ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (361)
  • Rats  (326)
  • American Association for the Advancement of Science (AAAS)  (655)
  • American Meteorological Society
  • 1995-1999  (655)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (655)
  • American Meteorological Society
  • Springer  (12)
  • Wiley-Blackwell  (1)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-09-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caroni, P -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1465-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute, Basel, Switzerland. caroni@fmi.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9750116" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/physiology ; Animals ; Axons/*physiology ; Brain-Derived Neurotrophic Factor/physiology ; Calcium/metabolism ; Cell Movement ; Cyclic AMP/*physiology ; Cyclic GMP/*physiology ; Glycoproteins/physiology ; Nerve Growth Factors/physiology ; Neurons/*physiology ; Neurotrophin 3 ; Semaphorin-3A ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The metabotropic glutamate receptors (mGluRs) are widely distributed in the brain and play important roles in synaptic plasticity. Here it is shown that some types of mGluRs are activated not only by glutamate but also by extracellular Ca2+ (Ca2+o). A single amino acid residue was found to determine the sensitivity of mGluRs to Ca2+o. One of the receptors, mGluR1alpha, but not its point mutant with reduced sensitivity to Ca2+o, caused morphological changes when transfected into mammalian cells. Thus, the sensing of Ca2+o by mGluRs may be important in cells under physiological condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Y -- Miyashita, T -- Murata, Y -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1722-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan. ykubo@tmin.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497291" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/ultrastructure ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; CHO Cells ; Calcium/*metabolism/pharmacology ; Cell Size ; Cricetinae ; Cyclic AMP/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glutamic Acid/metabolism/pharmacology ; Molecular Sequence Data ; Oocytes ; Point Mutation ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Rats ; Receptors, Metabotropic Glutamate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: The Son of Sevenless (Sos) proteins control receptor-mediated activation of Ras by catalyzing the exchange of guanosine diphosphate for guanosine triphosphate on Ras. The NH2-terminal region of Sos contains a Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. In COS-1 cells, the DH domain of Sos stimulated guanine nucleotide exchange on Rac but not Cdc42 in vitro and in vivo. The tandem DH-PH domain of Sos (DH-PH-Sos) was defective in Rac activation but regained Rac stimulating activity when it was coexpressed with activated Ras. Ras-mediated activation of DH-PH-Sos did not require activation of mitogen-activated protein kinase but it was dependent on activation of phosphoinositide 3-kinase. These results reveal a potential mechanism for coupling of Ras and Rac signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nimnual, A S -- Yatsula, B A -- Bar-Sagi, D -- CA09176/CA/NCI NIH HHS/ -- CA28146/CA/NCI NIH HHS/ -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):560-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438849" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Membrane Proteins/chemistry/*metabolism ; *Mitogen-Activated Protein Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins ; Recombinant Fusion Proteins/metabolism ; Retroviridae Proteins, Oncogenic/chemistry ; Signal Transduction ; Son of Sevenless Proteins ; Transfection ; cdc42 GTP-Binding Protein ; rac GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-08-07
    Description: Clathrin-mediated endocytosis involves cycles of assembly and disassembly of clathrin coat components and their accessory proteins. Dephosphorylation of rat brain extract was shown to promote the assembly of dynamin 1, synaptojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. Phosphorylation of dynamin 1 and synaptojanin 1 inhibited their binding to amphiphysin, whereas phosphorylation of amphiphysin inhibited its binding to AP-2 and clathrin. Thus, phosphorylation regulates the association and dissociation cycle of the clathrin-based endocytic machinery, and calcium-dependent dephosphorylation of endocytic proteins could prepare nerve terminals for a burst of endocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slepnev, V I -- Ochoa, G C -- Butler, M H -- Grabs, D -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694653" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Protein Complex beta Subunits ; Adaptor Proteins, Vesicular Transport ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Carbazoles/pharmacology ; Chromatography, Affinity ; Clathrin/*metabolism ; Cyclosporine/pharmacology ; Dimerization ; Dynamin I ; Dynamins ; *Endocytosis ; Enzyme Inhibitors/pharmacology ; GTP Phosphohydrolases/*metabolism ; Indole Alkaloids ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/*metabolism ; Phosphoric Monoester Hydrolases/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: During T cell activation, the engagement of costimulatory molecules is often crucial to the development of an effective immune response, but the mechanism by which this is achieved is not known. Here, it is shown that beads attached to the surface of a T cell translocate toward the interface shortly after the start of T cell activation. This movement appears to depend on myosin motor proteins and requires the engagement of the major costimulatory receptor pairs, B7-CD28 and ICAM-1-LFA-1. This suggests that the engagement of costimulatory receptors triggers an active accumulation of molecules at the interface of the T cell and the antigen-presenting cell, which then increases the overall amplitude and duration of T cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wulfing, C -- Davis, M M -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2266-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigen-Presenting Cells/immunology ; Antigens, CD/*metabolism ; Antigens, CD28/metabolism ; Antigens, CD86 ; Biotinylation ; CHO Cells ; Calcium/metabolism ; Cricetinae ; Cytoskeleton/*physiology ; Intercellular Adhesion Molecule-1/metabolism ; *Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; Microspheres ; Molecular Motor Proteins/physiology ; Myosins/physiology ; Phosphatidylinositol 3-Kinases/metabolism ; Receptors, Antigen, T-Cell/immunology ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism/ultrastructure ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-14
    Description: Differential actions of acetylcholine on the excitability of two subtypes of interneurons in layer V of the rat visual cortex were examined. Acetylcholine excited low-threshold spike (LTS) cells through nicotinic receptors, whereas it elicited hyperpolarization in fast spiking (FS) cells through muscarinic receptors. Axons of LTS cells were mainly distributed vertically to upper layers, and those of FS cells were primarily confined to layer V. Thus, cortical cholinergic activation may reduce some forms of intralaminar inhibition, promote intracolumnar inhibition, and change the direction of information flow within cortical circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, Z -- Huguenard, J R -- Prince, D A -- NS 06477/NS/NINDS NIH HHS/ -- NS 07280/NS/NINDS NIH HHS/ -- NS 12151/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):985-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703513" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*physiology ; Animals ; Hexamethonium/pharmacology ; In Vitro Techniques ; Interneurons/physiology ; Membrane Potentials ; Muscarinic Antagonists/pharmacology ; Nerve Net/*physiology ; *Neural Inhibition ; Nicotinic Antagonists/pharmacology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, Nicotinic/physiology ; Scopolamine Hydrobromide/pharmacology ; Visual Cortex/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chess, A -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2067-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. chess@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9537917" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; CD4-Positive T-Lymphocytes/*immunology ; DNA Replication ; *Gene Expression Regulation ; Genes, Immunoglobulin ; Interleukin-2/*genetics ; Lymphocyte Activation ; Mice ; Polymerase Chain Reaction ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-04-16
    Description: FADD (also known as Mort-1) is a signal transducer downstream of cell death receptor CD95 (also called Fas). CD95, tumor necrosis factor receptor type 1 (TNFR-1), and death receptor 3 (DR3) did not induce apoptosis in FADD-deficient embryonic fibroblasts, whereas DR4, oncogenes E1A and c-myc, and chemotherapeutic agent adriamycin did. Mice with a deletion in the FADD gene did not survive beyond day 11.5 of embryogenesis; these mice showed signs of cardiac failure and abdominal hemorrhage. Chimeric embryos showing a high contribution of FADD null mutant cells to the heart reproduce the phenotype of FADD-deficient mutants. Thus, not only death receptors, but also receptors that couple to developmental programs, may use FADD for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeh, W C -- de la Pompa, J L -- McCurrach, M E -- Shu, H B -- Elia, A J -- Shahinian, A -- Ng, M -- Wakeham, A -- Khoo, W -- Mitchell, K -- El-Deiry, W S -- Lowe, S W -- Goeddel, D V -- Mak, T W -- CA13106/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1954-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506948" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD95/genetics/physiology ; *Apoptosis ; Carrier Proteins/genetics/*physiology ; Cell Transformation, Neoplastic ; Cells, Cultured ; Doxorubicin/pharmacology ; *Embryonic and Fetal Development ; Endothelium, Vascular/embryology ; Fas-Associated Death Domain Protein ; Female ; Gene Expression ; Gene Targeting ; Heart/*embryology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Oncogenes ; Receptors, Tumor Necrosis Factor/genetics/physiology ; Signal Transduction ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-06-25
    Description: Signaling pathways that stabilize interleukin-2 (IL-2) messenger RNA (mRNA) in activated T cells were examined. IL-2 mRNA contains at least two cis elements that mediated its stabilization in response to different signals, including activation of c-Jun amino-terminal kinase (JNK). This response was mediated through a cis element encompassing the 5' untranslated region (UTR) and the beginning of the coding region. IL-2 transcripts lacking this 5' element no longer responded to JNK activation but were still responsive to other signals generated during T cell activation, which were probably sensed through the 3' UTR. Thus, multiple elements within IL-2 mRNA modulate its stability in a combinatorial manner, and the JNK pathway controls turnover as well as synthesis of IL-2 mRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, C Y -- Del Gatto-Konczak, F -- Wu, Z -- Karin, M -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1945-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632395" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD28/immunology ; Antigens, CD3/immunology ; Calcimycin/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cyclosporine/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; *Gene Expression Regulation ; Humans ; Imidazoles/pharmacology ; Interleukin-2/*genetics ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Lymphocyte Activation ; MAP Kinase Kinase 1 ; MAP Kinase Kinase 7 ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Pyridines/pharmacology ; RNA, Messenger/chemistry/genetics/*metabolism ; Signal Transduction ; T-Lymphocytes/immunology/*metabolism ; Tetradecanoylphorbol Acetate/pharmacology ; Transgenes ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1998-09-25
    Description: The development of the Drosophila eye has served as a model system for investigations of tissue patterning and cell-cell communication; however, early eye development has not been well understood. The results presented here indicate that specialized cells are established along the dorsal-ventral midline of the developing eye by Notch-mediated signaling between dorsal and ventral cells, and that Notch activation at the midline plays an essential role both in promoting the growth of the eye primordia and in regulating eye patterning. These observations imply that the developmental homology between Drosophila wings and vertebrate limbs extends to Drosophila eyes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papayannopoulos, V -- Tomlinson, A -- Panin, V M -- Rauskolb, C -- Irvine, K D -- GM-R01-54594/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):2031-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9748163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Calcium-Binding Proteins ; Drosophila/genetics/*growth & development/metabolism ; *Drosophila Proteins ; Eye Proteins/genetics ; Gene Expression Regulation, Developmental ; Genes, Insect ; Homeodomain Proteins ; Insect Proteins/genetics/physiology ; Intercellular Signaling Peptides and Proteins ; Intracellular Signaling Peptides and Proteins ; Larva/growth & development ; Ligands ; Membrane Proteins/genetics/*physiology ; Morphogenesis ; Mutation ; *N-Acetylglucosaminyltransferases ; Photoreceptor Cells, Invertebrate/cytology/*growth & development ; Receptors, Notch ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The OxyR transcription factor is sensitive to oxidation and activates the expression of antioxidant genes in response to hydrogen peroxide in Escherichia coli. Genetic and biochemical studies revealed that OxyR is activated through the formation of a disulfide bond and is deactivated by enzymatic reduction with glutaredoxin 1 (Grx1). The gene encoding Grx1 is regulated by OxyR, thus providing a mechanism for autoregulation. The redox potential of OxyR was determined to be -185 millivolts, ensuring that OxyR is reduced in the absence of stress. These results represent an example of redox signaling through disulfide bond formation and reduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, M -- Aslund, F -- Storz, G -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/genetics/metabolism ; Base Sequence ; Cysteine/metabolism ; *DNA-Binding Proteins ; Disulfides/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins ; Gene Expression Regulation, Bacterial ; Glutaredoxins ; Glutathione/metabolism ; Glutathione Disulfide/metabolism ; Glutathione Reductase/metabolism ; Hydrogen Peroxide/*metabolism/pharmacology ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; *Oxidoreductases ; Proteins/genetics/metabolism ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Thioredoxins/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-09
    Description: Differential access to cocaine self-administration produced two patterns of drug intake in rats. With 1 hour of access per session, drug intake remained low and stable. In contrast, with 6 hours of access, drug intake gradually escalated over days. After escalation, drug consumption was characterized by an increased early drug loading and an upward shift in the cocaine dose-response function, suggesting an increase in hedonic set point. After 1 month of abstinence, escalation of cocaine intake was reinstated to a higher level than before. These findings may provide an animal model for studying the development of excessive drug intake and the basis of addiction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahmed, S H -- Koob, G F -- DA04398/DA/NIDA NIH HHS/ -- DA08467/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):298-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychopharmacology, Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. aserge@sage.scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Addictive ; Cocaine/*administration & dosage ; Cocaine-Related Disorders/*etiology ; Dose-Response Relationship, Drug ; Drug Tolerance ; Male ; Rats ; Rats, Wistar ; Reinforcement (Psychology) ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1998-05-09
    Description: Hormones and neurotransmitters may mediate common responses through receptors that couple to the same class of heterotrimeric guanine nucleotide-binding (G) protein. For example, several receptors that couple to Gq class proteins can induce cardiomyocyte hypertrophy. Class-specific inhibition of Gq-mediated signaling was produced in the hearts of transgenic mice by targeted expression of a carboxyl-terminal peptide of the alpha subunit Galphaq. When pressure overload was surgically induced, the transgenic mice developed significantly less ventricular hypertrophy than control animals. The data demonstrate the role of myocardial Gq in the initiation of myocardial hypertrophy and indicate a possible strategy for preventing pathophysiological signaling by simultaneously blocking multiple receptors coupled to Gq.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akhter, S A -- Luttrell, L M -- Rockman, H A -- Iaccarino, G -- Lefkowitz, R J -- Koch, W J -- HL-03041/HL/NHLBI NIH HHS/ -- HL-09436/HL/NHLBI NIH HHS/ -- HL-16037/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554846" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin II/pharmacology ; Animals ; Atrial Natriuretic Factor/genetics ; COS Cells ; Diglycerides/metabolism ; Enzyme Activation ; GTP-Binding Proteins/antagonists & inhibitors/genetics/*metabolism ; Gene Expression Regulation ; Gene Targeting ; Hypertrophy, Left Ventricular/*metabolism/prevention & control ; Inositol Phosphates/metabolism ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 1/metabolism ; Myocardium/*metabolism ; Peptide Fragments/genetics/metabolism ; Phenylephrine/pharmacology ; Receptors, Adrenergic, alpha/*metabolism ; Signal Transduction ; Transfection ; Transgenes ; Ventricular Pressure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-09-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1438-9, 1441.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9750112" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Cadherins/metabolism ; Cell Nucleus/metabolism ; Colorectal Neoplasms/etiology/genetics ; Cytoskeletal Proteins/metabolism ; *Gene Expression Regulation, Neoplastic ; *Genes, APC ; *Genes, myc ; Humans ; Neoplasms/*etiology/genetics ; Proto-Oncogene Proteins/*genetics/physiology ; Proto-Oncogene Proteins c-myc/metabolism ; Signal Transduction ; *Trans-Activators ; Transcription Factors/metabolism ; Wnt Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Human reovirus requires an activated Ras signaling pathway for infection of cultured cells. To investigate whether this property can be exploited for cancer therapy, severe combined immune deficient mice bearing tumors established from v-erbB-transformed murine NIH 3T3 cells or human U87 glioblastoma cells were treated with the virus. A single intratumoral injection of virus resulted in regression of tumors in 65 to 80 percent of the mice. Treatment of immune-competent C3H mice bearing tumors established from ras-transformed C3H-10T1/2 cells also resulted in tumor regression, although a series of injections were required. These results suggest that, with further work, reovirus may have applicability in the treatment of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coffey, M C -- Strong, J E -- Forsyth, P A -- Lee, P W -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1332-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology Research Group and Department of Microbiology and Infectious Diseases, University of Calgary Health Science Centre, Calgary, Alberta, T2N 4N1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812900" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antibodies, Viral/immunology ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line, Transformed ; Genes, erbB ; *Genes, ras ; Humans ; Male ; Mammalian orthoreovirus 3/immunology/*physiology ; Mice ; Mice, Inbred C3H ; Mice, SCID ; Neoplasm Transplantation ; Neoplasms, Experimental/metabolism/pathology/*therapy/virology ; Signal Transduction ; Tumor Cells, Cultured ; Virus Replication ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):477-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454345" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase/physiology ; Animals ; Calcium-Binding Proteins/metabolism ; *Carrier Proteins ; Cdc20 Proteins ; *Cell Cycle Proteins ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes/*physiology ; Fungal Proteins/metabolism ; Humans ; Kinetochores/*physiology ; Microtubules/metabolism ; *Mitosis ; Nuclear Proteins ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Signal Transduction ; Spindle Apparatus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mossy fiber synaptic transmission at hippocampal CA3 pyramidal cells and interneurons was compared in rat brain slices to determine whether mossy terminals are functionally equivalent. Tetanic stimulation of mossy fibers induced long-term potentiation in pyramidal neurons but was either without effect or it induced depression at synapses onto interneurons. Unlike transmission onto pyramidal neurons, transmission onto interneurons was not potentiated after adenosine 3',5'-monophosphate (cAMP) activation. Furthermore, metabotropic glutamate receptor depression of transmission onto interneurons did not involve cAMP-dependent pathways. Thus, synaptic terminals arising from a common afferent pathway do not function as a single compartment but are specialized, depending on their postsynaptic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maccaferri, G -- Toth, K -- McBain, C J -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1368-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Neurophysiology, Room 5A72, Building 49, National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda MD 20892-4495, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478900" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; Colforsin/pharmacology ; Cyclic AMP/metabolism ; Cycloleucine/analogs & derivatives/pharmacology ; Cyclopropanes/pharmacology ; Electric Stimulation ; Excitatory Postsynaptic Potentials/drug effects ; Glycine/analogs & derivatives/pharmacology ; Hippocampus/cytology/*physiology ; In Vitro Techniques ; Interneurons/drug effects/*physiology ; *Long-Term Potentiation ; Mossy Fibers, Hippocampal/*physiology ; Pyramidal Cells/drug effects/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/agonists/physiology ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1998-04-16
    Description: Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately transduces the energy contained in a light signal into an altered biological response. Nanosecond time-resolved x-ray crystallography was used to determine the structure of the short-lived, red-shifted, intermediate state denoted [pR], which develops within 1 nanosecond after photoelectronic excitation of the chromophore of PYP by absorption of light. The resulting structural model demonstrates that the [pR] state possesses the cis conformation of the 4-hydroxyl cinnamic thioester chromophore, and that the process of trans to cis isomerization is accompanied by the specific formation of new hydrogen bonds that replace those broken upon excitation of the chromophore. Regions of flexibility that compose the chromophore-binding pocket serve to lower the activation energy barrier between the dark state, denoted pG, and [pR], and help initiate entrance into the photocycle. Direct structural evidence is provided for the initial processes of transduction of light energy, which ultimately translate into a physiological signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perman, B -- Srajer, V -- Ren, Z -- Teng, T -- Pradervand, C -- Ursby, T -- Bourgeois, D -- Schotte, F -- Wulff, M -- Kort, R -- Hellingwerf, K -- Moffat, K -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1946-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506946" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Chromatiaceae/chemistry ; Crystallography, X-Ray ; Energy Metabolism ; Fourier Analysis ; Hydrogen Bonding ; Isomerism ; Kinetics ; *Light ; Models, Molecular ; *Photoreceptors, Microbial ; *Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, A -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):509-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research Campaign Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK. alan.hall@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438836" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Cell Adhesion ; Cell Cycle ; Cell Movement ; Cytoskeleton/*metabolism/physiology/*ultrastructure ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Gene Expression Regulation ; Humans ; Membrane Proteins/*metabolism ; Signal Transduction ; rhoB GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1998-03-21
    Description: Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be a model of learning and memory. Protein tyrosine phosphorylation is necessary to induce LTP. Here, induction of LTP in CA1 pyramidal cells of rats was prevented by blocking the tyrosine kinase Src, and Src activity was increased by stimulation producing LTP. Directly activating Src in the postsynaptic neuron enhanced excitatory synaptic responses, occluding LTP. Src-induced enhancement of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor-mediated synaptic responses required raised intracellular Ca2+ and N-methyl-D-aspartate (NMDA) receptors. Thus, Src activation is necessary and sufficient for inducing LTP and may function by up-regulating NMDA receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Y M -- Roder, J C -- Davidow, J -- Salter, M W -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1363-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478899" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Electric Stimulation ; Enzyme Activation ; Excitatory Postsynaptic Potentials/drug effects ; Hippocampus/cytology/enzymology/*physiology ; In Vitro Techniques ; *Long-Term Potentiation ; Molecular Sequence Data ; Oligopeptides/pharmacology ; Patch-Clamp Techniques ; Peptide Fragments/pharmacology ; Proto-Oncogene Proteins pp60(c-src)/pharmacology ; Pyramidal Cells/enzymology/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Recombinant Proteins/pharmacology ; Up-Regulation ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, R F -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):578-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10328734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Electric Stimulation ; Electrodes ; Electrodes, Implanted ; *Electronics ; Electrophysiology ; Humans ; Nerve Net/*physiology ; Nervous System Diseases/*therapy ; Neurons/*physiology ; Rats ; Silicon ; *Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, A -- New York, N.Y. -- Science. 1998 Jun 26;280(5372):2074-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK. Alan.Hall@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9669963" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Cytoskeleton/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Protein alpha Subunits, G12-G13 ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Morphogenesis ; Myosins/metabolism ; Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins/chemistry/metabolism ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1826-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology ; Cell Differentiation ; Cell Survival ; Embryo, Mammalian ; Mice ; Neurons/cytology ; Oligodendroglia/cytology ; Rats ; Spinal Cord/cytology/*physiology ; Spinal Cord Injuries/*therapy ; *Stem Cell Transplantation ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1265-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*enzymology ; Brain/*enzymology ; Cloning, Molecular ; Glutamic Acid/metabolism ; Neurons/metabolism ; Racemases and Epimerases/*genetics/metabolism ; Rats ; Receptors, N-Methyl-D-Aspartate/metabolism ; Serine/*biosynthesis/metabolism ; Stereoisomerism ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):14-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9917254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Cells, Cultured ; Dimerization ; Drug Design ; Humans ; Neurons/*metabolism ; Potassium Channels/metabolism ; Rats ; Receptors, GABA-B/*chemistry/*metabolism ; Signal Transduction ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1999-09-18
    Description: The antifungal defense of Drosophila is controlled by the spaetzle/Toll/cactus gene cassette. Here, a loss-of-function mutation in the gene encoding a blood serine protease inhibitor, Spn43Ac, was shown to lead to constitutive expression of the antifungal peptide drosomycin, and this effect was mediated by the spaetzle and Toll gene products. Spaetzle was cleaved by proteolytic enzymes to its active ligand form shortly after immune challenge, and cleaved Spaetzle was constitutively present in Spn43Ac-deficient flies. Hence, Spn43Ac negatively regulates the Toll signaling pathway, and Toll does not function as a pattern recognition receptor in the Drosophila host defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levashina, E A -- Langley, E -- Green, C -- Gubb, D -- Ashburner, M -- Hoffmann, J A -- Reichhart, J M -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1917-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR 9022 CNRS, Institut de Biologie Moleculaire et Cellulaire, 15 Rue Rene Descartes, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489372" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antifungal Agents/*metabolism ; *Antimicrobial Cationic Peptides ; Body Patterning ; Drosophila/embryology/genetics/*immunology ; *Drosophila Proteins ; Escherichia coli/genetics/immunology ; Genes, Insect ; Hemolymph/metabolism ; Insect Proteins/*biosynthesis/genetics/metabolism/*physiology ; Membrane Glycoproteins/genetics/*physiology ; Micrococcus luteus/immunology ; Molecular Sequence Data ; Mutagenesis ; Peptides/genetics/metabolism ; *Receptors, Cell Surface ; Recombinant Fusion Proteins/genetics/metabolism ; Serine Proteinase Inhibitors/genetics/*metabolism ; Serpins/genetics/*metabolism ; Signal Transduction ; Toll-Like Receptors ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1999-06-12
    Description: To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, S H -- Hayashi, Y -- Petralia, R S -- Zaman, S H -- Wenthold, R J -- Svoboda, K -- Malinow, R -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1811-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/*metabolism/ultrastructure ; Electric Stimulation ; Hippocampus/cytology/physiology ; Humans ; Long-Term Potentiation ; *Neuronal Plasticity ; Neurons/*physiology ; Organ Culture Techniques ; Rats ; Receptor Aggregation ; Receptors, AMPA/*metabolism ; Receptors, N-Methyl-D-Aspartate/*physiology ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission ; Tetany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-01-23
    Description: The plant hormone abscisic acid (ABA) regulates potassium and chloride ion channels at the plasma membrane of guard cells, leading to stomatal closure that reduces transpirational water loss from the leaf. The tobacco Nt-SYR1 gene encodes a syntaxin that is associated with the plasma membrane. Syntaxins and related SNARE proteins aid intracellular vesicle trafficking, fusion, and secretion. Disrupting Nt-Syr1 function by cleavage with Clostridium botulinum type C toxin or competition with a soluble fragment of Nt-Syr1 prevents potassium and chloride ion channel response to ABA in guard cells and implicates Nt-Syr1 in an ABA-signaling cascade.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leyman, B -- Geelen, D -- Quintero, F J -- Blatt, M R -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Plant Physiology and Biophysics, University of London, Wye College, Wye, Kent TN25 5AH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915701" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Animals ; Botulinum Toxins/metabolism ; Cell Membrane/physiology ; Chloride Channels/*physiology ; Genes, Plant ; Genetic Complementation Test ; Ion Channel Gating/drug effects ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Oocytes ; Patch-Clamp Techniques ; Plant Growth Regulators/*pharmacology ; Plant Leaves/*physiology ; *Plants, Toxic ; Potassium Channels/*physiology ; Qa-SNARE Proteins ; Saccharomyces cerevisiae/genetics/growth & development ; Signal Transduction ; Tobacco/genetics/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1999-11-05
    Description: Glutamatergic neurotransmission is controlled by presynaptic metabotropic glutamate receptors (mGluRs). A subdomain in the intracellular carboxyl-terminal tail of group III mGluRs binds calmodulin and heterotrimeric guanosine triphosphate-binding protein (G protein) betagamma subunits in a mutually exclusive manner. Mutations interfering with calmodulin binding and calmodulin antagonists inhibit G protein-mediated modulation of ionic currents by mGluR 7. Calmodulin antagonists also prevent inhibition of excitatory neurotransmission via presynaptic mGluRs. These results reveal a novel mechanism of presynaptic modulation in which Ca(2+)-calmodulin is required to release G protein betagamma subunits from the C-tail of group III mGluRs in order to mediate glutamatergic autoinhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, V -- El Far, O -- Bofill-Cardona, E -- Nanoff, C -- Freissmuth, M -- Karschin, A -- Airas, J M -- Betz, H -- Boehm, S -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1180-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550060" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Calmodulin/antagonists & inhibitors/*metabolism ; Cells, Cultured ; Dimerization ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GTP-Binding Proteins/*metabolism ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Presynaptic Terminals/metabolism ; Propionates/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/antagonists & inhibitors/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sesterterpenes ; Signal Transduction ; Swine ; *Synaptic Transmission ; Terpenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1999-05-29
    Description: Endoglin is a transforming growth factor-beta (TGF-beta) binding protein expressed on the surface of endothelial cells. Loss-of-function mutations in the human endoglin gene ENG cause hereditary hemorrhagic telangiectasia (HHT1), a disease characterized by vascular malformations. Here it is shown that by gestational day 11.5, mice lacking endoglin die from defective vascular development. However, in contrast to mice lacking TGF-beta, vasculogenesis was unaffected. Loss of endoglin caused poor vascular smooth muscle development and arrested endothelial remodeling. These results demonstrate that endoglin is essential for angiogenesis and suggest a pathogenic mechanism for HHT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, D Y -- Sorensen, L K -- Brooke, B S -- Urness, L D -- Davis, E C -- Taylor, D G -- Boak, B B -- Wendel, D P -- K08 HL03490-03/HL/NHLBI NIH HHS/ -- T35 HL07744-06/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 May 28;284(5419):1534-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Human Molecular Biology and Genetics, Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-5330, USA. dean.li@hci.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD ; Antigens, CD31/analysis ; Blood Vessels/cytology/*embryology/metabolism ; Cell Differentiation ; Crosses, Genetic ; Endothelium, Vascular/cytology/*embryology/metabolism ; Female ; Gene Targeting ; In Situ Hybridization ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Muscle, Smooth, Vascular/cytology/*embryology ; *Neovascularization, Physiologic ; Receptors, Cell Surface ; Signal Transduction ; Transforming Growth Factor beta/metabolism ; Vascular Cell Adhesion Molecule-1/genetics/*physiology ; Yolk Sac/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-24
    Description: Clathrin-mediated endocytosis is initiated by the recruitment of the clathrin adaptor protein AP-2 to the plasma membrane where the membrane protein synaptotagmin is thought to act as a docking site. AP-2 also interacts with endocytic motifs present in other cargo proteins. Peptides with a tyrosine-based endocytic motif stimulated binding of AP-2 to synaptotagmin and enhanced AP-2 recruitment to the plasma membrane of neuronal and non-neuronal cells. This suggests a mechanism by which nucleation of clathrin-coated pits is stimulated by the loading of cargo proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haucke, V -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36252/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10455054" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Proteins, Vesicular Transport ; Animals ; Binding Sites ; CHO Cells ; *Calcium-Binding Proteins ; Cattle ; Cell Membrane/metabolism ; Clathrin/*metabolism ; Coated Pits, Cell-Membrane/*metabolism ; Cricetinae ; *Endocytosis ; Membrane Glycoproteins/chemistry/*metabolism ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/chemistry/*metabolism ; Neurons/metabolism ; Oligopeptides/chemistry/metabolism/*pharmacology ; Phospholipase D/metabolism ; Protein Binding ; Rats ; Recombinant Fusion Proteins/metabolism ; Synaptic Membranes/*metabolism ; Synaptotagmins ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1999-07-03
    Description: Lymphocyte development is critically influenced by self-antigens. T cells are subject to both positive and negative selection, depending on their degree of self-reactivity. Although B cells are subject to negative selection, it has been difficult to test whether self-antigen plays any positive role in B cell development. A murine model system of naturally generated autoreactive B cells with a germ line gene-encoded specificity for the Thy-1 (CD90) glycoprotein was developed, in which the presence of self-antigen promotes B cell accumulation and serum autoantibody secretion. Thus, B cells can be subject to positive selection, generated, and maintained on the basis of their autoreactivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayakawa, K -- Asano, M -- Shinton, S A -- Gui, M -- Allman, D -- Stewart, C L -- Silver, J -- Hardy, R R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA. K_Hayakawa@fccc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390361" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Animals ; Antigens, CD5/analysis ; Antigens, Thy-1/*immunology ; Autoantibodies/*biosynthesis/blood/immunology ; Autoantigens/*immunology ; B-Lymphocyte Subsets/*immunology ; Genes, Immunoglobulin ; Hybridomas ; Immunity, Innate ; Immunologic Surveillance ; Mice ; Mice, SCID ; Mice, Transgenic ; Receptors, Antigen, B-Cell/immunology ; Signal Transduction ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1999-04-09
    Description: Phosphorylation of inhibitor of kappa B (IkappaB) proteins is an important step in the activation of the transcription nuclear factor kappa B (NF-kappaB) and requires two IkappaB kinases, IKK1 (IKKalpha) and IKK2 (IKKbeta). Mice that are devoid of the IKK2 gene had extensive liver damage from apoptosis and died as embryos, but these mice could be rescued by the inactivation of the gene encoding tumor necrosis factor receptor 1. Mouse embryonic fibroblast cells that were isolated from IKK2-/- embryos showed a marked reduction in tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1alpha-induced NF-kappaB activity and an enhanced apoptosis in response to TNF-alpha. IKK1 associated with NF-kappaB essential modulator (IKKgamma/IKKAP1), another component of the IKK complex. These results show that IKK2 is essential for mouse development and cannot be substituted with IKK1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Q -- Van Antwerp, D -- Mercurio, F -- Lee, K F -- Verma, I M -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA. Signal Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Liver/cytology/*embryology ; Mice ; NF-kappa B/metabolism ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factor RelA ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):453.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10232993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Separation ; Chick Embryo ; Neural Crest/*cytology/embryology ; Neuroglia/*cytology ; Neurons/*cytology ; Rats ; Regeneration ; Sciatic Nerve/*cytology/embryology ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-15
    Description: The Fos and Jun oncoproteins form dimeric complexes that stimulate transcription of genes containing activator protein-1 regulatory elements. We found, by representational difference analysis, that expression of DNA 5-methylcytosine transferase (dnmt1) in fos-transformed cells is three times the expression in normal fibroblasts and that fos-transformed cells contain about 20 percent more 5-methylcytosine than normal fibroblasts. Transfection of the gene encoding Dnmt1 induced morphological transformation, whereas inhibition of dnmt1 expression or activity resulted in reversion of fos transformation. Inhibition of histone deacetylase, which associates with methylated DNA, also caused reversion. These results suggest that fos may transform cells through alterations in DNA methylation and in histone deacetylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakin, A V -- Curran, T -- P30 CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):387-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888853" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; Acetylation ; Animals ; Cell Size ; *Cell Transformation, Neoplastic ; Cytosine/analogs & derivatives/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics/*metabolism ; DNA Methylation ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation, Neoplastic ; *Genes, fos ; Histone Deacetylase Inhibitors ; Histones/metabolism ; Hydroxamic Acids/pharmacology ; Proto-Oncogene Proteins c-fos/*metabolism ; Rats ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1999-07-10
    Description: In the absence of disease, the vasculature of the mammalian eye is quiescent, in part because of the action of angiogenic inhibitors that prevent vessels from invading the cornea and vitreous. Here, an inhibitor responsible for the avascularity of these ocular compartments is identified as pigment epithelium-derived factor (PEDF), a protein previously shown to have neurotrophic activity. The amount of inhibitory PEDF produced by retinal cells was positively correlated with oxygen concentrations, suggesting that its loss plays a permissive role in ischemia-driven retinal neovascularization. These results suggest that PEDF may be of therapeutic use, especially in retinopathies where pathological neovascularization compromises vision and leads to blindness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, D W -- Volpert, O V -- Gillis, P -- Crawford, S E -- Xu, H -- Benedict, W -- Bouck, N P -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398599" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antibodies/immunology ; Cattle ; Cells, Cultured ; Chemotaxis/drug effects ; Culture Media, Conditioned ; Endothelial Growth Factors/metabolism ; Endothelium, Vascular/cytology/drug effects/physiology ; Eye/blood supply ; *Eye Proteins ; Humans ; Lymphokines/metabolism ; Mice ; Neovascularization, Pathologic/*drug therapy/metabolism/pathology ; Neovascularization, Physiologic/*drug effects ; *Nerve Growth Factors ; Oxygen/physiology ; Proteins/genetics/immunology/*pharmacology/*physiology ; RNA, Messenger/genetics/metabolism ; Rats ; Retina/*metabolism/pathology ; Retinal Neovascularization/*drug therapy ; Retinal Vessels/growth & development ; Serpins/genetics/immunology/*pharmacology/*physiology ; Tumor Cells, Cultured ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1999-01-05
    Description: CmPP16 from Cucurbita maxima was cloned and the protein was shown to possess properties similar to those of viral movement proteins. CmPP16 messenger RNA (mRNA) is present in phloem tissue, whereas protein appears confined to sieve elements (SE). Microinjection and grafting studies revealed that CmPP16 moves from cell to cell, mediates the transport of sense and antisense RNA, and moves together with its mRNA into the SE of scion tissue. CmPP16 possesses the characteristics that are likely required to mediate RNA delivery into the long-distance translocation stream. Thus, RNA may move within the phloem as a component of a plant information superhighway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xoconostle-Cazares, B -- Xiang, Y -- Ruiz-Medrano, R -- Wang, H L -- Monzer, J -- Yoo, B C -- McFarland, K C -- Franceschi, V R -- Lucas, W J -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):94-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872750" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cloning, Molecular ; Cucumis sativus ; Cucurbitaceae/genetics/*metabolism ; Microinjections ; Molecular Sequence Data ; Plant Leaves/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Roots/metabolism ; Plant Stems/metabolism ; Plant Viral Movement Proteins ; RNA, Antisense/metabolism ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Lange, T -- DePinho, R A -- CA76027/CA/NCI NIH HHS/ -- HD 348880/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):947-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10021, USA. delange@rockvax.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10075559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Aging ; *Cell Division ; *Cell Transformation, Neoplastic ; Cyclin-Dependent Kinase Inhibitor p16/metabolism ; Humans ; Neoplasms/enzymology/metabolism/pathology ; Proto-Oncogene Proteins c-myc/metabolism ; Retinoblastoma Protein/metabolism ; Signal Transduction ; Telomerase/genetics/*metabolism ; Telomere/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1999-02-26
    Description: Cell proliferation and differentiation are regulated by growth regulatory factors such as transforming growth factor-beta (TGF-beta) and the liphophilic hormone vitamin D. TGF-beta causes activation of SMAD proteins acting as coactivators or transcription factors in the nucleus. Vitamin D controls transcription of target genes through the vitamin D receptor (VDR). Smad3, one of the SMAD proteins downstream in the TGF-beta signaling pathway, was found in mammalian cells to act as a coactivator specific for ligand-induced transactivation of VDR by forming a complex with a member of the steroid receptor coactivator-1 protein family in the nucleus. Thus, Smad3 may mediate cross-talk between vitamin D and TGF-beta signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yanagisawa, J -- Yanagi, Y -- Masuhiro, Y -- Suzawa, M -- Watanabe, M -- Kashiwagi, K -- Toriyabe, T -- Kawabata, M -- Miyazono, K -- Kato, S -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1317-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/pharmacology ; COS Cells ; Calcitriol/*metabolism/pharmacology ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Histone Acetyltransferases ; Ligands ; Nuclear Receptor Coactivator 1 ; Phosphorylation ; Receptor Cross-Talk ; Receptors, Calcitriol/*metabolism ; Receptors, Cell Surface/metabolism ; *Receptors, Growth Factor ; Receptors, Retinoic Acid/metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Signal Transduction ; Smad3 Protein ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1999-12-03
    Description: Linker proteins function as molecular scaffolds to localize enzymes with substrates. In B cells, B cell linker protein (BLNK) links the B cell receptor (BCR)-activated Syk kinase to the phosphoinositide and mitogen-activated kinase pathways. To examine the in vivo role of BLNK, mice deficient in BLNK were generated. B cell development in BLNK-/- mice was blocked at the transition from B220+CD43+ progenitor B to B220+CD43- precursor B cells. Only a small percentage of immunoglobulin M++ (IgM++), but not mature IgMloIgDhi, B cells were detected in the periphery. Hence, BLNK is an essential component of BCR signaling pathways and is required to promote B cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappu, R -- Cheng, A M -- Li, B -- Gong, Q -- Chiu, C -- Griffin, N -- White, M -- Sleckman, B P -- Chan, A C -- AI42787/AI/NIAID NIH HHS/ -- CA71516/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1949-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Division of Rheumatology, Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583957" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Aging ; Animals ; B-Lymphocyte Subsets/cytology/immunology ; B-Lymphocytes/*cytology/immunology/*metabolism ; Bone Marrow Cells/cytology/immunology ; Carrier Proteins/genetics/*physiology ; Cell Count ; Cell Differentiation ; Cell Separation ; Cell Size ; Flow Cytometry ; Gene Targeting ; Hematopoietic Stem Cells/*cytology/metabolism ; Immunoglobulin M/analysis ; Leukopoiesis ; Lymphoid Tissue/cytology/immunology ; Mice ; Mice, Inbred C57BL ; *Phosphoproteins ; Receptors, Antigen, B-Cell/*metabolism ; Second Messenger Systems ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1999-11-05
    Description: Focal adhesions (FAs) are clustered integrins and associated proteins that mediate cell adhesion and signaling. A green fluorescent protein-beta1 integrin chimera was used to label FAs in living cells. In stationary cells, FAs were highly motile, moving linearly for several plaque lengths toward the cell center. FA motility was independent of cell density and resulted from contraction of associated actin fibers. In migrating cells, FAs were stationary and only moved in the tail. FA motility in stationary cells suggests that cell movement may be regulated by a clutch-like mechanism by which the affinity of integrins to substrate may be altered in response to migratory cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smilenov, L B -- Mikhailov, A -- Pelham, R J -- Marcantonio, E E -- Gundersen, G G -- GM42026/GM/NIGMS NIH HHS/ -- GM44585/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1172-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550057" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/physiology ; Animals ; Antigens, CD29/*metabolism ; *Cell Adhesion ; Cell Count ; Cell Line ; *Cell Movement ; Fibroblasts/*cytology/metabolism ; Fluorescence ; Green Fluorescent Proteins ; Luminescent Proteins ; Mice ; Microscopy, Interference ; Rats ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1999-03-05
    Description: Protein tyrosine phosphatase-1B (PTP-1B) has been implicated in the negative regulation of insulin signaling. Disruption of the mouse homolog of the gene encoding PTP-1B yielded healthy mice that, in the fed state, had blood glucose concentrations that were slightly lower and concentrations of circulating insulin that were one-half those of their PTP-1B+/+ littermates. The enhanced insulin sensitivity of the PTP-1B-/- mice was also evident in glucose and insulin tolerance tests. The PTP-1B-/- mice showed increased phosphorylation of the insulin receptor in liver and muscle tissue after insulin injection in comparison to PTP-1B+/+ mice. On a high-fat diet, the PTP-1B-/- and PTP-1B+/- mice were resistant to weight gain and remained insulin sensitive, whereas the PTP-1B+/+ mice rapidly gained weight and became insulin resistant. These results demonstrate that PTP-1B has a major role in modulating both insulin sensitivity and fuel metabolism, thereby establishing it as a potential therapeutic target in the treatment of type 2 diabetes and obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elchebly, M -- Payette, P -- Michaliszyn, E -- Cromlish, W -- Collins, S -- Loy, A L -- Normandin, D -- Cheng, A -- Himms-Hagen, J -- Chan, C C -- Ramachandran, C -- Gresser, M J -- Tremblay, M L -- Kennedy, B P -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada, H3G 1Y6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10066179" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Diabetes Mellitus, Type 2/therapy ; Dietary Fats/administration & dosage ; Gene Targeting ; Glucose Tolerance Test ; Insulin/blood/*metabolism/pharmacology ; Insulin Receptor Substrate Proteins ; Insulin Resistance ; Liver/metabolism ; Male ; Mice ; Mice, Knockout ; Muscle, Skeletal/metabolism ; Obesity/*metabolism/therapy ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatases/*genetics/*metabolism ; Receptor, Insulin/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1999-01-05
    Description: Programmed cell death (apoptosis) occurs during normal development of the central nervous system. However, the mechanisms that determine which neurons will succumb to apoptosis are poorly understood. Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors for only a few hours during late fetal or early neonatal life triggered widespread apoptotic neurodegeneration in the developing rat brain, suggesting that the excitatory neurotransmitter glutamate, acting at NMDA receptors, controls neuronal survival. These findings may have relevance to human neurodevelopmental disorders involving prenatal (drug-abusing mothers) or postnatal (pediatric anesthesia) exposure to drugs that block NMDA receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ikonomidou, C -- Bosch, F -- Miksa, M -- Bittigau, P -- Vockler, J -- Dikranian, K -- Tenkova, T I -- Stefovska, V -- Turski, L -- Olney, J W -- AG 11355/AG/NIA NIH HHS/ -- DA 05072/DA/NIDA NIH HHS/ -- MH 38894/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):70-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Neurology, Charite-Virchow Clinics, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany. hrissanthi.ikonomidou@charite.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain/*cytology/drug effects/embryology/growth & development ; Calcium Channel Blockers/pharmacology ; Dizocilpine Maleate/pharmacology ; Dopamine Antagonists/pharmacology ; Dose-Response Relationship, Drug ; Excitatory Amino Acid Antagonists/pharmacology ; Fetus ; Haloperidol/pharmacology ; Immunohistochemistry ; In Situ Nick-End Labeling ; Microscopy, Electron ; Muscarinic Antagonists/pharmacology ; *Nerve Degeneration ; Neurons/*cytology/drug effects/metabolism ; Quinoxalines/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/*antagonists & inhibitors/metabolism ; Scopolamine Hydrobromide/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1999-10-09
    Description: Ubiquitination of receptor protein-tyrosine kinases (RPTKs) terminates signaling by marking active receptors for degradation. c-Cbl, an adapter protein for RPTKs, positively regulates RPTK ubiquitination in a manner dependent on its variant SRC homology 2 (SH2) and RING finger domains. Ubiquitin-protein ligases (or E3s) are the components of ubiquitination pathways that recognize target substrates and promote their ligation to ubiquitin. The c-Cbl protein acted as an E3 that can recognize tyrosine-phosphorylated substrates, such as the activated platelet-derived growth factor receptor, through its SH2 domain and that recruits and allosterically activates an E2 ubiquitin-conjugating enzyme through its RING domain. These results reveal an SH2-containing protein that functions as a ubiquitin-protein ligase and thus provide a distinct mechanism for substrate targeting in the ubiquitin system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joazeiro, C A -- Wing, S S -- Huang, H -- Leverson, J D -- Hunter, T -- Liu, Y C -- CA39780/CA/NCI NIH HHS/ -- R01 DK56558/DK/NIDDK NIH HHS/ -- T32CA09523/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute, Molecular Biology and Virology Laboratory, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Humans ; Ligases/chemistry/*metabolism ; Molecular Sequence Data ; Phosphotyrosine/metabolism ; Point Mutation ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Signal Transduction ; *Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-27
    Description: Memories for habits and skills ("implicit or procedural memory") and memories for facts ("explicit or episodic memory") are built up in different brain systems and are vulnerable to different neurodegenerative disorders in humans. So that the striatum-based mechanisms underlying habit formation could be studied, chronic recordings from ensembles of striatal neurons were made with multiple tetrodes as rats learned a T-maze procedural task. Large and widely distributed changes in the neuronal activity patterns occurred in the sensorimotor striatum during behavioral acquisition, culminating in task-related activity emphasizing the beginning and end of the automatized procedure. The new ensemble patterns remained stable during weeks of subsequent performance of the same task. These results suggest that the encoding of action in the sensorimotor striatum undergoes dynamic reorganization as habit learning proceeds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jog, M S -- Kubota, Y -- Connolly, C I -- Hillegaart, V -- Graybiel, A M -- R03 MH57878/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1745-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉London Health Sciences Center, London, Ontario N6A 5A5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576743" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal ; Brain Mapping ; Corpus Striatum/*physiology ; Electrodes, Implanted ; Evoked Potentials ; *Habits ; Locomotion ; *Maze Learning ; Memory/physiology ; Motor Activity ; Neurons/physiology ; Rats ; Reaction Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1999-11-13
    Description: A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Brunet, A -- West, A E -- Datta, S R -- Takasu, M A -- Greenberg, M E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 HD 24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Carrier Proteins/genetics/metabolism ; *Cell Survival ; Cells, Cultured ; Cerebellum/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Kinase 1 ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Mutation ; Neurons/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; *Protein-Serine-Threonine Kinases ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; bcl-Associated Death Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-18
    Description: Neurotrophins have been implicated in activity-dependent synaptic plasticity, but the underlying intracellular mechanisms remain largely unknown. Synaptic potentiation induced by brain-derived neurotrophic factor (BDNF), but not neurotrophin 3, was prevented by blockers of adenosine 3',5'-monophosphate (cAMP) signaling. Activators of cAMP signaling alone were ineffective in modifying synaptic efficacy but greatly enhanced the potentiation effect of BDNF. Blocking cAMP signaling abolished the facilitation of BDNF-induced potentiation by presynaptic activity. Thus synaptic actions of BDNF are gated by cAMP. Activity and other coincident signals that modulate cAMP concentrations may specify the action of secreted neurotrophins on developing nerve terminals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulanger, L -- Poo, M M -- NS 37831/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1982-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California at San Diego, La Jolla, CA 92093-0357, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373115" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*pharmacology ; *Carbazoles ; Cells, Cultured ; Cyclic AMP/analogs & derivatives/pharmacology/*physiology ; Cycloleucine/analogs & derivatives/pharmacology ; *Excitatory Postsynaptic Potentials/drug effects ; Indoles/pharmacology ; Nerve Growth Factors/pharmacology ; Neuronal Plasticity ; Neurons/cytology/physiology ; Neurotrophin 3 ; Okadaic Acid/pharmacology ; Patch-Clamp Techniques ; Pyrroles/pharmacology ; Signal Transduction ; Synapses/drug effects/*physiology ; *Synaptic Transmission/drug effects ; Thionucleotides/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, S J -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1860-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. sjsmith@leland.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206891" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Amino-5-phosphonovalerate/pharmacology ; Action Potentials ; Animals ; Dendrites/*physiology/ultrastructure ; Excitatory Amino Acid Antagonists/pharmacology ; Glutamic Acid/metabolism ; Hippocampus/cytology ; Microscopy, Fluorescence ; Neurons/physiology/ultrastructure ; Pseudopodia/*physiology/ultrastructure ; Rats ; Receptors, N-Methyl-D-Aspartate/*physiology ; Synapses/*physiology/ultrastructure ; Synaptic Membranes/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-19
    Description: The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradke, F -- Dotti, C G -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1931-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Cell Biology Programme, Meyerhofstrasse 1, 69012 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10082468" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism/*physiology ; Animals ; Axons/*physiology/ultrastructure ; *Bacterial Proteins ; Bacterial Toxins/pharmacology ; Bicyclo Compounds, Heterocyclic/pharmacology ; Cell Polarity ; Cells, Cultured ; Cytochalasin D/pharmacology ; GTP Phosphohydrolases/antagonists & inhibitors/metabolism ; Growth Cones/drug effects/*physiology/ultrastructure ; Hippocampus ; Microtubules/physiology/ultrastructure ; Neurites/*physiology/ultrastructure ; Phenotype ; Pseudopodia/drug effects/ultrastructure ; Rats ; Signal Transduction ; Thiazoles/pharmacology ; Thiazolidines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1999-10-03
    Description: In a direct approach to elucidate the origin of long-term depression (LTD), glutamate was applied onto dendrites of neurons in rat neocortical slices. An infrared-guided laser stimulation was used to release glutamate from caged glutamate in the focal spot of an ultraviolet laser. A burst of light flashes caused an LTD-like depression of glutamate receptor responses, which was highly confined to the region of "tetanic" stimulation (〈10 micrometers). A similar depression of glutamate receptor responses was observed during LTD of synaptic transmission. A spatially highly specific postsynaptic mechanism can account for the LTD induced by glutamate release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dodt, H -- Eder, M -- Frick, A -- Zieglgansberger, W -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany. dodt@mpipsykl.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dizocilpine Maleate/pharmacology ; Electric Stimulation ; Excitatory Amino Acid Antagonists/pharmacology ; Excitatory Postsynaptic Potentials ; Glutamates/pharmacology ; Glutamic Acid/metabolism ; In Vitro Techniques ; Infrared Rays ; Lasers ; Microscopy, Video ; Neocortex/cytology/*physiology ; *Neuronal Plasticity ; Patch-Clamp Techniques ; Photolysis ; Pyramidal Cells/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Glutamate/*metabolism ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tiedge, H -- Bloom, F E -- Richter, D -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):186-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Pharmacology, State Univeristy of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA. tiedge@hscbklyn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9925478" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*metabolism ; Biological Transport ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dendrites/*metabolism ; Gene Expression Regulation ; *Neuronal Plasticity ; Protein Biosynthesis ; RNA, Messenger/chemistry/genetics/*metabolism ; Ribonucleoproteins/metabolism ; Signal Transduction ; Synapses/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1825-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206881" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; *Genes, Plant ; Ligands ; Meristem/growth & development ; Phosphotransferases/genetics/metabolism ; Plant Proteins/chemistry/*genetics/metabolism/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1999-03-26
    Description: Transforming growth factor-beta (TGF-beta) signaling is mediated by a complex of type I (TBRI) and type II (TBRII) receptors. The type III receptor (TBRIII) lacks a recognizable signaling domain and has no clearly defined role in TGF-beta signaling. Cardiac endothelial cells that undergo epithelial-mesenchymal transformation express TBRIII, and here TBRIII-specific antisera were found to inhibit mesenchyme formation and migration in atrioventricular cushion explants. Misexpression of TBRIII in nontransforming ventricular endothelial cells conferred transformation in response to TGF-beta2. These results support a model where TBRIII localizes transformation in the heart and plays an essential, nonredundant role in TGF-beta signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, C B -- Boyer, A S -- Runyan, R B -- Barnett, J V -- 38649/PHS HHS/ -- 42266/PHS HHS/ -- HL52922/HL/NHLBI NIH HHS/ -- R01 HL052922/HL/NHLBI NIH HHS/ -- R01 HL052922-05/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2080-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-6600, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092230" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Chick Embryo ; Culture Techniques ; Endocardium/cytology/*embryology/metabolism ; Endothelium/*cytology/embryology/metabolism ; Genetic Vectors ; Heart/*embryology ; Heart Atria/cytology/embryology ; Heart Ventricles/cytology/embryology/virology ; Immune Sera ; Ligands ; Mesoderm/*cytology/metabolism ; Myocardium/cytology/metabolism ; Protein-Serine-Threonine Kinases ; Proteoglycans/immunology/*physiology ; Receptors, Transforming Growth Factor beta/immunology/*physiology ; Retroviridae/genetics/physiology ; Signal Transduction ; Transforming Growth Factor beta/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1999-12-30
    Description: The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, G -- Chen, Y G -- Ozdamar, B -- Gyuricza, C A -- Chong, P A -- Wrana, J L -- Massague, J -- Shi, Y -- CA85171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):92-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615055" target="_blank"〉PubMed〈/a〉
    Keywords: *Activin Receptors, Type I ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Smad2 Protein ; Trans-Activators/*chemistry/genetics/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1998-09-11
    Description: Leptin is a hormone that regulates food intake, and its receptor (OB-Rb) is expressed primarily in the hypothalamus. Here, it is shown that OB-Rb is also expressed in human vasculature and in primary cultures of human endothelial cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In vivo, leptin induced neovascularization in corneas from normal rats but not in corneas from fa/fa Zucker rats, which lack functional leptin receptors. These observations indicate that the vascular endothelium is a target for leptin and suggest a physiological mechanism whereby leptin-induced angiogenesis may facilitate increased energy expenditure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sierra-Honigmann, M R -- Nath, A K -- Murakami, C -- Garcia-Cardena, G -- Papapetropoulos, A -- Sessa, W C -- Madge, L A -- Schechner, J S -- Schwabb, M B -- Polverini, P J -- Flores-Riveros, J R -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA. rocio_sierra-honigmann@qm.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733517" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/analysis/*physiology ; Cells, Cultured ; Corneal Neovascularization ; DNA-Binding Proteins/metabolism ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/chemistry/cytology/*physiology ; Energy Metabolism ; Humans ; Leptin ; Lipid Metabolism ; Lymphokines/pharmacology ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/pharmacology/*physiology ; Rats ; Rats, Zucker ; *Receptors, Cell Surface ; Receptors, Leptin ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1438.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/virology ; Genetic Therapy/*methods ; *Genetic Vectors ; HIV/*genetics/physiology ; Neurons/virology ; Rats ; Retina/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1998-12-18
    Description: Cocaine regulates the transcription factor CREB (adenosine 3', 5'-monophosphate response element binding protein) in rat nucleus accumbens, a brain region that is important for addiction. Overexpression of CREB in this region decreases the rewarding effects of cocaine and makes low doses of the drug aversive. Conversely, overexpression of a dominant-negative mutant CREB increases the rewarding effects of cocaine. Altered transcription of dynorphin likely contributes to these effects: Its expression is increased by overexpression of CREB and decreased by overexpression of mutant CREB. Moreover, blockade of kappa opioid receptors (on which dynorphin acts) antagonizes the negative effect of CREB on cocaine reward. These results identify an intracellular cascade-culminating in gene expression-through which exposure to cocaine modifies subsequent responsiveness to the drug.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlezon, W A Jr -- Thome, J -- Olson, V G -- Lane-Ladd, S B -- Brodkin, E S -- Hiroi, N -- Duman, R S -- Neve, R L -- Nestler, E J -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2272-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT 06508, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/administration & dosage/*pharmacology ; Conditioning (Psychology) ; Cyclic AMP Response Element-Binding Protein/genetics/*metabolism ; Dose-Response Relationship, Drug ; Dynorphins/genetics/metabolism ; Gene Expression ; Gene Expression Regulation ; Gene Transfer Techniques ; Genetic Vectors ; Naltrexone/analogs & derivatives/pharmacology ; Narcotic Antagonists/pharmacology ; Neurons/metabolism ; Nucleus Accumbens/*metabolism ; Point Mutation ; RNA, Messenger/genetics/metabolism ; Rats ; Receptors, Opioid, kappa/antagonists & inhibitors/metabolism ; *Reward ; Simplexvirus/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1998-09-11
    Description: The p53 tumor suppressor protein is activated and phosphorylated on serine-15 in response to various DNA damaging agents. The gene product mutated in ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction pathway initiated by ionizing radiation. Immunoprecipitated ATM had intrinsic protein kinase activity and phosphorylated p53 on serine-15 in a manganese-dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly enhanced this p53-directed kinase activity of endogenous ATM. These observations, along with the fact that phosphorylation of p53 on serine-15 in response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest that ATM is a protein kinase that phosphorylates p53 in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canman, C E -- Lim, D S -- Cimprich, K A -- Taya, Y -- Tamai, K -- Sakaguchi, K -- Appella, E -- Kastan, M B -- Siliciano, J D -- CA71387/CA/NCI NIH HHS/ -- ES05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins School of Medicine, Oncology Center, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733515" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Enzyme Activation ; Humans ; Lymphocytes/metabolism/radiation effects ; Mutation ; Nuclear Proteins ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/genetics/*metabolism ; *Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; Transfection ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1998-07-17
    Description: Activation of nonreceptor protein tyrosine kinases (PTKs) is essential for T cell receptor (TCR) responsiveness; however, the function of individual PTK substrates is often uncertain. A mutant T cell line was isolated that lacked expression of SLP-76 (SH2 domain-containing leukocyte protein of 76 kilodaltons), a hematopoietically expressed adaptor protein and PTK substrate. SLP-76 was not required for TCR-induced tyrosine phosphorylation of most proteins, but was required for optimal tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), as well as Ras pathway activation. TCR-inducible gene expression was dependent on SLP-76. Thus, coupling of TCR-regulated PTKs to downstream signaling pathways requires SLP-76.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yablonski, D -- Kuhne, M R -- Kadlecek, T -- Weiss, A -- CA72531/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Howard Hughes Medical Institute, Box 0795, University of California, San Francisco, San Francisco, CA 94143-0795, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665884" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Humans ; Inositol Phosphates/metabolism ; Interleukin-2/genetics ; Isoenzymes/*metabolism ; Jurkat Cells ; *Membrane Proteins ; Mitogen-Activated Protein Kinase 1 ; NFATC Transcription Factors ; *Nuclear Proteins ; Phospholipase C gamma ; Phosphoproteins/metabolism/*physiology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/*metabolism ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection ; Type C Phospholipases/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1998-09-22
    Description: The Fas death receptor can activate the Jun NH2-terminal kinase (JNK) pathway through the receptor-associated protein Daxx. Daxx was found to activate the JNK kinase kinase ASK1, and overexpression of a kinase-deficient ASK1 mutant inhibited Fas- and Daxx-induced apoptosis and JNK activation. Fas activation induced Daxx to interact with ASK1, which consequently relieved an inhibitory intramolecular interaction between the amino- and carboxyl-termini of ASK1, activating its kinase activity. The Daxx-ASK1 connection completes a signaling pathway from a cell surface death receptor to kinase cascades that modulate nuclear transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H Y -- Nishitoh, H -- Yang, X -- Ichijo, H -- Baltimore, D -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1860-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743501" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Antigens, CD95/metabolism ; *Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/*metabolism ; Cell Line ; Enzyme Activation ; Humans ; *Intracellular Signaling Peptides and Proteins ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; *Nuclear Proteins ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawler, A -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):515-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9575093" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Nervous System Physiological Phenomena ; Rats ; *Research ; Space Flight ; *Spacecraft ; United States ; United States National Aeronautics and Space Administration ; *Weightlessness
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1998-11-20
    Description: Circadian clocks are synchronized by environmental cues such as light. Photoreceptor-deficient Arabidopsis thaliana mutants were used to measure the effect of light fluence rate on circadian period in plants. Phytochrome B is the primary high-intensity red light photoreceptor for circadian control, and phytochrome A acts under low-intensity red light. Cryptochrome 1 and phytochrome A both act to transmit low-fluence blue light to the clock. Cryptochrome 1 mediates high-intensity blue light signals for period length control. The presence of cryptochromes in both plants and animals suggests that circadian input pathways have been conserved throughout evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somers, D E -- Devlin, P F -- Kay, S A -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1488-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and National Science Foundation Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822379" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*physiology ; Arabidopsis Proteins ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*physiology ; Light ; Mutation ; *Photoreceptor Cells ; *Photoreceptor Cells, Invertebrate ; Phytochrome/genetics/*physiology ; Phytochrome A ; Phytochrome B ; Plants, Genetically Modified ; Receptors, G-Protein-Coupled ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1998-06-06
    Description: The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, D X -- Feys, B F -- James, S -- Nieto-Rostro, M -- Turner, J G -- New York, N.Y. -- Science. 1998 May 15;280(5366):1091-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582125" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/pharmacology ; Amino Acid Sequence ; Arabidopsis/*genetics/growth & development/physiology ; *Arabidopsis Proteins ; Chromosome Mapping ; Cyclopentanes/*metabolism/pharmacology ; *Genes, Plant ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Oxylipins ; Plant Growth Regulators/*metabolism ; Plant Proteins/chemistry/*genetics/*physiology ; Plants, Genetically Modified ; Polymorphism, Genetic ; Repressor Proteins/metabolism ; Signal Transduction ; Transformation, Genetic ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: Many molecular mechanisms for neural adaptation to stress remain unknown. Expression of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated potassium channels, was measured in rat adrenal chromaffin tissue from normal and hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the proportion of Slo transcripts containing a "STREX" exon. The decrease was prevented by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants produced channels with functional properties associated with enhanced repetitive firing. Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-secreting cells by regulating alternative splicing of Slo messenger RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, J -- McCobb, D P -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):443-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545224" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Medulla/*metabolism ; Adrenocorticotropic Hormone/metabolism/*pharmacology ; *Alternative Splicing ; Amino Acid Sequence ; Animals ; Chromaffin Cells/*metabolism ; Corticosterone/blood/*metabolism ; Dexamethasone/pharmacology ; Epinephrine/secretion ; Exons ; Female ; Hypophysectomy ; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Male ; Molecular Sequence Data ; Oocytes ; Phenylethanolamine N-Methyltransferase/genetics ; Polymerase Chain Reaction ; Potassium Channels/*genetics ; *Potassium Channels, Calcium-Activated ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1998-09-04
    Description: Nerve growth is regulated by attractive and repulsive factors in the nervous system. Microscopic gradients of Collapsin-1/Semaphorin III/D (Sema III) and myelin-associated glycoprotein trigger repulsive turning responses by growth cones of cultured Xenopus spinal neurons; the repulsion can be converted to attraction by pharmacological activation of the guanosine 3',5'-monophosphate (cGMP) and adenosine 3',5'-monophosphate signaling pathways, respectively. Sema III also causes the collapse of cultured rat sensory growth cones, which can be inhibited by activation of the cGMP pathway. Thus cyclic nucleotides can regulate growth cone behaviors and may be targets for designing treatments to alleviate the inhibition of nerve regeneration by repulsive factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, H -- Ming, G -- He, Z -- Lehmann, M -- McKerracher, L -- Tessier-Lavigne, M -- Poo, M -- NS22764/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California at San Diego, La Jolla, CA 92093-0357, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727979" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Calcium/physiology ; Cells, Cultured ; Cyclic AMP/analogs & derivatives/pharmacology/*physiology ; Cyclic GMP/analogs & derivatives/pharmacology/*physiology ; Ganglia, Spinal/cytology ; Glycoproteins/*physiology ; Myelin-Associated Glycoprotein/physiology ; Nerve Growth Factors/*physiology ; Nerve Tissue Proteins/physiology ; Neurites/*physiology ; Neurons/cytology/*physiology ; Neuropilin-1 ; Rats ; Recombinant Proteins ; Semaphorin-3A ; Spinal Cord/cytology ; Thionucleotides/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1998-12-16
    Description: Comparative analysis of predicted protein sequences encoded by the genomes of Caenorhabditis elegans and Saccharomyces cerevisiae suggests that most of the core biological functions are carried out by orthologous proteins (proteins of different species that can be traced back to a common ancestor) that occur in comparable numbers. The specialized processes of signal transduction and regulatory control that are unique to the multicellular worm appear to use novel proteins, many of which re-use conserved domains. Major expansion of the number of some of these domains seen in the worm may have contributed to the advent of multicellularity. The proteins conserved in yeast and worm are likely to have orthologs throughout eukaryotes; in contrast, the proteins unique to the worm may well define metazoans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chervitz, S A -- Aravind, L -- Sherlock, G -- Ball, C A -- Koonin, E V -- Dwight, S S -- Harris, M A -- Dolinski, K -- Mohr, S -- Smith, T -- Weng, S -- Cherry, J M -- Botstein, D -- HG 00044/HG/NHGRI NIH HHS/ -- HG01315/HG/NHGRI NIH HHS/ -- P41 HG001315/HG/NHGRI NIH HHS/ -- P41 HG001315-16/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2022-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851918" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*chemistry/genetics/physiology ; Evolution, Molecular ; Fungal Proteins/*chemistry/genetics/physiology ; Gene Expression Regulation ; Genes, Fungal ; Genes, Helminth ; Helminth Proteins/*chemistry/genetics/physiology ; Saccharomyces cerevisiae/*chemistry/genetics/physiology ; Sequence Homology, Amino Acid ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1998-01-31
    Description: Candidate mammalian odorant receptors were first cloned some 6 years ago. The physiological function of these receptors in initiating transduction in olfactory receptor neurons remains to be established. Here, a recombinant adenovirus was used to drive expression of a particular receptor gene in an increased number of sensory neurons in the rat olfactory epithelium. Electrophysiological recording showed that increased expression of a single gene led to greater sensitivity to a small subset of odorants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, H -- Ivic, L -- Otaki, J M -- Hashimoto, M -- Mikoshiba, K -- Firestein, S -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):237-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9422698" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Aldehydes/metabolism/*pharmacology ; Animals ; Electrophysiology ; Female ; Gene Expression ; Genetic Vectors ; Green Fluorescent Proteins ; Luminescent Proteins/analysis/genetics ; Male ; *Odors ; Olfactory Receptor Neurons/*physiology/virology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, Odorant/genetics/metabolism/*physiology ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1998-03-21
    Description: The sphingolipid metabolite sphingosine-1-phosphate (SPP) has been implicated as a second messenger in cell proliferation and survival. However, many of its biological effects are due to binding to unidentified receptors on the cell surface. SPP activated the heterotrimeric guanine nucleotide binding protein (G protein)-coupled orphan receptor EDG-1, originally cloned as Endothelial Differentiation Gene-1. EDG-1 bound SPP with high affinity (dissociation constant = 8.1 nM) and high specificity. Overexpression of EDG-1 induced exaggerated cell-cell aggregation, enhanced expression of cadherins, and formation of well-developed adherens junctions in a manner dependent on SPP and the small guanine nucleotide binding protein Rho.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M J -- Van Brocklyn, J R -- Thangada, S -- Liu, C H -- Hand, A R -- Menzeleev, R -- Spiegel, S -- Hla, T -- DK45659/DK/NIDDK NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL49094/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1552-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488656" target="_blank"〉PubMed〈/a〉
    Keywords: Cadherins/*biosynthesis ; *Cell Aggregation ; Cell Differentiation ; Cell Line ; Cloning, Molecular ; GTP-Binding Proteins/metabolism ; Gene Expression ; Genes, Immediate-Early ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; Intercellular Junctions/*ultrastructure ; Ligands ; *Lysophospholipids ; Mitogen-Activated Protein Kinase 1/metabolism ; Morphogenesis ; Receptors, Cell Surface/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Signal Transduction ; Sphingosine/*analogs & derivatives/metabolism ; Transfection ; rho GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):856.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841425" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Animals ; Caenorhabditis elegans Proteins ; Drosophila/*genetics/physiology ; *Drosophila Proteins ; GTP-Binding Proteins/chemistry/*genetics/metabolism/physiology ; *Genes, Insect ; Longevity/genetics ; Mutation ; Receptor, Insulin/genetics/physiology ; Receptors, Cell Surface/chemistry/*genetics/physiology ; *Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1998-09-04
    Description: Recruitment of the coactivator, CREB binding protein (CBP), by signal-regulated transcription factors, such as CREB [adenosine 3', 5'-monophosphate (cAMP) response element binding protein], is critical for stimulation of gene expression. The mouse pituitary cell line AtT20 was used to show that the CBP recruitment step (CREB phosphorylation on serine-133) can be uncoupled from CREB/CBP-activated transcription. CBP was found to contain a signal-regulated transcriptional activation domain that is controlled by nuclear calcium and calcium/calmodulin-dependent (CaM) protein kinase IV and by cAMP. Cytoplasmic calcium signals that stimulate the Ras mitogen-activated protein kinase signaling cascade or expression of the activated form of Ras provided the CBP recruitment signal but did not increase CBP activity and failed to activate CREB- and CBP-mediated transcription. These results identify CBP as a signal-regulated transcriptional coactivator and define a regulatory role for nuclear calcium and cAMP in CBP-dependent gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chawla, S -- Hardingham, G E -- Quinn, D R -- Bading, H -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1505-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CREB-Binding Protein ; Calcium/*metabolism ; Calcium Channels/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclic AMP/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Genes, Reporter ; Mice ; Models, Genetic ; Nuclear Proteins/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription, Genetic ; *Transcriptional Activation ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grill, E -- Ziegler, H -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):252-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Botanik, Technische Universitat Munchen, Munich, Germany. grill@botanik.biologie.tu-muenchen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841390" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism/pharmacology ; Adenosine Diphosphate Ribose/analogs & derivatives/metabolism ; Alkyl and Aryl Transferases/*metabolism ; Anions ; Arabidopsis/cytology/genetics/*metabolism ; Calcium/metabolism ; Cell Membrane/metabolism ; Cyclic ADP-Ribose ; Farnesyltranstransferase ; Ion Channels/*metabolism ; Membrane Potentials ; Phosphoprotein Phosphatases/metabolism ; Plant Leaves/cytology/metabolism ; Protein Phosphatase 2 ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Water/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, R -- Sikorski, R -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1439.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Cyclic GMP/chemistry/*metabolism ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/*metabolism ; Dimerization ; Ion Channel Gating ; Ion Channels/chemistry/*metabolism ; Ligands ; Polyethylene Glycols ; Rats ; Retinal Rod Photoreceptor Cells/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1998-09-11
    Description: Hypertrophic cardiomyopathy (HCM) is an inherited form of heart disease that affects 1 in 500 individuals. Here it is shown that calcineurin, a calcium-regulated phosphatase, plays a critical role in the pathogenesis of HCM. Administration of the calcineurin inhibitors cyclosporin and FK506 prevented disease in mice that were genetically predisposed to develop HCM as a result of aberrant expression of tropomodulin, myosin light chain-2, or fetal beta-tropomyosin in the heart. Cyclosporin had a similar effect in a rat model of pressure-overload hypertrophy. These results suggest that calcineurin inhibitors merit investigation as potential therapeutics for certain forms of human heart disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sussman, M A -- Lim, H W -- Gude, N -- Taigen, T -- Olson, E N -- Robbins, J -- Colbert, M C -- Gualberto, A -- Wieczorek, D F -- Molkentin, J D -- HL58224-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1690-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733519" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; *Calcineurin Inhibitors ; Calcium/metabolism ; *Cardiac Myosins ; Cardiomegaly/metabolism/pathology/*prevention & control ; Cardiomyopathy, Dilated/pathology/*prevention & control ; Cardiomyopathy, Hypertrophic/genetics/metabolism/pathology/*prevention & control ; Carrier Proteins/genetics ; Cyclosporine/*pharmacology ; Female ; Mice ; Mice, Transgenic ; *Microfilament Proteins ; Models, Cardiovascular ; Myocardium/*metabolism/pathology ; Myosin Light Chains/genetics/metabolism ; Rats ; Signal Transduction ; Tacrolimus/*pharmacology ; Tropomodulin ; Tropomyosin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1998-11-30
    Description: The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) acts as a Ca2+ release channel on internal Ca2+ stores. Type 1 IP3R (IP3R1) is enriched in growth cones of neurons in chick dorsal root ganglia. Depletion of internal Ca2+ stores and inhibition of IP3 signaling with drugs inhibited neurite extension. Microinjection of heparin, a competitive IP3R blocker, induced neurite retraction. Acute localized loss of function of IP3R1 in the growth cone induced by chromophore-assisted laser inactivation resulted in growth arrest and neurite retraction. IP3-induced Ca2+ release in growth cones appears to have a crucial role in control of nerve growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takei, K -- Shin, R M -- Inoue, T -- Kato, K -- Mikoshiba, K -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Bunkyo-Ku, Tokyo 113-0021, Japan. kohtaro@ims.u-tokyo.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831561" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/*metabolism ; Calcium Signaling ; Cells, Cultured ; Cerebellum/metabolism ; Chick Embryo ; Ganglia, Spinal/cytology ; Growth Cones/*metabolism ; Heparin/pharmacology ; Inositol 1,4,5-Trisphosphate/*metabolism ; Inositol 1,4,5-Trisphosphate Receptors ; Lasers ; Lithium Chloride/pharmacology ; Mice ; Microscopy, Video ; Microsomes/metabolism ; Microtubules/metabolism ; Neurites/drug effects/*physiology ; Pseudopodia/drug effects/physiology ; Receptors, Cytoplasmic and Nuclear/*metabolism ; Signal Transduction ; Thapsigargin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: Transforming growth factor-beta (TGF-beta) inhibits cell proliferation, and acquisition of TGF-beta resistance has been linked to tumorigenesis. A genetic screen was performed to identify complementary DNAs that abrogated TGF-beta sensitivity in mink lung epithelial cells. Ectopic expression of murine double minute 2 rescued TGF-beta-induced growth arrest in a p53-independent manner by interference with retinoblastoma susceptibility gene product (Rb)/E2F function. In human breast tumor cells, increased MDM2 expression levels correlated with TGF-beta resistance. Thus, MDM2 may confer TGF-beta resistance in a subset of tumors and may promote tumorigenesis by interference with two independent tumor suppressors, p53 and Rb.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, P -- Dong, P -- Dai, K -- Hannon, G J -- Beach, D -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2270-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856953" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/metabolism/pathology ; *Carrier Proteins ; *Cell Cycle Proteins ; *Cell Division ; Cell Line ; Cell Transformation, Neoplastic ; *DNA-Binding Proteins ; Drug Resistance, Neoplasm ; E2F Transcription Factors ; Gene Expression ; Genes, Retinoblastoma ; Genes, p53 ; Genetic Vectors ; Humans ; Mice ; Mink ; *Nuclear Proteins ; Phosphorylation ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-mdm2 ; Retinoblastoma Protein/metabolism ; Retinoblastoma-Binding Protein 1 ; Signal Transduction ; Transcription Factor DP1 ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transforming Growth Factor beta/*pharmacology/physiology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1999-11-24
    Description: Substance P receptor (SPR)-expressing spinal neurons were ablated with the selective cytotoxin substance P-saporin. Loss of these neurons resulted in a reduction of thermal hyperalgesia and mechanical allodynia associated with persistent neuropathic and inflammatory pain states. This loss appeared to be permanent. Responses to mildly painful stimuli and morphine analgesia were unaffected by this treatment. These results identify a target for treating persistent pain and suggest that the small population of SPR-expressing neurons in the dorsal horn of the spinal cord plays a pivotal role in the generation and maintenance of chronic neuropathic and inflammatory pain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nichols, M L -- Allen, B J -- Rogers, S D -- Ghilardi, J R -- Honore, P -- Luger, N M -- Finke, M P -- Li, J -- Lappi, D A -- Simone, D A -- Mantyh, P W -- 23970/PHS HHS/ -- 31223/PHS HHS/ -- DEO 7288/DE/NIDCR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Preventive Sciences, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567262" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dose-Response Relationship, Drug ; Ganglia, Spinal/drug effects/physiology ; *Immunotoxins ; Inflammation/physiopathology ; Ligation ; *N-Glycosyl Hydrolases ; Neuralgia/drug therapy/physiopathology ; Pain/*drug therapy/*physiopathology ; Plant Proteins/administration & dosage/*pharmacology ; Posterior Horn Cells/drug effects/*physiology ; Rats ; Receptors, Neurokinin-1/*metabolism ; Ribosome Inactivating Proteins, Type 1 ; Spinal Nerves ; Substance P/administration & dosage/*pharmacology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1998-06-11
    Description: The tumor suppressor PTEN is a phosphatase with sequence similarity to the cytoskeletal protein tensin. Here the cellular roles of PTEN were investigated. Overexpression of PTEN inhibited cell migration, whereas antisense PTEN enhanced migration. Integrin-mediated cell spreading and the formation of focal adhesions were down-regulated by wild-type PTEN but not by PTEN with an inactive phosphatase domain. PTEN interacted with the focal adhesion kinase FAK and reduced its tyrosine phosphorylation. Overexpression of FAK partially antagonized the effects of PTEN. Thus, PTEN phosphatase may function as a tumor suppressor by negatively regulating cell interactions with the extracellular matrix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, M -- Gu, J -- Matsumoto, K -- Aota, S -- Parsons, R -- Yamada, K M -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. mtamura@yoda.nidr.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616126" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Cell Line ; *Cell Movement ; Cell Size ; Concanavalin A ; Down-Regulation ; Ecdysone/pharmacology ; Fibronectins ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Genes, Tumor Suppressor ; Humans ; Integrins/physiology ; Mice ; Mutation ; PTEN Phosphohydrolase ; *Phosphoric Monoester Hydrolases ; Phosphorylation ; Polylysine ; Protein Tyrosine Phosphatases/genetics/metabolism/pharmacology/*physiology ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Transfection ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1999-10-26
    Description: The exuberant growth of neurites during development becomes markedly reduced as cortical neurons mature. In vitro studies of neurons from mouse cerebral cortex revealed that contact-mediated Notch signaling regulates the capacity of neurons to extend and elaborate neurites. Up-regulation of Notch activity was concomitant with an increase in the number of interneuronal contacts and cessation of neurite growth. In neurons with low Notch activity, which readily extend neurites, up-regulation of Notch activity either inhibited extension or caused retraction of neurites. Conversely, in more mature neurons that had ceased their growth after establishing numerous connections and displayed high Notch activity, inhibition of Notch signaling promoted neurite extension. Thus, the formation of neuronal contacts results in activation of Notch receptors, leading to restriction of neuronal growth and a subsequent arrest in maturity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sestan, N -- Artavanis-Tsakonas, S -- Rakic, P -- NS14841/NS/NINDS NIH HHS/ -- NS26084/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):741-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Communication ; Cell Count ; Cell Differentiation ; Cell Movement ; Cell Nucleus/metabolism ; Cell Size ; Cells, Cultured ; Cerebral Cortex/*cytology/embryology ; Contact Inhibition ; Humans ; Ligands ; Membrane Proteins/*metabolism ; Mice ; Mitosis ; Neurites/chemistry/*physiology ; Neurons/*cytology/metabolism ; Protein Structure, Tertiary ; Receptor, Notch1 ; Receptor, Notch2 ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; *Transcription Factors ; Transcriptional Activation ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leevers, S J -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2082-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, London, UK. sallyl@ludwig.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523207" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Constitution ; Carrier Proteins/genetics/metabolism ; Cell Count ; Cell Division ; Cell Size ; Drosophila/*enzymology/genetics/*growth & development ; *Drosophila Proteins ; Genes, Insect ; Insect Proteins/biosynthesis/genetics/metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins ; *Intracellular Signaling Peptides and Proteins ; Mutation ; Phosphatidylinositol 3-Kinases/genetics/metabolism ; *Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases/genetics/metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-akt ; *Receptor Protein-Tyrosine Kinases ; Receptor, Insulin/genetics/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1999-04-02
    Description: Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, K -- Meyer, T -- GM-48113/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Department of Pharmacology and Cancer Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102820" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cells, Cultured ; Cytosol/metabolism ; Dendrites/*enzymology ; Electric Stimulation ; Glutamic Acid/pharmacology ; Green Fluorescent Proteins ; Hippocampus/cytology/*enzymology ; Isoenzymes/metabolism ; Luminescent Proteins ; Microscopy, Fluorescence ; Nerve Tissue Proteins/analysis ; Neurons/*enzymology ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Synapses/*enzymology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steghaus-Kovac, S -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):650-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10454911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bioethics ; Diffuse Cerebral Sclerosis of Schilder/*therapy ; Embryo, Mammalian/cytology ; Financing, Government ; Germany ; Humans ; Mice ; Myelin Sheath/*physiology ; Oligodendroglia/*cytology/physiology/transplantation ; Rats ; Research Support as Topic ; Spinal Cord ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1999-07-03
    Description: In order to identify additional factors required for nuclear export of messenger RNA, a genetic screen was conducted with a yeast mutant deficient in a factor Gle1p, which associates with the nuclear pore complex (NPC). The three genes identified encode phospholipase C and two potential inositol polyphosphate kinases. Together, these constitute a signaling pathway from phosphatidylinositol 4, 5-bisphosphate to inositol hexakisphosphate (IP6). The common downstream effects of mutations in each component were deficiencies in IP6 synthesis and messenger RNA export, indicating a role for IP6 in GLE1 function and messenger RNA export.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉York, J D -- Odom, A R -- Murphy, R -- Ives, E B -- Wente, S R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):96-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA. yorkj@acpub.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390371" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Carrier Proteins/genetics/*metabolism ; Genes, Fungal ; Genetic Complementation Test ; Inositol Phosphates/metabolism ; Mutation ; Nuclear Envelope/*metabolism ; Nuclear Pore Complex Proteins ; Phosphotransferases (Alcohol Group Acceptor)/genetics/*metabolism ; Phytic Acid/metabolism ; RNA, Fungal/metabolism ; RNA, Messenger/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, R -- Sikorsky, R -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):434.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites, Antibody ; Biological Availability ; Half-Life ; Immunoglobulin Fab Fragments/*immunology/*metabolism ; Male ; Polyethylene Glycols/*metabolism ; Rats ; Rats, Wistar
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-10
    Description: Endocytosis is crucial for an array of cellular functions and can occur through several distinct mechanisms with the capacity to internalize anything from small molecules to entire cells. The clathrin-mediated endocytic pathway has recently received considerable attention because of (i) the identification of an array of molecules that orchestrate the assembly of clathrin-coated vesicles and the selection of the vesicle cargo and (ii) the resolution of structures for a number of these proteins. Together, these data provide an initial three-dimensional framework for understanding the clathrin endocytic machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marsh, M -- McMahon, H T -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):215-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, UK. m.marsh@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium-Binding Proteins/chemistry/physiology ; Cell Membrane/ultrastructure ; Clathrin/chemistry/*physiology ; Coated Pits, Cell-Membrane/physiology/ultrastructure ; Coated Vesicles/physiology/ultrastructure ; Dynamins ; *Endocytosis ; GTP Phosphohydrolases/chemistry/physiology ; Membrane Proteins/chemistry/physiology ; Nerve Tissue Proteins/chemistry/physiology ; Phosphoproteins/chemistry/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1999-02-19
    Description: Neurotrophins regulate survival, axonal growth, and target innervation of sensory and other neurons. Neurotrophin-3 (NT-3) is expressed specifically in cells adjacent to extending axons of dorsal root ganglia neurons, and its absence results in loss of most of these neurons before their axons reach their targets. However, axons are not required for NT-3 expression in limbs; instead, local signals from ectoderm induce NT-3 expression in adjacent mesenchyme. Wnt factors expressed in limb ectoderm induce NT-3 in the underlying mesenchyme. Thus, epithelial-mesenchymal interactions mediated by Wnt factors control NT-3 expression and may regulate axonal growth and guidance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710127/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710127/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patapoutian, A -- Backus, C -- Kispert, A -- Reichardt, L F -- MH48200/MH/NIMH NIH HHS/ -- P01 NS016033/NS/NINDS NIH HHS/ -- P01 NS016033-190014/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1180-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0723, USA. ardem@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024246" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Coculture Techniques ; Ectoderm/metabolism/*physiology ; Embryo, Mammalian/metabolism ; Epithelium/metabolism ; Extremities/embryology/innervation ; Ganglia, Spinal/physiology ; *Gene Expression Regulation, Developmental ; *Glycoproteins ; Mesoderm/*metabolism ; Mice ; Motor Neurons/physiology ; Nerve Growth Factors/biosynthesis/*genetics ; Neurons, Afferent/physiology ; Neurotrophin 3 ; Organ Culture Techniques ; Proto-Oncogene Proteins/*physiology ; Signal Transduction ; Wnt Proteins ; Wnt4 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, F E -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):679.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577220" target="_blank"〉PubMed〈/a〉
    Keywords: Databases, Factual ; *Internet ; Medline ; National Library of Medicine (U.S.) ; *Online Systems ; *Periodicals as Topic ; *Publishing ; Signal Transduction ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1999-11-24
    Description: Contraction and relaxation of smooth muscle are regulated by myosin light-chain kinase and myosin phosphatase through phosphorylation and dephosphorylation of myosin light chains. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase Ialpha (cGKIalpha) mediates physiologic relaxation of vascular smooth muscle in response to nitric oxide and cGMP. It is shown here that cGKIalpha is targeted to the smooth muscle cell contractile apparatus by a leucine zipper interaction with the myosin-binding subunit (MBS) of myosin phosphatase. Uncoupling of the cGKIalpha-MBS interaction prevents cGMP-dependent dephosphorylation of myosin light chain, demonstrating that this interaction is essential to the regulation of vascular smooth muscle cell tone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surks, H K -- Mochizuki, N -- Kasai, Y -- Georgescu, S P -- Tang, K M -- Ito, M -- Lincoln, T M -- Mendelsohn, M E -- HL09330/HL/NHLBI NIH HHS/ -- HL55309/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1583-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cardiology Research Institute and Cardiology Division, Department of Medicine, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Histones/metabolism ; Humans ; Isoenzymes/chemistry/metabolism ; Leucine Zippers ; Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth, Vascular/*enzymology/physiology ; Mutagenesis, Site-Directed ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Phosphatase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Phosphorylation ; Precipitin Tests ; Rats ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 1999 May 21;284(5418):1302-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10383312" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/*analogs & derivatives/physiology ; Acylation ; Bacterial Infections/*microbiology ; Colony Count, Microbial ; Fungi/physiology ; Gene Expression Regulation, Bacterial ; Gram-Negative Bacteria/genetics/pathogenicity/*physiology ; Gram-Positive Bacteria/genetics/pathogenicity/*physiology ; Humans ; Luminescent Measurements ; Peptides/*physiology ; Plants/microbiology ; Signal Transduction ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1999-12-11
    Description: Subsets of murine CD4+ T cells localize to different areas of the spleen after adoptive transfer. Naive and T helper 1 (TH1) cells, which express the chemokine receptor CCR7, are home to the periarteriolar lymphoid sheath, whereas activated TH2 cells, which lack CCR7, form rings at the periphery of the T cell zones near B cell follicles. Retroviral transduction of TH2 cells with CCR7 forces them to localize in a TH1-like pattern and inhibits their participation in B cell help in vivo but not in vitro. Thus, differential expression of chemokine receptors results in unique cellular migration patterns that are important for effective immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randolph, D A -- Huang, G -- Carruthers, C J -- Bromley, L E -- Chaplin, D D -- AI34580/AI/NIAID NIH HHS/ -- T32 GM07200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2159-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Allergy and Immunology, Department of Internal Medicine, Center for Immunology, Washington University School of Medicine. Howard Hughes Medical Institute, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591648" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; B-Lymphocytes/*immunology ; Calcium/metabolism ; Cell Movement ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Ovalbumin/immunology ; Receptors, CCR7 ; Receptors, Chemokine/*immunology/metabolism ; Signal Transduction ; Spleen/*immunology ; Th1 Cells/*immunology/metabolism ; Th2 Cells/*immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1999-12-22
    Description: Alzheimer's disease (AD) has a substantial inflammatory component, and activated microglia may play a central role in neuronal degeneration. CD40 expression was increased on cultured microglia treated with freshly solublized amyloid-beta (Abeta, 500 nanomolar) and on microglia from a transgenic murine model of AD (Tg APPsw). Increased tumor necrosis factor alpha production and induction of neuronal injury occurred when Abeta-stimulated microglia were treated with CD40 ligand (CD40L). Microglia from Tg APPsw mice deficient for CD40L demonstrated reduction in activation, suggesting that the CD40-CD40L interaction is necessary for Abeta-induced microglial activation. Finally, abnormal tau phosphorylation was reduced in Tg APPsw animals deficient for CD40L, suggesting that the CD40-CD40L interaction is an early event in AD pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, J -- Town, T -- Paris, D -- Mori, T -- Suo, Z -- Crawford, F -- Mattson, M P -- Flavell, R A -- Mullan, M -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Roskamp Institute, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600748" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Antigens, CD40/biosynthesis/*metabolism ; CD40 Ligand ; Cell Death ; Cells, Cultured ; Interferon-gamma/pharmacology ; Interleukins/pharmacology ; Ligands ; Membrane Glycoproteins/*metabolism/pharmacology ; Mice ; Mice, Transgenic ; Microglia/cytology/immunology/*metabolism ; Neurons/cytology ; Peptide Fragments/pharmacology ; Phosphorylation ; Signal Transduction ; Tumor Necrosis Factor-alpha/biosynthesis/pharmacology ; tau Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkel, E -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):33-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; Clinical Trials as Topic ; Cloning, Molecular ; *Glucuronidase ; Glycoside Hydrolases/*antagonists & inhibitors/*genetics/isolation & ; purification/metabolism ; Humans ; Mice ; Neoplasm Metastasis/*prevention & control ; Rats ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):508.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10447477" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Diagnostic Imaging ; Light ; Mice ; *Odors ; Olfactory Bulb/*physiology ; Olfactory Receptor Neurons/physiology ; Rats ; Receptors, Odorant/*physiology ; Smell/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1999-07-31
    Description: Adenylyl cyclase (AC) converts adenosine triphosphate (ATP) to cyclic adenosine monophosphate, a ubiquitous second messenger that regulates many cellular functions. Recent structural studies have revealed much about the structure and function of mammalian AC but have not fully defined its active site or catalytic mechanism. Four crystal structures were determined of the catalytic domains of AC in complex with two different ATP analogs and various divalent metal ions. These structures provide a model for the enzyme-substrate complex and conclusively demonstrate that two metal ions bind in the active site. The similarity of the active site of AC to those of DNA polymerases suggests that the enzymes catalyze phosphoryl transfer by the same two-metal-ion mechanism and likely have evolved from a common ancestor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Johnson, R A -- Gosselin, G -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):756-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427002" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/chemistry/genetics/*metabolism ; Animals ; Aspartic Acid/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/metabolism/pharmacology ; Dideoxynucleotides ; Dimerization ; Enzyme Inhibitors/metabolism ; Hydrogen Bonding ; Ligands ; Magnesium/*metabolism ; Manganese/*metabolism ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Folding ; Rats ; Thionucleotides/metabolism/pharmacology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1999-11-27
    Description: Apoptosis can be triggered by members of the Bcl-2 protein family, such as Bim, that share only the BH3 domain with this family. Gene targeting in mice revealed important physiological roles for Bim. Lymphoid and myeloid cells accumulated, T cell development was perturbed, and most older mice accumulated plasma cells and succumbed to autoimmune kidney disease. Lymphocytes were refractory to apoptotic stimuli such as cytokine deprivation, calcium ion flux, and microtubule perturbation but not to others. Thus, Bim is required for hematopoietic homeostasis and as a barrier to autoimmunity. Moreover, particular death stimuli appear to activate apoptosis through distinct BH3-only proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bouillet, P -- Metcalf, D -- Huang, D C -- Tarlinton, D M -- Kay, T W -- Kontgen, F -- Adams, J M -- Strasser, A -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1735-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576740" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Autoimmune Diseases/etiology ; *Autoimmunity ; B-Lymphocytes/physiology ; Carrier Proteins/*physiology ; Cells, Cultured ; Crosses, Genetic ; Female ; Gene Targeting ; Glomerulonephritis/etiology ; Hematopoietic Stem Cells/physiology ; Homeostasis ; Leukocyte Count ; Leukocytes/*physiology ; Male ; *Membrane Proteins ; Mice ; Mice, Transgenic ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/physiology ; Signal Transduction ; T-Lymphocyte Subsets/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1999-06-18
    Description: In contrast with the prevailing view that most tumors and metastases begin as avascular masses, evidence is presented here that a subset of tumors instead initially grows by coopting existing host vessels. This coopted host vasculature does not immediately undergo angiogenesis to support the tumor but instead regresses, leading to a secondarily avascular tumor and massive tumor cell loss. Ultimately, however, the remaining tumor is rescued by robust angiogenesis at the tumor margin. The expression patterns of the angiogenic antagonist angiopoietin-2 and of pro-angiogenic vascular endothelial growth factor (VEGF) suggest that these proteins may be critical regulators of this balance between vascular regression and growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holash, J -- Maisonpierre, P C -- Compton, D -- Boland, P -- Alexander, C R -- Zagzag, D -- Yancopoulos, G D -- Wiegand, S J -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1994-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373119" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/blood supply/pathology ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Apoptosis ; Blood Vessels/pathology ; Endothelial Growth Factors/genetics/*physiology ; Endothelium, Vascular/pathology/physiology ; Glioblastoma/blood supply/pathology ; Glioma/blood supply/pathology ; In Situ Hybridization ; Lymphokines/genetics/*physiology ; Male ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Inbred C57BL ; Muscle, Smooth, Vascular/pathology/physiology ; Neoplasm Transplantation ; Neoplasms, Experimental/*blood supply/*pathology ; *Neovascularization, Pathologic ; Proteins/genetics/*physiology ; Rats ; Rats, Sprague-Dawley ; Up-Regulation ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...