -- Zubieta, Chloe -- Herrmann, Jonathan -- Kapp, Ulrike -- Nanao, Max H -- Jez, Joseph M -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1708-11. doi: 10.1126/science.1221863. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Washington University, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628555" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis ; Arabidopsis Proteins/*chemistry/metabolism ; Benzoates/chemistry ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry ; Indoleacetic Acids/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleotidyltransferases/*chemistry/metabolism ; Oxylipins/chemistry ; Plant Growth Regulators/chemistry/metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-12-01
    Description: Placental development and genomic imprinting coevolved with parental conflict over resource distribution to mammalian offspring. The imprinted genes IGF2 and IGF2R code for the growth promoter insulin-like growth factor 2 (IGF2) and its inhibitor, mannose 6-phosphate (M6P)/IGF2 receptor (IGF2R), respectively. M6P/IGF2R of birds and fish do not recognize IGF2. In monotremes, which lack imprinting, IGF2 specifically bound M6P/IGF2R via a hydrophobic CD loop. We show that the DNA coding the CD loop in monotremes functions as an exon splice enhancer (ESE) and that structural evolution of binding site loops (AB, HI, FG) improved therian IGF2 affinity. We propose that ESE evolution led to the fortuitous acquisition of IGF2 binding by M6P/IGF2R that drew IGF2R into parental conflict; subsequent imprinting may then have accelerated affinity maturation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658703/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658703/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Christopher -- Hoppe, Hans-Jurgen -- Rezgui, Dellel -- Strickland, Madeleine -- Forbes, Briony E -- Grutzner, Frank -- Frago, Susana -- Ellis, Rosamund Z -- Wattana-Amorn, Pakorn -- Prince, Stuart N -- Zaccheo, Oliver J -- Nolan, Catherine M -- Mungall, Andrew J -- Jones, E Yvonne -- Crump, Matthew P -- Hassan, A Bassim -- 082352/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 9891/Cancer Research UK/United Kingdom -- A13295/Cancer Research UK/United Kingdom -- A9891/Cancer Research UK/United Kingdom -- C375/Cancer Research UK/United Kingdom -- C429/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1209-13. doi: 10.1126/science.1228633.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic and Biological Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197533" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Conserved Sequence ; Enhancer Elements, Genetic/*genetics ; *Evolution, Molecular ; *Exons ; Genomic Imprinting ; Humans ; Insulin-Like Growth Factor II/*chemistry/classification/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Receptor, IGF Type 2/*chemistry/classification/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-03-17
    Description: Neurotransmitters are released through nascent fusion pores, which ordinarily dilate after bilayer fusion, preventing consistent biochemical studies. We used lipid bilayer nanodiscs as fusion partners; their rigid protein framework prevents dilation and reveals properties of the fusion pore induced by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). We found that although only one SNARE per nanodisc is required for maximum rates of bilayer fusion, efficient release of content on the physiologically relevant time scale of synaptic transmission apparently requires three or more SNARE complexes (SNAREpins) and the native transmembrane domain of vesicle-associated membrane protein 2 (VAMP2). We suggest that several SNAREpins simultaneously zippering their SNARE transmembrane helices within the freshly fused bilayers provide a radial force that prevents the nascent pore from resealing during synchronous neurotransmitter release.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Lei -- Shen, Qing-Tao -- Kiel, Alexander -- Wang, Jing -- Wang, Hong-Wei -- Melia, Thomas J -- Rothman, James E -- Pincet, Frederic -- R01 DK027044/DK/NIDDK NIH HHS/ -- R37 DK027044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1355-9. doi: 10.1126/science.1214984.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Diffusion ; *Lipid Bilayers ; Liposomes ; *Membrane Fusion ; Membrane Proteins/chemistry/metabolism ; Mice ; Neurotransmitter Agents/metabolism ; Protein Structure, Tertiary ; Proteolipids/chemistry ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; SNARE Proteins/*chemistry/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/*chemistry/metabolism ; Synaptosomal-Associated Protein 25/chemistry/metabolism ; Syntaxin 1/chemistry/metabolism ; Vesicle-Associated Membrane Protein 2/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-02-04
    Description: Resistance of nematodes to anthelmintics such as avermectins has emerged as a major global health and agricultural problem, but genes conferring natural resistance to avermectins are unknown. We show that a naturally occurring four-amino-acid deletion in the ligand-binding domain of GLC-1, the alpha-subunit of a glutamate-gated chloride channel, confers resistance to avermectins in the model nematode Caenorhabditis elegans. We also find that the same variant confers resistance to the avermectin-producing bacterium Streptomyces avermitilis. Population-genetic analyses identified two highly divergent haplotypes at the glc-1 locus that have been maintained at intermediate frequencies by long-term balancing selection. These results implicate variation in glutamate-gated chloride channels in avermectin resistance and provide a mechanism by which such resistance can be maintained.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273849/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273849/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, Rajarshi -- Andersen, Erik C -- Shapiro, Joshua A -- Gerke, Justin P -- Kruglyak, Leonid -- P50-GM071508/GM/NIGMS NIH HHS/ -- R01 HG004321/HG/NHGRI NIH HHS/ -- R01 HG004321-03/HG/NHGRI NIH HHS/ -- R01-HG004321/HG/NHGRI NIH HHS/ -- R37- MH59520/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 3;335(6068):574-8. doi: 10.1126/science.1214318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lewis-Sigler Institute for Integrative Genomics, Department of Ecology and Evolutionary Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22301316" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Antinematodal Agents/*pharmacology ; Caenorhabditis elegans/*drug effects/*genetics/physiology ; Caenorhabditis elegans Proteins/chemistry/*genetics/metabolism ; Chloride Channels/chemistry/*genetics/metabolism ; Crosses, Genetic ; Drug Resistance/genetics ; Genes, Helminth ; Genome-Wide Association Study ; Ivermectin/*analogs & derivatives/*pharmacology ; Ligands ; Molecular Sequence Data ; Mutation ; Polymorphism, Single Nucleotide ; Protein Structure, Tertiary ; Quantitative Trait Loci ; Selection, Genetic ; Streptomyces/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-07-28
    Description: The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677224/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677224/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Devendra -- Chan, Joseph Minhow -- Zoppoli, Pietro -- Niola, Francesco -- Sullivan, Ryan -- Castano, Angelica -- Liu, Eric Minwei -- Reichel, Jonathan -- Porrati, Paola -- Pellegatta, Serena -- Qiu, Kunlong -- Gao, Zhibo -- Ceccarelli, Michele -- Riccardi, Riccardo -- Brat, Daniel J -- Guha, Abhijit -- Aldape, Ken -- Golfinos, John G -- Zagzag, David -- Mikkelsen, Tom -- Finocchiaro, Gaetano -- Lasorella, Anna -- Rabadan, Raul -- Iavarone, Antonio -- 1R01LM010140-01/LM/NLM NIH HHS/ -- R01 CA085628/CA/NCI NIH HHS/ -- R01 CA101644/CA/NCI NIH HHS/ -- R01 CA127643/CA/NCI NIH HHS/ -- R01 CA131126/CA/NCI NIH HHS/ -- R01 LM010140/LM/NLM NIH HHS/ -- R01 NS061776/NS/NINDS NIH HHS/ -- R01CA085628/CA/NCI NIH HHS/ -- R01CA101644/CA/NCI NIH HHS/ -- R01CA127643/CA/NCI NIH HHS/ -- R01CA131126/CA/NCI NIH HHS/ -- R01NS061776/NS/NINDS NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 CA121852-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1231-5. doi: 10.1126/science.1220834. Epub 2012 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837387" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Animals ; Antineoplastic Agents/pharmacology ; Benzamides/pharmacology ; Brain Neoplasms/genetics/metabolism ; *Cell Transformation, Neoplastic ; Chromosomal Instability ; Enzyme Inhibitors/pharmacology ; Fetal Proteins/chemistry/*genetics/metabolism ; Glioblastoma/*genetics/metabolism ; Humans ; Mice ; Microtubule-Associated Proteins/chemistry/*genetics/metabolism ; Mitosis ; Neoplasm Transplantation ; Nuclear Proteins/chemistry/*genetics/metabolism ; Oncogene Fusion ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Piperazines/pharmacology ; Protein Structure, Tertiary ; Pyrazoles/pharmacology ; Pyrimidines/pharmacology ; Receptor, Fibroblast Growth Factor, Type 1/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Receptor, Fibroblast Growth Factor, Type 3/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Spindle Apparatus/metabolism ; Translocation, Genetic ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-02-04
    Description: Eukaryotic secretory proteins exit the endoplasmic reticulum (ER) via transport vesicles generated by the essential coat protein complex II (COPII) proteins. The outer coat complex, Sec13-Sec31, forms a scaffold that is thought to enforce curvature. By exploiting yeast bypass-of-sec-thirteen (bst) mutants, where Sec13p is dispensable, we probed the relationship between a compromised COPII coat and the cellular context in which it could still function. Genetic and biochemical analyses suggested that Sec13p was required to generate vesicles from membranes that contained asymmetrically distributed cargoes that were likely to confer opposing curvature. Thus, Sec13p may rigidify the COPII cage and increase its membrane-bending capacity; this function could be bypassed when a bst mutation renders the membrane more deformable.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306526/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306526/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Copic, Alenka -- Latham, Catherine F -- Horlbeck, Max A -- D'Arcangelo, Jennifer G -- Miller, Elizabeth A -- GM078186/GM/NIGMS NIH HHS/ -- GM085089/GM/NIGMS NIH HHS/ -- R01 GM078186/GM/NIGMS NIH HHS/ -- R01 GM078186-05/GM/NIGMS NIH HHS/ -- R01 GM085089/GM/NIGMS NIH HHS/ -- R01 GM085089-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1359-62. doi: 10.1126/science.1215909. Epub 2012 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22300850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; COP-Coated Vesicles/*chemistry/metabolism/ultrastructure ; Endoplasmic Reticulum/*metabolism ; Genes, Fungal ; Models, Biological ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein Transport ; Saccharomyces cerevisiae/genetics/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Vesicular Transport Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-12-15
    Description: Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Kexin -- Wu, Zhenhua Jeremy -- Groner, Anna C -- He, Housheng Hansen -- Cai, Changmeng -- Lis, Rosina T -- Wu, Xiaoqiu -- Stack, Edward C -- Loda, Massimo -- Liu, Tao -- Xu, Han -- Cato, Laura -- Thornton, James E -- Gregory, Richard I -- Morrissey, Colm -- Vessella, Robert L -- Montironi, Rodolfo -- Magi-Galluzzi, Cristina -- Kantoff, Philip W -- Balk, Steven P -- Liu, X Shirley -- Brown, Myles -- CA090381/CA/NCI NIH HHS/ -- CA097186/CA/NCI NIH HHS/ -- CA111803/CA/NCI NIH HHS/ -- CA131945/CA/NCI NIH HHS/ -- CA166507/CA/NCI NIH HHS/ -- CA85859/CA/NCI NIH HHS/ -- CA89021/CA/NCI NIH HHS/ -- CA90381/CA/NCI NIH HHS/ -- GM99409/GM/NIGMS NIH HHS/ -- K99 CA166507/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- R01 GM099409/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1465-9. doi: 10.1126/science.1227604.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239736" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Castration ; Cell Line, Tumor ; Cohort Studies ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Humans ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Male ; Methyltransferases/chemistry/genetics/metabolism ; Mice ; Mice, Inbred ICR ; Mice, SCID ; Oncogene Proteins/genetics/*metabolism ; Polycomb Repressive Complex 2/genetics/*metabolism ; Prostatic Neoplasms/genetics/*metabolism/mortality ; Protein Structure, Tertiary ; Receptors, Androgen/metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-02-11
    Description: DNMT1, the major maintenance DNA methyltransferase in animals, helps to regulate gene expression, genome imprinting, and X-chromosome inactivation. We report on the crystal structure of a productive covalent mouse DNMT1(731-1602)-DNA complex containing a central hemimethylated CpG site. The methyl group of methylcytosine is positioned within a shallow hydrophobic concave surface, whereas the cytosine on the target strand is looped out and covalently anchored within the catalytic pocket. The DNA is distorted at the hemimethylated CpG step, with side chains from catalytic and recognition loops inserting through both grooves to fill an intercalation-type cavity associated with a dual base flip-out on partner strands. Structural and biochemical data establish how a combination of active and autoinhibitory mechanisms ensures the high fidelity of DNMT1-mediated maintenance DNA methylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693633/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693633/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Jikui -- Teplova, Marianna -- Ishibe-Murakami, Satoko -- Patel, Dinshaw J -- P30 CA008748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):709-12. doi: 10.1126/science.1214453.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323818" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/chemistry/metabolism ; Animals ; Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA (Cytosine-5-)-Methyltransferase/*chemistry/genetics/*metabolism ; *DNA Methylation ; Dinucleoside Phosphates/chemistry ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-02-11
    Description: In its physiological state, cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIbeta(2):C(2) holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the beta4-beta5 loop in the RIIbeta subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIbeta subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIbeta tetramer differs appreciably from our model of the RIalpha tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ping -- Smith-Nguyen, Eric V -- Keshwani, Malik M -- Deal, Michael S -- Kornev, Alexandr P -- Taylor, Susan S -- GM34921/GM/NIGMS NIH HHS/ -- R01 GM034921/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):712-6. doi: 10.1126/science.1213979.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0654, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323819" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*chemistry/*metabolism ; Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/*chemistry/*metabolism ; Holoenzymes/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Folding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-06-16
    Description: Active DNA demethylation is an important part of epigenetic regulation in plants and animals. How active DNA demethylation is regulated and its relationship with histone modification patterns are unclear. Here, we report the discovery of IDM1, a regulator of DNA demethylation in Arabidopsis. IDM1 is required for preventing DNA hypermethylation of highly homologous multicopy genes and other repetitive sequences that are normally targeted for active DNA demethylation by Repressor of Silencing 1 and related 5-methylcytosine DNA glycosylases. IDM1 binds methylated DNA at chromatin sites lacking histone H3K4 di- or trimethylation and acetylates H3 to create a chromatin environment permissible for 5-methylcytosine DNA glycosylases to function. Our study reveals how some genes are indicated by multiple epigenetic marks for active DNA demethylation and protection from silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qian, Weiqiang -- Miki, Daisuke -- Zhang, Heng -- Liu, Yunhua -- Zhang, Xi -- Tang, Kai -- Kan, Yunchao -- La, Honggui -- Li, Xiaojie -- Li, Shaofang -- Zhu, Xiaohong -- Shi, Xiaobing -- Zhang, Kangling -- Pontes, Olga -- Chen, Xuemei -- Liu, Renyi -- Gong, Zhizhong -- Zhu, Jian-Kang -- R01 GM059138/GM/NIGMS NIH HHS/ -- R01 GM070795/GM/NIGMS NIH HHS/ -- R01GM059138/GM/NIGMS NIH HHS/ -- R01GM070795/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1445-8. doi: 10.1126/science.1219416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700931" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Arabidopsis/*genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Chromatin/metabolism ; DNA Glycosylases/metabolism ; *DNA Methylation ; DNA, Plant/*metabolism ; Gene Silencing ; Genes, Plant ; Histone Acetyltransferases/chemistry/genetics/*metabolism ; Histones/metabolism ; Methylation ; Mutation ; Nuclear Proteins/genetics/metabolism ; Protein Structure, Tertiary ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-01-28
    Description: TRAAK channels, members of the two-pore domain K(+) (potassium ion) channel family K2P, are expressed almost exclusively in the nervous system and control the resting membrane potential. Their gating is sensitive to polyunsaturated fatty acids, mechanical deformation of the membrane, and temperature changes. Physiologically, these channels appear to control the noxious input threshold for temperature and pressure sensitivity in dorsal root ganglia neurons. We present the crystal structure of human TRAAK at a resolution of 3.8 angstroms. The channel comprises two protomers, each containing two distinct pore domains, which create a two-fold symmetric K(+) channel. The extracellular surface features a helical cap, 35 angstroms tall, that creates a bifurcated pore entryway and accounts for the insensitivity of two-pore domain K(+) channels to inhibitory toxins. Two diagonally opposed gate-forming inner helices form membrane-interacting structures that may underlie this channel's sensitivity to chemical and mechanical properties of the cell membrane.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brohawn, Stephen G -- del Marmol, Josefina -- MacKinnon, Roderick -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):436-41. doi: 10.1126/science.1213808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282805" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Cell Membrane/chemistry/physiology ; Cricetinae ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ion Channel Gating ; Lipid Bilayers/chemistry ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channel Blockers/pharmacology ; Potassium Channels/*chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-03-10
    Description: Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein alphaB crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: beta-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the beta-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laganowsky, Arthur -- Liu, Cong -- Sawaya, Michael R -- Whitelegge, Julian P -- Park, Jiyong -- Zhao, Minglei -- Pensalfini, Anna -- Soriaga, Angela B -- Landau, Meytal -- Teng, Poh K -- Cascio, Duilio -- Glabe, Charles -- Eisenberg, David -- 016570/PHS HHS/ -- 1R01-AG029430/AG/NIA NIH HHS/ -- 5T32GM008496/GM/NIGMS NIH HHS/ -- P50 AG016570/AG/NIA NIH HHS/ -- R01 AG029430/AG/NIA NIH HHS/ -- R01 AG033069/AG/NIA NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1228-31. doi: 10.1126/science.1213151.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California Los Angeles (UCLA), Howard Hughes Medical Institute (HHMI), Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyloid/*chemistry/immunology ; Amyloid beta-Peptides/chemistry ; Antibodies/immunology ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Peptide Fragments/*chemistry/immunology ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; alpha-Crystallin B Chain/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-01-28
    Description: Two-pore domain potassium (K(+)) channels (K2P channels) control the negative resting potential of eukaryotic cells and regulate cell excitability by conducting K(+) ions across the plasma membrane. Here, we present the 3.4 angstrom resolution crystal structure of a human K2P channel, K2P1 (TWIK-1). Unlike other K(+) channel structures, K2P1 is dimeric. An extracellular cap domain located above the selectivity filter forms an ion pathway in which K(+) ions flow through side portals. Openings within the transmembrane region expose the pore to the lipid bilayer and are filled with electron density attributable to alkyl chains. An interfacial helix appears structurally poised to affect gating. The structure lays a foundation to further investigate how K2P channels are regulated by diverse stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Alexandria N -- Long, Stephen B -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):432-6. doi: 10.1126/science.1213274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282804" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Humans ; Ion Channel Gating ; Lipid Bilayers/chemistry ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/*chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-06-02
    Description: Designing protein molecules that will assemble into various kinds of ordered materials represents an important challenge in nanotechnology. We report the crystal structure of a 12-subunit protein cage that self-assembles by design to form a tetrahedral structure roughly 16 nanometers in diameter. The strategy of fusing together oligomeric protein domains can be generalized to produce other kinds of cages or extended materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lai, Yen-Ting -- Cascio, Duilio -- Yeates, Todd O -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1129. doi: 10.1126/science.1219351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California Los Angeles Biomedical Engineering Interdepartmental Program, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654051" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Models, Molecular ; Peroxidases/*chemistry ; Protein Conformation ; *Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Proteins/*chemistry ; Viral Matrix Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-06-02
    Description: Wnts are lipid-modified morphogens that play critical roles in development principally through engagement of Frizzled receptors. The 3.25 angstrom structure of Xenopus Wnt8 (XWnt8) in complex with mouse Frizzled-8 (Fz8) cysteine-rich domain (CRD) reveals an unusual two-domain Wnt structure, not obviously related to known protein folds, resembling a "hand" with "thumb" and "index" fingers extended to grasp the Fz8-CRD at two distinct binding sites. One site is dominated by a palmitoleic acid lipid group projecting from serine 187 at the tip of Wnt's thumb into a deep groove in the Fz8-CRD. In the second binding site, the conserved tip of Wnt's "index finger" forms hydrophobic amino acid contacts with a depression on the opposite side of the Fz8-CRD. The conservation of amino acids in both interfaces appears to facilitate ligand-receptor cross-reactivity, which has important implications for understanding Wnt's functional pleiotropy and for developing Wnt-based drugs for cancer and regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Waghray, Deepa -- Levin, Aron M -- Thomas, Christoph -- Garcia, K Christopher -- R01 GM097015/GM/NIGMS NIH HHS/ -- R01-GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):59-64. doi: 10.1126/science.1222879. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653731" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cysteine/chemistry ; Fatty Acids, Monounsaturated/chemistry ; Glycosylation ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism ; Wnt Proteins/*chemistry/metabolism ; Wnt Signaling Pathway ; Xenopus Proteins/*chemistry/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-04-28
    Description: Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521581/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521581/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schirle, Nicole T -- MacRae, Ian J -- R01 GM086701/GM/NIGMS NIH HHS/ -- U54 GM074898/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Argonaute Proteins/*chemistry/metabolism ; Base Pairing ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; MicroRNAs/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA Interference ; RNA, Guide/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-03-31
    Description: Transcription termination is emerging as an important component of gene regulation necessary to partition the genome and minimize transcriptional interference. We have discovered a role for the Arabidopsis RNA silencing enzyme DICER-LIKE 4 (DCL4) in transcription termination of an endogenous Arabidopsis gene, FCA. DCL4 directly associates with FCA chromatin in the 3' region and promotes cleavage of the nascent transcript in a domain downstream of the canonical polyA site. In a dcl4 mutant, the resulting transcriptional read-through triggers an RNA interference-mediated gene silencing of a transgene containing the same 3' region. We conclude that DCL4 promotes transcription termination of the Arabidopsis FCA gene, reducing the amount of aberrant RNA produced from the locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Fuquan -- Bakht, Saleha -- Dean, Caroline -- BB/D010799/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G01406X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1621-3. doi: 10.1126/science.1214402.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461611" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/*genetics/metabolism ; Base Sequence ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; *Gene Expression Regulation, Plant ; MADS Domain Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Polyadenylation ; Protein Structure, Tertiary ; RNA Interference ; RNA, Messenger/genetics/metabolism ; RNA, Plant/*genetics/metabolism ; RNA-Binding Proteins/*genetics/metabolism ; Ribonuclease III/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-09-08
    Description: Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1alpha subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1alpha phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Novarino, Gaia -- El-Fishawy, Paul -- Kayserili, Hulya -- Meguid, Nagwa A -- Scott, Eric M -- Schroth, Jana -- Silhavy, Jennifer L -- Kara, Majdi -- Khalil, Rehab O -- Ben-Omran, Tawfeg -- Ercan-Sencicek, A Gulhan -- Hashish, Adel F -- Sanders, Stephan J -- Gupta, Abha R -- Hashem, Hebatalla S -- Matern, Dietrich -- Gabriel, Stacey -- Sweetman, Larry -- Rahimi, Yasmeen -- Harris, Robert A -- State, Matthew W -- Gleeson, Joseph G -- K08 MH087639/MH/NIMH NIH HHS/ -- K08MH087639/MH/NIMH NIH HHS/ -- P01 HD070494/HD/NICHD NIH HHS/ -- P01HD070494/HD/NICHD NIH HHS/ -- P30 NS047101/NS/NINDS NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R01 NS041537/NS/NINDS NIH HHS/ -- R01 NS048453/NS/NINDS NIH HHS/ -- R01NS048453/NS/NINDS NIH HHS/ -- R25 MH077823/MH/NIMH NIH HHS/ -- RC2 MH089956/MH/NIMH NIH HHS/ -- RC2MH089956/MH/NIMH NIH HHS/ -- T32MH018268/MH/NIMH NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):394-7. doi: 10.1126/science.1224631. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. gnovarino@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956686" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/*administration & ; dosage/deficiency/*genetics ; Adolescent ; Amino Acids, Branched-Chain/administration & dosage/blood/deficiency ; Animals ; Arginine/genetics ; Autistic Disorder/*diet therapy/enzymology/*genetics ; Base Sequence ; Brain/metabolism ; Child ; Child, Preschool ; Diet ; Epilepsy/*diet therapy/enzymology/*genetics ; Female ; Homozygote ; Humans ; Intellectual Disability/diet therapy/enzymology/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Pedigree ; Phosphorylation ; Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-09-18
    Description: A specifically patterned cell wall is a determinant of plant cell shape. Yet, the precise mechanisms that underlie initiation of cell wall patterning remain elusive. By using a reconstitution assay, we revealed that ROPGEF4 (Rho of plant guanine nucleotide exchange factor 4) and ROPGAP3 [ROP guanosine triphosphatase (GTPase)-activating protein 3] mediate local activation of the plant Rho GTPase ROP11 to initiate distinct pattern of secondary cell walls in xylem cells. The activated ROP11 recruits MIDD1 to induce local disassembly of cortical microtubules. Conversely, cortical microtubules eliminate active ROP11 from the plasma membrane through MIDD1. Such a mutual inhibitory interaction between active ROP domains and cortical microtubules establishes the distinct pattern of secondary cell walls. This Rho-based regulatory mechanism shows how plant cells initiate and control cell wall patterns to form various cell shapes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, Yoshihisa -- Fukuda, Hiroo -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1333-6. doi: 10.1126/science.1222597.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. oda@biol.s.u-tokyo.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22984069" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/chemistry/*cytology/enzymology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; *Cell Shape ; Cell Wall/*chemistry/enzymology ; GTPase-Activating Proteins/chemistry/genetics/*metabolism ; Guanine Nucleotide Exchange Factors/chemistry/genetics/*metabolism ; Microtubule-Associated Proteins/chemistry/genetics/*metabolism ; Microtubules/chemistry/*enzymology ; Protein Structure, Tertiary ; Xylem/chemistry/*cytology/enzymology ; rho GTP-Binding Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-05-19
    Description: Calcium uptake into mitochondria occurs via a recently identified ion channel called the uniporter. Here, we characterize the phylogenomic distribution of the uniporter's membrane-spanning pore subunit (MCU) and regulatory partner (MICU1). Homologs of both components tend to co-occur in all major branches of eukaryotic life, but both have been lost along certain protozoan and fungal lineages. Several bacterial genomes also contain putative MCU homologs that may represent prokaryotic calcium channels. The analyses indicate that the uniporter may have been an early feature of mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bick, Alexander G -- Calvo, Sarah E -- Mootha, Vamsi K -- R01 GM077465/GM/NIGMS NIH HHS/ -- R01 GM097136/GM/NIGMS NIH HHS/ -- R01GM077465/GM/NIGMS NIH HHS/ -- R01GM097136/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007753-33/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 18;336(6083):886. doi: 10.1126/science.1214977.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22605770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*chemistry/genetics/metabolism ; Bacterial Proteins/chemistry/genetics ; Calcium Channels/*chemistry/genetics ; Calcium-Binding Proteins/chemistry/genetics ; Cation Transport Proteins/chemistry/genetics ; Eukaryota/*chemistry/genetics/metabolism ; *Evolution, Molecular ; Genome ; Humans ; Mitochondria/*chemistry ; Mitochondrial Membrane Transport Proteins/*chemistry/genetics ; Phylogeny ; Protein Structure, Tertiary ; Proteome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-03-01
    Description: Death is a vital developmental cell fate. In Caenorhabditis elegans, programmed death of the linker cell, which leads gonadal elongation, proceeds independently of caspases and apoptotic effectors. To identify genes promoting linker-cell death, we performed a genome-wide RNA interference screen. We show that linker-cell death requires the gene pqn-41, encoding an endogenous polyglutamine-repeat protein. pqn-41 functions cell-autonomously and is expressed at the onset of linker-cell death. pqn-41 expression is controlled by the mitogen-activated protein kinase kinase SEK-1, which functions in parallel to the zinc-finger protein LIN-29 to promote cellular demise. Linker-cell death is morphologically similar to cell death associated with normal vertebrate development and polyglutamine-induced neurodegeneration. Our results may therefore provide molecular inroads to understanding nonapoptotic cell death in metazoan development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blum, Elyse S -- Abraham, Mary C -- Yoshimura, Satoshi -- Lu, Yun -- Shaham, Shai -- CA09673/CA/NCI NIH HHS/ -- R01 HD042680/HD/NICHD NIH HHS/ -- R01HD042680/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):970-3. doi: 10.1126/science.1215156.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363008" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Caenorhabditis elegans/*cytology/genetics/growth & development/*metabolism ; Caenorhabditis elegans Proteins/chemistry/*genetics/*metabolism ; *Cell Death ; Cell Nucleus/ultrastructure ; Cell Survival ; DNA-Binding Proteins/genetics/metabolism ; Gene Expression Regulation ; Genes, Helminth ; Genome, Helminth ; MAP Kinase Kinase 4/genetics/metabolism ; Male ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Peptides/chemistry ; Protein Structure, Tertiary ; RNA Interference ; Sequence Deletion ; Transcription Factors/genetics/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-05-19
    Description: Eubacteria inactivate their ribosomes as 100S dimers or 70S monomers upon entry into stationary phase. In Escherichia coli, 100S dimer formation is mediated by ribosome modulation factor (RMF) and hibernation promoting factor (HPF), or alternatively, the YfiA protein inactivates ribosomes as 70S monomers. Here, we present high-resolution crystal structures of the Thermus thermophilus 70S ribosome in complex with each of these stationary-phase factors. The binding site of RMF overlaps with that of the messenger RNA (mRNA) Shine-Dalgarno sequence, which prevents the interaction between the mRNA and the 16S ribosomal RNA. The nearly identical binding sites of HPF and YfiA overlap with those of the mRNA, transfer RNA, and initiation factors, which prevents translation initiation. The binding of RMF and HPF, but not YfiA, to the ribosome induces a conformational change of the 30S head domain that promotes 100S dimer formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377384/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377384/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polikanov, Yury S -- Blaha, Gregor M -- Steitz, Thomas A -- GM022778/GM/NIGMS NIH HHS/ -- P01 GM022778/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 May 18;336(6083):915-8. doi: 10.1126/science.1218538.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22605777" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*biosynthesis ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Peptide Chain Initiation, Translational ; Prokaryotic Initiation Factors/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal, 16S/chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/ultrastructure ; Thermus thermophilus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...