ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-02
    Description: We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method can be used to design a wide variety of self-assembling protein nanomaterials.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138882/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138882/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Neil P -- Sheffler, William -- Sawaya, Michael R -- Vollmar, Breanna S -- Sumida, John P -- Andre, Ingemar -- Gonen, Tamir -- Yeates, Todd O -- Baker, David -- RR-15301/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1171-4. doi: 10.1126/science.1219364.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654060" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatography, Gel ; Cloning, Molecular ; Computational Biology ; Computer Simulation ; Crystallography, X-Ray ; Escherichia coli/genetics/metabolism ; Hydrogen Bonding ; Microscopy, Electron ; Models, Molecular ; Molecular Weight ; Mutation ; *Nanostructures ; *Protein Engineering ; *Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/*chemistry/genetics ; Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-30
    Description: The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Neil P -- Bale, Jacob B -- Sheffler, William -- McNamara, Dan E -- Gonen, Shane -- Gonen, Tamir -- Yeates, Todd O -- Baker, David -- T32 GM067555/GM/NIGMS NIH HHS/ -- T32GM067555/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):103-8. doi: 10.1038/nature13404. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2]. ; UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; 1] UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA [2] UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, USA [3] UCLA Molecular Biology Institute, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870237" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Crystallography, X-Ray ; Drug Design ; Models, Molecular ; Nanostructures/*chemistry/ultrastructure ; Protein Subunits/chemistry ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeates, T O -- Zhang, K Y -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1771-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17816893" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-31
    Description: A computational method is proposed for inferring protein interactions from genome sequences on the basis of the observation that some pairs of interacting proteins have homologs in another organism fused into a single protein chain. Searching sequences from many genomes revealed 6809 such putative protein-protein interactions in Escherichia coli and 45,502 in yeast. Many members of these pairs were confirmed as functionally related; computational filtering further enriches for interactions. Some proteins have links to several other proteins; these coupled links appear to represent functional interactions such as complexes or pathways. Experimentally confirmed interacting pairs are documented in a Database of Interacting Proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marcotte, E M -- Pellegrini, M -- Ng, H L -- Rice, D W -- Yeates, T O -- Eisenberg, D -- P01 GM 31299/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):751-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCLA-Department of Energy Laboratory of Structural Biology and Molecular Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427000" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/metabolism/physiology ; Binding Sites ; *Computational Biology ; Databases, Factual ; Escherichia coli/genetics ; Evolution, Molecular ; Fungal Proteins/chemistry/genetics/metabolism ; *Genome ; Genome, Bacterial ; Genome, Fungal ; Humans ; Models, Biological ; Proteins/chemistry/genetics/metabolism/*physiology ; *Sequence Homology, Amino Acid ; *Sequence Homology, Nucleic Acid ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-06
    Description: Bacterial microcompartments are primitive organelles composed entirely of protein subunits. Genomic sequence databases reveal the widespread occurrence of microcompartments across diverse microbes. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. We report three-dimensional crystal structures of multiple carboxysome shell proteins, revealing a hexameric unit as the basic microcompartment building block and showing how these hexamers assemble to form flat facets of the polyhedral shell. The structures suggest how molecular transport across the shell may be controlled and how structural variations might govern the assembly and architecture of these subcellular compartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerfeld, Cheryl A -- Sawaya, Michael R -- Tanaka, Shiho -- Nguyen, Chau V -- Phillips, Martin -- Beeby, Morgan -- Yeates, Todd O -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):936-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles (UCLA), Box 951570, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16081736" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Organelles/*chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Sequence Alignment ; Synechocystis/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeates, Todd O -- Beeby, Morgan -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1882-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90024-1569, USA. yeates@mbi.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185587" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Evolution, Molecular ; Gene Duplication ; Gene Transfer, Horizontal ; *Metabolic Networks and Pathways ; Mutation ; Protein Binding ; *Protein Interaction Mapping ; Proteins/*chemistry/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-02-23
    Description: The carboxysome is a bacterial microcompartment that functions as a simple organelle by sequestering enzymes involved in carbon fixation. The carboxysome shell is roughly 800 to 1400 angstroms in diameter and is assembled from several thousand protein subunits. Previous studies have revealed the three-dimensional structures of hexameric carboxysome shell proteins, which self-assemble into molecular layers that most likely constitute the facets of the polyhedral shell. Here, we report the three-dimensional structures of two proteins of previously unknown function, CcmL and OrfA (or CsoS4A), from the two known classes of carboxysomes, at resolutions of 2.4 and 2.15 angstroms. Both proteins assemble to form pentameric structures whose size and shape are compatible with formation of vertices in an icosahedral shell. Combining these pentamers with the hexamers previously elucidated gives two plausible, preliminary atomic models for the carboxysome shell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Shiho -- Kerfeld, Cheryl A -- Sawaya, Michael R -- Cai, Fei -- Heinhorst, Sabine -- Cannon, Gordon C -- Yeates, Todd O -- New York, N.Y. -- Science. 2008 Feb 22;319(5866):1083-6. doi: 10.1126/science.1151458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18292340" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/physiology ; Crystallography, X-Ray ; Cytoplasmic Structures/*chemistry/ultrastructure ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Synechocystis/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-25
    Description: A major focus of genome research is to decipher the networks of molecular interactions that underlie cellular function. We describe a computational approach for identifying detailed relationships between proteins on the basis of genomic data. Logic analysis of phylogenetic profiles identifies triplets of proteins whose presence or absence obey certain logic relationships. For example, protein C may be present in a genome only if proteins A and B are both present. The method reveals many previously unidentified higher order relationships. These relationships illustrate the complexities that arise in cellular networks because of branching and alternate pathways, and they also facilitate assignment of cellular functions to uncharacterized proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowers, Peter M -- Cokus, Shawn J -- Eisenberg, David -- Yeates, Todd O -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2246-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618515" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Physiological Phenomena ; Bacterial Proteins/*analysis/chemistry/*physiology ; *Computational Biology ; *Genome ; *Genome, Bacterial ; Logic ; Movement ; Phylogeny ; Protein Array Analysis ; *Protein Interaction Mapping ; Proteins/*analysis/genetics/*physiology ; Shikimic Acid/metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-01-02
    Description: Many bacterial cells contain proteinaceous microcompartments that act as simple organelles by sequestering specific metabolic processes involving volatile or toxic metabolites. Here we report the three-dimensional (3D) crystal structures, with resolutions between 1.65 and 2.5 angstroms, of the four homologous proteins (EutS, EutL, EutK, and EutM) that are thought to be the major shell constituents of a functionally complex ethanolamine utilization (Eut) microcompartment. The Eut microcompartment is used to sequester the metabolism of ethanolamine in bacteria such as Escherichia coli and Salmonella enterica. The four Eut shell proteins share an overall similar 3D fold, but they have distinguishing structural features that help explain the specific roles they play in the microcompartment. For example, EutL undergoes a conformational change that is probably involved in gating molecular transport through shell protein pores, whereas structural evidence suggests that EutK might bind a nucleic acid component. Together these structures give mechanistic insight into bacterial microcompartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Shiho -- Sawaya, Michael R -- Yeates, Todd O -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):81-4. doi: 10.1126/science.1179513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044574" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Compartmentation ; Crystallography, X-Ray ; Escherichia coli K12/*chemistry/*metabolism/ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism ; Ethanolamine/*metabolism ; Metabolic Networks and Pathways ; Models, Molecular ; Molecular Sequence Data ; Polyproteins/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-02
    Description: Designing protein molecules that will assemble into various kinds of ordered materials represents an important challenge in nanotechnology. We report the crystal structure of a 12-subunit protein cage that self-assembles by design to form a tetrahedral structure roughly 16 nanometers in diameter. The strategy of fusing together oligomeric protein domains can be generalized to produce other kinds of cages or extended materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lai, Yen-Ting -- Cascio, Duilio -- Yeates, Todd O -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1129. doi: 10.1126/science.1219351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California Los Angeles Biomedical Engineering Interdepartmental Program, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654051" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Models, Molecular ; Peroxidases/*chemistry ; Protein Conformation ; *Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Proteins/*chemistry ; Viral Matrix Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...