ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-17
    Description: Article m336 is an exceptionally potent germline-like antibody against the emerging MERS-CoV virus. Here, the authors solve the structure of m336 in complex with MERS-CoV receptor-binding domain and use it to reveal a role of junctional and allele-specific residues in the interaction and suggest implications for vaccine development. Nature Communications doi: 10.1038/ncomms9223 Authors: Tianlei Ying, Ponraj Prabakaran, Lanying Du, Wei Shi, Yang Feng, Yanping Wang, Lingshu Wang, Wei Li, Shibo Jiang, Dimiter S. Dimitrov, Tongqing Zhou
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-13
    Description: Article Tumour-targeted antibodies can kill cancer cells by blocking pro-survival signalling or by delivering a toxin. Here the authors show that glypican-3 antibody fused to a bacterial toxin suppresses tumour growth more efficiently if designed to block Wnt signalling downstream of glypican-3. Nature Communications doi: 10.1038/ncomms7536 Authors: Wei Gao, Zhewei Tang, Yi-Fan Zhang, Mingqian Feng, Min Qian, Dimiter S. Dimitrov, Mitchell Ho
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-15
    Description: The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of V3 in HIV entry and neutralization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-chin -- Tang, Min -- Zhang, Mei-Yun -- Majeed, Shahzad -- Montabana, Elizabeth -- Stanfield, Robyn L -- Dimitrov, Dimiter S -- Korber, Bette -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Kwong, Peter D -- AI24755/AI/NIAID NIH HHS/ -- AI31783/AI/NIAID NIH HHS/ -- AI39429/AI/NIAID NIH HHS/ -- AI40895/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1025-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284180" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/*chemistry/immunology/metabolism ; Humans ; Hydrogen Bonding ; Immunodominant Epitopes ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/*chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CCR5/chemistry/metabolism ; Receptors, CXCR4/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-01
    Description: Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9-14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7 days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5 weeks in some long-term chronically SHIV-infected animals with low CD4(+) T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shingai, Masashi -- Nishimura, Yoshiaki -- Klein, Florian -- Mouquet, Hugo -- Donau, Olivia K -- Plishka, Ronald -- Buckler-White, Alicia -- Seaman, Michael -- Piatak, Michael Jr -- Lifson, Jeffrey D -- Dimitrov, Dimiter S -- Nussenzweig, Michel C -- Martin, Malcolm A -- HHSN261200800001E/PHS HHS/ -- P01 AI100148/AI/NIAID NIH HHS/ -- ZIA AI000415-29/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 14;503(7475):277-80. doi: 10.1038/nature12746. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172896" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/*therapeutic use ; Antigens, CD4/metabolism ; Binding Sites/immunology ; HIV Antibodies/*therapeutic use ; HIV Envelope Protein gp120/immunology ; HIV-1/*immunology ; *Immunotherapy ; Macaca/immunology ; Molecular Sequence Data ; Peptide Fragments/immunology ; Simian Acquired Immunodeficiency Syndrome/prevention & control/*therapy ; Simian Immunodeficiency Virus/*physiology ; Time Factors ; Viral Load ; Viremia/*therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-28
    Description: H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 A resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal alpha-helix. Finally, analysis of H2A.Z localization in ANP32E(-/-) cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obri, Arnaud -- Ouararhni, Khalid -- Papin, Christophe -- Diebold, Marie-Laure -- Padmanabhan, Kiran -- Marek, Martin -- Stoll, Isabelle -- Roy, Ludovic -- Reilly, Patrick T -- Mak, Tak W -- Dimitrov, Stefan -- Romier, Christophe -- Hamiche, Ali -- England -- Nature. 2014 Jan 30;505(7485):648-53. doi: 10.1038/nature12922. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Departement de Genomique Fonctionnelle et Cancer, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France [2]. ; Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France. ; Equipe labelisee Ligue contre le Cancer, INSERM/Universite Joseph Fourier , Institut Albert Bonniot, U823, Site Sante-BP 170, 38042 Grenoble Cedex 9, France. ; Departement de Genomique Fonctionnelle et Cancer, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France. ; Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore. ; 1] Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore [2] The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/chemistry/metabolism ; Chromatin/*chemistry/genetics/*metabolism ; Chromatin Immunoprecipitation ; Crystallography, X-Ray ; DNA/genetics/metabolism ; Genome, Human/genetics ; Histones/chemistry/isolation & purification/*metabolism ; Humans ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*metabolism ; Nucleosomes/chemistry/metabolism ; Phosphoproteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-10-25
    Description: Accessory cell-surface molecules involved in the entry of human immunodeficiency virus-type 1 into cells have recently been identified and shown to belong to the family of chemokine receptors. Treatment of human cell lines with soluble monomeric gp120 at 37 degrees C induced an association between the surface CD4-gp120 complex and a 45-kilodalton protein, which can be down-modulated by the phorbol ester phorbol 12-myristate 13-acetate. The three proteins were coprecipitated from the cell membranes with antibodies to CD4 or to gp120. The 45-kilodalton protein comigrated with fusin on sodium dodecyl sulfate gels and reacted with rabbit antisera to fusin in protein immunoblots. No 45-kilodalton protein could be coprecipitated from similarly treated nonhuman cells. However, infection of 3T3.CD4.401 cells with vaccinia-fusin recombinant virus (vCBYF1), followed by gp120 treatment, resulted in coprecipitation of fusin and CD4.401 molecules from their membranes. Together these data provide evidence for physical association between fusin and the CD4-gp120 complex on cell membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lapham, C K -- Ouyang, J -- Chandrasekhar, B -- Nguyen, N Y -- Dimitrov, D S -- Golding, H -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):602-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849450" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Antigens, CD4/immunology/*metabolism ; Cell Line ; Cell Membrane/*metabolism ; Giant Cells ; HIV Envelope Protein gp120/immunology/*metabolism/pharmacology ; Humans ; Immunoblotting ; Membrane Fusion ; Membrane Proteins/chemistry/immunology/*metabolism ; Mice ; Molecular Sequence Data ; Molecular Weight ; Precipitin Tests ; Receptors, CXCR4 ; Receptors, HIV/chemistry/immunology/*metabolism ; T-Lymphocytes ; Tetradecanoylphorbol Acetate/pharmacology ; Vaccinia virus/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-08
    Description: The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Kwon, Young Do -- Zhou, Tongqing -- Wu, Xueling -- O'Dell, Sijy -- Cavacini, Lisa -- Hessell, Ann J -- Pancera, Marie -- Tang, Min -- Xu, Ling -- Yang, Zhi-Yong -- Zhang, Mei-Yun -- Arthos, James -- Burton, Dennis R -- Dimitrov, Dimiter S -- Nabel, Gary J -- Posner, Marshall R -- Sodroski, Joseph -- Wyatt, Richard -- Mascola, John R -- Kwong, Peter D -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1123-7. doi: 10.1126/science.1175868.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Hiv-1 ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/chemistry/immunology/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-08-09
    Description: Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of environmental contamination and toxicology 65 (2000), S. 399-406 
    ISSN: 1432-0800
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 71 (1992), S. 4887-4891 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The microstructure of lead titanate zirconate and PbTiO3-based ceramics is investigated with thermal waves. The photoacoustic data obtained by a gas-microphone method show the presence of thermal-wave diffraction within the samples. The comparison with scanning electron micrographs allows the influence of the grain size and the volume of the glassy phase on the photoacoustic signal to be determined. The influence of the thermal parameters is also discussed. Analysis of the photoacoustic behavior of the investigated ceramic samples is made using the Opsal–Rosencwaig theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...