ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-19
    Description: Model-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST ( http://beast.bio.ed.ac.uk , last accessed 9 May 2016). The integration of JavaScript D3 libraries ( www.d3.org , last accessed 9 May 2016) offers novel interactive web-based visualization capacities that are not restricted to spatial traits and extend to any discrete or continuously valued trait for any organism of interest.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worobey, Michael -- Rambaut, Andrew -- Pybus, Oliver G -- Robertson, David L -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):211 discussion 211.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11951002" target="_blank"〉PubMed〈/a〉
    Keywords: Disease Outbreaks ; Evolution, Molecular ; Hemagglutinin Glycoproteins, Influenza Virus/*genetics ; Humans ; Influenza A virus/*genetics/pathogenicity ; Influenza, Human/*epidemiology/*virology ; Likelihood Functions ; Phylogeny ; *Recombination, Genetic ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, A -- Rambaut, A -- Macaulay, V -- Willerslev, E -- Hansen, A J -- Stringer, C -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1655-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11388352" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Australia ; Base Sequence ; Biological Evolution ; DNA Damage ; DNA, Mitochondrial/*genetics ; Hominidae/*genetics ; Humans ; *Paleontology ; *Phylogeny ; Specimen Handling
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-03-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shapiro, Beth -- Sibthorpe, Dean -- Rambaut, Andrew -- Austin, Jeremy -- Wragg, Graham M -- Bininda-Emonds, Olaf R P -- Lee, Patricia L M -- Cooper, Alan -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1683.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*classification/*genetics ; Columbidae/classification/genetics ; DNA, Mitochondrial/analysis/genetics ; Flight, Animal ; Likelihood Functions ; *Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-06-26
    Description: Hepatitis C virus (HCV) is a leading worldwide cause of liver disease. Here, we use a new model of HCV spread to investigate the epidemic behavior of the virus and to estimate its basic reproductive number from gene sequence data. We find significant differences in epidemic behavior among HCV subtypes and suggest that these differences are largely the result of subtype-specific transmission patterns. Our model builds a bridge between the disciplines of population genetics and mathematical epidemiology by using pathogen gene sequences to infer the population dynamic history of an infectious disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pybus, O G -- Charleston, M A -- Gupta, S -- Rambaut, A -- Holmes, E C -- Harvey, P H -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2323-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK. oliver.pybus@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423661" target="_blank"〉PubMed〈/a〉
    Keywords: Endemic Diseases ; Genes, Viral ; Hepacivirus/classification/genetics/*physiology ; Hepatitis C/*epidemiology/transmission/*virology ; Humans ; Likelihood Functions ; Models, Biological ; Molecular Epidemiology ; Phylogeny ; Population Dynamics ; Prevalence ; Substance Abuse, Intravenous/complications
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-04-18
    Description: The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441973/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441973/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rambaut, Andrew -- Pybus, Oliver G -- Nelson, Martha I -- Viboud, Cecile -- Taubenberger, Jeffery K -- Holmes, Edward C -- Z01 AI000996-01/Intramural NIH HHS/ -- England -- Nature. 2008 May 29;453(7195):615-9. doi: 10.1038/nature06945. Epub 2008 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3JT, UK. a.rambaut@ed.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18418375" target="_blank"〉PubMed〈/a〉
    Keywords: *Evolution, Molecular ; Genetic Drift ; Genetic Variation ; Genome, Viral/*genetics ; Hemagglutinin Glycoproteins, Influenza Virus/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/immunology ; Influenza A Virus, H3N2 Subtype/*genetics/immunology ; Influenza, Human/*epidemiology/*virology ; Models, Biological ; Neuraminidase/genetics ; New York/epidemiology ; New Zealand/epidemiology ; Phylogeny ; Reassortant Viruses/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-06-12
    Description: In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Gavin J D -- Vijaykrishna, Dhanasekaran -- Bahl, Justin -- Lycett, Samantha J -- Worobey, Michael -- Pybus, Oliver G -- Ma, Siu Kit -- Cheung, Chung Lam -- Raghwani, Jayna -- Bhatt, Samir -- Peiris, J S Malik -- Guan, Yi -- Rambaut, Andrew -- BB/E009670/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- HHSN266200700005C/PHS HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2009 Jun 25;459(7250):1122-5. doi: 10.1038/nature08182.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Emerging Infectious Diseases & Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516283" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Outbreaks ; *Evolution, Molecular ; Genome, Viral/*genetics ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*genetics ; *Influenza, Human/epidemiology/virology ; Molecular Sequence Data ; Orthomyxoviridae Infections/epidemiology/veterinary/virology ; Phylogeny ; Reassortant Viruses/classification/*genetics ; Swine ; Swine Diseases/*virology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-05-13
    Description: A novel influenza A (H1N1) virus has spread rapidly across the globe. Judging its pandemic potential is difficult with limited data, but nevertheless essential to inform appropriate health responses. By analyzing the outbreak in Mexico, early data on international spread, and viral genetic diversity, we make an early assessment of transmissibility and severity. Our estimates suggest that 23,000 (range 6000 to 32,000) individuals had been infected in Mexico by late April, giving an estimated case fatality ratio (CFR) of 0.4% (range: 0.3 to 1.8%) based on confirmed and suspected deaths reported to that time. In a community outbreak in the small community of La Gloria, Veracruz, no deaths were attributed to infection, giving an upper 95% bound on CFR of 0.6%. Thus, although substantial uncertainty remains, clinical severity appears less than that seen in the 1918 influenza pandemic but comparable with that seen in the 1957 pandemic. Clinical attack rates in children in La Gloria were twice that in adults (〈15 years of age: 61%; 〉/=15 years: 29%). Three different epidemiological analyses gave basic reproduction number (R0) estimates in the range of 1.4 to 1.6, whereas a genetic analysis gave a central estimate of 1.2. This range of values is consistent with 14 to 73 generations of human-to-human transmission having occurred in Mexico to late April. Transmissibility is therefore substantially higher than that of seasonal flu, and comparable with lower estimates of R0 obtained from previous influenza pandemics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735127/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735127/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fraser, Christophe -- Donnelly, Christl A -- Cauchemez, Simon -- Hanage, William P -- Van Kerkhove, Maria D -- Hollingsworth, T Deirdre -- Griffin, Jamie -- Baggaley, Rebecca F -- Jenkins, Helen E -- Lyons, Emily J -- Jombart, Thibaut -- Hinsley, Wes R -- Grassly, Nicholas C -- Balloux, Francois -- Ghani, Azra C -- Ferguson, Neil M -- Rambaut, Andrew -- Pybus, Oliver G -- Lopez-Gatell, Hugo -- Alpuche-Aranda, Celia M -- Chapela, Ietza Bojorquez -- Zavala, Ethel Palacios -- Guevara, Dulce Ma Espejo -- Checchi, Francesco -- Garcia, Erika -- Hugonnet, Stephane -- Roth, Cathy -- WHO Rapid Pandemic Assessment Collaboration -- G0600719/Medical Research Council/United Kingdom -- GR082623MA/Wellcome Trust/United Kingdom -- U54 GM088491/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Jun 19;324(5934):1557-61. doi: 10.1126/science.1176062. Epub 2009 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Faculty of Medicine, Norfolk Place, London W2 1PG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19433588" target="_blank"〉PubMed〈/a〉
    Keywords: *Disease Outbreaks ; Global Health ; Humans ; *Influenza A Virus, H1N1 Subtype ; Influenza, Human/*epidemiology/mortality/transmission/virology ; Mexico/epidemiology ; Molecular Sequence Data ; Travel
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-13
    Description: In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000x coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gire, Stephen K -- Goba, Augustine -- Andersen, Kristian G -- Sealfon, Rachel S G -- Park, Daniel J -- Kanneh, Lansana -- Jalloh, Simbirie -- Momoh, Mambu -- Fullah, Mohamed -- Dudas, Gytis -- Wohl, Shirlee -- Moses, Lina M -- Yozwiak, Nathan L -- Winnicki, Sarah -- Matranga, Christian B -- Malboeuf, Christine M -- Qu, James -- Gladden, Adrianne D -- Schaffner, Stephen F -- Yang, Xiao -- Jiang, Pan-Pan -- Nekoui, Mahan -- Colubri, Andres -- Coomber, Moinya Ruth -- Fonnie, Mbalu -- Moigboi, Alex -- Gbakie, Michael -- Kamara, Fatima K -- Tucker, Veronica -- Konuwa, Edwin -- Saffa, Sidiki -- Sellu, Josephine -- Jalloh, Abdul Azziz -- Kovoma, Alice -- Koninga, James -- Mustapha, Ibrahim -- Kargbo, Kandeh -- Foday, Momoh -- Yillah, Mohamed -- Kanneh, Franklyn -- Robert, Willie -- Massally, James L B -- Chapman, Sinead B -- Bochicchio, James -- Murphy, Cheryl -- Nusbaum, Chad -- Young, Sarah -- Birren, Bruce W -- Grant, Donald S -- Scheiffelin, John S -- Lander, Eric S -- Happi, Christian -- Gevao, Sahr M -- Gnirke, Andreas -- Rambaut, Andrew -- Garry, Robert F -- Khan, S Humarr -- Sabeti, Pardis C -- 095831/Wellcome Trust/United Kingdom -- 1DP2OD006514-01/OD/NIH HHS/ -- 1U01HG007480-01/HG/NHGRI NIH HHS/ -- 260864/European Research Council/International -- DP2 OD006514/OD/NIH HHS/ -- GM080177/GM/NIGMS NIH HHS/ -- HHSN272200900049C/AI/NIAID NIH HHS/ -- HHSN272200900049C/PHS HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 HG007480/HG/NHGRI NIH HHS/ -- U19 AI110818/AI/NIAID NIH HHS/ -- U19 AI115589/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1369-72. doi: 10.1126/science.1259657. Epub 2014 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Kenema Government Hospital, Kenema, Sierra Leone. andersen@broadinstitute.org augstgoba@yahoo.com psabeti@oeb.harvard.edu. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. andersen@broadinstitute.org augstgoba@yahoo.com psabeti@oeb.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Kenema Government Hospital, Kenema, Sierra Leone. ; Kenema Government Hospital, Kenema, Sierra Leone. Eastern Polytechnic College, Kenema, Sierra Leone. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Tulane University Medical Center, New Orleans, LA 70112, USA. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Systems Biology, Harvard Medical School, Boston, MA 02115, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Redeemer's University, Ogun State, Nigeria. ; University of Sierra Leone, Freetown, Sierra Leone. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214632" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Disease Outbreaks ; Ebolavirus/*genetics/isolation & purification ; *Epidemiological Monitoring ; Genetic Variation ; Genome, Viral/genetics ; Genomics/methods ; Hemorrhagic Fever, Ebola/epidemiology/*transmission/*virology ; Humans ; Mutation ; Sequence Analysis, DNA ; Sierra Leone/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-11-30
    Description: The widespread extinctions of large mammals at the end of the Pleistocene epoch have often been attributed to the depredations of humans; here we present genetic evidence that questions this assumption. We used ancient DNA and Bayesian techniques to reconstruct a detailed genetic history of bison throughout the late Pleistocene and Holocene epochs. Our analyses depict a large diverse population living throughout Beringia until around 37,000 years before the present, when the population's genetic diversity began to decline dramatically. The timing of this decline correlates with environmental changes associated with the onset of the last glacial cycle, whereas archaeological evidence does not support the presence of large populations of humans in Eastern Beringia until more than 15,000 years later.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shapiro, Beth -- Drummond, Alexei J -- Rambaut, Andrew -- Wilson, Michael C -- Matheus, Paul E -- Sher, Andrei V -- Pybus, Oliver G -- Gilbert, M Thomas P -- Barnes, Ian -- Binladen, Jonas -- Willerslev, Eske -- Hansen, Anders J -- Baryshnikov, Gennady F -- Burns, James A -- Davydov, Sergei -- Driver, Jonathan C -- Froese, Duane G -- Harington, C Richard -- Keddie, Grant -- Kosintsev, Pavel -- Kunz, Michael L -- Martin, Larry D -- Stephenson, Robert O -- Storer, John -- Tedford, Richard -- Zimov, Sergei -- Cooper, Alan -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1561-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Henry Wellcome Ancient Biomolecules Centre, Oxford University, South Parks Road, Oxford OX13PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567864" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Animals ; Bayes Theorem ; *Bison/classification/genetics ; Canada ; China ; *Climate ; DNA, Mitochondrial/genetics ; Environment ; *Fossils ; Genetic Variation ; Genetics, Population ; Human Activities ; Humans ; North America ; Phylogeny ; Population Dynamics ; Sequence Analysis, DNA ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...