ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (323)
  • Nature Publishing Group (NPG)  (323)
  • American Institute of Physics (AIP)
  • 2010-2014  (323)
  • 1985-1989
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2014-10-09
    Description: The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 A resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pancera, Marie -- Zhou, Tongqing -- Druz, Aliaksandr -- Georgiev, Ivelin S -- Soto, Cinque -- Gorman, Jason -- Huang, Jinghe -- Acharya, Priyamvada -- Chuang, Gwo-Yu -- Ofek, Gilad -- Stewart-Jones, Guillaume B E -- Stuckey, Jonathan -- Bailer, Robert T -- Joyce, M Gordon -- Louder, Mark K -- Tumba, Nancy -- Yang, Yongping -- Zhang, Baoshan -- Cohen, Myron S -- Haynes, Barton F -- Mascola, John R -- Morris, Lynn -- Munro, James B -- Blanchard, Scott C -- Mothes, Walther -- Connors, Mark -- Kwong, Peter D -- AI0678501/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- P01-GM56550/GM/NIGMS NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R01-GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- R21-AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- ZIA AI005023-13/Intramural NIH HHS/ -- ZIA AI005024-13/Intramural NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa. ; Departments of Medicine, Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, and the Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, North Carolina 27710, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa [2] University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296255" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/immunology ; Cohort Studies ; Crystallography, X-Ray ; Genetic Variation ; Glycosylation ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/*immunology ; HIV Envelope Protein gp41/*chemistry/genetics/*immunology ; HIV Infections/immunology ; Humans ; Immune Evasion ; Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Polysaccharides/chemistry/immunology ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/genetics/immunology ; Structural Homology, Protein ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-16
    Description: A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Hugo J -- Bronner, Marianne E -- Krumlauf, Robb -- R01 DE017911/DE/NIDCR NIH HHS/ -- R01 NS086907/NS/NINDS NIH HHS/ -- R01DE017911/DE/NIDCR NIH HHS/ -- R01NS086907/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):490-3. doi: 10.1038/nature13723. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; 1] Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA [2] Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Patterning/genetics ; Conserved Sequence/*genetics ; Enhancer Elements, Genetic/genetics ; *Evolution, Molecular ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks/*genetics ; Genes, Homeobox/*genetics ; Lampreys/embryology/genetics ; Molecular Sequence Data ; Phylogeny ; Rhombencephalon/*embryology/*metabolism ; Vertebrates/*embryology/genetics ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-20
    Description: Emerging evidence suggests that the ribosome has a regulatory function in directing how the genome is translated in time and space. However, how this regulation is encoded in the messenger RNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in homeobox (Hox) 5' untranslated regions (UTRs) that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral internal ribosome entry sites (IRESs), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require the ribosomal protein RPL38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by an additional regulatory element that we term the translation inhibitory element (TIE), which blocks cap-dependent translation of transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353651/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353651/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Shifeng -- Tian, Siqi -- Fujii, Kotaro -- Kladwang, Wipapat -- Das, Rhiju -- Barna, Maria -- 7DP2OD00850902/OD/NIH HHS/ -- DP2 OD008509/OD/NIH HHS/ -- R01 GM102519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 1;517(7532):33-8. doi: 10.1038/nature14010. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Developmental Biology, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA [3] Tetrad Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA. ; Department of Biochemistry, Stanford University, Stanford, California 94305, USA. ; 1] Department of Developmental Biology, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA. ; 1] Department of Biochemistry, Stanford University, Stanford, California 94305, USA [2] Department of Physics, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409156" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/*genetics ; Animals ; Bone and Bones/embryology/metabolism ; Cell Line ; Conserved Sequence ; Evolution, Molecular ; Gene Expression Regulation/*genetics ; Genes, Homeobox/*genetics ; Mice ; Molecular Sequence Data ; Protein Biosynthesis/genetics ; RNA Caps/metabolism ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Ribosomal Proteins/metabolism ; Ribosomes/chemistry/*metabolism ; Substrate Specificity ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-10
    Description: The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grallert, Agnes -- Boke, Elvan -- Hagting, Anja -- Hodgson, Ben -- Connolly, Yvonne -- Griffiths, John R -- Smith, Duncan L -- Pines, Jonathon -- Hagan, Iain M -- 092096/Wellcome Trust/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A16406/Cancer Research UK/United Kingdom -- C147/A16406/Cancer Research UK/United Kingdom -- C29/A13678/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):94-8. doi: 10.1038/nature14019. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; The Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN, UK. ; Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487150" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Chromosome Segregation ; Conserved Sequence ; Cyclin B/metabolism ; Enzyme Activation ; HeLa Cells ; Holoenzymes/metabolism ; Humans ; Isoenzymes/metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Protein Phosphatase 2/chemistry/*metabolism ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*cytology/*enzymology ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-02
    Description: A fundamental feature of immune systems is the ability to distinguish pathogenic from self and commensal elements, and to attack the former but tolerate the latter. Prokaryotic CRISPR-Cas immune systems defend against phage infection by using Cas nucleases and small RNA guides that specify one or more target sites for cleavage of the viral genome. Temperate phages include viruses that can integrate into the bacterial chromosome, and they can carry genes that provide a fitness advantage to the lysogenic host. However, CRISPR-Cas targeting that relies strictly on DNA sequence recognition provides indiscriminate immunity both to lytic and lysogenic infection by temperate phages-compromising the genetic stability of these potentially beneficial elements altogether. Here we show that the Staphylococcus epidermidis CRISPR-Cas system can prevent lytic infection but tolerate lysogenization by temperate phages. Conditional tolerance is achieved through transcription-dependent DNA targeting, and ensures that targeting is resumed upon induction of the prophage lytic cycle. Our results provide evidence for the functional divergence of CRISPR-Cas systems and highlight the importance of targeting mechanism diversity. In addition, they extend the concept of 'tolerance to non-self' to the prokaryotic branch of adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214910/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214910/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldberg, Gregory W -- Jiang, Wenyan -- Bikard, David -- Marraffini, Luciano A -- 1DP2AI104556-01/AI/NIAID NIH HHS/ -- DP2 AI104556/AI/NIAID NIH HHS/ -- T32 AI070084/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):633-7. doi: 10.1038/nature13637. Epub 2014 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacteriology, The Rockefeller University, New York, New York 10065, USA. ; 1] Laboratory of Bacteriology, The Rockefeller University, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25174707" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/*genetics/immunology/pathogenicity/*physiology ; Base Sequence ; CRISPR-Associated Proteins/immunology/metabolism ; CRISPR-Cas Systems/*genetics/immunology/*physiology ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics/immunology ; DNA, Viral/genetics/immunology/metabolism ; Immune Tolerance ; Lysogeny/genetics/immunology ; Molecular Sequence Data ; Proviruses/genetics/immunology/pathogenicity/physiology ; Staphylococcus epidermidis/*genetics/immunology/*virology ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-20
    Description: Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-alpha receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kernbauer, Elisabeth -- Ding, Yi -- Cadwell, Ken -- J 3435/Austrian Science Fund FWF/Austria -- P30CA016087/CA/NCI NIH HHS/ -- R01 DK093668/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):94-8. doi: 10.1038/nature13960. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA [2] Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA. ; 1] New York Presbyterian Hospital, New York, New York 10065, USA [2] Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bacterial Physiological Phenomena/*immunology ; Citrobacter rodentium/physiology ; Enterobacteriaceae Infections/immunology ; Enterovirus/immunology/*physiology ; Female ; Gene Expression Profiling ; Gene Expression Regulation/immunology ; Immunity, Innate/immunology ; Immunity, Mucosal/*immunology ; Interferon Type I/immunology ; Intestinal Mucosa/cytology/drug effects/*immunology/*virology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Norovirus/immunology/physiology ; Signal Transduction/immunology ; Specific Pathogen-Free Organisms
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-05
    Description: Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doria-Rose, Nicole A -- Schramm, Chaim A -- Gorman, Jason -- Moore, Penny L -- Bhiman, Jinal N -- DeKosky, Brandon J -- Ernandes, Michael J -- Georgiev, Ivelin S -- Kim, Helen J -- Pancera, Marie -- Staupe, Ryan P -- Altae-Tran, Han R -- Bailer, Robert T -- Crooks, Ema T -- Cupo, Albert -- Druz, Aliaksandr -- Garrett, Nigel J -- Hoi, Kam H -- Kong, Rui -- Louder, Mark K -- Longo, Nancy S -- McKee, Krisha -- Nonyane, Molati -- O'Dell, Sijy -- Roark, Ryan S -- Rudicell, Rebecca S -- Schmidt, Stephen D -- Sheward, Daniel J -- Soto, Cinque -- Wibmer, Constantinos Kurt -- Yang, Yongping -- Zhang, Zhenhai -- NISC Comparative Sequencing Program -- Mullikin, James C -- Binley, James M -- Sanders, Rogier W -- Wilson, Ian A -- Moore, John P -- Ward, Andrew B -- Georgiou, George -- Williamson, Carolyn -- Abdool Karim, Salim S -- Morris, Lynn -- Kwong, Peter D -- Shapiro, Lawrence -- Mascola, John R -- P01 AI082362/AI/NIAID NIH HHS/ -- R01 AI100790/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 1;509(7498):55-62. doi: 10.1038/nature13036. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; 1] Department of Biochemistry, Columbia University, New York, New York 10032, USA [2]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [4]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa. ; Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; Torrey Pines Institute, San Diego, California 92037, USA. ; Weill Medical College of Cornell University, New York, New York 10065, USA. ; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa. ; Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; Department of Biochemistry, Columbia University, New York, New York 10032, USA. ; 1] NISC Comparative Sequencing program, National Institutes of Health, Bethesda, Maryland 20892, USA [2] NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, Netherlands. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA [2] Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA [3] Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Department of Epidemiology, Columbia University, New York, New York 10032, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Department of Biochemistry, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590074" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity/genetics/immunology ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/cytology/immunology/metabolism ; Binding Sites/immunology ; Cell Lineage ; Complementarity Determining Regions/chemistry/genetics/immunology ; Epitope Mapping ; Epitopes, B-Lymphocyte/chemistry/immunology ; Evolution, Molecular ; HIV Antibodies/chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp160/*chemistry/*immunology ; HIV Infections/immunology ; HIV-1/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Protein Structure, Tertiary ; Somatic Hypermutation, Immunoglobulin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-18
    Description: Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63alpha-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246512/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246512/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ksander, Bruce R -- Kolovou, Paraskevi E -- Wilson, Brian J -- Saab, Karim R -- Guo, Qin -- Ma, Jie -- McGuire, Sean P -- Gregory, Meredith S -- Vincent, William J B -- Perez, Victor L -- Cruz-Guilloty, Fernando -- Kao, Winston W Y -- Call, Mindy K -- Tucker, Budd A -- Zhan, Qian -- Murphy, George F -- Lathrop, Kira L -- Alt, Clemens -- Mortensen, Luke J -- Lin, Charles P -- Zieske, James D -- Frank, Markus H -- Frank, Natasha Y -- DP2 OD007483/OD/NIH HHS/ -- DP2OD007483/OD/NIH HHS/ -- EY08098/EY/NEI NIH HHS/ -- I01 BX000516/BX/BLRD VA/ -- I01 RX000989/RX/RRD VA/ -- K08 NS051349/NS/NINDS NIH HHS/ -- K08NS051349/NS/NINDS NIH HHS/ -- P30 EY014801/EY/NEI NIH HHS/ -- P30EY014801/EY/NEI NIH HHS/ -- P41EB015903/EB/NIBIB NIH HHS/ -- R01 CA113796/CA/NCI NIH HHS/ -- R01 CA138231/CA/NCI NIH HHS/ -- R01 CA158467/CA/NCI NIH HHS/ -- R01 EB017274/EB/NIBIB NIH HHS/ -- R01CA113796/CA/NCI NIH HHS/ -- R01CA138231/CA/NCI NIH HHS/ -- R01CA158467/CA/NCI NIH HHS/ -- R01EY018624/EY/NEI NIH HHS/ -- R01EY021768/EY/NEI NIH HHS/ -- U01HL100402/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):353-7. doi: 10.1038/nature13426. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114, USA [2]. ; 1] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts 02130, USA. ; 1] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; 1] Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts 02130, USA [2] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Bascom Palmer Eye Institute and the Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA. ; Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, Ohio 45229, USA. ; Stephen A Wynn Institute for Vision Research, Carver College of Medicine, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Department of Ophthalmology, University of Pittsburgh School of Medicine & Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15213, USA. ; Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02138, USA [4]. ; 1] Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts 02130, USA [2] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02138, USA [4] Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [5].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030174" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/deficiency/*metabolism ; Animals ; Apoptosis ; Biomarkers/metabolism ; Cell Differentiation ; Cell Proliferation ; Female ; Humans ; Limbus Corneae/*cytology/*physiology ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; P-Glycoprotein/deficiency/*metabolism ; *Regeneration ; Stem Cell Transplantation ; Stem Cells/cytology/*metabolism ; Transcription Factors/metabolism ; Tumor Suppressor Proteins/metabolism ; *Wound Healing
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-28
    Description: Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101; however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Ji -- Bankston, John R -- Payandeh, Jian -- Hinds, Thomas R -- Zagotta, William N -- Zheng, Ning -- NS074545/NS/NINDS NIH HHS/ -- R01EY10329/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):73-7. doi: 10.1038/nature13074. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anion Transport Proteins/*chemistry/genetics/metabolism ; Arabidopsis/*chemistry/genetics ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Nitrates/chemistry/metabolism ; Phosphorylation ; Phosphothreonine/chemistry/metabolism ; Plant Proteins/*chemistry/genetics/metabolism ; *Protein Multimerization ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-07-22
    Description: Microbes and their viruses drive myriad processes across ecosystems ranging from oceans and soils to bioreactors and humans. Despite this importance, microbial diversity is only now being mapped at scales relevant to nature, while the viral diversity associated with any particular host remains little researched. Here we quantify host-associated viral diversity using viral-tagged metagenomics, which links viruses to specific host cells for high-throughput screening and sequencing. In a single experiment, we screened 10(7) Pacific Ocean viruses against a single strain of Synechococcus and found that naturally occurring cyanophage genome sequence space is statistically clustered into discrete populations. These population-based, host-linked viral ecological data suggest that, for this single host and seawater sample alone, there are at least 26 double-stranded DNA viral populations with estimated relative abundances ranging from 0.06 to 18.2%. These populations include previously cultivated cyanophage and new viral types missed by decades of isolate-based studies. Nucleotide identities of homologous genes mostly varied by less than 1% within populations, even in hypervariable genome regions, and by 42-71% between populations, which provides benchmarks for viral metagenomics and genome-based viral species definitions. Together these findings showcase a new approach to viral ecology that quantitatively links objectively defined environmental viral populations, and their genomes, to their hosts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Li -- Ignacio-Espinoza, J Cesar -- Gregory, Ann C -- Poulos, Bonnie T -- Weitz, Joshua S -- Hugenholtz, Philip -- Sullivan, Matthew B -- England -- Nature. 2014 Sep 11;513(7517):242-5. doi: 10.1038/nature13459. Epub 2014 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA [2] Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Institute of Groundwater Ecology, Neuherberg 85764, Germany. [3]. ; 1] Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85719, USA [2]. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA. ; 1] School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA [2] School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. ; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences &Institute for Molecular Bioscience, The University of Queensland, St Lucia QLB 4072, Australia. ; 1] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA [2] Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85719, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043051" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; *Environmental Microbiology ; Genome, Viral/*genetics ; Host-Pathogen Interactions ; Metagenome ; Molecular Sequence Data ; Pacific Ocean ; Seawater/*virology ; Species Specificity ; Synechococcus/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-01-31
    Description: Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such 'talented' producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus 'Entotheonella' with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. 'Entotheonella' spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum 'Tectomicrobia'. The pronounced bioactivities and chemical uniqueness of 'Entotheonella' compounds provide significant opportunities for ecological studies and drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Micheal C -- Mori, Tetsushi -- Ruckert, Christian -- Uria, Agustinus R -- Helf, Maximilian J -- Takada, Kentaro -- Gernert, Christine -- Steffens, Ursula A E -- Heycke, Nina -- Schmitt, Susanne -- Rinke, Christian -- Helfrich, Eric J N -- Brachmann, Alexander O -- Gurgui, Cristian -- Wakimoto, Toshiyuki -- Kracht, Matthias -- Crusemann, Max -- Hentschel, Ute -- Abe, Ikuro -- Matsunaga, Shigeki -- Kalinowski, Jorn -- Takeyama, Haruko -- Piel, Jorn -- England -- Nature. 2014 Feb 6;506(7486):58-62. doi: 10.1038/nature12959. Epub 2014 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Microbiology, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland [2] Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany [3]. ; 1] Faculty of Science and Engineering, Waseda University Center for Advanced Biomedical Sciences, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan [2]. ; Institute for Genome Research and Systems Biology, Center for Biotechnology, Universitat Bielefeld, Universitatstrasse 25, 33594 Bielefeld, Germany. ; 1] Institute of Microbiology, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland [2] Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany. ; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan. ; Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wurzburg, Julius-von-Sachs-Platz 3, 97082 Wurzburg, Germany. ; Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany. ; Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig Maximilians University Munich, Richard-Wagner-Strasse 10, 80333 Munich, Germany. ; Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; Institute of Microbiology, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland. ; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Faculty of Science and Engineering, Waseda University Center for Advanced Biomedical Sciences, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476823" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biosynthetic Pathways/genetics ; Deltaproteobacteria/*classification/genetics/*metabolism/physiology ; *Drug Discovery ; Environmental Microbiology ; Genes, Bacterial/genetics ; Genome, Bacterial/genetics ; Metagenomics ; Molecular Sequence Data ; Multigene Family/genetics ; Peptides/metabolism ; Polyketides/metabolism ; Porifera/metabolism/microbiology ; Single-Cell Analysis ; Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-09-19
    Description: In photosynthetic organisms, D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating atmospheric CO2 into the biosphere. Owing to the wasteful oxygenase activity and slow turnover of Rubisco, the enzyme is among the most important targets for improving the photosynthetic efficiency of vascular plants. It has been anticipated that introducing the CO2-concentrating mechanism (CCM) from cyanobacteria into plants could enhance crop yield. However, the complex nature of Rubisco's assembly has made manipulation of the enzyme extremely challenging, and attempts to replace it in plants with the enzymes from cyanobacteria and red algae have not been successful. Here we report two transplastomic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We knocked out the native tobacco gene encoding the large subunit of Rubisco by inserting the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35, which incorporates three small subunit-like domains. Se7942 Rubisco and CcmM35 formed macromolecular complexes within the chloroplast stroma, mirroring an early step in the biogenesis of cyanobacterial beta-carboxysomes. Both transformed lines were photosynthetically competent, supporting autotrophic growth, and their respective forms of Rubisco had higher rates of CO2 fixation per unit of enzyme than the tobacco control. These transplastomic tobacco lines represent an important step towards improved photosynthesis in plants and will be valuable hosts for future addition of the remaining components of the cyanobacterial CCM, such as inorganic carbon transporters and the beta-carboxysome shell proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176977/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176977/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Myat T -- Occhialini, Alessandro -- Andralojc, P John -- Parry, Martin A J -- Hanson, Maureen R -- BB/I024488/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J/00426X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- F32 GM103019/GM/NIGMS NIH HHS/ -- F32GM103019/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 25;513(7519):547-50. doi: 10.1038/nature13776. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA [2]. ; 1] Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK [2]. ; Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK. ; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231869" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis/drug effects ; Carbon Dioxide/metabolism/pharmacology ; Chloroplasts/enzymology/genetics/metabolism ; Crops, Agricultural/cytology/*enzymology/genetics/growth & development ; Genes, Bacterial/genetics ; Kinetics ; Molecular Sequence Data ; Phenotype ; *Photosynthesis/drug effects ; Plants, Genetically Modified/cytology/enzymology/genetics/growth & development ; Protein Subunits/chemistry/genetics/metabolism ; Ribulose-Bisphosphate Carboxylase/chemistry/genetics/*metabolism ; Synechococcus/enzymology/genetics ; Tobacco/cytology/enzymology/genetics/growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-08-01
    Description: Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the fkbA mature mRNA as a template to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177005/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177005/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calo, Silvia -- Shertz-Wall, Cecelia -- Lee, Soo Chan -- Bastidas, Robert J -- Nicolas, Francisco E -- Granek, Joshua A -- Mieczkowski, Piotr -- Torres-Martinez, Santiago -- Ruiz-Vazquez, Rosa M -- Cardenas, Maria E -- Heitman, Joseph -- R01 AI039115/AI/NIAID NIH HHS/ -- R01 AI50438-10/AI/NIAID NIH HHS/ -- R01 CA154499/CA/NCI NIH HHS/ -- R01 CA154499-04/CA/NCI NIH HHS/ -- R37 AI039115/AI/NIAID NIH HHS/ -- R37 AI39115-17/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Sep 25;513(7519):555-8. doi: 10.1038/nature13575. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; 1] Regional Campus of International Excellence "Campus Mare Nostrum", Murcia 30100, Spain [2] Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain. ; 1] Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, USA [3] Duke Center for the Genomics of Microbial Systems, Duke University Medical Center, Durham, North Carolina 27710, USA. ; High-Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079329" target="_blank"〉PubMed〈/a〉
    Keywords: Calcineurin/genetics/metabolism ; Calcineurin Inhibitors ; Drug Resistance, Fungal/*genetics ; Epigenesis, Genetic/*genetics ; Humans ; Hyphae/drug effects/genetics/growth & development ; Molecular Sequence Data ; Mucor/*drug effects/*genetics/growth & development ; Mucormycosis/drug therapy/microbiology ; Mutation/*genetics ; Phenotype ; *RNA Interference ; Tacrolimus/metabolism/*pharmacology ; Tacrolimus Binding Protein 1A/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-05-23
    Description: Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079543/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079543/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsberg, Kevin J -- Patel, Sanket -- Gibson, Molly K -- Lauber, Christian L -- Knight, Rob -- Fierer, Noah -- Dantas, Gautam -- DP2 DK098089/DK/NIDDK NIH HHS/ -- DP2-DK-098089/DK/NIDDK NIH HHS/ -- GM 007067/GM/NIGMS NIH HHS/ -- T32 GM007067/GM/NIGMS NIH HHS/ -- T32 HG000045/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):612-6. doi: 10.1038/nature13377. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2]. ; 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3]. ; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA. ; 1] Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA [2] Howard Hughes Medical Institute, Boulder, Colorado 80309, USA. ; 1] Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847883" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Anti-Bacterial Agents/pharmacology ; Bacteria/classification/drug effects/*genetics/*isolation & purification ; Drug Resistance, Microbial/drug effects/*genetics ; *Ecosystem ; Fertilizers ; Gene Transfer, Horizontal/genetics ; Genes, Bacterial/drug effects/genetics ; Genome, Bacterial/drug effects/genetics ; Integrases/genetics ; Metagenome/drug effects/*genetics ; Metagenomics ; Models, Genetic ; Molecular Sequence Data ; Nitrogen/metabolism/pharmacology ; Open Reading Frames/genetics ; *Phylogeny ; Poaceae/growth & development ; RNA, Ribosomal, 16S/genetics ; *Soil Microbiology ; Synteny/genetics ; Transposases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-08-15
    Description: Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassaine, Gherici -- Deluz, Cedric -- Grasso, Luigino -- Wyss, Romain -- Tol, Menno B -- Hovius, Ruud -- Graff, Alexandra -- Stahlberg, Henning -- Tomizaki, Takashi -- Desmyter, Aline -- Moreau, Christophe -- Li, Xiao-Dan -- Poitevin, Frederic -- Vogel, Horst -- Nury, Hugues -- England -- Nature. 2014 Aug 21;512(7514):276-81. doi: 10.1038/nature13552. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] [3] Theranyx, 163 Avenue de Luminy, 13288 Marseille, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2]. ; Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland. ; Swiss Light Source, Paul Scherrer Institute, CH-5234 Villigen, Switzerland. ; Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 7257 and Universite Aix-Marseille, F-13288 Marseille, France. ; 1] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [2] CNRS, IBS, F-38000 Grenoble, France [3] CEA, DSV, IBS, F-38000 Grenoble, France. ; Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Unite de Dynamique Structurale des Macromolecules, Institut Pasteur, CNRS UMR3528, F-75015 Paris, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [3] CNRS, IBS, F-38000 Grenoble, France [4] CEA, DSV, IBS, F-38000 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119048" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Agents/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Receptors, Serotonin, 5-HT3/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-01-28
    Description: H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 A resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal alpha-helix. Finally, analysis of H2A.Z localization in ANP32E(-/-) cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obri, Arnaud -- Ouararhni, Khalid -- Papin, Christophe -- Diebold, Marie-Laure -- Padmanabhan, Kiran -- Marek, Martin -- Stoll, Isabelle -- Roy, Ludovic -- Reilly, Patrick T -- Mak, Tak W -- Dimitrov, Stefan -- Romier, Christophe -- Hamiche, Ali -- England -- Nature. 2014 Jan 30;505(7485):648-53. doi: 10.1038/nature12922. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Departement de Genomique Fonctionnelle et Cancer, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France [2]. ; Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France. ; Equipe labelisee Ligue contre le Cancer, INSERM/Universite Joseph Fourier , Institut Albert Bonniot, U823, Site Sante-BP 170, 38042 Grenoble Cedex 9, France. ; Departement de Genomique Fonctionnelle et Cancer, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France. ; Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore. ; 1] Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore [2] The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/chemistry/metabolism ; Chromatin/*chemistry/genetics/*metabolism ; Chromatin Immunoprecipitation ; Crystallography, X-Ray ; DNA/genetics/metabolism ; Genome, Human/genetics ; Histones/chemistry/isolation & purification/*metabolism ; Humans ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*metabolism ; Nucleosomes/chemistry/metabolism ; Phosphoproteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-06-10
    Description: RNA is arguably the most functionally diverse biological macromolecule. In some cases a single discrete RNA sequence performs multiple roles, and this can be conferred by a complex three-dimensional structure. Such multifunctionality can also be driven or enhanced by the ability of a given RNA to assume different conformational (and therefore functional) states. Despite its biological importance, a detailed structural understanding of the paradigm of RNA structure-driven multifunctionality is lacking. To address this gap it is useful to study examples from single-stranded positive-sense RNA viruses, a prototype being the tRNA-like structure (TLS) found at the 3' end of the turnip yellow mosaic virus (TYMV). This TLS not only acts like a tRNA to drive aminoacylation of the viral genomic (g)RNA, but also interacts with other structures in the 3' untranslated region of the gRNA, contains the promoter for negative-strand synthesis, and influences several infection-critical processes. TLS RNA can provide a glimpse into the structural basis of RNA multifunctionality and plasticity, but for decades its high-resolution structure has remained elusive. Here we present the crystal structure of the complete TYMV TLS to 2.0 A resolution. Globally, the RNA adopts a shape that mimics tRNA, but it uses a very different set of intramolecular interactions to achieve this shape. These interactions also allow the TLS to readily switch conformations. In addition, the TLS structure is 'two faced': one face closely mimics tRNA and drives aminoacylation, the other face diverges from tRNA and enables additional functionality. The TLS is thus structured to perform several functions and interact with diverse binding partners, and we demonstrate its ability to specifically bind to ribosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colussi, Timothy M -- Costantino, David A -- Hammond, John A -- Ruehle, Grant M -- Nix, Jay C -- Kieft, Jeffrey S -- GM081346/GM/NIGMS NIH HHS/ -- GM097333/GM/NIGMS NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- R01 GM081346/GM/NIGMS NIH HHS/ -- R01 GM097333/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):366-9. doi: 10.1038/nature13378. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [3] Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA (T.M.C.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037, USA (J.A.H.). ; 1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; 1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA (T.M.C.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037, USA (J.A.H.). ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909993" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Amino Acyl-tRNA Synthetases/metabolism ; Aminoacylation ; Base Sequence ; Crystallography, X-Ray ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Protein Binding ; RNA Folding ; RNA, Guide/genetics/metabolism ; RNA, Transfer/*chemistry/genetics/metabolism ; RNA, Viral/*chemistry/genetics/*metabolism ; Ribosomes/chemistry/metabolism ; Tymovirus/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-05-13
    Description: Sulphur is an essential element for life and is ubiquitous in living systems. Yet how the sulphur atom is incorporated into many sulphur-containing secondary metabolites is poorly understood. For bond formation between carbon and sulphur in primary metabolites, the major ionic sulphur sources are the persulphide and thiocarboxylate groups on sulphur-carrier (donor) proteins. Each group is post-translationally generated through the action of a specific activating enzyme. In all reported bacterial cases, the gene encoding the enzyme that catalyses the carbon-sulphur bond formation reaction and that encoding the cognate sulphur-carrier protein exist in the same gene cluster. To study the production of the 2-thiosugar moiety in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action seem similar to those of ThiG, the enzyme that catalyses thiazole formation in thiamine biosynthesis. However, no gene encoding a sulphur-carrier protein could be located in the BE-7585A cluster. Subsequent genome sequencing uncovered a few genes encoding sulphur-carrier proteins that are probably involved in the biosynthesis of primary metabolites but only one activating enzyme gene in the A. orientalis genome. Further experiments showed that this activating enzyme can adenylate each of these sulphur-carrier proteins and probably also catalyses the subsequent thiolation, through its rhodanese domain. A proper combination of these sulphur-delivery systems is effective for BexX-catalysed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. This study is, to our knowledge, the first complete characterization of thiosugar formation in nature and also demonstrates the receptor promiscuity of the A. orientalis sulphur-delivery system. Our results also show that co-opting the sulphur-delivery machinery of primary metabolism for the biosynthesis of sulphur-containing natural products is probably a general strategy found in nature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Eita -- Zhang, Xuan -- Sun, He G -- Lu, Mei-yeh Jade -- Liu, Tsung-lin -- Ou, Albert -- Li, Jeng-yi -- Chen, Yu-hsiang -- Ealick, Steven E -- Liu, Hung-wen -- DK67081/DK/NIDDK NIH HHS/ -- GM035906/GM/NIGMS NIH HHS/ -- GM103403/GM/NIGMS NIH HHS/ -- GM103485/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 GM103485/GM/NIGMS NIH HHS/ -- R01 DK067081/DK/NIDDK NIH HHS/ -- R01 GM035906/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 19;510(7505):427-31. doi: 10.1038/nature13256. Epub 2014 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA. ; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA. ; Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan [2] Genomics Research Center, Academia Sinica, Taipei 115, Taiwan. ; 1] Genomics Research Center, Academia Sinica, Taipei 115, Taiwan [2] Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan. ; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan. ; Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan. ; 1] Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA [2] Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24814342" target="_blank"〉PubMed〈/a〉
    Keywords: Actinomycetales/*enzymology/*genetics/metabolism ; Carrier Proteins/chemistry/*metabolism ; Catalytic Domain ; Genome, Bacterial/genetics ; Ligases/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Sulfur/*metabolism ; Thiosugars/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-10-25
    Description: We present the high-quality genome sequence of a approximately 45,000-year-old modern human male from Siberia. This individual derives from a population that lived before-or simultaneously with-the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000-13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 x 10(-9) to 0.6 x 10(-9) per site per year, a Y chromosomal mutation rate of 0.7 x 10(-9) to 0.9 x 10(-9) per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 x 10(-8) to 3.2 x 10(-8) per site per year based on the age of the bone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753769/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753769/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Qiaomei -- Li, Heng -- Moorjani, Priya -- Jay, Flora -- Slepchenko, Sergey M -- Bondarev, Aleksei A -- Johnson, Philip L F -- Aximu-Petri, Ayinuer -- Prufer, Kay -- de Filippo, Cesare -- Meyer, Matthias -- Zwyns, Nicolas -- Salazar-Garcia, Domingo C -- Kuzmin, Yaroslav V -- Keates, Susan G -- Kosintsev, Pavel A -- Razhev, Dmitry I -- Richards, Michael P -- Peristov, Nikolai V -- Lachmann, Michael -- Douka, Katerina -- Higham, Thomas F G -- Slatkin, Montgomery -- Hublin, Jean-Jacques -- Reich, David -- Kelso, Janet -- Viola, T Bence -- Paabo, Svante -- F32 GM115006/GM/NIGMS NIH HHS/ -- GM100233/GM/NIGMS NIH HHS/ -- K99 GM104158/GM/NIGMS NIH HHS/ -- K99-GM104158/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):445-9. doi: 10.1038/nature13810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China [2] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA. ; Institute for Problems of the Development of the North, Siberian Branch of the Russian Academy of Sciences, Tyumen 625026, Russia. ; Expert Criminalistics Center, Omsk Division of the Ministry of Internal Affairs, Omsk 644007, Russia. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Department of Anthropology, University of California, Davis, California 95616, USA. ; 1] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Department of Archaeology, University of Cape Town, Cape Town 7701, South Africa [3] Departament de Prehistoria i Arqueologia, Universitat de Valencia, Valencia 46010, Spain [4] Research Group on Plant Foods in Hominin Dietary Ecology, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. ; Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg 620144, Russia. ; 1] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Laboratory of Archaeology, Department of Anthropology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. ; Siberian Cultural Center, Omsk 644010, Russia. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Santa Fe Institute, Santa Fe, New Mexico 87501, USA. ; Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25341783" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Chromosomes, Human, Pair 12/genetics ; Diet ; Evolution, Molecular ; *Fossils ; Genome, Human/*genetics ; Humans ; Hybridization, Genetic/genetics ; Male ; Molecular Sequence Data ; Mutation Rate ; Neanderthals/genetics ; Phylogeny ; Population Density ; Population Dynamics ; Principal Component Analysis ; Sequence Analysis, DNA ; Siberia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-01-28
    Description: What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Chao -- Brown, Pamela J B -- Ducret, Adrien -- Brun, Yves V -- AI072992/AI/NIAID NIH HHS/ -- GM051986/GM/NIGMS NIH HHS/ -- R01 GM051986/GM/NIGMS NIH HHS/ -- S10RR028697-01/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):489-93. doi: 10.1038/nature12900. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, Indiana 47405, USA. ; 1] Department of Biology, Indiana University, Bloomington, Indiana 47405, USA [2] Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463524" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*cytology/*metabolism ; Bacterial Proteins/*metabolism ; *Biological Evolution ; Caulobacter crescentus/cytology/metabolism ; Caulobacteraceae/cytology/metabolism ; Cell Membrane/metabolism ; *Cell Polarity ; Evolution, Molecular ; Models, Biological ; Molecular Sequence Data ; Phylogeny ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-11-11
    Description: The TMEM16 family of proteins, also known as anoctamins, features a remarkable functional diversity. This family contains the long sought-after Ca(2+)-activated chloride channels as well as lipid scramblases and cation channels. Here we present the crystal structure of a TMEM16 family member from the fungus Nectria haematococca that operates as a Ca(2+)-activated lipid scramblase. Each subunit of the homodimeric protein contains ten transmembrane helices and a hydrophilic membrane-traversing cavity that is exposed to the lipid bilayer as a potential site of catalysis. This cavity harbours a conserved Ca(2+)-binding site located within the hydrophobic core of the membrane. Mutations of residues involved in Ca(2+) coordination affect both lipid scrambling in N. haematococca TMEM16 and ion conduction in the Cl(-) channel TMEM16A. The structure reveals the general architecture of the family and its mode of Ca(2+) activation. It also provides insight into potential scrambling mechanisms and serves as a framework to unravel the conduction of ions in certain TMEM16 proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunner, Janine D -- Lim, Novandy K -- Schenck, Stephan -- Duerst, Alessia -- Dutzler, Raimund -- England -- Nature. 2014 Dec 11;516(7530):207-12. doi: 10.1038/nature13984. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Calcium/chemistry/*metabolism/pharmacology ; Chloride Channels/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ion Transport/drug effects ; Lipid Bilayers/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nectria/*chemistry/enzymology/genetics ; Neoplasm Proteins/chemistry ; Phospholipid Transfer Proteins/*chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-05-16
    Description: The silkworm Bombyx mori uses a WZ sex determination system that is analogous to the one found in birds and some reptiles. In this system, males have two Z sex chromosomes, whereas females have Z and W sex chromosomes. The silkworm W chromosome has a dominant role in female determination, suggesting the existence of a dominant feminizing gene in this chromosome. However, the W chromosome is almost fully occupied by transposable element sequences, and no functional protein-coding gene has been identified so far. Female-enriched PIWI-interacting RNAs (piRNAs) are the only known transcripts that are produced from the sex-determining region of the W chromosome, but the function(s) of these piRNAs are unknown. Here we show that a W-chromosome-derived, female-specific piRNA is the feminizing factor of B. mori. This piRNA is produced from a piRNA precursor which we named Fem. Fem sequences were arranged in tandem in the sex-determining region of the W chromosome. Inhibition of Fem-derived piRNA-mediated signalling in female embryos led to the production of the male-specific splice variants of B. mori doublesex (Bmdsx), a gene which acts at the downstream end of the sex differentiation cascade. A target gene of Fem-derived piRNA was identified on the Z chromosome of B. mori. This gene, which we named Masc, encoded a CCCH-type zinc finger protein. We show that the silencing of Masc messenger RNA by Fem piRNA is required for the production of female-specific isoforms of Bmdsx in female embryos, and that Masc protein controls both dosage compensation and masculinization in male embryos. Our study characterizes a single small RNA that is responsible for primary sex determination in the WZ sex determination system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiuchi, Takashi -- Koga, Hikaru -- Kawamoto, Munetaka -- Shoji, Keisuke -- Sakai, Hiroki -- Arai, Yuji -- Ishihara, Genki -- Kawaoka, Shinpei -- Sugano, Sumio -- Shimada, Toru -- Suzuki, Yutaka -- Suzuki, Masataka G -- Katsuma, Susumu -- England -- Nature. 2014 May 29;509(7502):633-6. doi: 10.1038/nature13315. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan. ; 1] Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan [2]. ; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan. ; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828047" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Base Sequence ; Bombyx/embryology/*genetics ; Dosage Compensation, Genetic ; Female ; Male ; Molecular Sequence Data ; RNA, Small Interfering/*genetics ; *Sex Characteristics ; Sex Chromosomes/genetics ; Sex Determination Processes/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-05-09
    Description: Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase alpha (Pol alpha) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a beta-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol alpha and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol alpha and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol alpha and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol alpha to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, Aline C -- Zhou, Jin C -- Perera, Rajika L -- van Deursen, Frederick -- Evrin, Cecile -- Ivanova, Marina E -- Kilkenny, Mairi L -- Renault, Ludovic -- Kjaer, Svend -- Matak-Vinkovic, Dijana -- Labib, Karim -- Costa, Alessandro -- Pellegrini, Luca -- 084279/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Jun 12;510(7504):293-7. doi: 10.1038/nature13234. Epub 2014 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK [2]. ; 1] Clare Hall Laboratories, Cancer Research UK London Research Institute, London EN6 3LD, UK [2]. ; 1] Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK [2] Imperial College, South Kensington, London SW7 2AZ, UK (R.L.P.); Cancer Research UK London Research Institute, London WC2A 3LY, UK (M.E.I.). ; Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK. ; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. ; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK. ; Clare Hall Laboratories, Cancer Research UK London Research Institute, London EN6 3LD, UK. ; Protein purification, Cancer Research UK London Research Institute, London WC2A 3LY, UK. ; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805245" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; DNA Helicases/chemistry/*metabolism/ultrastructure ; DNA Polymerase I/chemistry/*metabolism/ultrastructure ; *DNA Replication ; DNA-Binding Proteins/*chemistry/*metabolism/ultrastructure ; DNA-Directed DNA Polymerase/*chemistry/*metabolism ; Microscopy, Electron ; Minichromosome Maintenance Proteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/*metabolism ; Nuclear Proteins/chemistry/metabolism ; Protein Binding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/ultrastructure ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-03-05
    Description: Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Hong -- Li, Yuanyuan -- Xi, Yuanxin -- Jiang, Shiming -- Stratton, Sabrina -- Peng, Danni -- Tanaka, Kaori -- Ren, Yongfeng -- Xia, Zheng -- Wu, Jun -- Li, Bing -- Barton, Michelle C -- Li, Wei -- Li, Haitao -- Shi, Xiaobing -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 GM090077/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01GM090077/GM/NIGMS NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):263-8. doi: 10.1038/nature13045. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Carrier Proteins/chemistry/*metabolism ; Chromatin/genetics/metabolism ; Co-Repressor Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Disease-Free Survival ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Histones/chemistry/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Oncogenes/genetics ; Prognosis ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*metabolism ; Substrate Specificity ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-05-09
    Description: In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Deepankar Pratap -- Saudemont, Baptiste -- Guglielmi, Gerard -- Arnaiz, Olivier -- Gout, Jean-Francois -- Prajer, Malgorzata -- Potekhin, Alexey -- Przybos, Ewa -- Aubusson-Fleury, Anne -- Bhullar, Simran -- Bouhouche, Khaled -- Lhuillier-Akakpo, Maoussi -- Tanty, Veronique -- Blugeon, Corinne -- Alberti, Adriana -- Labadie, Karine -- Aury, Jean-Marc -- Sperling, Linda -- Duharcourt, Sandra -- Meyer, Eric -- England -- Nature. 2014 May 22;509(7501):447-52. doi: 10.1038/nature13318. Epub 2014 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universites, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France. ; 1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universites, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [3] Laboratoire de Biochimie, Unite Mixte de Recherche 8231, Ecole Superieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unite de Genetique Moleculaire Animale, Universite de Limoges, IFR 145, Faculte des Sciences et Techniques, 87060 Limoges, France (K.B.). ; Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France. ; CNRS UPR3404 Centre de Genetique Moleculaire, Gif-sur-Yvette F-91198, and Universite Paris-Sud, Departement de Biologie, Orsay F-91405, France. ; 1] CNRS UMR5558, Laboratoire de Biometrie et Biologie Evolutive, Universite de Lyon, 43 boulevard du 11 Novembre 1918, Villeurbanne F-69622, France [2] Laboratoire de Biochimie, Unite Mixte de Recherche 8231, Ecole Superieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unite de Genetique Moleculaire Animale, Universite de Limoges, IFR 145, Faculte des Sciences et Techniques, 87060 Limoges, France (K.B.). ; Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31-016 Krakow, Poland. ; Department of Microbiology, Faculty of Biology, St Petersburg State University, Saint Petersburg 199034, Russia. ; 1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Laboratoire de Biochimie, Unite Mixte de Recherche 8231, Ecole Superieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unite de Genetique Moleculaire Animale, Universite de Limoges, IFR 145, Faculte des Sciences et Techniques, 87060 Limoges, France (K.B.). ; 1] Sorbonne Universites, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [2] Institut Jacques Monod, CNRS, UMR 7592, Universite Paris Diderot, Sorbonne Paris Cite, Paris F-75205, France. ; Commissariat a l'Energie Atomique (CEA), Institut de Genomique (IG), Genoscope, 2 rue Gaston Cremieux, BP5706, 91057 Evry, France. ; Institut Jacques Monod, CNRS, UMR 7592, Universite Paris Diderot, Sorbonne Paris Cite, Paris F-75205, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805235" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Transposable Elements/genetics ; Epigenesis, Genetic/*genetics ; Gene Expression Regulation ; Genes/genetics ; Genome/*genetics ; Inheritance Patterns/*genetics ; Molecular Sequence Data ; Paramecium tetraurelia/*genetics/physiology ; Promoter Regions, Genetic/genetics ; RNA, Small Interfering/*genetics ; Reproduction/genetics/physiology ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-08-30
    Description: Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viraemia and abnormalities in blood count and blood chemistry were evident in many animals before ZMapp intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal haemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp is cross-reactive with the Guinean variant of Ebola. ZMapp exceeds the efficacy of any other therapeutics described so far, and results warrant further development of this cocktail for clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Xiangguo -- Wong, Gary -- Audet, Jonathan -- Bello, Alexander -- Fernando, Lisa -- Alimonti, Judie B -- Fausther-Bovendo, Hugues -- Wei, Haiyan -- Aviles, Jenna -- Hiatt, Ernie -- Johnson, Ashley -- Morton, Josh -- Swope, Kelsi -- Bohorov, Ognian -- Bohorova, Natasha -- Goodman, Charles -- Kim, Do -- Pauly, Michael H -- Velasco, Jesus -- Pettitt, James -- Olinger, Gene G -- Whaley, Kevin -- Xu, Bianli -- Strong, James E -- Zeitlin, Larry -- Kobinger, Gary P -- U19 AI109762/AI/NIAID NIH HHS/ -- U19AI109762/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Oct 2;514(7520):47-53. doi: 10.1038/nature13777. Epub 2014 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Institute of Infectious Disease, Henan Centre for Disease Control and Prevention, Zhengzhou, 450012 Henan, China. ; Kentucky BioProcessing, Owensboro, Kentucky 42301, USA. ; Mapp Biopharmaceutical Inc., San Diego, California 92121, USA. ; 1] United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702, USA [2] Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland 21702, USA. ; Institute of Infectious Disease, Henan Centre for Disease Control and Prevention, Zhengzhou, 450012 Henan, China. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada [3] Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba R3A 1S1, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada [4] Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25171469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology/*therapeutic use ; Antibodies, Neutralizing/immunology/therapeutic use ; Antibodies, Viral/immunology/*therapeutic use ; Cross Reactions/immunology ; Ebolavirus/immunology ; Enzyme-Linked Immunosorbent Assay ; Female ; Guinea ; Guinea Pigs ; Hemorrhagic Fever, Ebola/blood/*drug therapy/immunology/virology ; *Immunization, Passive ; Macaca mulatta/immunology/virology ; Male ; Molecular Sequence Data ; Sequence Alignment ; Viral Envelope Proteins/chemistry/immunology ; Viremia/drug therapy/immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-11-05
    Description: The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) 〈 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR 〈 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Rubeis, Silvia -- He, Xin -- Goldberg, Arthur P -- Poultney, Christopher S -- Samocha, Kaitlin -- Cicek, A Erucment -- Kou, Yan -- Liu, Li -- Fromer, Menachem -- Walker, Susan -- Singh, Tarinder -- Klei, Lambertus -- Kosmicki, Jack -- Shih-Chen, Fu -- Aleksic, Branko -- Biscaldi, Monica -- Bolton, Patrick F -- Brownfeld, Jessica M -- Cai, Jinlu -- Campbell, Nicholas G -- Carracedo, Angel -- Chahrour, Maria H -- Chiocchetti, Andreas G -- Coon, Hilary -- Crawford, Emily L -- Curran, Sarah R -- Dawson, Geraldine -- Duketis, Eftichia -- Fernandez, Bridget A -- Gallagher, Louise -- Geller, Evan -- Guter, Stephen J -- Hill, R Sean -- Ionita-Laza, Juliana -- Jimenz Gonzalez, Patricia -- Kilpinen, Helena -- Klauck, Sabine M -- Kolevzon, Alexander -- Lee, Irene -- Lei, Irene -- Lei, Jing -- Lehtimaki, Terho -- Lin, Chiao-Feng -- Ma'ayan, Avi -- Marshall, Christian R -- McInnes, Alison L -- Neale, Benjamin -- Owen, Michael J -- Ozaki, Noriio -- Parellada, Mara -- Parr, Jeremy R -- Purcell, Shaun -- Puura, Kaija -- Rajagopalan, Deepthi -- Rehnstrom, Karola -- Reichenberg, Abraham -- Sabo, Aniko -- Sachse, Michael -- Sanders, Stephan J -- Schafer, Chad -- Schulte-Ruther, Martin -- Skuse, David -- Stevens, Christine -- Szatmari, Peter -- Tammimies, Kristiina -- Valladares, Otto -- Voran, Annette -- Li-San, Wang -- Weiss, Lauren A -- Willsey, A Jeremy -- Yu, Timothy W -- Yuen, Ryan K C -- DDD Study -- Homozygosity Mapping Collaborative for Autism -- UK10K Consortium -- Cook, Edwin H -- Freitag, Christine M -- Gill, Michael -- Hultman, Christina M -- Lehner, Thomas -- Palotie, Aaarno -- Schellenberg, Gerard D -- Sklar, Pamela -- State, Matthew W -- Sutcliffe, James S -- Walsh, Christiopher A -- Scherer, Stephen W -- Zwick, Michael E -- Barett, Jeffrey C -- Cutler, David J -- Roeder, Kathryn -- Devlin, Bernie -- Daly, Mark J -- Buxbaum, Joseph D -- 5UL1 RR024975/RR/NCRR NIH HHS/ -- MH077139/MH/NIMH NIH HHS/ -- MH089482/MH/NIMH NIH HHS/ -- MH095034/MH/NIMH NIH HHS/ -- P30 HD15052/HD/NICHD NIH HHS/ -- P50 HD055751/HD/NICHD NIH HHS/ -- R01 MH061009/MH/NIMH NIH HHS/ -- R01 MH083565/MH/NIMH NIH HHS/ -- R01 MH089482/MH/NIMH NIH HHS/ -- R01 MH094400/MH/NIMH NIH HHS/ -- R01 MH095797/MH/NIMH NIH HHS/ -- R01 MH097849/MH/NIMH NIH HHS/ -- R01 MH100229/MH/NIMH NIH HHS/ -- R01 NS073601/NS/NINDS NIH HHS/ -- R01MH083565/MH/NIMH NIH HHS/ -- R01MH089208/MH/NIMH NIH HHS/ -- R37 MH057881/MH/NIMH NIH HHS/ -- RC2MH089952/MH/NIMH NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U01 MH100209/MH/NIMH NIH HHS/ -- U01 MH100229/MH/NIMH NIH HHS/ -- U01 MH100233/MH/NIMH NIH HHS/ -- U01 MH100239/MH/NIMH NIH HHS/ -- U01MH100209/MH/NIMH NIH HHS/ -- U01MH100229/MH/NIMH NIH HHS/ -- U01MH100233/MH/NIMH NIH HHS/ -- U01MH100239/MH/NIMH NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- UL1TR000445/TR/NCATS NIH HHS/ -- WT091310/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 13;515(7526):209-15. doi: 10.1038/nature13772. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Child Development Disorders, Pervasive/*genetics/pathology ; Chromatin/*genetics/metabolism ; Chromatin Assembly and Disassembly ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Germ-Line Mutation/genetics ; Humans ; Male ; Molecular Sequence Data ; Mutation/*genetics ; Mutation, Missense/genetics ; Nerve Net/metabolism ; Odds Ratio ; Synapses/*metabolism ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-05-23
    Description: The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337882/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337882/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moroz, Leonid L -- Kocot, Kevin M -- Citarella, Mathew R -- Dosung, Sohn -- Norekian, Tigran P -- Povolotskaya, Inna S -- Grigorenko, Anastasia P -- Dailey, Christopher -- Berezikov, Eugene -- Buckley, Katherine M -- Ptitsyn, Andrey -- Reshetov, Denis -- Mukherjee, Krishanu -- Moroz, Tatiana P -- Bobkova, Yelena -- Yu, Fahong -- Kapitonov, Vladimir V -- Jurka, Jerzy -- Bobkov, Yuri V -- Swore, Joshua J -- Girardo, David O -- Fodor, Alexander -- Gusev, Fedor -- Sanford, Rachel -- Bruders, Rebecca -- Kittler, Ellen -- Mills, Claudia E -- Rast, Jonathan P -- Derelle, Romain -- Solovyev, Victor V -- Kondrashov, Fyodor A -- Swalla, Billie J -- Sweedler, Jonathan V -- Rogaev, Evgeny I -- Halanych, Kenneth M -- Kohn, Andrea B -- 1R01GM097502/GM/NIGMS NIH HHS/ -- 1S10RR027052/RR/NCRR NIH HHS/ -- 55007424/Howard Hughes Medical Institute/ -- 5R21DA030118/DA/NIDA NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R01 AG029360/AG/NIA NIH HHS/ -- R01 GM097502/GM/NIGMS NIH HHS/ -- R01 MH097062/MH/NIMH NIH HHS/ -- R01MH097062/MH/NIMH NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- R21 RR025699/RR/NCRR NIH HHS/ -- R21RR025699/RR/NCRR NIH HHS/ -- S10 RR027052/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):109-14. doi: 10.1038/nature13400. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA [2] Department of Neuroscience & McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, USA [3] Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849, USA. ; The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA. ; 1] The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA [2] Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; 1] Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain. ; 1] Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA [2] Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia. ; Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA. ; European Research Institute for the Biology of Ageing, University of Groningen Medical Center, Antonius Deusinglaan 1, Building 3226, Room 03.34, 9713 AV Groningen, The Netherlands. ; Department of Medical Biophysics and Department of Immunology, University of Toronto, Sunnybrook Research Institute 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. ; Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia. ; Department of Neuroscience & McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, USA. ; Genetic Information Research Institute, 1925 Landings Dr., Mountain View, California 94043, USA. ; Program in Molecular Medicine, University of Massachusetts Medical School, 222 Maple Avenue, Shrewsbury, Massachusetts 01545, USA. ; Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. ; 1] Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain [3] Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain. ; 1] Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA [2] Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia [3] Center for Brain Neurobiology and Neurogenetics and Institute of Cytology and Genetics, RAS, Lavrentyev Avenue, 10, Novosibirsk 630090, Russia [4] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, 119991 Moscow, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ctenophora/classification/*genetics/immunology/physiology ; *Evolution, Molecular ; Genes, Developmental ; Genes, Homeobox ; Genome/*genetics ; Mesoderm/metabolism ; Metabolomics ; MicroRNAs ; Molecular Sequence Data ; Muscles/physiology ; *Nervous System/metabolism ; Neurons/metabolism ; Neurotransmitter Agents ; Phylogeny ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-09-12
    Description: Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Brian Tilston -- McCormack, John E -- Cuervo, Andres M -- Hickerson, Michael J -- Aleixo, Alexandre -- Cadena, Carlos Daniel -- Perez-Eman, Jorge -- Burney, Curtis W -- Xie, Xiaoou -- Harvey, Michael G -- Faircloth, Brant C -- Glenn, Travis C -- Derryberry, Elizabeth P -- Prejean, Jesse -- Fields, Samantha -- Brumfield, Robb T -- England -- Nature. 2014 Nov 20;515(7527):406-9. doi: 10.1038/nature13687. Epub 2014 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA [2] Department of Ornithology, American Museum of Natural History, New York, New York 10024, USA [3]. ; 1] Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA [2] Moore Laboratory of Zoology, Occidental College, 1600 Campus Road, Los Angeles, California 90041, USA (J.E.M.); Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA (A.M.C. &E.P.D.); Department of Biology, 2355 Faculty Drive, Suite 2P483, United States Air Force Academy, Colorado 80840, USA (C.W.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA (B.C.F.). ; 1] Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA [2] Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA [3] Moore Laboratory of Zoology, Occidental College, 1600 Campus Road, Los Angeles, California 90041, USA (J.E.M.); Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA (A.M.C. &E.P.D.); Department of Biology, 2355 Faculty Drive, Suite 2P483, United States Air Force Academy, Colorado 80840, USA (C.W.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA (B.C.F.). ; 1] Biology Department, City College of New York, New York, New York 10031, USA [2] Division of Invertebrate Zoology, American Museum of Natural History, New York, New York 10024, USA. ; Coordenacao de Zoologia, Museu Paraense Emilio Goeldi, Caixa Postal 399, CEP 66040-170, Belem, Brazil. ; Laboratorio de Biologia Evolutiva de Vertebrados, Departamento de Ciencias Biologicas, Universidad de los Andes, Bogota, Colombia. ; 1] Instituto de Zoologia y Ecologia Tropical, Universidad Central de Venezuela, Av. Los Ilustres, Los Chaguaramos, Apartado Postal 47058, Caracas 1041-A, Venezuela [2] Coleccion Ornitologica Phelps, Apartado 2009, Caracas 1010-A, Venezuela. ; Biology Department, City College of New York, New York, New York 10031, USA. ; 1] Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA [2] Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA. ; 1] Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA [2] Moore Laboratory of Zoology, Occidental College, 1600 Campus Road, Los Angeles, California 90041, USA (J.E.M.); Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA (A.M.C. &E.P.D.); Department of Biology, 2355 Faculty Drive, Suite 2P483, United States Air Force Academy, Colorado 80840, USA (C.W.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA (B.C.F.). ; Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602, USA. ; 1] Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA [2] Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209666" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Birds/*classification/*genetics ; *Genetic Speciation ; Models, Biological ; Molecular Sequence Data ; Panama ; *Phylogeny ; *Rainforest ; Rivers ; South America ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-02-18
    Description: Zoonotic infectious diseases such as influenza continue to pose a grave threat to human health. However, the factors that mediate the emergence of RNA viruses such as influenza A virus (IAV) are still incompletely understood. Phylogenetic inference is crucial to reconstructing the origins and tracing the flow of IAV within and between hosts. Here we show that explicitly allowing IAV host lineages to have independent rates of molecular evolution is necessary for reliable phylogenetic inference of IAV and that methods that do not do so, including 'relaxed' molecular clock models, can be positively misleading. A phylogenomic analysis using a host-specific local clock model recovers extremely consistent evolutionary histories across all genomic segments and demonstrates that the equine H7N7 lineage is a sister clade to strains from birds--as well as those from humans, swine and the equine H3N8 lineage--sharing an ancestor with them in the mid to late 1800s. Moreover, major western and eastern hemisphere avian influenza lineages inferred for each gene coalesce in the late 1800s. On the basis of these phylogenies and the synchrony of these key nodes, we infer that the internal genes of avian influenza virus (AIV) underwent a global selective sweep beginning in the late 1800s, a process that continued throughout the twentieth century and up to the present. The resulting western hemispheric AIV lineage subsequently contributed most of the genomic segments to the 1918 pandemic virus and, independently, the 1963 equine H3N8 panzootic lineage. This approach provides a clear resolution of evolutionary patterns and processes in IAV, including the flow of viral genes and genomes within and between host lineages.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098125/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098125/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worobey, Michael -- Han, Guan-Zhu -- Rambaut, Andrew -- 092807/Wellcome Trust/United Kingdom -- 095831/Wellcome Trust/United Kingdom -- R01 AI084691/AI/NIAID NIH HHS/ -- R01AI084691/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):254-7. doi: 10.1038/nature13016. Epub 2014 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. ; 1] Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK [2] Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Evolution, Molecular ; Genes, Viral/*genetics ; Genome, Viral/genetics ; Hemagglutinin Glycoproteins, Influenza Virus/classification/genetics ; Horses/virology ; Host Specificity ; Humans ; Influenza A Virus, H3N8 Subtype/classification/genetics ; Influenza A Virus, H7N7 Subtype/classification/genetics ; Influenza A virus/*classification/enzymology/*genetics ; Influenza in Birds/transmission/*virology ; Molecular Sequence Data ; Neuraminidase/classification/genetics ; Pandemics ; *Phylogeny ; Swine/virology ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-01-10
    Description: The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-beta-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-beta, CUL5 and ELOC. The larger domain (alpha/beta domain) of Vif binds to the same side of CBF-beta as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-beta binding. Interactions of the smaller domain (alpha-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the alpha-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-beta and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Yingying -- Dong, Liyong -- Qiu, Xiaolin -- Wang, Yishu -- Zhang, Bailing -- Liu, Hongnan -- Yu, You -- Zang, Yi -- Yang, Maojun -- Huang, Zhiwei -- England -- Nature. 2014 Jan 9;505(7482):229-33. doi: 10.1038/nature12884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China [2]. ; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402281" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/*chemistry/*metabolism ; Crystallography, X-Ray ; Cullin Proteins/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Stability ; Protein Structure, Tertiary ; Suppressor of Cytokine Signaling Proteins ; Transcription Factors/chemistry/metabolism ; vif Gene Products, Human Immunodeficiency Virus/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-03-07
    Description: One of the most striking examples of sexual dimorphism is sex-limited mimicry in butterflies, a phenomenon in which one sex--usually the female--mimics a toxic model species, whereas the other sex displays a different wing pattern. Sex-limited mimicry is phylogenetically widespread in the swallowtail butterfly genus Papilio, in which it is often associated with female mimetic polymorphism. In multiple polymorphic species, the entire wing pattern phenotype is controlled by a single Mendelian 'supergene'. Although theoretical work has explored the evolutionary dynamics of supergene mimicry, there are almost no empirical data that address the critical issue of what a mimicry supergene actually is at a functional level. Using an integrative approach combining genetic and association mapping, transcriptome and genome sequencing, and gene expression analyses, we show that a single gene, doublesex, controls supergene mimicry in Papilio polytes. This is in contrast to the long-held view that supergenes are likely to be controlled by a tightly linked cluster of loci. Analysis of gene expression and DNA sequence variation indicates that isoform expression differences contribute to the functional differences between dsx mimicry alleles, and protein sequence evolution may also have a role. Our results combine elements from different hypotheses for the identity of supergenes, showing that a single gene can switch the entire wing pattern among mimicry phenotypes but may require multiple, tightly linked mutations to do so.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kunte, K -- Zhang, W -- Tenger-Trolander, A -- Palmer, D H -- Martin, A -- Reed, R D -- Mullen, S P -- Kronforst, M R -- England -- Nature. 2014 Mar 13;507(7491):229-32. doi: 10.1038/nature13112. Epub 2014 Mar 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India [2]. ; 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2]. ; Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA. ; Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA. ; Department of Biology, Boston University, Boston, Massachusetts 02215, USA. ; 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2] Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24598547" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Butterflies/anatomy & histology/*genetics/*physiology ; *DNA-Binding Proteins ; *Drosophila Proteins ; Evolution, Molecular ; Female ; Gene Expression Regulation ; *Genes, Insect ; Male ; Molecular Mimicry/*genetics/physiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Pigmentation/genetics/physiology ; Polymorphism, Genetic/genetics ; *Sex Characteristics ; Transcriptome/genetics ; Wings, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-08-15
    Description: The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the beta-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of beta-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Wen -- Chen, Sidi -- Yin, Hao -- Tammela, Tuomas -- Papagiannakopoulos, Thales -- Joshi, Nikhil S -- Cai, Wenxin -- Yang, Gillian -- Bronson, Roderick -- Crowley, Denise G -- Zhang, Feng -- Anderson, Daniel G -- Sharp, Phillip A -- Jacks, Tyler -- 1K99CA169512/CA/NCI NIH HHS/ -- 2-P01-CA42063/CA/NCI NIH HHS/ -- 5-U54-CA151884-04/CA/NCI NIH HHS/ -- DP1 MH100706/MH/NIMH NIH HHS/ -- K99 CA169512/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA169512/CA/NCI NIH HHS/ -- R01 DK097768/DK/NIDDK NIH HHS/ -- R01-CA115527/CA/NCI NIH HHS/ -- R01-CA132091/CA/NCI NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-EB000244/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 16;514(7522):380-4. doi: 10.1038/nature13589. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2]. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Tufts University and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Harvard-MIT Division of Health Sciences &Technology, Cambridge, Massachusetts 02139, USA [4] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *CRISPR-Cas Systems ; Cell Transformation, Neoplastic/genetics ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Female ; *Genes, Tumor Suppressor ; Genes, p53/genetics ; Genetic Engineering/*methods ; Hepatocytes/metabolism/pathology ; Lipid Metabolism ; Liver/cytology/*metabolism/pathology ; Liver Neoplasms/genetics/metabolism/pathology ; Mice ; Molecular Sequence Data ; Mutagenesis/*genetics ; Mutation/*genetics ; Oncogenes/*genetics ; PTEN Phosphohydrolase/genetics ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-01-10
    Description: The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964593/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964593/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Lee, Alison P -- Ravi, Vydianathan -- Maurya, Ashish K -- Lian, Michelle M -- Swann, Jeremy B -- Ohta, Yuko -- Flajnik, Martin F -- Sutoh, Yoichi -- Kasahara, Masanori -- Hoon, Shawn -- Gangu, Vamshidhar -- Roy, Scott W -- Irimia, Manuel -- Korzh, Vladimir -- Kondrychyn, Igor -- Lim, Zhi Wei -- Tay, Boon-Hui -- Tohari, Sumanty -- Kong, Kiat Whye -- Ho, Shufen -- Lorente-Galdos, Belen -- Quilez, Javier -- Marques-Bonet, Tomas -- Raney, Brian J -- Ingham, Philip W -- Tay, Alice -- Hillier, LaDeana W -- Minx, Patrick -- Boehm, Thomas -- Wilson, Richard K -- Brenner, Sydney -- Warren, Wesley C -- AI27877/AI/NIAID NIH HHS/ -- R01 AI027877/AI/NIAID NIH HHS/ -- R01 OD010549/OD/NIH HHS/ -- RR006603/RR/NCRR NIH HHS/ -- U41 HG002371/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Jan 9;505(7482):174-9. doi: 10.1038/nature12826.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673 [2] Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228. ; Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; Department of Developmental Immunology, Max-Planck-Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany. ; Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland 21201, USA. ; Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Biopolis, Singapore 138673. ; Department of Biology, San Francisco State University, San Francisco, California 94132, USA. ; Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Fish Developmental Biology Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673. ; 1] Institut de Biologia Evolutiva (UPF-CSIC), PRBB, 08003 Barcelona, Spain [2] Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Catalonia, Spain. ; Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA. ; The Genome Institute at Washington University, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Lineage/immunology ; *Evolution, Molecular ; Fish Proteins/classification/genetics ; Gene Deletion ; Genome/*genetics ; Genomics ; Immunity, Cellular/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Osteogenesis/genetics ; Phosphoproteins/genetics/metabolism ; Phylogeny ; Protein Structure, Tertiary/genetics ; Sharks/*genetics/immunology ; T-Lymphocytes/cytology/immunology ; Time Factors ; Vertebrates/classification/genetics ; Zebrafish/genetics/growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-07-22
    Description: Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369343/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369343/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belew, Ashton Trey -- Meskauskas, Arturas -- Musalgaonkar, Sharmishtha -- Advani, Vivek M -- Sulima, Sergey O -- Kasprzak, Wojciech K -- Shapiro, Bruce A -- Dinman, Jonathan D -- 5 R01GM058859/GM/NIGMS NIH HHS/ -- HHSN261200800001/PHS HHS/ -- R01 GM058859/GM/NIGMS NIH HHS/ -- R01 HL119439/HL/NHLBI NIH HHS/ -- R21 GM068123/GM/NIGMS NIH HHS/ -- R21GM068123/GM/NIGMS NIH HHS/ -- T32 AI051967/AI/NIAID NIH HHS/ -- T32AI051967/AI/NIAID NIH HHS/ -- T32GM080201/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Aug 21;512(7514):265-9. doi: 10.1038/nature13429. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA [2]. ; 1] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA [2] Department of Biotechnology and Microbiology, Vilnius University, Vilnius, LT 03101, Lithuania [3]. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA. ; 1] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA [2] VIB Center for the Biology of Disease, KU Leuven, Campus Gasthuisberg, Herestraat 49, bus 602, 3000 Leuven, Belgium. ; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Cell Survival ; Codon, Nonsense/genetics ; Frameshifting, Ribosomal/*genetics ; HeLa Cells ; Humans ; MicroRNAs/*genetics ; Models, Molecular ; Molecular Sequence Data ; *Nonsense Mediated mRNA Decay ; Nucleic Acid Conformation ; RNA, Messenger/chemistry/*genetics/*metabolism ; Receptors, CCR5/*genetics ; Receptors, Interleukin/genetics ; Regulatory Sequences, Ribonucleic Acid ; Ribosomes/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-04-25
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bellott, Daniel W -- Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Cho, Ting-Jan -- Koutseva, Natalia -- Zaghlul, Sara -- Graves, Tina -- Rock, Susie -- Kremitzki, Colin -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Morton, Donna -- Khan, Ziad -- Lewis, Lora -- Buhay, Christian -- Wang, Qiaoyan -- Watt, Jennifer -- Holder, Michael -- Lee, Sandy -- Nazareth, Lynne -- Alfoldi, Jessica -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- P51 RR013986/RR/NCRR NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 24;508(7497):494-9. doi: 10.1038/nature13206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759411" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, X/genetics ; Chromosomes, Human, Y/genetics ; Disease ; *Evolution, Molecular ; Female ; Gene Dosage/*genetics ; Gene Expression Regulation ; Health ; Humans ; Male ; Mammals/*genetics ; Marsupialia/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Protein Biosynthesis/genetics ; Protein Stability ; Selection, Genetic/genetics ; Sequence Homology ; Sex Characteristics ; Spermatogenesis/genetics ; Testis/metabolism ; Transcription, Genetic/genetics ; Turner Syndrome/genetics ; X Chromosome/genetics ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-11-14
    Description: Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A 'domestic' form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, 'forest' form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286346/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286346/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McBride, Carolyn S -- Baier, Felix -- Omondi, Aman B -- Spitzer, Sarabeth A -- Lutomiah, Joel -- Sang, Rosemary -- Ignell, Rickard -- Vosshall, Leslie B -- 5UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900039C/AI/NIAID NIH HHS/ -- HHSN272200900039C/PHS HHS/ -- K99 DC012069/DC/NIDCD NIH HHS/ -- R00 DC012069/DC/NIDCD NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 13;515(7526):222-7. doi: 10.1038/nature13964.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York 10065, USA. ; Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Sundsvagen 14, 230 53 Alnarp, Sweden. ; Center for Virus Research, Kenya Medical Research Institute, PO Box 54840 - 00200, Off Mbagathi Way, Nairobi, Kenya.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25391959" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/*physiology ; Alleles ; Animals ; Arthropod Antennae/metabolism ; *Biological Evolution ; Female ; Forests ; Gene Expression Profiling ; Host Specificity ; Humans ; Ketones/analysis/metabolism ; Ligands ; Male ; Molecular Sequence Data ; Receptors, Odorant/*metabolism ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-11-05
    Description: Thirty years ago it was shown that the non-enzymatic, template-directed polymerization of activated mononucleotides proceeds readily in a homochiral system, but is severely inhibited by the presence of the opposing enantiomer. This finding poses a severe challenge for the spontaneous emergence of RNA-based life, and has led to the suggestion that either RNA was preceded by some other genetic polymer that is not subject to chiral inhibition or chiral symmetry was broken through chemical processes before the origin of RNA-based life. Once an RNA enzyme arose that could catalyse the polymerization of RNA, it would have been possible to distinguish among the two enantiomers, enabling RNA replication and RNA-based evolution to occur. It is commonly thought that the earliest RNA polymerase and its substrates would have been of the same handedness, but this is not necessarily the case. Replicating D- and L-RNA molecules may have emerged together, based on the ability of structured RNAs of one handedness to catalyse the templated polymerization of activated mononucleotides of the opposite handedness. Here we develop such a cross-chiral RNA polymerase, using in vitro evolution starting from a population of random-sequence RNAs. The D-RNA enzyme, consisting of 83 nucleotides, catalyses the joining of L-mono- or oligonucleotide substrates on a complementary L-RNA template, and similar behaviour occurs for the L-enzyme with D-substrates and a D-template. Chiral inhibition is avoided because the 10(6)-fold rate acceleration of the enzyme only pertains to cross-chiral substrates. The enzyme's activity is sufficient to generate full-length copies of its enantiomer through the templated joining of 11 component oligonucleotides.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sczepanski, Jonathan T -- Joyce, Gerald F -- F32 GM101741/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):440-2. doi: 10.1038/nature13900. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363769" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Biocatalysis ; Biopolymers/biosynthesis/chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Directed Molecular Evolution ; Evolution, Chemical ; Kinetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligonucleotides/chemistry/metabolism ; Origin of Life ; Polymerization ; RNA/*biosynthesis/*chemistry/metabolism ; RNA, Catalytic/*chemistry/*metabolism ; Stereoisomerism ; Templates, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-02-14
    Description: Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 +/- 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4x and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rasmussen, Morten -- Anzick, Sarah L -- Waters, Michael R -- Skoglund, Pontus -- DeGiorgio, Michael -- Stafford, Thomas W Jr -- Rasmussen, Simon -- Moltke, Ida -- Albrechtsen, Anders -- Doyle, Shane M -- Poznik, G David -- Gudmundsdottir, Valborg -- Yadav, Rachita -- Malaspinas, Anna-Sapfo -- White, Samuel Stockton 5th -- Allentoft, Morten E -- Cornejo, Omar E -- Tambets, Kristiina -- Eriksson, Anders -- Heintzman, Peter D -- Karmin, Monika -- Korneliussen, Thorfinn Sand -- Meltzer, David J -- Pierre, Tracey L -- Stenderup, Jesper -- Saag, Lauri -- Warmuth, Vera M -- Lopes, Margarida C -- Malhi, Ripan S -- Brunak, Soren -- Sicheritz-Ponten, Thomas -- Barnes, Ian -- Collins, Matthew -- Orlando, Ludovic -- Balloux, Francois -- Manica, Andrea -- Gupta, Ramneek -- Metspalu, Mait -- Bustamante, Carlos D -- Jakobsson, Mattias -- Nielsen, Rasmus -- Willerslev, Eske -- BB/H005854/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H008802/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P25032/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2014 Feb 13;506(7487):225-9. doi: 10.1038/nature13025.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark [2]. ; 1] Anzick Family, 31 Old Clyde Park Road, Livingston, Montana 59047, USA [2]. ; Center for the Study of the First Americans, Departments of Anthropology and Geography, Texas A&M University, 4352 TAMU, College Station, Texas 77843-4352, USA. ; Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 752 36 Uppsala, Sweden. ; 1] Department of Integrative Biology, University of California, Berkeley, 4134 Valley Life Sciences Building, Berkeley, California 94720, USA [2] Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK (I.B.); Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, Pennsylvania 16802, USA (M.D.). ; 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark [2] AMS 14C Dating Centre, Department of Physics & Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. ; Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet 208, Kgs. Lyngby DK-2800, Denmark. ; 1] The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark [2] Department of Human Genetics, University of Chicago, 920 E. 58th Street, CLSC 4th floor, Chicago, Illinois 60637, USA. ; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark. ; Education Department, Montana State University, Box 5103, Bozeman, Montana 59717, USA. ; Program in Biomedical Informatics and Department of Statistics, Stanford University, Stanford, California 94305, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. ; Anthropology Department, PhD Program, University of Montana, 4100 Mullan Road, no. 217, Missoula, Montana 59808, USA. ; School of Biological Sciences, Washington State University, PO Box 644236, Eastlick Hall 395, Pullman, Washington 99164, USA. ; Department of Evolutionary Biology, Estonian Biocentre and University of Tartu, Riia 23b, 51010 Tartu, Estonia. ; 1] Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK [2] Integrative Systems Biology Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. ; School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. ; Department of Anthropology, Southern Methodist University, Dallas, Texas 75275, USA. ; 1] Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK [2] Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ; Department of Anthropology and Institute for Genomic Biology, University of Illinois Urbana-Champaign, 209F Davenport Hall, 607 Matthews Avenue, Urbana, Illinois 61801, USA. ; 1] School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK [2] Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK (I.B.); Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, Pennsylvania 16802, USA (M.D.). ; BioArCh, Departments of Biology, Archaeology and Chemistry, University of York, Wentworth Way, York YO10 5DD, UK. ; MRC Centre for Outbreak, Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Imperial College Faculty of Medicine, London W2 1PG, UK. ; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. ; 1] Department of Genetics, School of Medicine, Stanford University, Littlefield Center, Stanford, California 94305, USA [2] Center for Evolutionary and Human Genomics, Stanford University, Littlefield Center, Stanford, California 94305, USA. ; 1] Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 752 36 Uppsala, Sweden [2] Science for Life Laboratory, Uppsala University, Norbyvagen 18D, 752 36 Uppsala, Sweden. ; Department of Integrative Biology, University of California, Berkeley, 4134 Valley Life Sciences Building, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522598" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeology ; Asia/ethnology ; Bone and Bones ; Burial ; Chromosomes, Human, Y/genetics ; DNA, Mitochondrial/genetics ; Emigration and Immigration/history ; Europe/ethnology ; Gene Flow/genetics ; Genome, Human/*genetics ; Haplotypes/genetics ; History, Ancient ; Humans ; Indians, North American/*genetics ; Infant ; Male ; Models, Genetic ; Molecular Sequence Data ; Montana ; *Phylogeny ; Population Dynamics ; Radiometric Dating
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-01-28
    Description: A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282169/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282169/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larsbrink, Johan -- Rogers, Theresa E -- Hemsworth, Glyn R -- McKee, Lauren S -- Tauzin, Alexandra S -- Spadiut, Oliver -- Klinter, Stefan -- Pudlo, Nicholas A -- Urs, Karthik -- Koropatkin, Nicole M -- Creagh, A Louise -- Haynes, Charles A -- Kelly, Amelia G -- Cederholm, Stefan Nilsson -- Davies, Gideon J -- Martens, Eric C -- Brumer, Harry -- BB/I014802/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DK084214/DK/NIDDK NIH HHS/ -- GM099513/GM/NIGMS NIH HHS/ -- K01 DK084214/DK/NIDDK NIH HHS/ -- R01 GM099513/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):498-502. doi: 10.1038/nature12907. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2]. ; 1] Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2]. ; 1] Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK [2]. ; 1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2] Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Teknikringen 56-58, 100 44 Stockholm, Sweden. ; Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden. ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Michael Smith Laboratories and Department of Chemical and Biological Engineering, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK. ; 1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2] Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463512" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteroides/enzymology/*genetics/growth & development/*metabolism ; Carbohydrate Metabolism/genetics ; Carbohydrate Sequence ; Cell Wall/chemistry ; Crystallography, X-Ray ; Diet ; Dietary Fiber ; Evolution, Molecular ; Gastrointestinal Tract/*microbiology ; Genetic Loci/*genetics ; Glucans/chemistry/*metabolism ; Glycoside Hydrolases/chemistry/genetics/metabolism ; Humans ; Metagenome ; Models, Molecular ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Symbiosis ; Xylans/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-01-07
    Description: Cytosine residues in mammalian DNA occur in five forms: cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). The ten-eleven translocation (Tet) dioxygenases convert 5mC to 5hmC, 5fC and 5caC in three consecutive, Fe(II)- and alpha-ketoglutarate-dependent oxidation reactions. The Tet family of dioxygenases is widely distributed across the tree of life, including in the heterolobosean amoeboflagellate Naegleria gruberi. The genome of Naegleria encodes homologues of mammalian DNA methyltransferase and Tet proteins. Here we study biochemically and structurally one of the Naegleria Tet-like proteins (NgTet1), which shares significant sequence conservation (approximately 14% identity or 39% similarity) with mammalian Tet1. Like mammalian Tet proteins, NgTet1 acts on 5mC and generates 5hmC, 5fC and 5caC. The crystal structure of NgTet1 in complex with DNA containing a 5mCpG site revealed that NgTet1 uses a base-flipping mechanism to access 5mC. The DNA is contacted from the minor groove and bent towards the major groove. The flipped 5mC is positioned in the active-site pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5mC. The sequence conservation between NgTet1 and mammalian Tet1, including residues involved in structural integrity and functional significance, suggests structural conservation across phyla.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashimoto, Hideharu -- Pais, June E -- Zhang, Xing -- Saleh, Lana -- Fu, Zheng-Qing -- Dai, Nan -- Correa, Ivan R Jr -- Zheng, Yu -- Cheng, Xiaodong -- GM049245/GM/NIGMS NIH HHS/ -- GM095209/GM/NIGMS NIH HHS/ -- GM105132/GM/NIGMS NIH HHS/ -- R01 GM049245/GM/NIGMS NIH HHS/ -- R44 GM105132/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):391-5. doi: 10.1038/nature12905. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA. ; New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA. ; 1] Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA [2] Sector 22, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390346" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Catalytic Domain/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Cytosine/analogs & derivatives/metabolism ; DNA/*chemistry/*metabolism ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Dioxygenases/*chemistry/*metabolism ; Escherichia coli Proteins/chemistry ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Mice ; Mixed Function Oxygenases/chemistry ; Models, Molecular ; Molecular Sequence Data ; Naegleria/*enzymology/genetics ; Proto-Oncogene Proteins/chemistry/genetics/metabolism ; Structural Homology, Protein ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-09-05
    Description: The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) 〈50 mug ml(-1). The median IC50 of neutralized viruses was 0.033 mug ml(-1), among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224615/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224615/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Jinghe -- Kang, Byong H -- Pancera, Marie -- Lee, Jeong Hyun -- Tong, Tommy -- Feng, Yu -- Imamichi, Hiromi -- Georgiev, Ivelin S -- Chuang, Gwo-Yu -- Druz, Aliaksandr -- Doria-Rose, Nicole A -- Laub, Leo -- Sliepen, Kwinten -- van Gils, Marit J -- de la Pena, Alba Torrents -- Derking, Ronald -- Klasse, Per-Johan -- Migueles, Stephen A -- Bailer, Robert T -- Alam, Munir -- Pugach, Pavel -- Haynes, Barton F -- Wyatt, Richard T -- Sanders, Rogier W -- Binley, James M -- Ward, Andrew B -- Mascola, John R -- Kwong, Peter D -- Connors, Mark -- 280829/European Research Council/International -- AI84714/AI/NIAID NIH HHS/ -- AI93278/AI/NIAID NIH HHS/ -- P01 AI082362/AI/NIAID NIH HHS/ -- R01 AI100790/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- ZIA AI000855-15/Intramural NIH HHS/ -- ZIA AI001090-05/Intramural NIH HHS/ -- England -- Nature. 2014 Nov 6;515(7525):138-42. doi: 10.1038/nature13601. Epub 2014 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] The Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [2] International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; San Diego Biomedical Research Institute, San Diego, California 92121, USA. ; International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1100 DD, The Netherlands. ; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA. ; 1] Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1100 DD, The Netherlands [2] Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186731" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Antibodies, Monoclonal/chemistry/genetics/immunology/pharmacology ; Antibodies, Neutralizing/chemistry/genetics/*immunology/pharmacology ; *Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Cell Line ; Cell Membrane/virology ; Conserved Sequence ; Epitope Mapping ; Epitopes/chemistry/immunology ; HIV Antibodies/chemistry/genetics/*immunology/pharmacology ; HIV Envelope Protein gp120/*chemistry/*immunology ; HIV Envelope Protein gp41/*chemistry/*immunology ; HIV-1/drug effects/immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/genetics/immunology/ultrastructure ; Inhibitory Concentration 50 ; Leukocytes, Mononuclear ; Models, Molecular ; Molecular Sequence Data ; Receptors, CCR5/metabolism ; Virus Internalization/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-01-10
    Description: UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471481/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471481/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epshtein, Vitaly -- Kamarthapu, Venu -- McGary, Katelyn -- Svetlov, Vladimir -- Ueberheide, Beatrix -- Proshkin, Sergey -- Mironov, Alexander -- Nudler, Evgeny -- R01 GM058750/GM/NIGMS NIH HHS/ -- T32 GM088118/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 16;505(7483):372-7. doi: 10.1038/nature12928. Epub 2014 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2]. ; 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA [3]. ; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA. ; State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia. ; 1] State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia [2] Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia. ; 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402227" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/chemistry/metabolism ; DNA Damage ; DNA Helicases/*metabolism ; *DNA Repair ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/enzymology/genetics ; Escherichia coli Proteins/*metabolism ; Models, Molecular ; Molecular Sequence Data ; *Movement ; Peptide Elongation Factors/metabolism ; Protein Binding ; Transcription Factors/metabolism ; Transcription, Genetic ; Transcriptional Elongation Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-09-12
    Description: Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation approximately 5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carbone, Lucia -- Harris, R Alan -- Gnerre, Sante -- Veeramah, Krishna R -- Lorente-Galdos, Belen -- Huddleston, John -- Meyer, Thomas J -- Herrero, Javier -- Roos, Christian -- Aken, Bronwen -- Anaclerio, Fabio -- Archidiacono, Nicoletta -- Baker, Carl -- Barrell, Daniel -- Batzer, Mark A -- Beal, Kathryn -- Blancher, Antoine -- Bohrson, Craig L -- Brameier, Markus -- Campbell, Michael S -- Capozzi, Oronzo -- Casola, Claudio -- Chiatante, Giorgia -- Cree, Andrew -- Damert, Annette -- de Jong, Pieter J -- Dumas, Laura -- Fernandez-Callejo, Marcos -- Flicek, Paul -- Fuchs, Nina V -- Gut, Ivo -- Gut, Marta -- Hahn, Matthew W -- Hernandez-Rodriguez, Jessica -- Hillier, LaDeana W -- Hubley, Robert -- Ianc, Bianca -- Izsvak, Zsuzsanna -- Jablonski, Nina G -- Johnstone, Laurel M -- Karimpour-Fard, Anis -- Konkel, Miriam K -- Kostka, Dennis -- Lazar, Nathan H -- Lee, Sandra L -- Lewis, Lora R -- Liu, Yue -- Locke, Devin P -- Mallick, Swapan -- Mendez, Fernando L -- Muffato, Matthieu -- Nazareth, Lynne V -- Nevonen, Kimberly A -- O'Bleness, Majesta -- Ochis, Cornelia -- Odom, Duncan T -- Pollard, Katherine S -- Quilez, Javier -- Reich, David -- Rocchi, Mariano -- Schumann, Gerald G -- Searle, Stephen -- Sikela, James M -- Skollar, Gabriella -- Smit, Arian -- Sonmez, Kemal -- ten Hallers, Boudewijn -- Terhune, Elizabeth -- Thomas, Gregg W C -- Ullmer, Brygg -- Ventura, Mario -- Walker, Jerilyn A -- Wall, Jeffrey D -- Walter, Lutz -- Ward, Michelle C -- Wheelan, Sarah J -- Whelan, Christopher W -- White, Simon -- Wilhelm, Larry J -- Woerner, August E -- Yandell, Mark -- Zhu, Baoli -- Hammer, Michael F -- Marques-Bonet, Tomas -- Eichler, Evan E -- Fulton, Lucinda -- Fronick, Catrina -- Muzny, Donna M -- Warren, Wesley C -- Worley, Kim C -- Rogers, Jeffrey -- Wilson, Richard K -- Gibbs, Richard A -- 095908/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 260372/European Research Council/International -- HG002385/HG/NHGRI NIH HHS/ -- P30 AA019355/AA/NIAAA NIH HHS/ -- P30CA006973/CA/NCI NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 HG005226/HG/NHGRI NIH HHS/ -- R01 MH081203/MH/NIMH NIH HHS/ -- R01_HG005226/HG/NHGRI NIH HHS/ -- T15 LM007088/LM/NLM NIH HHS/ -- U41 HG007497/HG/NHGRI NIH HHS/ -- U41 HG007497-01/HG/NHGRI NIH HHS/ -- U41HG007234/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54HG003273/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 11;513(7517):195-201. doi: 10.1038/nature13679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA. [2] Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA. [3] Oregon Health &Science University, Department of Molecular &Medical Genetics, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [4] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, Texas 77030, USA. ; Nabsys, 60 Clifford Street, Providence, Rhode Island 02903, USA. ; 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Stony Brook University, Department of Ecology and Evolution, Stony Brook, New York 11790, USA. ; IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain. ; 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. [2] Howard Hughes Medical Institute, 1705 NE Pacific Street, Seattle, Washington 98195, USA. ; Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK. [3] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Gottingen 37077, Germany. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy. ; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; University of Paul Sabatier, Toulouse 31062, France. ; The Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics and Bioinformatics, Baltimore, Maryland 21205, USA. ; University of Utah, Salt Lake City, Utah 84112, USA. ; Texas A&M University, Department of Ecosystem Science and Management, College Station, Texas 77843, USA. ; Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania. ; Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. ; University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA. ; Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany. ; Centro Nacional de Analisis Genomico (CNAG), Parc Cientific de Barcelona, Barcelona 08028, Spain. ; Indiana University, School of Informatics and Computing, Bloomington, Indiana 47408, USA. ; The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. ; Institute for Systems Biology, Seattle, Washington 98109-5234, USA. ; The Pennsylvania State University, Department of Anthropology, University Park, Pennsylvania 16802, USA. ; University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. ; University of Pittsburgh School of Medicine, Department of Developmental Biology, Department of Computational and Systems Biology, Pittsburg, Pennsylvania 15261, USA. ; Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA. ; 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA. ; 1] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK. ; 1] University of California, Gladstone Institutes, San Francisco, California 94158-226, USA. [2] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [3] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA. ; Paul Ehrlich Institute, Division of Medical Biotechnology, 63225 Langen, Germany. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Gibbon Conservation Center, 19100 Esguerra Rd, Santa Clarita, California 91350, USA. ; 1] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [2] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA. ; 1] Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Louisiana State University, School of Electrical Engineering and Computer Science, Baton Rouge, Louisiana 70803, USA. ; 1] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [2] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA. ; 1] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; 1] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; 1] IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain. [2] Centro Nacional de Analisis Genomico (CNAG), Parc Cientific de Barcelona, Barcelona 08028, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209798" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Evolution, Molecular ; Genome/*genetics ; Hominidae/classification/genetics ; Humans ; Hylobates/*classification/*genetics ; *Karyotype ; Molecular Sequence Data ; *Phylogeny ; Retroelements/genetics ; Selection, Genetic ; Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-02-21
    Description: Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985068/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985068/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furst, M A -- McMahon, D P -- Osborne, J L -- Paxton, R J -- Brown, M J F -- 094888/Wellcome Trust/United Kingdom -- BB/I000097/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I000100/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I000151/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Feb 20;506(7488):364-6. doi: 10.1038/nature12977.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Royal Holloway University of London, School of Biological Sciences, Bourne Building, Egham TW20 0EX, UK [2] IST Austria (Institute of Science and Technology Austria), 3400 Klosterneuburg, Austria. ; Queen's University Belfast, School of Biological Sciences, 97 Lisburn Road, Belfast BT9 7BL, UK. ; 1] Rothamsted Research, Department of Agro-Ecology, Harpenden AL5 2JQ, UK [2] University of Exeter, Environment & Sustainability Institute, Penryn TR10 9EZ, UK. ; 1] Queen's University Belfast, School of Biological Sciences, 97 Lisburn Road, Belfast BT9 7BL, UK [2] Martin-Luther-Universitat Halle-Wittenberg, Institute for Biology/General Zoology, Hoher Weg 8, 06120 Halle (Saale), Germany [3] German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Royal Holloway University of London, School of Biological Sciences, Bourne Building, Egham TW20 0EX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beekeeping/methods ; Bees/classification/*parasitology/physiology/*virology ; Great Britain ; Molecular Sequence Data ; Parasites/genetics/isolation & purification/*pathogenicity ; *Pollination/physiology ; RNA Viruses/genetics/isolation & purification/*pathogenicity ; Risk
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-09-26
    Description: Post-translational histone modifications have a critical role in regulating transcription, the cell cycle, DNA replication and DNA damage repair. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation or termination is of particular interest. Here we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals. This regulation is based on the phosphorylation of a highly conserved tyrosine residue, Tyr 57, in histone H2A and is mediated by the unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of Tyr 57 in H2A in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2alpha, the catalytic subunit of CK2, binds across RNA-polymerase-II-transcribed coding genes and active enhancers. Mutation of Tyr 57 causes a loss of H2B mono-ubiquitination as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and the H2A(Y57F) mutation enhance H2B deubiquitination activity of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA complex during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461219/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461219/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Basnet, Harihar -- Su, Xue B -- Tan, Yuliang -- Meisenhelder, Jill -- Merkurjev, Daria -- Ohgi, Kenneth A -- Hunter, Tony -- Pillus, Lorraine -- Rosenfeld, Michael G -- CA173903/CA/NCI NIH HHS/ -- CA82683/CA/NCI NIH HHS/ -- DK018477/DK/NIDDK NIH HHS/ -- DK039949/DK/NIDDK NIH HHS/ -- GM033279/GM/NIGMS NIH HHS/ -- HL065445/HL/NHLBI NIH HHS/ -- NS034934/NS/NINDS NIH HHS/ -- P30 CA023100/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 GM033279/GM/NIGMS NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- T32 DK007541/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):267-71. doi: 10.1038/nature13736. Epub 2014 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Division of Biological Sciences, Section of Molecular Biology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0347, USA. ; Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Bioinformatics and Systems Biology Program, Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252977" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Casein Kinase II/*metabolism ; Cell Line ; Conserved Sequence ; Histones/*chemistry/genetics/*metabolism ; Humans ; Molecular Sequence Data ; Phosphorylation ; Saccharomyces cerevisiae/genetics/metabolism ; *Transcription Elongation, Genetic ; Tyrosine/chemistry/*metabolism ; Ubiquitination/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-07-22
    Description: Environmental constraints severely restrict crop yields in most production environments, and expanding the use of variation will underpin future progress in breeding. In semi-arid environments boron toxicity constrains productivity, and genetic improvement is the only effective strategy for addressing the problem. Wheat breeders have sought and used available genetic diversity from landraces to maintain yield in these environments; however, the identity of the genes at the major tolerance loci was unknown. Here we describe the identification of near-identical, root-specific boron transporter genes underlying the two major-effect quantitative trait loci for boron tolerance in wheat, Bo1 and Bo4 (ref. 2). We show that tolerance to a high concentration of boron is associated with multiple genomic changes including tetraploid introgression, dispersed gene duplication, and variation in gene structure and transcript level. An allelic series was identified from a panel of bread and durum wheat cultivars and landraces originating from diverse agronomic zones. Our results demonstrate that, during selection, breeders have matched functionally different boron tolerance alleles to specific environments. The characterization of boron tolerance in wheat illustrates the power of the new wheat genomic resources to define key adaptive processes that have underpinned crop improvement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pallotta, Margaret -- Schnurbusch, Thorsten -- Hayes, Julie -- Hay, Alison -- Baumann, Ute -- Paull, Jeff -- Langridge, Peter -- Sutton, Tim -- England -- Nature. 2014 Oct 2;514(7520):88-91. doi: 10.1038/nature13538. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia [2]. ; 1] Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia [2] Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank Department, Corrensstrasse 3, D-06466 Gatersleben, Germany [3]. ; Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia. ; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043042" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*drug effects/genetics ; Alleles ; Boron/*pharmacology ; Carrier Proteins/*genetics ; Drug Tolerance ; Gene Duplication/genetics ; Genes, Plant/*genetics ; Molecular Sequence Data ; Phylogeny ; Plant Proteins/genetics/metabolism ; Plant Roots/drug effects/genetics/metabolism ; Polyploidy ; Quantitative Trait Loci/genetics ; RNA, Messenger/analysis/genetics ; RNA, Plant/analysis/genetics ; Soil/*chemistry ; Triticum/classification/*drug effects/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-12-04
    Description: Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase sigma (PTPsigma), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPsigma has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPsigma wedge domain that binds to PTPsigma and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPsigma in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, Bradley T -- Cregg, Jared M -- DePaul, Marc A -- Tran, Amanda P -- Xu, Kui -- Dyck, Scott M -- Madalena, Kathryn M -- Brown, Benjamin P -- Weng, Yi-Lan -- Li, Shuxin -- Karimi-Abdolrezaee, Soheila -- Busch, Sarah A -- Shen, Yingjie -- Silver, Jerry -- NS025713/NS/NINDS NIH HHS/ -- R01 EY024575/EY/NEI NIH HHS/ -- R01 NS025713/NS/NINDS NIH HHS/ -- R01 NS079432/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):404-8. doi: 10.1038/nature13974. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, USA. ; Regenerative Medicine Program and Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. ; Baldwin Wallace University, Berea, Ohio 44017, USA. ; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA. ; Shriners Hospital's Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470046" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chondroitin Sulfate Proteoglycans/*metabolism ; Extracellular Matrix/chemistry/drug effects/metabolism ; Female ; Growth Cones/drug effects/physiology ; Humans ; Mice ; Molecular Sequence Data ; *Nerve Regeneration/drug effects ; Protein Binding/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & ; inhibitors/chemistry/*metabolism ; Spinal Cord Injuries/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-09-16
    Description: The reprogramming of epigenetic states in gametes and embryos is essential for correct development in plants and mammals. In plants, the germ line arises from somatic tissues of the flower, necessitating the erasure of chromatin modifications that have accumulated at specific loci during development or in response to external stimuli. If this process occurs inefficiently, it can lead to epigenetic states being inherited from one generation to the next. However, in most cases, accumulated epigenetic modifications are efficiently erased before the next generation. An important example of epigenetic reprogramming in plants is the resetting of the expression of the floral repressor locus FLC in Arabidopsis thaliana. FLC is epigenetically silenced by prolonged cold in a process called vernalization. However, the locus is reactivated before the completion of seed development, ensuring the requirement for vernalization in every generation. In contrast to our detailed understanding of the polycomb-mediated epigenetic silencing induced by vernalization, little is known about the mechanism involved in the reactivation of FLC. Here we show that a hypomorphic mutation in the jumonji-domain-containing protein ELF6 impaired the reactivation of FLC in reproductive tissues, leading to the inheritance of a partially vernalized state. ELF6 has H3K27me3 demethylase activity, and the mutation reduced this enzymatic activity in planta. Consistent with this, in the next generation of mutant plants, H3K27me3 levels at the FLC locus stayed higher, and FLC expression remained lower, than in the wild type. Our data reveal an ancient role for H3K27 demethylation in the reprogramming of epigenetic states in plant and mammalian embryos.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247276/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247276/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crevillen, Pedro -- Yang, Hongchun -- Cui, Xia -- Greeff, Christiaan -- Trick, Martin -- Qiu, Qi -- Cao, Xiaofeng -- Dean, Caroline -- 233039/European Research Council/International -- BB/C517633/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G009562/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2014 Nov 27;515(7528):587-90. doi: 10.1038/nature13722. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cell &Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK [2]. ; Department of Cell &Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK. ; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219852" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/*genetics ; Arabidopsis Proteins/*genetics/metabolism ; Cellular Reprogramming/genetics ; Chromosome Mapping ; DNA Methylation ; *Epigenesis, Genetic ; *Gene Expression Regulation, Plant ; Gene Silencing ; MADS Domain Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Sequence Alignment ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-02-21
    Description: Members of the nuclear factor-kappaB (NF-kappaB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-kappaB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-kappaB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-kappaB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-kappaB target genes, and rapidly transformed neural stem cells--the cell of origin of ependymoma--to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Matthew -- Mohankumar, Kumarasamypet M -- Punchihewa, Chandanamali -- Weinlich, Ricardo -- Dalton, James D -- Li, Yongjin -- Lee, Ryan -- Tatevossian, Ruth G -- Phoenix, Timothy N -- Thiruvenkatam, Radhika -- White, Elsie -- Tang, Bo -- Orisme, Wilda -- Gupta, Kirti -- Rusch, Michael -- Chen, Xiang -- Li, Yuxin -- Nagahawhatte, Panduka -- Hedlund, Erin -- Finkelstein, David -- Wu, Gang -- Shurtleff, Sheila -- Easton, John -- Boggs, Kristy -- Yergeau, Donald -- Vadodaria, Bhavin -- Mulder, Heather L -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Ma, Jing -- Song, Guangchun -- Gajjar, Amar -- Merchant, Thomas -- Boop, Frederick -- Smith, Amy A -- Ding, Li -- Lu, Charles -- Ochoa, Kerri -- Zhao, David -- Fulton, Robert S -- Fulton, Lucinda L -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Green, Douglas R -- Zhang, Jinghui -- Ellison, David W -- Gilbertson, Richard J -- P01 CA096832/CA/NCI NIH HHS/ -- P01CA96832/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):451-5. doi: 10.1038/nature13109. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [3]. ; 1] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2] Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA. ; Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; MD Anderson Cancer Center Orlando, Pediatric Hematology/Oncology, 92 West Miller MP 318, Orlando, Florida 32806, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [3] Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [3] Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [4] Siteman Cancer Center, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553141" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Base Sequence ; Brain Neoplasms/genetics/metabolism/pathology ; Cell Line ; Cell Nucleus/metabolism ; *Cell Transformation, Neoplastic/genetics ; Chromosomes, Human, Pair 11/genetics ; Ependymoma/*genetics/*metabolism/pathology ; Female ; Humans ; Mice ; Models, Genetic ; Molecular Sequence Data ; NF-kappa B/genetics/*metabolism ; Neural Stem Cells/metabolism/pathology ; Oncogene Proteins, Fusion/genetics/metabolism ; Phosphoproteins/genetics/metabolism ; Proteins/genetics/*metabolism ; *Signal Transduction ; Transcription Factor RelA/genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-12-24
    Description: Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homologue FtsZ establishes the cytokinetic ring that constricts during cell division. How such different roles of tubulin and FtsZ evolved is unknown. Studying Archaea may provide clues as these organisms share characteristics with Eukarya and Bacteria. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ X-ray crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of CetZ proteins in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of the microbial rod shape is to facilitate swimming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369195/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369195/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duggin, Iain G -- Aylett, Christopher H S -- Walsh, James C -- Michie, Katharine A -- Wang, Qing -- Turnbull, Lynne -- Dawson, Emma M -- Harry, Elizabeth J -- Whitchurch, Cynthia B -- Amos, Linda A -- Lowe, Jan -- MC_U105184326/Medical Research Council/United Kingdom -- U105184326/Medical Research Council/United Kingdom -- England -- Nature. 2015 Mar 19;519(7543):362-5. doi: 10.1038/nature13983. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK [2] The ithree institute, University of Technology Sydney, New South Wales 2007, Australia. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; 1] The ithree institute, University of Technology Sydney, New South Wales 2007, Australia [2] School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia. ; The ithree institute, University of Technology Sydney, New South Wales 2007, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/*chemistry/*metabolism ; Bacterial Proteins/chemistry/metabolism ; Cell Division ; Cell Membrane/metabolism ; *Cell Shape ; Crystallography, X-Ray ; Cytoskeletal Proteins/chemistry/metabolism ; Haloferax volcanii/*cytology/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Movement ; Tubulin/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-09-13
    Description: Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Piatak, Michael Jr -- Ventura, Abigail B -- Hughes, Colette M -- Gilbride, Roxanne M -- Ford, Julia C -- Oswald, Kelli -- Shoemaker, Rebecca -- Li, Yuan -- Lewis, Matthew S -- Gilliam, Awbrey N -- Xu, Guangwu -- Whizin, Nathan -- Burwitz, Benjamin J -- Planer, Shannon L -- Turner, John M -- Legasse, Alfred W -- Axthelm, Michael K -- Nelson, Jay A -- Fruh, Klaus -- Sacha, Jonah B -- Estes, Jacob D -- Keele, Brandon F -- Edlefsen, Paul T -- Lifson, Jeffrey D -- Picker, Louis J -- HHSN261200800001E/PHS HHS/ -- P01 AI094417/AI/NIAID NIH HHS/ -- P51OD011092/OD/NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- R01 DE021291/DE/NIDCR NIH HHS/ -- R37 AI054292/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096109/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- U42 OD010426/OD/NIH HHS/ -- England -- Nature. 2013 Oct 3;502(7469):100-4. doi: 10.1038/nature12519. Epub 2013 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytomegalovirus/genetics/immunology ; Female ; Macaca mulatta ; Male ; Molecular Sequence Data ; SAIDS Vaccines/*immunology ; Simian Acquired Immunodeficiency Syndrome/*prevention & control/virology ; Simian Immunodeficiency Virus/*immunology ; Time Factors ; Vaccines, Attenuated/immunology ; Viral Load ; Virus Replication/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-07-13
    Description: RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929597/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929597/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray, Debashish -- Kazan, Hilal -- Cook, Kate B -- Weirauch, Matthew T -- Najafabadi, Hamed S -- Li, Xiao -- Gueroussov, Serge -- Albu, Mihai -- Zheng, Hong -- Yang, Ally -- Na, Hong -- Irimia, Manuel -- Matzat, Leah H -- Dale, Ryan K -- Smith, Sarah A -- Yarosh, Christopher A -- Kelly, Seth M -- Nabet, Behnam -- Mecenas, Desirea -- Li, Weimin -- Laishram, Rakesh S -- Qiao, Mei -- Lipshitz, Howard D -- Piano, Fabio -- Corbett, Anita H -- Carstens, Russ P -- Frey, Brendan J -- Anderson, Richard A -- Lynch, Kristen W -- Penalva, Luiz O F -- Lei, Elissa P -- Fraser, Andrew G -- Blencowe, Benjamin J -- Morris, Quaid D -- Hughes, Timothy R -- 1R01HG00570/HG/NHGRI NIH HHS/ -- DK015602-05/DK/NIDDK NIH HHS/ -- MOP-125894/Canadian Institutes of Health Research/Canada -- MOP-14409/Canadian Institutes of Health Research/Canada -- MOP-49451/Canadian Institutes of Health Research/Canada -- MOP-67011/Canadian Institutes of Health Research/Canada -- MOP-93671/Canadian Institutes of Health Research/Canada -- P30 CA014520/CA/NCI NIH HHS/ -- R01 CA104708/CA/NCI NIH HHS/ -- R01 GM051968/GM/NIGMS NIH HHS/ -- R01 GM084034/GM/NIGMS NIH HHS/ -- R01 HG005700/HG/NHGRI NIH HHS/ -- R01GM084034/GM/NIGMS NIH HHS/ -- T32 GM008061/GM/NIGMS NIH HHS/ -- Z01 DK015602-01/Intramural NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):172-7. doi: 10.1038/nature12311.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846655" target="_blank"〉PubMed〈/a〉
    Keywords: Autistic Disorder/genetics ; Base Sequence ; Binding Sites/genetics ; Conserved Sequence/genetics ; Eukaryotic Cells/metabolism ; Gene Expression Regulation/*genetics ; Humans ; Molecular Sequence Data ; Nucleotide Motifs/*genetics ; Protein Structure, Tertiary/genetics ; RNA Stability/genetics ; RNA-Binding Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-03-29
    Description: Protein N-myristoylation is a 14-carbon fatty-acid modification that is conserved across eukaryotic species and occurs on nearly 1% of the cellular proteome. The ability of the myristoyl group to facilitate dynamic protein-protein and protein-membrane interactions (known as the myristoyl switch) makes it an essential feature of many signal transduction systems. Thus pathogenic strategies that facilitate protein demyristoylation would markedly alter the signalling landscape of infected host cells. Here we describe an irreversible mechanism of protein demyristoylation catalysed by invasion plasmid antigen J (IpaJ), a previously uncharacterized Shigella flexneri type III effector protein with cysteine protease activity. A yeast genetic screen for IpaJ substrates identified ADP-ribosylation factor (ARF)1p and ARF2p, small molecular mass GTPases that regulate cargo transport through the Golgi apparatus. Mass spectrometry showed that IpaJ cleaved the peptide bond between N-myristoylated glycine-2 and asparagine-3 of human ARF1, thereby providing a new mechanism for host secretory inhibition by a bacterial pathogen. We further demonstrate that IpaJ cleaves an array of N-myristoylated proteins involved in cellular growth, signal transduction, autophagasome maturation and organelle function. Taken together, these findings show a previously unrecognized pathogenic mechanism for the site-specific elimination of N-myristoyl protein modification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722872/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722872/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnaevskiy, Nikolay -- Fox, Thomas G -- Plymire, Daniel A -- Ertelt, James M -- Weigele, Bethany A -- Selyunin, Andrey S -- Way, Sing Sing -- Patrie, Steven M -- Alto, Neal M -- 5T32AI007520/AI/NIAID NIH HHS/ -- R01 AI083359/AI/NIAID NIH HHS/ -- R01 AI087830/AI/NIAID NIH HHS/ -- R01 AI100934/AI/NIAID NIH HHS/ -- R01 GM100486/GM/NIGMS NIH HHS/ -- R01AI083359/AI/NIAID NIH HHS/ -- R01GM100486/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 4;496(7443):106-9. doi: 10.1038/nature12004. Epub 2013 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535599" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1/chemistry/metabolism ; ADP-Ribosylation Factors/metabolism ; Amino Acid Sequence ; Animals ; Antigens, Bacterial/*metabolism ; Asparagine/metabolism ; Autophagy ; Biocatalysis ; Cysteine Proteases/metabolism ; Dysentery, Bacillary ; Female ; Glycine/metabolism ; Golgi Apparatus/metabolism/pathology ; HEK293 Cells ; HeLa Cells ; Humans ; Listeria monocytogenes/physiology ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Myristic Acid/*metabolism ; Phagosomes/metabolism ; *Protein Processing, Post-Translational ; *Proteolysis ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Sequence Alignment ; Shigella flexneri/enzymology/*metabolism ; Signal Transduction ; Substrate Specificity ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-07-12
    Description: Riboswitches are cis-acting gene-regulatory RNA elements that can function at the level of transcription, translation and RNA cleavage. The commonly accepted molecular mechanism for riboswitch function proposes a ligand-dependent conformational switch between two mutually exclusive states. According to this mechanism, ligand binding to an aptamer domain induces an allosteric conformational switch of an expression platform, leading to activation or repression of ligand-related gene expression. However, many riboswitch properties cannot be explained by a pure two-state mechanism. Here we show that the regulation mechanism of the adenine-sensing riboswitch, encoded by the add gene on chromosome II of the human Gram-negative pathogenic bacterium Vibrio vulnificus, is notably different from a two-state switch mechanism in that it involves three distinct stable conformations. We characterized the temperature and Mg(2+) dependence of the population ratios of the three conformations and the kinetics of their interconversion at nucleotide resolution. The observed temperature dependence of a pre-equilibrium involving two structurally distinct ligand-free conformations of the add riboswitch conferred efficient regulation over a physiologically relevant temperature range. Such robust switching is a key requirement for gene regulation in bacteria that have to adapt to environments with varying temperatures. The translational adenine-sensing riboswitch represents the first example, to our knowledge, of a temperature-compensated regulatory RNA element.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reining, Anke -- Nozinovic, Senada -- Schlepckow, Kai -- Buhr, Florian -- Furtig, Boris -- Schwalbe, Harald -- England -- Nature. 2013 Jul 18;499(7458):355-9. doi: 10.1038/nature12378. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universitat Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842498" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/metabolism ; Base Sequence ; *Gene Expression Regulation, Bacterial ; Ligands ; Magnesium/chemistry ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/*chemistry/metabolism ; *Riboswitch ; Temperature ; Vibrio vulnificus/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-24
    Description: A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Tommy Tsan-Yuk -- Wang, Jia -- Shen, Yongyi -- Zhou, Boping -- Duan, Lian -- Cheung, Chung-Lam -- Ma, Chi -- Lycett, Samantha J -- Leung, Connie Yin-Hung -- Chen, Xinchun -- Li, Lifeng -- Hong, Wenshan -- Chai, Yujuan -- Zhou, Linlin -- Liang, Huyi -- Ou, Zhihua -- Liu, Yongmei -- Farooqui, Amber -- Kelvin, David J -- Poon, Leo L M -- Smith, David K -- Pybus, Oliver G -- Leung, Gabriel M -- Shu, Yuelong -- Webster, Robert G -- Webby, Richard J -- Peiris, Joseph S M -- Rambaut, Andrew -- Zhu, Huachen -- Guan, Yi -- 092807/Wellcome Trust/United Kingdom -- 095831/Wellcome Trust/United Kingdom -- 260864/European Research Council/International -- BB/E009670/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- HHSN266200700005C/AI/NIAID NIH HHS/ -- HSN266200700005C/PHS HHS/ -- England -- Nature. 2013 Oct 10;502(7470):241-4. doi: 10.1038/nature12515. Epub 2013 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23965623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens ; China ; Ducks ; Genes, Viral/genetics ; Humans ; Influenza A Virus, H7N7 Subtype/classification/genetics ; Influenza A Virus, H9N2 Subtype/classification/genetics ; Influenza A virus/*classification/*genetics ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/*virology ; Molecular Sequence Data ; *Phylogeny ; Reassortant Viruses/classification/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-10-22
    Description: Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863936/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863936/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dougan, Stephanie K -- Ashour, Joseph -- Karssemeijer, Roos A -- Popp, Maximilian W -- Avalos, Ana M -- Barisa, Marta -- Altenburg, Arwen F -- Ingram, Jessica R -- Cragnolini, Juan Jose -- Guo, Chunguang -- Alt, Frederick W -- Jaenisch, Rudolf -- Ploegh, Hidde L -- DP1 GM106409/GM/NIGMS NIH HHS/ -- R01 AI033456/AI/NIAID NIH HHS/ -- R01 AI087879/AI/NIAID NIH HHS/ -- R01 GM100518/GM/NIGMS NIH HHS/ -- R01 HD045022/HD/NICHD NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 21;503(7476):406-9. doi: 10.1038/nature12637. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141948" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/metabolism ; Antibody Specificity/immunology ; B-Lymphocytes/*immunology/pathology/secretion/*virology ; Cell Death ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology/metabolism ; Immunoglobulin G/immunology/metabolism ; Lung/cytology/immunology/secretion/virology ; Lymph Nodes/cytology/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Neutralization Tests ; Nuclear Transfer Techniques ; Orthomyxoviridae/pathogenicity/*physiology ; Receptors, Antigen, B-Cell/*immunology/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-03-29
    Description: Multidrug and toxic compound extrusion (MATE) family transporters are conserved in the three primary domains of life (Archaea, Bacteria and Eukarya), and export xenobiotics using an electrochemical gradient of H(+) or Na(+) across the membrane. MATE transporters confer multidrug resistance to bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs, respectively. Therefore, the development of MATE inhibitors has long been awaited in the field of clinical medicine. Here we present the crystal structures of the H(+)-driven MATE transporter from Pyrococcus furiosus in two distinct apo-form conformations, and in complexes with a derivative of the antibacterial drug norfloxacin and three in vitro selected thioether-macrocyclic peptides, at 2.1-3.0 A resolutions. The structures, combined with functional analyses, show that the protonation of Asp 41 on the amino (N)-terminal lobe induces the bending of TM1, which in turn collapses the N-lobe cavity, thereby extruding the substrate drug to the extracellular space. Moreover, the macrocyclic peptides bind the central cleft in distinct manners, which correlate with their inhibitory activities. The strongest inhibitory peptide that occupies the N-lobe cavity may pave the way towards the development of efficient inhibitors against MATE transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Yoshiki -- Hipolito, Christopher J -- Maturana, Andres D -- Ito, Koichi -- Kuroda, Teruo -- Higuchi, Takashi -- Katoh, Takayuki -- Kato, Hideaki E -- Hattori, Motoyuki -- Kumazaki, Kaoru -- Tsukazaki, Tomoya -- Ishitani, Ryuichiro -- Suga, Hiroaki -- Nureki, Osamu -- England -- Nature. 2013 Apr 11;496(7444):247-51. doi: 10.1038/nature12014. Epub 2013 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535598" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiporters/*chemistry/*metabolism ; Apoproteins/chemistry/metabolism ; Archaeal Proteins/*chemistry/*metabolism ; Aspartic Acid/chemistry ; Crystallography, X-Ray ; DNA Mutational Analysis ; Macrocyclic Compounds/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Norfloxacin/chemistry/metabolism ; Peptides/chemistry/metabolism ; Protein Conformation ; Protons ; Pyrococcus furiosus/*chemistry ; Structure-Activity Relationship ; Sulfides/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-07-19
    Description: Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hollenstein, Kaspar -- Kean, James -- Bortolato, Andrea -- Cheng, Robert K Y -- Dore, Andrew S -- Jazayeri, Ali -- Cooke, Robert M -- Weir, Malcolm -- Marshall, Fiona H -- England -- Nature. 2013 Jul 25;499(7459):438-43. doi: 10.1038/nature12357. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863939" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Aminopyridines/chemistry/metabolism/pharmacology ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Corticotropin-Releasing Hormone/antagonists & ; inhibitors/*chemistry/*classification/metabolism ; Receptors, Dopamine D3/antagonists & inhibitors/chemistry/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-05-07
    Description: Adult stem cells undergo asymmetric cell division to self-renew and give rise to differentiated cells that comprise mature tissue. Sister chromatids may be distinguished and segregated nonrandomly in asymmetrically dividing stem cells, although the underlying mechanism and the purpose it may serve remain elusive. Here we develop the CO-FISH (chromosome orientation fluorescence in situ hybridization) technique with single-chromosome resolution and show that sister chromatids of X and Y chromosomes, but not autosomes, are segregated nonrandomly during asymmetric divisions of Drosophila male germline stem cells. This provides the first direct evidence, to our knowledge, that two sister chromatids containing identical genetic information can be distinguished and segregated nonrandomly during asymmetric stem-cell divisions. We further show that the centrosome, SUN-KASH nuclear envelope proteins and Dnmt2 (also known as Mt2) are required for nonrandom sister chromatid segregation. Our data indicate that the information on X and Y chromosomes that enables nonrandom segregation is primed during gametogenesis in the parents. Moreover, we show that sister chromatid segregation is randomized in germline stem cell overproliferation and dedifferentiated germline stem cells. We propose that nonrandom sister chromatid segregation may serve to transmit distinct information carried on two sister chromatids to the daughters of asymmetrically dividing stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711665/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711665/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yadlapalli, Swathi -- Yamashita, Yukiko M -- 1F31HD071727-01/HD/NICHD NIH HHS/ -- F31 HD071727/HD/NICHD NIH HHS/ -- England -- Nature. 2013 Jun 13;498(7453):251-4. doi: 10.1038/nature12106. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan 48109, USA. swathi@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Dedifferentiation ; Cell Division ; Centrosome/metabolism ; Chromatids/genetics/*metabolism ; *Chromosome Segregation ; DNA (Cytosine-5-)-Methyltransferase ; Drosophila Proteins ; Drosophila melanogaster/*cytology/genetics/*metabolism ; Male ; Molecular Sequence Data ; Spermatogonia/cytology ; Stem Cells/*cytology/metabolism ; Testis/cytology ; X Chromosome/genetics/metabolism ; Y Chromosome/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-07-16
    Description: Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rinke, Christian -- Schwientek, Patrick -- Sczyrba, Alexander -- Ivanova, Natalia N -- Anderson, Iain J -- Cheng, Jan-Fang -- Darling, Aaron -- Malfatti, Stephanie -- Swan, Brandon K -- Gies, Esther A -- Dodsworth, Jeremy A -- Hedlund, Brian P -- Tsiamis, George -- Sievert, Stefan M -- Liu, Wen-Tso -- Eisen, Jonathan A -- Hallam, Steven J -- Kyrpides, Nikos C -- Stepanauskas, Ramunas -- Rubin, Edward M -- Hugenholtz, Philip -- Woyke, Tanja -- England -- Nature. 2013 Jul 25;499(7459):431-7. doi: 10.1038/nature12352. Epub 2013 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23851394" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*classification/*genetics/isolation & purification/metabolism ; Bacteria/*classification/*genetics/isolation & purification/metabolism ; Ecosystem ; Genome, Archaeal/genetics ; Genome, Bacterial/genetics ; Metagenome/genetics ; *Metagenomics ; Molecular Sequence Data ; *Phylogeny ; Sequence Analysis, DNA ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-06-14
    Description: 53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fradet-Turcotte, Amelie -- Canny, Marella D -- Escribano-Diaz, Cristina -- Orthwein, Alexandre -- Leung, Charles C Y -- Huang, Hao -- Landry, Marie-Claude -- Kitevski-LeBlanc, Julianne -- Noordermeer, Sylvie M -- Sicheri, Frank -- Durocher, Daniel -- 84297-1/Canadian Institutes of Health Research/Canada -- 84297-2/Canadian Institutes of Health Research/Canada -- MOP84297/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 4;499(7456):50-4. doi: 10.1038/nature12318. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760478" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA-Binding Proteins/chemistry/deficiency/genetics ; Female ; Histones/*chemistry/*metabolism ; Humans ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lysine/*metabolism ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-05-24
    Description: Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Findley, Keisha -- Oh, Julia -- Yang, Joy -- Conlan, Sean -- Deming, Clayton -- Meyer, Jennifer A -- Schoenfeld, Deborah -- Nomicos, Effie -- Park, Morgan -- NIH Intramural Sequencing Center Comparative Sequencing Program -- Kong, Heidi H -- Segre, Julia A -- 1K99AR059222/AR/NIAMS NIH HHS/ -- 1UH2AR057504-01/AR/NIAMS NIH HHS/ -- 4UH3AR057504-02/AR/NIAMS NIH HHS/ -- ZIA BC010938-05/Intramural NIH HHS/ -- ZIA HG000180-12/Intramural NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):367-70. doi: 10.1038/nature12171. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698366" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bacteria/classification/genetics/*isolation & purification ; *Biodiversity ; Databases, Genetic ; District of Columbia ; Female ; Fungi/classification/genetics/*isolation & purification ; Health ; Homeostasis ; Humans ; Malassezia/classification/genetics/isolation & purification ; Male ; Molecular Sequence Data ; Skin/anatomy & histology/*microbiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-04-12
    Description: In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paddon, C J -- Westfall, P J -- Pitera, D J -- Benjamin, K -- Fisher, K -- McPhee, D -- Leavell, M D -- Tai, A -- Main, A -- Eng, D -- Polichuk, D R -- Teoh, K H -- Reed, D W -- Treynor, T -- Lenihan, J -- Fleck, M -- Bajad, S -- Dang, G -- Dengrove, D -- Diola, D -- Dorin, G -- Ellens, K W -- Fickes, S -- Galazzo, J -- Gaucher, S P -- Geistlinger, T -- Henry, R -- Hepp, M -- Horning, T -- Iqbal, T -- Jiang, H -- Kizer, L -- Lieu, B -- Melis, D -- Moss, N -- Regentin, R -- Secrest, S -- Tsuruta, H -- Vazquez, R -- Westblade, L F -- Xu, L -- Yu, M -- Zhang, Y -- Zhao, L -- Lievense, J -- Covello, P S -- Keasling, J D -- Reiling, K K -- Renninger, N S -- Newman, J D -- England -- Nature. 2013 Apr 25;496(7446):528-32. doi: 10.1038/nature12051. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amyris, Inc., 5885 Hollis Street, Suite 100, Emeryville, California 94608, USA. paddon@amyris.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575629" target="_blank"〉PubMed〈/a〉
    Keywords: Antimalarials/economics/isolation & purification/metabolism/supply & distribution ; Artemisinins/chemistry/economics/isolation & purification/*metabolism/*supply & ; distribution ; *Biosynthetic Pathways ; Biotechnology ; Fermentation ; Genetic Engineering ; Malaria, Falciparum/drug therapy ; Molecular Sequence Data ; Saccharomyces cerevisiae/classification/genetics/growth & development/*metabolism ; Singlet Oxygen/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-12-18
    Description: Strigolactones (SLs), a newly discovered class of carotenoid-derived phytohormones, are essential for developmental processes that shape plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signalling mechanisms of SL remain poorly understood. Here we show that DWARF 53 (D53) acts as a repressor of SL signalling and that SLs induce its degradation. We find that the rice (Oryza sativa) d53 mutant, which produces an exaggerated number of tillers compared to wild-type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the alpha/beta hydrolase protein DWARF 14 (D14) and the F-box protein DWARF 3 (D3), two previously identified signalling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signalling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Feng -- Lin, Qibing -- Zhu, Lihong -- Ren, Yulong -- Zhou, Kunneng -- Shabek, Nitzan -- Wu, Fuqing -- Mao, Haibin -- Dong, Wei -- Gan, Lu -- Ma, Weiwei -- Gao, He -- Chen, Jun -- Yang, Chao -- Wang, Dan -- Tan, Junjie -- Zhang, Xin -- Guo, Xiuping -- Wang, Jiulin -- Jiang, Ling -- Liu, Xi -- Chen, Weiqi -- Chu, Jinfang -- Yan, Cunyu -- Ueno, Kotomi -- Ito, Shinsaku -- Asami, Tadao -- Cheng, Zhijun -- Wang, Jie -- Lei, Cailin -- Zhai, Huqu -- Wu, Chuanyin -- Wang, Haiyang -- Zheng, Ning -- Wan, Jianmin -- R01 CA107134/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 19;504(7480):406-10. doi: 10.1038/nature12878. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China [2] National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China. ; 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1-2 Beichen West Road, Beijing 100101, China. ; Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Lactones/*metabolism ; Molecular Sequence Data ; Mutation/genetics ; Oryza/genetics/*metabolism ; Phenotype ; Plant Growth Regulators/*metabolism ; Plant Proteins/genetics/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Proteolysis ; SKP Cullin F-Box Protein Ligases/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-04-09
    Description: In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimozono, Satoshi -- Iimura, Tadahiro -- Kitaguchi, Tetsuya -- Higashijima, Shin-Ichi -- Miyawaki, Atsushi -- England -- Nature. 2013 Apr 18;496(7445):363-6. doi: 10.1038/nature12037. Epub 2013 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23563268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Body Patterning/physiology ; Embryo, Nonmammalian/embryology/metabolism ; Embryonic Development/*physiology ; Fibroblast Growth Factors/genetics/metabolism ; Fluorescence Resonance Energy Transfer ; Gastrula/embryology/metabolism ; HeLa Cells ; Humans ; Models, Biological ; Molecular Probes/analysis/genetics/metabolism ; Molecular Sequence Data ; Rhombencephalon/embryology/metabolism ; Somites/embryology/metabolism ; Substrate Specificity ; Tretinoin/analysis/*metabolism ; Zebrafish/*embryology/*metabolism ; Zebrafish Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-05-03
    Description: The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 A resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657389/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657389/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Wu, Huixian -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Liu, Wei -- Siu, Fai Yiu -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- F32 DK088392/DK/NIDDK NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 16;497(7449):338-43. doi: 10.1038/nature12167. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Antineoplastic Agents/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry ; Frizzled Receptors/chemistry/classification ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Phthalazines/*chemistry/metabolism ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry/classification/metabolism ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-11-01
    Description: Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9-14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7 days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5 weeks in some long-term chronically SHIV-infected animals with low CD4(+) T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shingai, Masashi -- Nishimura, Yoshiaki -- Klein, Florian -- Mouquet, Hugo -- Donau, Olivia K -- Plishka, Ronald -- Buckler-White, Alicia -- Seaman, Michael -- Piatak, Michael Jr -- Lifson, Jeffrey D -- Dimitrov, Dimiter S -- Nussenzweig, Michel C -- Martin, Malcolm A -- HHSN261200800001E/PHS HHS/ -- P01 AI100148/AI/NIAID NIH HHS/ -- ZIA AI000415-29/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 14;503(7475):277-80. doi: 10.1038/nature12746. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172896" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/*therapeutic use ; Antigens, CD4/metabolism ; Binding Sites/immunology ; HIV Antibodies/*therapeutic use ; HIV Envelope Protein gp120/immunology ; HIV-1/*immunology ; *Immunotherapy ; Macaca/immunology ; Molecular Sequence Data ; Peptide Fragments/immunology ; Simian Acquired Immunodeficiency Syndrome/prevention & control/*therapy ; Simian Immunodeficiency Virus/*physiology ; Time Factors ; Viral Load ; Viremia/*therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-07-26
    Description: A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209285/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209285/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Rajinder -- Low, Eng-Ti Leslie -- Ooi, Leslie Cheng-Li -- Ong-Abdullah, Meilina -- Ting, Ngoot-Chin -- Nagappan, Jayanthi -- Nookiah, Rajanaidu -- Amiruddin, Mohd Din -- Rosli, Rozana -- Manaf, Mohamad Arif Abdul -- Chan, Kuang-Lim -- Halim, Mohd Amin -- Azizi, Norazah -- Lakey, Nathan -- Smith, Steven W -- Budiman, Muhammad A -- Hogan, Michael -- Bacher, Blaire -- Van Brunt, Andrew -- Wang, Chunyan -- Ordway, Jared M -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Aug 15;500(7462):340-4. doi: 10.1038/nature12356. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. raviga@mpob.gov.my〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/genetics ; Arecaceae/*genetics/*metabolism ; Chromosome Mapping ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant/*genetics ; Genetic Variation ; Homozygote ; MADS Domain Proteins/genetics ; Molecular Sequence Data ; Mutation ; *Plant Oils ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-07-26
    Description: Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929164/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929164/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Rajinder -- Ong-Abdullah, Meilina -- Low, Eng-Ti Leslie -- Manaf, Mohamad Arif Abdul -- Rosli, Rozana -- Nookiah, Rajanaidu -- Ooi, Leslie Cheng-Li -- Ooi, Siew-Eng -- Chan, Kuang-Lim -- Halim, Mohd Amin -- Azizi, Norazah -- Nagappan, Jayanthi -- Bacher, Blaire -- Lakey, Nathan -- Smith, Steven W -- He, Dong -- Hogan, Michael -- Budiman, Muhammad A -- Lee, Ernest K -- DeSalle, Rob -- Kudrna, David -- Goicoechea, Jose Luis -- Wing, Rod A -- Wilson, Richard K -- Fulton, Robert S -- Ordway, Jared M -- Martienssen, Robert A -- Sambanthamurthi, Ravigadevi -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Aug 15;500(7462):335-9. doi: 10.1038/nature12309. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. raviga@mpob.gov.my〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883927" target="_blank"〉PubMed〈/a〉
    Keywords: Arecaceae/*classification/*genetics ; Carbohydrate Metabolism/genetics ; Chromosomes, Plant/genetics ; Genome, Plant/*genetics ; Lipid Metabolism/genetics ; Models, Genetic ; Molecular Sequence Data ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-10-29
    Description: Integrins have a critical role in thrombosis and haemostasis. Antagonists of the platelet integrin alphaIIbbeta3 are potent anti-thrombotic drugs, but also have the life-threatening adverse effect of causing bleeding. It is therefore desirable to develop new antagonists that do not cause bleeding. Integrins transmit signals bidirectionally. Inside-out signalling activates integrins through a talin-dependent mechanism. Integrin ligation mediates thrombus formation and outside-in signalling, which requires Galpha13 and greatly expands thrombi. Here we show that Galpha13 and talin bind to mutually exclusive but distinct sites within the integrin beta3 cytoplasmic domain in opposing waves. The first talin-binding wave mediates inside-out signalling and also ligand-induced integrin activation, but is not required for outside-in signalling. Integrin ligation induces transient talin dissociation and Galpha13 binding to an EXE motif (in which X denotes any residue), which selectively mediates outside-in signalling and platelet spreading. The second talin-binding wave is associated with clot retraction. An EXE-motif-based inhibitor of Galpha13-integrin interaction selectively abolishes outside-in signalling without affecting integrin ligation, and suppresses occlusive arterial thrombosis without affecting bleeding time. Thus, we have discovered a new mechanism for the directional switch of integrin signalling and, on the basis of this mechanism, designed a potent new anti-thrombotic drug that does not cause bleeding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Bo -- Zhao, Xiaojuan -- O'Brien, Kelly A -- Stojanovic-Terpo, Aleksandra -- Delaney, M Keegan -- Kim, Kyungho -- Cho, Jaehyung -- Lam, Stephen C-T -- Du, Xiaoping -- HL062350/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- HL109439/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL109439/HL/NHLBI NIH HHS/ -- T32 HL007829/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Nov 7;503(7474):131-5. doi: 10.1038/nature12613. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162846" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antithrombins/adverse effects/*pharmacology/therapeutic use ; Binding Sites ; Bleeding Time ; *Cell Polarity ; Cytoplasm/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/metabolism ; Hemorrhage/chemically induced ; Humans ; Integrin beta3/chemistry/genetics/metabolism ; Integrins/chemistry/deficiency/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Platelet Glycoprotein GPIIb-IIIa Complex/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Signal Transduction/*drug effects ; Talin/metabolism ; Thrombosis/*drug therapy/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-07-19
    Description: Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 A resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a 'stalk' region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (~12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon's amino terminus into the seven transmembrane domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siu, Fai Yiu -- He, Min -- de Graaf, Chris -- Han, Gye Won -- Yang, Dehua -- Zhang, Zhiyun -- Zhou, Caihong -- Xu, Qingping -- Wacker, Daniel -- Joseph, Jeremiah S -- Liu, Wei -- Lau, Jesper -- Cherezov, Vadim -- Katritch, Vsevolod -- Wang, Ming-Wei -- Stevens, Raymond C -- F32 DK088392/DK/NIDDK NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50GM073197/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Jul 25;499(7459):444-9. doi: 10.1038/nature12393. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Glucagon/chemistry/metabolism ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Binding ; Protein Structure, Tertiary ; Receptors, CXCR4/chemistry/classification ; Receptors, Glucagon/*chemistry/*classification/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-02
    Description: Prion infections cause lethal neurodegeneration. This process requires the cellular prion protein (PrP(C); ref. 1), which contains a globular domain hinged to a long amino-proximal flexible tail. Here we describe rapid neurotoxicity in mice and cerebellar organotypic cultured slices exposed to ligands targeting the alpha1 and alpha3 helices of the PrP(C) globular domain. Ligands included seven distinct monoclonal antibodies, monovalent Fab1 fragments and recombinant single-chain variable fragment miniantibodies. Similar to prion infections, the toxicity of globular domain ligands required neuronal PrP(C), was exacerbated by PrP(C) overexpression, was associated with calpain activation and was antagonized by calpain inhibitors. Neurodegeneration was accompanied by a burst of reactive oxygen species, and was suppressed by antioxidants. Furthermore, genetic ablation of the superoxide-producing enzyme NOX2 (also known as CYBB) protected mice from globular domain ligand toxicity. We also found that neurotoxicity was prevented by deletions of the octapeptide repeats within the flexible tail. These deletions did not appreciably compromise globular domain antibody binding, suggesting that the flexible tail is required to transmit toxic signals that originate from the globular domain and trigger oxidative stress and calpain activation. Supporting this view, various octapeptide ligands were not only innocuous to both cerebellar organotypic cultured slices and mice, but also prevented the toxicity of globular domain ligands while not interfering with their binding. We conclude that PrP(C) consists of two functionally distinct modules, with the globular domain and the flexible tail exerting regulatory and executive functions, respectively. Octapeptide ligands also prolonged the life of mice expressing the toxic PrP(C) mutant, PrP(Delta94-134), indicating that the flexible tail mediates toxicity in two distinct PrP(C)-related conditions. Flexible tail-mediated toxicity may conceivably play a role in further prion pathologies, such as familial Creutzfeldt-Jakob disease in humans bearing supernumerary octapeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonati, Tiziana -- Reimann, Regina R -- Falsig, Jeppe -- Baral, Pravas Kumar -- O'Connor, Tracy -- Hornemann, Simone -- Yaganoglu, Sine -- Li, Bei -- Herrmann, Uli S -- Wieland, Barbara -- Swayampakula, Mridula -- Rahman, Muhammad Hafizur -- Das, Dipankar -- Kav, Nat -- Riek, Roland -- Liberski, Pawel P -- James, Michael N G -- Aguzzi, Adriano -- England -- Nature. 2013 Sep 5;501(7465):102-6. doi: 10.1038/nature12402. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuropathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903654" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies/*immunology/*toxicity ; Antibodies, Monoclonal/immunology/toxicity ; Binding Sites, Antibody ; Calpain/metabolism ; Cerebellum ; Creutzfeldt-Jakob Syndrome/metabolism ; Cross-Linking Reagents ; Epitope Mapping ; Female ; Immunoglobulin Fab Fragments/immunology/toxicity ; In Vitro Techniques ; Ligands ; Male ; Membrane Glycoproteins/metabolism ; Mice ; Molecular Sequence Data ; NADPH Oxidase/metabolism ; Neurodegenerative Diseases/metabolism ; Oxidative Stress ; *Pliability ; PrPC Proteins/chemistry/genetics/immunology ; Prions/*chemistry/genetics/*immunology ; Reactive Oxygen Species/metabolism ; Sequence Deletion/genetics ; Single-Chain Antibodies/immunology/toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-03-15
    Description: Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raj, V Stalin -- Mou, Huihui -- Smits, Saskia L -- Dekkers, Dick H W -- Muller, Marcel A -- Dijkman, Ronald -- Muth, Doreen -- Demmers, Jeroen A A -- Zaki, Ali -- Fouchier, Ron A M -- Thiel, Volker -- Drosten, Christian -- Rottier, Peter J M -- Osterhaus, Albert D M E -- Bosch, Berend Jan -- Haagmans, Bart L -- England -- Nature. 2013 Mar 14;495(7440):251-4. doi: 10.1038/nature12005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23486063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchioles/cytology ; COS Cells ; Cercopithecus aethiops ; Chiroptera ; Coronavirus/*classification/*metabolism ; Coronavirus Infections/epidemiology/genetics/metabolism/virology ; Dipeptidyl Peptidase 4/genetics/*metabolism ; Epithelial Cells/virology ; Host Specificity ; Humans ; Molecular Sequence Data ; Receptors, Virus/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-09
    Description: The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adey, Andrew -- Burton, Joshua N -- Kitzman, Jacob O -- Hiatt, Joseph B -- Lewis, Alexandra P -- Martin, Beth K -- Qiu, Ruolan -- Lee, Choli -- Shendure, Jay -- AG039173/AG/NIA NIH HHS/ -- CA160080/CA/NCI NIH HHS/ -- F30 AG039173/AG/NIA NIH HHS/ -- HG006283/HG/NHGRI NIH HHS/ -- R01 HG006283/HG/NHGRI NIH HHS/ -- R21 CA160080/CA/NCI NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32HG000035/HG/NHGRI NIH HHS/ -- England -- Nature. 2013 Aug 8;500(7461):207-11. doi: 10.1038/nature12064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, Washington 98115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925245" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; DNA Copy Number Variations ; *Epigenomics ; Female ; Genes, myc/genetics ; Genome, Human/*genetics ; Haplotypes ; HeLa Cells ; Human papillomavirus 18/genetics/physiology ; Humans ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA ; Transcriptional Activation/genetics ; Uterine Cervical Neoplasms/genetics/pathology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-05-28
    Description: A complex interaction of signalling events, including the Wnt pathway, regulates sprouting of blood vessels from pre-existing vasculature during angiogenesis. Here we show that two distinct mutations in the (uro)chordate-specific gumby (also called Fam105b) gene cause an embryonic angiogenic phenotype in gumby mice. Gumby interacts with disheveled 2 (DVL2), is expressed in canonical Wnt-responsive endothelial cells and encodes an ovarian tumour domain class of deubiquitinase that specifically cleaves linear ubiquitin linkages. A crystal structure of gumby in complex with linear diubiquitin reveals how the identified mutations adversely affect substrate binding and catalytic function in line with the severity of their angiogenic phenotypes. Gumby interacts with HOIP (also called RNF31), a key component of the linear ubiquitin assembly complex, and decreases linear ubiquitination and activation of NF-kappaB-dependent transcription. This work provides support for the biological importance of linear (de)ubiquitination in angiogenesis, craniofacial and neural development and in modulating Wnt signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivkin, Elena -- Almeida, Stephanie M -- Ceccarelli, Derek F -- Juang, Yu-Chi -- MacLean, Teresa A -- Srikumar, Tharan -- Huang, Hao -- Dunham, Wade H -- Fukumura, Ryutaro -- Xie, Gang -- Gondo, Yoichi -- Raught, Brian -- Gingras, Anne-Claude -- Sicheri, Frank -- Cordes, Sabine P -- IHO 94384/Canadian Institutes of Health Research/Canada -- MOP 111199/Canadian Institutes of Health Research/Canada -- MOP 97966/Canadian Institutes of Health Research/Canada -- MOP119289/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jun 20;498(7454):318-24. doi: 10.1038/nature12296. Epub 2013 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mt Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708998" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Crystallography, X-Ray ; Embryo, Mammalian/blood supply/embryology/metabolism ; Endopeptidases/*chemistry/deficiency/genetics/*metabolism ; Female ; Gene Expression Profiling ; HEK293 Cells ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; *Neovascularization, Physiologic/genetics ; Phenotype ; Phosphoproteins/metabolism ; Protein Conformation ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/metabolism ; *Ubiquitination ; Wnt Signaling Pathway
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-03-15
    Description: A hallmark of histone H3 lysine 9 (H3K9)-methylated heterochromatin, conserved from the fission yeast Schizosaccharomyces pombe to humans, is its ability to spread to adjacent genomic regions. Central to heterochromatin spread is heterochromatin protein 1 (HP1), which recognizes H3K9-methylated chromatin, oligomerizes and forms a versatile platform that participates in diverse nuclear functions, ranging from gene silencing to chromosome segregation. How HP1 proteins assemble on methylated nucleosomal templates and how the HP1-nucleosome complex achieves functional versatility remain poorly understood. Here we show that binding of the key S. pombe HP1 protein, Swi6, to methylated nucleosomes drives a switch from an auto-inhibited state to a spreading-competent state. In the auto-inhibited state, a histone-mimic sequence in one Swi6 monomer blocks methyl-mark recognition by the chromodomain of another monomer. Auto-inhibition is relieved by recognition of two template features, the H3K9 methyl mark and nucleosomal DNA. Cryo-electron-microscopy-based reconstruction of the Swi6-nucleosome complex provides the overall architecture of the spreading-competent state in which two unbound chromodomain sticky ends appear exposed. Disruption of the switch between the auto-inhibited and spreading-competent states disrupts heterochromatin assembly and gene silencing in vivo. These findings are reminiscent of other conditionally activated polymerization processes, such as actin nucleation, and open up a new class of regulatory mechanisms that operate on chromatin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907283/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907283/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canzio, Daniele -- Liao, Maofu -- Naber, Nariman -- Pate, Edward -- Larson, Adam -- Wu, Shenping -- Marina, Diana B -- Garcia, Jennifer F -- Madhani, Hiten D -- Cooke, Roger -- Schuck, Peter -- Cheng, Yifan -- Narlikar, Geeta J -- AR053720/AR/NIAMS NIH HHS/ -- R01 AR062279/AR/NIAMS NIH HHS/ -- R01 GM071801/GM/NIGMS NIH HHS/ -- R01GM071801/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Apr 18;496(7445):377-81. doi: 10.1038/nature12032. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485968" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*antagonists & ; inhibitors/*chemistry/*metabolism/ultrastructure ; Cryoelectron Microscopy ; Gene Silencing ; Heterochromatin/chemistry/*metabolism/ultrastructure ; Histones/chemistry/metabolism ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Nucleosomes/chemistry/genetics/metabolism/ultrastructure ; Protein Structure, Tertiary ; Schizosaccharomyces/genetics/*metabolism ; Schizosaccharomyces pombe Proteins/antagonists & ; inhibitors/*chemistry/*metabolism/ultrastructure ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-13
    Description: Jawed vertebrates (gnathostomes) and jawless vertebrates (cyclostomes) have different adaptive immune systems. Gnathostomes use T- and B-cell antigen receptors belonging to the immunoglobulin superfamily. Cyclostomes, the lampreys and hagfish, instead use leucine-rich repeat proteins to construct variable lymphocyte receptors (VLRs), two types of which, VLRA and VLRB, are reciprocally expressed by lymphocytes resembling gnathostome T and B cells. Here we define another lineage of T-cell-like lymphocytes that express the recently identified VLRC receptors. Both VLRC(+) and VLRA(+) lymphocytes express orthologues of genes that gnathostome gammadelta and alphabeta T cells use for their differentiation, undergo VLRC and VLRA assembly and repertoire diversification in the 'thymoid' gill region, and express their VLRs solely as cell-surface proteins. Our findings suggest that the genetic programmes for two primordial T-cell lineages and a prototypic B-cell lineage were already present in the last common vertebrate ancestor approximately 500 million years ago. We propose that functional specialization of distinct T-cell-like lineages was an ancient feature of a primordial immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901013/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901013/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirano, Masayuki -- Guo, Peng -- McCurley, Nathanael -- Schorpp, Michael -- Das, Sabyasachi -- Boehm, Thomas -- Cooper, Max D -- R01 AI072435/AI/NIAID NIH HHS/ -- R01 GM100151/GM/NIGMS NIH HHS/ -- R01AI072435/AI/NIAID NIH HHS/ -- R01GM100151/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Sep 19;501(7467):435-8. doi: 10.1038/nature12467. Epub 2013 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, Georgia 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23934109" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; *Biological Evolution ; Cell Differentiation ; *Cell Lineage ; Gene Expression Profiling ; Lampreys/*immunology ; Mitogens/immunology ; Molecular Sequence Data ; Poly I-C/immunology ; Proteins/genetics/immunology/metabolism ; T-Lymphocyte Subsets/*cytology/*immunology/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-04-20
    Description: The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amemiya, Chris T -- Alfoldi, Jessica -- Lee, Alison P -- Fan, Shaohua -- Philippe, Herve -- Maccallum, Iain -- Braasch, Ingo -- Manousaki, Tereza -- Schneider, Igor -- Rohner, Nicolas -- Organ, Chris -- Chalopin, Domitille -- Smith, Jeramiah J -- Robinson, Mark -- Dorrington, Rosemary A -- Gerdol, Marco -- Aken, Bronwen -- Biscotti, Maria Assunta -- Barucca, Marco -- Baurain, Denis -- Berlin, Aaron M -- Blatch, Gregory L -- Buonocore, Francesco -- Burmester, Thorsten -- Campbell, Michael S -- Canapa, Adriana -- Cannon, John P -- Christoffels, Alan -- De Moro, Gianluca -- Edkins, Adrienne L -- Fan, Lin -- Fausto, Anna Maria -- Feiner, Nathalie -- Forconi, Mariko -- Gamieldien, Junaid -- Gnerre, Sante -- Gnirke, Andreas -- Goldstone, Jared V -- Haerty, Wilfried -- Hahn, Mark E -- Hesse, Uljana -- Hoffmann, Steve -- Johnson, Jeremy -- Karchner, Sibel I -- Kuraku, Shigehiro -- Lara, Marcia -- Levin, Joshua Z -- Litman, Gary W -- Mauceli, Evan -- Miyake, Tsutomu -- Mueller, M Gail -- Nelson, David R -- Nitsche, Anne -- Olmo, Ettore -- Ota, Tatsuya -- Pallavicini, Alberto -- Panji, Sumir -- Picone, Barbara -- Ponting, Chris P -- Prohaska, Sonja J -- Przybylski, Dariusz -- Saha, Nil Ratan -- Ravi, Vydianathan -- Ribeiro, Filipe J -- Sauka-Spengler, Tatjana -- Scapigliati, Giuseppe -- Searle, Stephen M J -- Sharpe, Ted -- Simakov, Oleg -- Stadler, Peter F -- Stegeman, John J -- Sumiyama, Kenta -- Tabbaa, Diana -- Tafer, Hakim -- Turner-Maier, Jason -- van Heusden, Peter -- White, Simon -- Williams, Louise -- Yandell, Mark -- Brinkmann, Henner -- Volff, Jean-Nicolas -- Tabin, Clifford J -- Shubin, Neil -- Schartl, Manfred -- Jaffe, David B -- Postlethwait, John H -- Venkatesh, Byrappa -- Di Palma, Federica -- Lander, Eric S -- Meyer, Axel -- Lindblad-Toh, Kerstin -- 095908/Wellcome Trust/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- P42 ES007381/ES/NIEHS NIH HHS/ -- R01 ES006272/ES/NIEHS NIH HHS/ -- R01 HG003474/HG/NHGRI NIH HHS/ -- R01 OD011116/OD/NIH HHS/ -- R24 OD011199/OD/NIH HHS/ -- R24 RR032670/RR/NCRR NIH HHS/ -- R37 HD032443/HD/NICHD NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- England -- Nature. 2013 Apr 18;496(7445):311-6. doi: 10.1038/nature12027.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington 98101, USA. camemiya@benaroyaresearch.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23598338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Biological Evolution ; Chick Embryo ; Conserved Sequence/genetics ; Enhancer Elements, Genetic/genetics ; Evolution, Molecular ; Extremities/anatomy & histology/growth & development ; Fishes/anatomy & histology/*classification/*genetics/physiology ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; Immunoglobulin M/genetics ; Mice ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; Sequence Alignment ; Sequence Analysis, DNA ; Vertebrates/anatomy & histology/genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-29
    Description: Half of the microbial cells in the Earth's oceans are found in sediments. Many of these cells are members of the Archaea, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that the uncultured miscellaneous crenarchaeotal group (MCG) and marine benthic group-D (MBG-D) are among the most numerous archaea in the marine sub-sea floor. Single-cell genomic sequencing of one cell of MCG and three cells of MBG-D indicated that they form new branches basal to the archaeal phyla Thaumarchaeota and Aigarchaeota, for MCG, and the order Thermoplasmatales, for MBG-D. All four cells encoded extracellular protein-degrading enzymes such as gingipain and clostripain that are known to be effective in environments chemically similar to marine sediments. Furthermore, we found these two types of peptidase to be abundant and active in marine sediments, indicating that uncultured archaea may have a previously undiscovered role in protein remineralization in anoxic marine sediments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lloyd, Karen G -- Schreiber, Lars -- Petersen, Dorthe G -- Kjeldsen, Kasper U -- Lever, Mark A -- Steen, Andrew D -- Stepanauskas, Ramunas -- Richter, Michael -- Kleindienst, Sara -- Lenk, Sabine -- Schramm, Andreas -- Jorgensen, Bo Barker -- England -- Nature. 2013 Apr 11;496(7444):215-8. doi: 10.1038/nature12033. Epub 2013 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark. klloyd@utk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535597" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/metabolism ; Archaea/classification/enzymology/genetics/*metabolism ; Cysteine Endopeptidases/metabolism ; Geologic Sediments/chemistry/*microbiology ; Marine Biology ; Molecular Sequence Data ; Peptide Hydrolases/*metabolism ; Phylogeny ; Proteolysis ; RNA, Ribosomal, 16S/genetics ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-05
    Description: Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637846/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637846/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liao, Hua-Xin -- Lynch, Rebecca -- Zhou, Tongqing -- Gao, Feng -- Alam, S Munir -- Boyd, Scott D -- Fire, Andrew Z -- Roskin, Krishna M -- Schramm, Chaim A -- Zhang, Zhenhai -- Zhu, Jiang -- Shapiro, Lawrence -- NISC Comparative Sequencing Program -- Mullikin, James C -- Gnanakaran, S -- Hraber, Peter -- Wiehe, Kevin -- Kelsoe, Garnett -- Yang, Guang -- Xia, Shi-Mao -- Montefiori, David C -- Parks, Robert -- Lloyd, Krissey E -- Scearce, Richard M -- Soderberg, Kelly A -- Cohen, Myron -- Kamanga, Gift -- Louder, Mark K -- Tran, Lillian M -- Chen, Yue -- Cai, Fangping -- Chen, Sheri -- Moquin, Stephanie -- Du, Xiulian -- Joyce, M Gordon -- Srivatsan, Sanjay -- Zhang, Baoshan -- Zheng, Anqi -- Shaw, George M -- Hahn, Beatrice H -- Kepler, Thomas B -- Korber, Bette T M -- Kwong, Peter D -- Mascola, John R -- Haynes, Barton F -- AI067854/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):469-76. doi: 10.1038/nature12053. Epub 2013 Apr 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke University Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA. hliao@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552890" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Africa ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/genetics/immunology ; Antibodies, Neutralizing/*chemistry/genetics/*immunology ; Antigens, CD4/chemistry/immunology ; Cell Lineage ; Cells, Cultured ; Clone Cells/cytology ; Cross Reactions/immunology ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; *Evolution, Molecular ; HIV Antibodies/*chemistry/genetics/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/immunology/metabolism ; HIV-1/*chemistry/classification/*immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Phylogeny ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-02-15
    Description: Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niehuis, Oliver -- Buellesbach, Jan -- Gibson, Joshua D -- Pothmann, Daniela -- Hanner, Christian -- Mutti, Navdeep S -- Judson, Andrea K -- Gadau, Jurgen -- Ruther, Joachim -- Schmitt, Thomas -- England -- Nature. 2013 Feb 21;494(7437):345-8. doi: 10.1038/nature11838. Epub 2013 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany. o.niehuis.zfmk@uni-bonn.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23407492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; Gene Knockdown Techniques ; Genetic Speciation ; Lactones/chemistry/metabolism ; Male ; Mating Preference, Animal/*physiology ; Molecular Sequence Data ; Phylogeny ; Quinazolines/chemistry/metabolism ; Selection, Genetic ; Sex Attractants/chemistry/*metabolism/secretion ; Species Specificity ; Wasps/chemistry/*genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-06-21
    Description: The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tian, Xiao -- Azpurua, Jorge -- Hine, Christopher -- Vaidya, Amita -- Myakishev-Rempel, Max -- Ablaeva, Julia -- Mao, Zhiyong -- Nevo, Eviatar -- Gorbunova, Vera -- Seluanov, Andrei -- R01 AG027237/AG/NIA NIH HHS/ -- R01 AG031227/AG/NIA NIH HHS/ -- England -- Nature. 2013 Jul 18;499(7458):346-9. doi: 10.1038/nature12234. Epub 2013 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, New York 14627, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23783513" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Proliferation ; Cell Transformation, Neoplastic/*metabolism ; Cells, Cultured ; Contact Inhibition ; Disease Resistance ; Fibroblasts/metabolism ; Glucuronosyltransferase/chemistry ; Guinea Pigs ; Humans ; Hyaluronic Acid/*metabolism ; Mice ; Mole Rats ; Molecular Sequence Data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-03-29
    Description: Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Hong-Qing -- Zhao, Shancen -- Liu, Dongcheng -- Wang, Junyi -- Sun, Hua -- Zhang, Chi -- Fan, Huajie -- Li, Dong -- Dong, Lingli -- Tao, Yong -- Gao, Chuan -- Wu, Huilan -- Li, Yiwen -- Cui, Yan -- Guo, Xiaosen -- Zheng, Shusong -- Wang, Biao -- Yu, Kang -- Liang, Qinsi -- Yang, Wenlong -- Lou, Xueyuan -- Chen, Jie -- Feng, Mingji -- Jian, Jianbo -- Zhang, Xiaofei -- Luo, Guangbin -- Jiang, Ying -- Liu, Junjie -- Wang, Zhaobao -- Sha, Yuhui -- Zhang, Bairu -- Wu, Huajun -- Tang, Dingzhong -- Shen, Qianhua -- Xue, Pengya -- Zou, Shenhao -- Wang, Xiujie -- Liu, Xin -- Wang, Famin -- Yang, Yanping -- An, Xueli -- Dong, Zhenying -- Zhang, Kunpu -- Zhang, Xiangqi -- Luo, Ming-Cheng -- Dvorak, Jan -- Tong, Yiping -- Wang, Jian -- Yang, Huanming -- Li, Zhensheng -- Wang, Daowen -- Zhang, Aimin -- Wang, Jun -- England -- Nature. 2013 Apr 4;496(7443):87-90. doi: 10.1038/nature11997. Epub 2013 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535596" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Brachypodium/genetics ; Crops, Agricultural/classification/genetics ; Diploidy ; Genetic Markers/genetics ; Genome, Plant/*genetics ; Molecular Sequence Data ; Oryza/genetics ; Phylogeny ; Sorghum/genetics ; Synteny/genetics ; Triticum/classification/*genetics ; Zea mays/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-05-10
    Description: The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. Here we show that exceptionally potent G-quadruplex unwinding is conserved among Pif1 helicases. Moreover, Pif1 helicases from organisms separated by more than 3 billion years of evolution suppressed DNA damage at G-quadruplex motifs in yeast. The G-quadruplex-induced damage generated in the absence of Pif1 helicases led to new genetic and epigenetic changes. Furthermore, when expressed in yeast, human PIF1 suppressed both G-quadruplex-associated DNA damage and telomere lengthening.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paeschke, Katrin -- Bochman, Matthew L -- Garcia, P Daniela -- Cejka, Petr -- Friedman, Katherine L -- Kowalczykowski, Stephen C -- Zakian, Virginia A -- R01 GM026938/GM/NIGMS NIH HHS/ -- R01 GM041347/GM/NIGMS NIH HHS/ -- R01 GM043265/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):458-62. doi: 10.1038/nature12149. Epub 2013 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23657261" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Conserved Sequence ; DNA Damage/genetics ; DNA Helicases/deficiency/genetics/*metabolism ; Epigenesis, Genetic ; Evolution, Molecular ; *G-Quadruplexes ; Gene Silencing ; Genetic Complementation Test ; *Genomic Instability ; Humans ; Molecular Sequence Data ; Mutation Rate ; Saccharomyces cerevisiae/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Telomere Homeostasis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-03-29
    Description: About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Jizeng -- Zhao, Shancen -- Kong, Xiuying -- Li, Yingrui -- Zhao, Guangyao -- He, Weiming -- Appels, Rudi -- Pfeifer, Matthias -- Tao, Yong -- Zhang, Xueyong -- Jing, Ruilian -- Zhang, Chi -- Ma, Youzhi -- Gao, Lifeng -- Gao, Chuan -- Spannagl, Manuel -- Mayer, Klaus F X -- Li, Dong -- Pan, Shengkai -- Zheng, Fengya -- Hu, Qun -- Xia, Xianchun -- Li, Jianwen -- Liang, Qinsi -- Chen, Jie -- Wicker, Thomas -- Gou, Caiyun -- Kuang, Hanhui -- He, Genyun -- Luo, Yadan -- Keller, Beat -- Xia, Qiuju -- Lu, Peng -- Wang, Junyi -- Zou, Hongfeng -- Zhang, Rongzhi -- Xu, Junyang -- Gao, Jinlong -- Middleton, Christopher -- Quan, Zhiwu -- Liu, Guangming -- Wang, Jian -- International Wheat Genome Sequencing Consortium -- Yang, Huanming -- Liu, Xu -- He, Zhonghu -- Mao, Long -- Wang, Jun -- England -- Nature. 2013 Apr 4;496(7443):91-5. doi: 10.1038/nature12028. Epub 2013 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535592" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Brachypodium/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; DNA Transposable Elements/genetics ; Disease Resistance/genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Hordeum/genetics ; Molecular Sequence Data ; Plant Diseases ; Poaceae/*genetics ; Polyploidy ; Sequence Analysis, RNA ; Transcription Factors/genetics ; Triticum/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-12-03
    Description: CAAX proteins have essential roles in multiple signalling pathways, controlling processes such as proliferation, differentiation and carcinogenesis. The approximately 120 mammalian CAAX proteins function at cellular membranes and include the Ras superfamily of small GTPases, nuclear lamins, the gamma-subunit of heterotrimeric GTPases, and several protein kinases and phosphatases. The proper localization of CAAX proteins to cell membranes is orchestrated by a series of post-translational modifications of the carboxy-terminal CAAX motifs (where C is cysteine, A is an aliphatic amino acid and X is any amino acid). These reactions involve prenylation of the cysteine residue, cleavage at the AAX tripeptide and methylation of the carboxyl-prenylated cysteine residue. The major CAAX protease activity is mediated by Rce1 (Ras and a-factor converting enzyme 1), an intramembrane protease (IMP) of the endoplasmic reticulum. Information on the architecture and proteolytic mechanism of Rce1 has been lacking. Here we report the crystal structure of a Methanococcus maripaludis homologue of Rce1, whose endopeptidase specificity for farnesylated peptides mimics that of eukaryotic Rce1. Its structure, comprising eight transmembrane alpha-helices, and catalytic site are distinct from those of other IMPs. The catalytic residues are located approximately 10 A into the membrane and are exposed to the cytoplasm and membrane through a conical cavity that accommodates the prenylated CAAX substrate. We propose that the farnesyl lipid binds to a site at the opening of two transmembrane alpha-helices, which results in the scissile bond being positioned adjacent to a glutamate-activated nucleophilic water molecule. This study suggests that Rce1 is the founding member of a novel IMP family, the glutamate IMPs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manolaridis, Ioannis -- Kulkarni, Kiran -- Dodd, Roger B -- Ogasawara, Satoshi -- Zhang, Ziguo -- Bineva, Ganka -- O'Reilly, Nicola -- Hanrahan, Sarah J -- Thompson, Andrew J -- Cronin, Nora -- Iwata, So -- Barford, David -- 100140/Wellcome Trust/United Kingdom -- A2560/Cancer Research UK/United Kingdom -- A7403/Cancer Research UK/United Kingdom -- A8022/Cancer Research UK/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):301-5. doi: 10.1038/nature12754. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2]. ; 1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2] [3] Division of Biological Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India (K.K.); Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK (R.B.D.). ; 1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2] Division of Biological Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India (K.K.); Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK (R.B.D.). ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. ; Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Life Sciences, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291792" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry/metabolism ; *Biocatalysis ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Endopeptidases/chemistry/metabolism ; Endoplasmic Reticulum/enzymology ; Escherichia coli Proteins/chemistry/metabolism ; Glutamic Acid/metabolism ; Humans ; Membrane Proteins/*chemistry/metabolism ; Metalloendopeptidases/chemistry/metabolism ; Methanococcus/*enzymology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Peptide Hydrolases/*chemistry/classification/*metabolism ; *Prenylation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins p21(ras)/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-05-31
    Description: Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jeehye -- Al-Ramahi, Ismael -- Tan, Qiumin -- Mollema, Nissa -- Diaz-Garcia, Javier R -- Gallego-Flores, Tatiana -- Lu, Hsiang-Chih -- Lagalwar, Sarita -- Duvick, Lisa -- Kang, Hyojin -- Lee, Yoontae -- Jafar-Nejad, Paymaan -- Sayegh, Layal S -- Richman, Ronald -- Liu, Xiuyun -- Gao, Yan -- Shaw, Chad A -- Arthur, J Simon C -- Orr, Harry T -- Westbrook, Thomas F -- Botas, Juan -- Zoghbi, Huda Y -- HD024064/HD/NICHD NIH HHS/ -- MC_U127081014/Medical Research Council/United Kingdom -- NS42179/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 NS027699/NS/NINDS NIH HHS/ -- R01 NS042179/NS/NINDS NIH HHS/ -- T32 GM007526/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 20;498(7454):325-31. doi: 10.1038/nature12204. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719381" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Ataxin-1 ; Ataxins ; Cell Line, Tumor ; Disease Models, Animal ; Down-Regulation/drug effects ; Drosophila melanogaster/genetics/*metabolism ; Female ; Humans ; MAP Kinase Signaling System/drug effects ; Male ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Molecular Targeted Therapy ; Nerve Tissue Proteins/chemistry/genetics/*metabolism/*toxicity ; Nuclear Proteins/chemistry/genetics/*metabolism/*toxicity ; Phosphorylation ; Protein Stability/drug effects ; Ribosomal Protein S6 Kinases, 90-kDa/deficiency/genetics/*metabolism ; Spinocerebellar Ataxias/*metabolism/*pathology ; Transgenes ; ras Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-07-26
    Description: Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent. Why in the face of 'survival of the fittest' some animals regenerate but others do not remains a fascinating question. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians. Here we report the characterization of the regeneration defect in the planarian Dendrocoelum lacteum and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species. Notably, RNA interference (RNAi)-mediated knockdown of Dlac-beta-catenin-1, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing D. lacteum's regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of D. lacteum as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, S-Y -- Selck, C -- Friedrich, B -- Lutz, R -- Vila-Farre, M -- Dahl, A -- Brandl, H -- Lakshmanaperumal, N -- Henry, I -- Rink, J C -- England -- Nature. 2013 Aug 1;500(7460):81-4. doi: 10.1038/nature12414. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Head/*growth & development/physiology ; Models, Animal ; Molecular Sequence Data ; Planarians/*anatomy & histology/*physiology ; *Regeneration ; Tail/growth & development ; Wnt Proteins/metabolism ; Wnt Signaling Pathway ; beta Catenin/biosynthesis/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-11-15
    Description: Heterotaxy is a disorder of left-right body patterning, or laterality, that is associated with major congenital heart disease. The aetiology and mechanisms underlying most cases of human heterotaxy are poorly understood. In vertebrates, laterality is initiated at the embryonic left-right organizer, where motile cilia generate leftward flow that is detected by immotile sensory cilia, which transduce flow into downstream asymmetric signals. The mechanism that specifies these two cilia types remains unknown. Here we show that the N-acetylgalactosamine-type O-glycosylation enzyme GALNT11 is crucial to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with heterotaxy, and now demonstrate, in Xenopus tropicalis, that galnt11 activates Notch signalling. GALNT11 O-glycosylates human NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus left-right organizer cilia and show that Galnt11-mediated Notch1 signalling modulates the spatial distribution and ratio of motile and immotile cilia at the left-right organizer. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. By contrast, Notch overexpression decreases this ratio, mimicking the ciliopathy primary ciliary dyskinesia. Together our data demonstrate that Galnt11 modifies Notch, establishing an essential balance between motile and immotile cilia at the left-right organizer to determine laterality, and reveal a novel mechanism for human heterotaxy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boskovski, Marko T -- Yuan, Shiaulou -- Pedersen, Nis Borbye -- Goth, Christoffer Knak -- Makova, Svetlana -- Clausen, Henrik -- Brueckner, Martina -- Khokha, Mustafa K -- 5T32HD00709436/HD/NICHD NIH HHS/ -- DE018824/DE/NIDCR NIH HHS/ -- DE018825/DE/NIDCR NIH HHS/ -- R01 DE018824/DE/NIDCR NIH HHS/ -- R01 DE018825/DE/NIDCR NIH HHS/ -- R01HL093280/HL/NHLBI NIH HHS/ -- TL 1 RR024137/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Dec 19;504(7480):456-9. doi: 10.1038/nature12723. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA [2] [3] Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA [2]. ; Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Building 24.6.30, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark. ; Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226769" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/metabolism ; Amino Acid Sequence ; Animals ; *Body Patterning ; Cilia/metabolism/*physiology ; Embryo, Nonmammalian/embryology/metabolism ; Glycosylation ; Heterotaxy Syndrome/*genetics ; Humans ; Mice ; Molecular Sequence Data ; N-Acetylgalactosaminyltransferases/deficiency/genetics/*metabolism ; Peptide Fragments/chemistry/metabolism ; Receptor, Notch1/chemistry/deficiency/genetics/*metabolism ; *Signal Transduction ; Xenopus/embryology/genetics ; Xenopus Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-21
    Description: Broadly neutralizing antibodies reactive against most and even all variants of the same viral species have been described for influenza and HIV-1 (ref. 1). However, whether a neutralizing antibody could have the breadth of range to target different viral species was unknown. Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are common pathogens that cause severe disease in premature newborns, hospitalized children and immune-compromised patients, and play a role in asthma exacerbations. Although antisera generated against either HRSV or HMPV are not cross-neutralizing, we speculated that, because of the repeated exposure to these viruses, cross-neutralizing antibodies may be selected in some individuals. Here we describe a human monoclonal antibody (MPE8) that potently cross-neutralizes HRSV and HMPV as well as two animal paramyxoviruses: bovine RSV (BRSV) and pneumonia virus of mice (PVM). In its germline configuration, MPE8 is HRSV-specific and its breadth is achieved by somatic mutations in the light chain variable region. MPE8 did not result in the selection of viral escape mutants that evaded antibody targeting and showed potent prophylactic efficacy in animal models of HRSV and HMPV infection, as well as prophylactic and therapeutic efficacy in the more relevant model of lethal PVM infection. The core epitope of MPE8 was mapped on two highly conserved anti-parallel beta-strands on the pre-fusion viral F protein, which are rearranged in the post-fusion F protein conformation. Twenty-six out of the thirty HRSV-specific neutralizing antibodies isolated were also found to be specific for the pre-fusion F protein. Taken together, these results indicate that MPE8 might be used for the prophylaxis and therapy of severe HRSV and HMPV infections and identify the pre-fusion F protein as a candidate HRSV vaccine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corti, Davide -- Bianchi, Siro -- Vanzetta, Fabrizia -- Minola, Andrea -- Perez, Laurent -- Agatic, Gloria -- Guarino, Barbara -- Silacci, Chiara -- Marcandalli, Jessica -- Marsland, Benjamin J -- Piralla, Antonio -- Percivalle, Elena -- Sallusto, Federica -- Baldanti, Fausto -- Lanzavecchia, Antonio -- England -- Nature. 2013 Sep 19;501(7467):439-43. doi: 10.1038/nature12442. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland. davide.corti@humabs.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955151" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification/therapeutic ; use ; Antibodies, Neutralizing/chemistry/*immunology/isolation & ; purification/therapeutic use ; Antibody Specificity/immunology ; Cattle ; Cross Reactions/*immunology ; Epitopes/immunology ; Humans ; Immunoglobulin Light Chains/chemistry/immunology ; Immunoglobulin Variable Region/chemistry/immunology ; Metapneumovirus/immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine pneumonia virus/immunology ; Paramyxoviridae/*classification/*immunology ; Paramyxoviridae Infections/*immunology/prevention & control/therapy/*virology ; Pneumovirus Infections/immunology/prevention & control/virology ; Respiratory Syncytial Virus Infections/immunology/prevention & ; control/therapy/virology ; Respiratory Syncytial Virus, Bovine/immunology ; Respiratory Syncytial Virus, Human/immunology ; Viral Fusion Proteins/chemistry/immunology ; Viral Vaccines/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-05-28
    Description: The detection of DNA lesions within chromatin represents a critical step in cellular responses to DNA damage. However, the regulatory mechanisms that couple chromatin sensing to DNA-damage signalling in mammalian cells are not well understood. Here we show that tyrosine phosphorylation of the protein acetyltransferase KAT5 (also known as TIP60) increases after DNA damage in a manner that promotes KAT5 binding to the histone mark H3K9me3. This triggers KAT5-mediated acetylation of the ATM kinase, promoting DNA-damage-checkpoint activation and cell survival. We also establish that chromatin alterations can themselves enhance KAT5 tyrosine phosphorylation and ATM-dependent signalling, and identify the proto-oncogene c-Abl as a mediator of this modification. These findings define KAT5 tyrosine phosphorylation as a key event in the sensing of genomic and chromatin perturbations, and highlight a key role for c-Abl in such processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaidi, Abderrahmane -- Jackson, Stephen P -- 092096/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- 268536/European Research Council/International -- A11224/Cancer Research UK/United Kingdom -- C6/A11224/Cancer Research UK/United Kingdom -- WT092096/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Jun 6;498(7452):70-4. doi: 10.1038/nature12201. Epub 2013 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708966" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; Cell Line ; Cell Survival/radiation effects ; Chromatin/*metabolism ; DNA Damage ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; HeLa Cells ; Histone Acetyltransferases/*chemistry/*metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/chemistry/metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins c-abl/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-09
    Description: Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 +/- 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prokopenko, M G -- Hirst, M B -- De Brabandere, L -- Lawrence, D J P -- Berelson, W M -- Granger, J -- Chang, B X -- Dawson, S -- Crane, E J 3rd -- Chong, L -- Thamdrup, B -- Townsend-Small, A -- Sigman, D M -- England -- Nature. 2013 Aug 8;500(7461):194-8. doi: 10.1038/nature12365.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology, Pomona College, Claremont, California 91711, USA. prokopen@usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925243" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacteria/classification/genetics/*metabolism ; Carbon/metabolism ; Geologic Sediments/*microbiology ; Molecular Sequence Data ; Nitrogen/*metabolism ; Oxidation-Reduction ; Pacific Ocean ; Phylogeny ; Sulfur/metabolism ; Thiotrichaceae/classification/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-05-07
    Description: The coordination of stem- and blast-cell behaviours, such as self-renewal, differentiation and quiescence, with physiological changes underlies growth, regeneration and tissue homeostasis. Germline stem and somatic blast cells in newly hatched Caenorhabditis elegans larvae can suspend postembryonic development, which consists of diverse cellular events such as migration, proliferation and differentiation, until the nutritional state becomes favourable (termed L1 diapause). Although previous studies showed that the insulin/insulin-like growth factor (IGF) signalling (IIS) pathway regulates this developmental quiescence, the detailed mechanism by which the IIS pathway enables these multipotent cells to respond to nutrient availability is unknown. Here we show in C. elegans that the microRNA (miRNA) miR-235, a sole orthologue of mammalian miR-92 from the oncogenic miR-17-92 cluster, acts in the hypodermis and glial cells to arrest postembryonic developmental events in both neuroblasts and mesoblasts. Expression of mir-235 persists during L1 diapause, and decreases upon feeding in a manner dependent on the IIS pathway. Upregulation of one of the miR-235 targets, nhr-91, which encodes an orthologue of mammalian germ cell nuclear factor, is responsible for defects caused by loss of the miRNA. Our findings establish a novel role of a miR-92 orthologue in coupling blast-cell behaviours to the nutritional state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasuga, Hidefumi -- Fukuyama, Masamitsu -- Kitazawa, Aya -- Kontani, Kenji -- Katada, Toshiaki -- England -- Nature. 2013 May 23;497(7450):503-6. doi: 10.1038/nature12117. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644454" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Caenorhabditis elegans/*genetics/growth & development/immunology/*metabolism ; Down-Regulation ; Embryo, Nonmammalian/metabolism ; Food Deprivation ; Humans ; Insulin/metabolism ; Insulin-Like Growth Factor I/metabolism ; Larva/cytology/metabolism ; Lymphocyte Activation/*genetics/physiology ; MicroRNAs/*genetics/*metabolism ; Molecular Sequence Data ; Neural Stem Cells/cytology/metabolism ; Neuroglia/metabolism ; *Nutritional Status/genetics ; Signal Transduction ; Subcutaneous Tissue/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-11-26
    Description: RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Yiliang -- Tang, Yin -- Kwok, Chun Kit -- Zhang, Yu -- Bevilacqua, Philip C -- Assmann, Sarah M -- England -- Nature. 2014 Jan 30;505(7485):696-700. doi: 10.1038/nature12756. Epub 2013 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA [3] Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [4]. ; 1] Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [3] Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA [4]. ; 1] Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [3]. ; 1] Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [3] Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA [3] Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA [4] Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24270811" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics ; Base Sequence ; Codon, Initiator/genetics ; Computational Biology ; Genome, Plant/*genetics ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phylogeny ; Polyadenylation/genetics ; Protein Biosynthesis/genetics ; RNA Splice Sites/genetics ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Plant/analysis/*chemistry/genetics/*metabolism ; RNA, Ribosomal, 18S/chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid/genetics ; Sequence Analysis, RNA ; Stress, Physiological/genetics ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-05-21
    Description: Eukaryotic Ca(2+) regulation involves sequestration into intracellular organelles, and expeditious Ca(2+) release into the cytosol is a hallmark of key signalling transduction pathways. Bulk removal of Ca(2+) after such signalling events is accomplished by members of the Ca(2+):cation (CaCA) superfamily. The CaCA superfamily includes the Na(+)/Ca(2+) (NCX) and Ca(2+)/H(+) (CAX) antiporters, and in mammals the NCX and related proteins constitute families SLC8 and SLC24, and are responsible for the re-establishment of Ca(2+) resting potential in muscle cells, neuronal signalling and Ca(2+) reabsorption in the kidney. The CAX family members maintain cytosolic Ca(2+) homeostasis in plants and fungi during steep rises in intracellular Ca(2+) due to environmental changes, or following signal transduction caused by events such as hyperosmotic shock, hormone response and response to mating pheromones. The cytosol-facing conformations within the CaCA superfamily are unknown, and the transport mechanism remains speculative. Here we determine a crystal structure of the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger (Vcx1) at 2.3 A resolution in a cytosol-facing, substrate-bound conformation. Vcx1 is the first structure, to our knowledge, within the CAX family, and it describes the key cytosol-facing conformation of the CaCA superfamily, providing the structural basis for a novel alternating access mechanism by which the CaCA superfamily performs high-throughput Ca(2+) transport across membranes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702627/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702627/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waight, Andrew B -- Pedersen, Bjorn Panyella -- Schlessinger, Avner -- Bonomi, Massimiliano -- Chau, Bryant H -- Roe-Zurz, Zygy -- Risenmay, Aaron J -- Sali, Andrej -- Stroud, Robert M -- GM073210/GM/NIGMS NIH HHS/ -- GM24485/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 GM024485/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- U01 GM061390/GM/NIGMS NIH HHS/ -- U01 GM61390/GM/NIGMS NIH HHS/ -- U19 GM061390/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Jul 4;499(7456):107-10. doi: 10.1038/nature12233. Epub 2013 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23685453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiporters/*chemistry/*metabolism ; Binding Sites ; Calcium/*metabolism ; Crystallography, X-Ray ; Cytosol/*metabolism ; Ion Transport ; Methanococcus/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; *Protons ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-12-20
    Description: Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dohm, Juliane C -- Minoche, Andre E -- Holtgrawe, Daniela -- Capella-Gutierrez, Salvador -- Zakrzewski, Falk -- Tafer, Hakim -- Rupp, Oliver -- Sorensen, Thomas Rosleff -- Stracke, Ralf -- Reinhardt, Richard -- Goesmann, Alexander -- Kraft, Thomas -- Schulz, Britta -- Stadler, Peter F -- Schmidt, Thomas -- Gabaldon, Toni -- Lehrach, Hans -- Weisshaar, Bernd -- Himmelbauer, Heinz -- England -- Nature. 2014 Jan 23;505(7484):546-9. doi: 10.1038/nature12817. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain [4]. ; Bielefeld University, CeBiTec and Department of Biology, Universitatsstrasse 25, 33615 Bielefeld, Germany. ; 1] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain. ; TU Dresden, Department of Biology, Zellescher Weg 20b, 01217 Dresden, Germany. ; University of Leipzig, Department of Computer Science, Hartelstrasse 16-18, 04107 Leipzig, Germany. ; Max Planck Genome Centre Cologne, Carl-von-Linne-Weg 10, 50829 Koln, Germany. ; Syngenta, Box 302, 26123 Landskrona, Sweden. ; KWS SAAT AG, Grimsehlstrasse 31, 37574 Einbeck, Germany. ; 1] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain [3] Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain. ; Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany. ; 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352233" target="_blank"〉PubMed〈/a〉
    Keywords: Beta vulgaris/*genetics ; Biofuels/supply & distribution ; Carbohydrate Metabolism ; Chromosomes, Plant/genetics ; Crops, Agricultural/*genetics ; Ethanol/metabolism ; Genome, Plant/*genetics ; Genomics ; In Situ Hybridization, Fluorescence ; Molecular Sequence Data ; Phylogeny ; Sequence Analysis, DNA ; Spinacia oleracea/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-12-07
    Description: Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Matthias -- Fu, Qiaomei -- Aximu-Petri, Ayinuer -- Glocke, Isabelle -- Nickel, Birgit -- Arsuaga, Juan-Luis -- Martinez, Ignacio -- Gracia, Ana -- de Castro, Jose Maria Bermudez -- Carbonell, Eudald -- Paabo, Svante -- England -- Nature. 2014 Jan 16;505(7483):403-6. doi: 10.1038/nature12788. Epub 2013 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany [2] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. ; 1] Centro de Investigacion Sobre la Evolucion y Comportamiento Humanos, Universidad Complutense de Madrid-Instituto de Salud Carlos III, 28029 Madrid, Spain [2] Departamento de Paleontologia, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. ; 1] Centro de Investigacion Sobre la Evolucion y Comportamiento Humanos, Universidad Complutense de Madrid-Instituto de Salud Carlos III, 28029 Madrid, Spain [2] Area de Paleontologia, Depto. de Geografia y Geologia, Universidad de Alcala, Alcala de Henares, 28871 Madrid, Spain. ; Centro Nacional de Investigacion sobre la Evolucion Humana, Paseo Sierra de Atapuerca, 09002 Burgos, Spain. ; 1] Institut Catala de Paleoecologia Humana i Evolucio Social, C/Marcel.li Domingo s/n (Edifici W3), Campus Sescelades, 43007 Tarragona, Spain [2] Area de Prehistoria, Dept. d'Historia i Historia de l'Art, Univ. Rovira i Virgili, Fac. de Lletres, Av. Catalunya, 35, 43002 Tarragona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24305051" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; Consensus Sequence/genetics ; Cytosine/metabolism ; DNA, Mitochondrial/genetics ; Deamination ; Femur/anatomy & histology/metabolism ; *Fossils ; Genome, Mitochondrial/*genetics ; Hominidae/anatomy & histology/*classification/*genetics ; Molecular Sequence Data ; Neanderthals/genetics ; *Phylogeny ; Spain
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-12-20
    Description: Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901671/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901671/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tessarz, Peter -- Santos-Rosa, Helena -- Robson, Sam C -- Sylvestersen, Kathrine B -- Nelson, Christopher J -- Nielsen, Michael L -- Kouzarides, Tony -- 092096/Wellcome Trust/United Kingdom -- A10827/Cancer Research UK/United Kingdom -- BB/K017438/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2014 Jan 23;505(7484):564-8. doi: 10.1038/nature12819. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. ; 1] Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [3] Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352239" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Cell Nucleolus/metabolism ; Chromatin/genetics ; Chromosomal Proteins, Non-Histone/metabolism ; DNA, Ribosomal/genetics ; Epistasis, Genetic ; Glutamine/*metabolism ; Histones/*chemistry/*metabolism ; Humans ; Methylation ; Methyltransferases/metabolism ; Molecular Chaperones/metabolism ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nuclear Proteins/metabolism ; Nucleosomes/metabolism ; Protein Binding ; Protein Processing, Post-Translational ; RNA/metabolism ; RNA Polymerase I/*metabolism ; Ribonucleoproteins, Small Nucleolar/metabolism ; Saccharomyces cerevisiae/enzymology/genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Substrate Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...