ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (537)
  • Protein Conformation  (436)
  • American Association for the Advancement of Science (AAAS)  (948)
  • American Chemical Society (ACS)
  • Springer Science + Business Media
  • 2010-2014  (355)
  • 1990-1994  (593)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (948)
  • American Chemical Society (ACS)
  • Springer Science + Business Media
  • Nature Publishing Group (NPG)  (438)
Years
Year
  • 1
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-26
    Description: The hierarchical packaging of eukaryotic chromatin plays a central role in transcriptional regulation and other DNA-related biological processes. Here, we report the 11-angstrom-resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths. The structures show a histone H1-dependent left-handed twist of the repeating tetranucleosomal structural units, within which the four nucleosomes zigzag back and forth with a straight linker DNA. The asymmetric binding and the location of histone H1 in chromatin play a role in the formation of the 30-nanometer fiber. Our results provide mechanistic insights into how nucleosomes compact into higher-order chromatin fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Feng -- Chen, Ping -- Sun, Dapeng -- Wang, Mingzhu -- Dong, Liping -- Liang, Dan -- Xu, Rui-Ming -- Zhu, Ping -- Li, Guohong -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):376-80. doi: 10.1126/science.1251413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/*ultrastructure ; Cryoelectron Microscopy ; DNA/chemistry/*ultrastructure ; Histones/*chemistry/metabolism ; Imaging, Three-Dimensional ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleosomes/*ultrastructure ; Protein Conformation ; Recombinant Proteins/chemistry/metabolism ; Xenopus Proteins/chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-24
    Description: Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNA interference with FoxP expression in alphabeta core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision toward commitment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206523/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206523/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DasGupta, Shamik -- Ferreira, Clara Howcroft -- Miesenbock, Gero -- 090309/Wellcome Trust/United Kingdom -- G0700888/Medical Research Council/United Kingdom -- G0701225/Medical Research Council/United Kingdom -- R01 DA030601/DA/NIDA NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 May 23;344(6186):901-4. doi: 10.1126/science.1252114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK. ; Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK. gero.miesenboeck@cncb.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Cell Line ; *Decision Making ; Drosophila Proteins/genetics/*physiology ; Drosophila melanogaster/genetics/*physiology ; Forkhead Transcription Factors/genetics/*physiology ; Mushroom Bodies/growth & development/metabolism ; Mutation ; Neurons/physiology ; Odors ; *Psychomotor Performance ; RNA Interference ; Reaction Time/genetics/*physiology ; Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-01
    Description: Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide-repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5' untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA.DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colak, Dilek -- Zaninovic, Nikica -- Cohen, Michael S -- Rosenwaks, Zev -- Yang, Wang-Yong -- Gerhardt, Jeannine -- Disney, Matthew D -- Jaffrey, Samie R -- R01 GM079235/GM/NIGMS NIH HHS/ -- R01 MH80420/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1002-5. doi: 10.1126/science.1245831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA Methylation ; Embryonic Stem Cells/metabolism ; Fragile X Mental Retardation Protein/*genetics ; Fragile X Syndrome/*genetics ; *Gene Silencing ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neurons/metabolism ; Nuclear Proteins/genetics ; Promoter Regions, Genetic/genetics ; RNA, Messenger/*genetics ; RNA, Small Interfering/genetics ; Trinucleotide Repeats/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-28
    Description: Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)-driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin. In vitro, NM23-H1/H2 were recruited to dynamin-induced tubules, stimulated GTP-loading on dynamin, and triggered fission in the presence of ATP and GDP. NM23-H4, a mitochondria-specific NDPK, colocalized with mitochondrial dynamin-like OPA1 involved in mitochondria inner membrane fusion and increased GTP-loading on OPA1. Like OPA1 loss of function, silencing of NM23-H4 but not NM23-H1/H2 resulted in mitochondrial fragmentation, reflecting fusion defects. Thus, NDPKs interact with and provide GTP to dynamins, allowing these motor proteins to work with high thermodynamic efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boissan, Mathieu -- Montagnac, Guillaume -- Shen, Qinfang -- Griparic, Lorena -- Guitton, Jerome -- Romao, Maryse -- Sauvonnet, Nathalie -- Lagache, Thibault -- Lascu, Ioan -- Raposo, Graca -- Desbourdes, Celine -- Schlattner, Uwe -- Lacombe, Marie-Lise -- Polo, Simona -- van der Bliek, Alexander M -- Roux, Aurelien -- Chavrier, Philippe -- 311536/European Research Council/International -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1510-5. doi: 10.1126/science.1253768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. Universite Pierre et Marie Curie, University Paris 06, Paris, France. Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France. mathieu.boissan@inserm.fr philippe.chavrier@curie.fr. ; Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. ; Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA. ; Hospices Civils de Lyon, Pierre Benite, France. Universite de Lyon, Lyon, France. ; Institut Curie, Research Center, Paris, France. Structure and Membrane Compartments, CNRS UMR 144, Paris, France. ; Institut Pasteur, Unite de Biologie des Interactions Cellulaires, Paris, France. ; Quantitative Image Analysis Unit, Institut Pasteur, Paris, France. ; Institut de Biochimie et Genetique Cellulaires-CNRS, Universite Bordeaux 2, Bordeaux, France. ; Universite Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France. Inserm, U1055, Grenoble, France. ; Universite Pierre et Marie Curie, University Paris 06, Paris, France. Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France. ; IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy. Dipartimento di Scienze della Salute, Universita' degli Studi di Milano, Milan, Italy. ; Biochemistry Department, University of Geneva, & Swiss National Center for Competence in Research Program Chemical Biology, Geneva, Switzerland. ; Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. mathieu.boissan@inserm.fr philippe.chavrier@curie.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970086" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Membrane/*metabolism ; Coated Pits, Cell-Membrane/metabolism ; Dynamins/*metabolism ; Endocytosis ; GTP Phosphohydrolases/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Humans ; Intracellular Membranes/metabolism ; Membrane Fusion ; Mitochondria/metabolism ; NM23 Nucleoside Diphosphate Kinases/genetics/*metabolism ; Nucleoside Diphosphate Kinase D/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-05
    Description: Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryson, J Barney -- Machado, Carolina Barcellos -- Crossley, Martin -- Stevenson, Danielle -- Bros-Facer, Virginie -- Burrone, Juan -- Greensmith, Linda -- Lieberam, Ivo -- 095589/Wellcome Trust/United Kingdom -- G0900585/Medical Research Council/United Kingdom -- G1001234/Biotechnology and Biological Sciences Research Council/United Kingdom -- MR/K000608/1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):94-7. doi: 10.1126/science.1248523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Cell Line ; Electric Stimulation ; Embryonic Stem Cells/cytology/physiology ; Female ; Hindlimb ; Isometric Contraction ; *Light ; Mice ; Mice, Inbred C57BL ; Motor Neurons/cytology/*physiology/*transplantation ; Muscle Denervation ; Muscle Fibers, Skeletal/physiology ; Muscle, Skeletal/*innervation/*physiology ; Nerve Regeneration ; *Optogenetics ; Rhodopsin/genetics/metabolism ; Sciatic Nerve/physiology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-08
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, Susan M -- Queitsch, Christine -- DP1 CA174424/CA/NCI NIH HHS/ -- DP1-CA174424/CA/NCI NIH HHS/ -- DP2 OD008371/OD/NIH HHS/ -- DP2-OD008371/OD/NIH HHS/ -- R01 CA085777/CA/NCI NIH HHS/ -- R01 GM053158/GM/NIGMS NIH HHS/ -- R01-CA85777/CA/NCI NIH HHS/ -- R01-GM53158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1088-9. doi: 10.1126/science.1247472.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604189" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/pharmacology/*therapeutic use ; Biodiversity ; DNA Replication/drug effects ; *Evolution, Molecular ; HSP90 Heat-Shock Proteins/metabolism ; Humans ; Mutagenesis ; Neoplasm Invasiveness ; Neoplasm Metastasis/drug therapy ; Neoplasms/blood supply/*drug therapy/*genetics ; Neovascularization, Pathologic/drug therapy ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-01
    Description: Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Je Hyuk -- Daugharthy, Evan R -- Scheiman, Jonathan -- Kalhor, Reza -- Yang, Joyce L -- Ferrante, Thomas C -- Terry, Richard -- Jeanty, Sauveur S F -- Li, Chao -- Amamoto, Ryoji -- Peters, Derek T -- Turczyk, Brian M -- Marblestone, Adam H -- Inverso, Samuel A -- Bernard, Amy -- Mali, Prashant -- Rios, Xavier -- Aach, John -- Church, George M -- GM080177/GM/NIGMS NIH HHS/ -- MH098977/MH/NIMH NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2HL102815/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 MH098977/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578530" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cells, Cultured ; DNA, Complementary ; Fluorescence ; Gene Expression Profiling/*methods ; Humans ; Induced Pluripotent Stem Cells ; RNA, Messenger/genetics/metabolism ; Sequence Analysis, RNA/*methods ; Single-Cell Analysis ; Transcription Initiation Site ; *Transcriptome ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-17
    Description: Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so that they cannot be aligned with each other to calculate a three-dimensional density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a gold specimen support that nearly eliminates substrate motion during irradiation. This increases the subnanometer image contrast such that alpha helices of individual proteins are resolved. With this improvement, we determine the structure of apoferritin, a smooth octahedral shell of alpha-helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296556/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296556/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russo, Christopher J -- Passmore, Lori A -- 261151/European Research Council/International -- MC_U105192715/Medical Research Council/United Kingdom -- U105192715/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1377-80. doi: 10.1126/science.1259530.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. passmore@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoferritins/*chemistry/*ultrastructure ; Cryoelectron Microscopy/instrumentation/*methods ; Crystallography, X-Ray ; *Gold ; Horses ; Image Processing, Computer-Assisted ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Ribosomes/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-10-04
    Description: Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Alan -- Amunts, Alexey -- Bai, Xiao-chen -- Sugimoto, Yoichiro -- Edwards, Patricia C -- Murshudov, Garib -- Scheres, Sjors H W -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1012/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):718-22. doi: 10.1126/science.1258026. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ramak@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Humans ; Mitochondria/genetics/*metabolism ; Mitochondrial Proteins/chemistry/ultrastructure ; Mutation ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Transfer, Val/analysis/*chemistry ; Ribosome Subunits/*chemistry/genetics/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-04-05
    Description: The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an alpha-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotwinkel, Jan Timo -- Wild, Klemens -- Segnitz, Bernd -- Sinning, Irmgard -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):101-4. doi: 10.1126/science.1249094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700861" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Protein Transport ; RNA, Ribosomal/chemistry/metabolism ; RNA, Small Cytoplasmic/*chemistry/*metabolism ; Ribosomes ; Signal Recognition Particle/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-10-18
    Description: Potassium channels selectively conduct K(+) ions across cellular membranes with extraordinary efficiency. Their selectivity filter exhibits four binding sites with approximately equal electron density in crystal structures with high K(+) concentrations, previously thought to reflect a superposition of alternating ion- and water-occupied states. Consequently, cotranslocation of ions with water has become a widely accepted ion conduction mechanism for potassium channels. By analyzing more than 1300 permeation events from molecular dynamics simulations at physiological voltages, we observed instead that permeation occurs via ion-ion contacts between neighboring K(+) ions. Coulomb repulsion between adjacent ions is found to be the key to high-efficiency K(+) conduction. Crystallographic data are consistent with directly neighboring K(+) ions in the selectivity filter, and our model offers an intuitive explanation for the high throughput rates of K(+) channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kopfer, David A -- Song, Chen -- Gruene, Tim -- Sheldrick, George M -- Zachariae, Ulrich -- de Groot, Bert L -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):352-5. doi: 10.1126/science.1254840.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Department of Structural Chemistry, University of Gottingen, 37077 Gottingen, Germany. ; School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK. College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324389" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Molecular Dynamics Simulation ; Potassium/*metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; *Static Electricity ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-20
    Description: Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perica, Tina -- Kondo, Yasushi -- Tiwari, Sandhya P -- McLaughlin, Stephen H -- Kemplen, Katherine R -- Zhang, Xiuwei -- Steward, Annette -- Reuter, Nathalie -- Clarke, Jane -- Teichmann, Sarah A -- 095195/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1254346. doi: 10.1126/science.1254346.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Department of Molecular Biology, University of Bergen University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. saraht@ebi.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525255" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/*genetics ; Amino Acid Sequence ; Bacillus subtilis/metabolism ; Bacterial Proteins/*chemistry/genetics ; Conserved Sequence ; *Evolution, Molecular ; Ligands ; Mutation ; Pentosyltransferases/*chemistry/genetics ; Protein Binding/genetics ; Protein Conformation ; *Protein Engineering ; Protein Multimerization/*genetics ; Repressor Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-09-06
    Description: Coupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jie -- Lancaster, Laura -- Donohue, John Paul -- Noller, Harry F -- GM-17129/GM/NIGMS NIH HHS/ -- GM59140/GM/NIGMS NIH HHS/ -- R01 GM017129/GM/NIGMS NIH HHS/ -- R01 GM059140/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1188-91. doi: 10.1126/science.1255030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. ; Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. harry@nuvolari.ucsc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190797" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Nucleic Acid Conformation ; Peptide Elongation Factor G/*chemistry/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/*chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; Ribosome Subunits, Large, Bacterial/*chemistry/metabolism ; Thermus thermophilus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-04-20
    Description: Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic beta-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Hiroshi -- Nishizawa, Tomohiro -- Tani, Kazutoshi -- Yamazaki, Yuji -- Tamura, Atsushi -- Ishitani, Ryuichiro -- Dohmae, Naoshi -- Tsukita, Sachiko -- Nureki, Osamu -- Fujiyoshi, Yoshinori -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):304-7. doi: 10.1126/science.1248571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744376" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Claudins/*chemistry ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Static Electricity ; Tight Junctions/*chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-10-18
    Description: Human bestrophin-1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where mutations are associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a sensitive control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the cytoplasmic exit. A homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341822/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341822/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Tingting -- Liu, Qun -- Kloss, Brian -- Bruni, Renato -- Kalathur, Ravi C -- Guo, Youzhong -- Kloppmann, Edda -- Rost, Burkhard -- Colecraft, Henry M -- Hendrickson, Wayne A -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):355-9. doi: 10.1126/science.1259723. Epub 2014 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, TUM (Technische Universitat Munchen), Garching 85748, Germany. ; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. wayne@xtl.cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324390" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Chloride Channels/*chemistry ; Crystallography, X-Ray ; Electric Conductivity ; Eye Proteins/*chemistry ; Humans ; *Klebsiella pneumoniae ; Protein Conformation ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coontz, Robert -- Fahrenkamp-Uppenbrink, Julia -- Lavine, Marc -- Vinson, Valda -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1091. doi: 10.1126/science.343.6175.1091.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604190" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/*history/trends ; Databases, Protein ; History, 20th Century ; History, 21st Century ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-12-06
    Description: Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tenboer, Jason -- Basu, Shibom -- Zatsepin, Nadia -- Pande, Kanupriya -- Milathianaki, Despina -- Frank, Matthias -- Hunter, Mark -- Boutet, Sebastien -- Williams, Garth J -- Koglin, Jason E -- Oberthuer, Dominik -- Heymann, Michael -- Kupitz, Christopher -- Conrad, Chelsie -- Coe, Jesse -- Roy-Chowdhury, Shatabdi -- Weierstall, Uwe -- James, Daniel -- Wang, Dingjie -- Grant, Thomas -- Barty, Anton -- Yefanov, Oleksandr -- Scales, Jennifer -- Gati, Cornelius -- Seuring, Carolin -- Srajer, Vukica -- Henning, Robert -- Schwander, Peter -- Fromme, Raimund -- Ourmazd, Abbas -- Moffat, Keith -- Van Thor, Jasper J -- Spence, John C H -- Fromme, Petra -- Chapman, Henry N -- Schmidt, Marius -- P41 GM103543/GM/NIGMS NIH HHS/ -- R01GM095583/GM/NIGMS NIH HHS/ -- R24 GM111072/GM/NIGMS NIH HHS/ -- R24GM111072/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1242-6. doi: 10.1126/science.1259357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA. ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA. ; Department of Physics, Arizona State University, Tempe, AZ 85287, USA. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA. ; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. ; Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. ; Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA. ; Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. ; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. ; Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA. m-schmidt@uwm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477465" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*ultrastructure ; Crystallography, X-Ray/*methods ; Photoreceptors, Microbial/chemistry/*ultrastructure ; Protein Conformation ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-03-15
    Description: Complement activation by antibodies bound to pathogens, tumors, and self antigens is a critical feature of natural immune defense, a number of disease processes, and immunotherapies. How antibodies activate the complement cascade, however, is poorly understood. We found that specific noncovalent interactions between Fc segments of immunoglobulin G (IgG) antibodies resulted in the formation of ordered antibody hexamers after antigen binding on cells. These hexamers recruited and activated C1, the first component of complement, thereby triggering the complement cascade. The interactions between neighboring Fc segments could be manipulated to block, reconstitute, and enhance complement activation and killing of target cells, using all four human IgG subclasses. We offer a general model for understanding antibody-mediated complement activation and the design of antibody therapeutics with enhanced efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250092/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250092/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diebolder, Christoph A -- Beurskens, Frank J -- de Jong, Rob N -- Koning, Roman I -- Strumane, Kristin -- Lindorfer, Margaret A -- Voorhorst, Marleen -- Ugurlar, Deniz -- Rosati, Sara -- Heck, Albert J R -- van de Winkel, Jan G J -- Wilson, Ian A -- Koster, Abraham J -- Taylor, Ronald P -- Saphire, Erica Ollmann -- Burton, Dennis R -- Schuurman, Janine -- Gros, Piet -- Parren, Paul W H I -- AI055332/AI/NIAID NIH HHS/ -- AI084817/AI/NIAID NIH HHS/ -- R01 AI055332/AI/NIAID NIH HHS/ -- R37 AI055332/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1260-3. doi: 10.1126/science.1248943.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626930" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/*immunology ; *Complement Activation ; Complement C1/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin G/*chemistry/immunology ; Liposomes ; Protein Conformation ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-03-08
    Description: With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, R J Dwayne -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1108-16. doi: 10.1126/science.1248488.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Atomically Resolved Dynamics Division, The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604195" target="_blank"〉PubMed〈/a〉
    Keywords: *Biochemical Processes ; *Chemical Processes ; Crystallography, X-Ray/*methods ; Electrons ; Motion ; Motion Pictures as Topic ; *Photochemical Processes ; Protein Conformation ; Proteins/chemistry ; Time Factors ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-06
    Description: During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Therizols, Pierre -- Illingworth, Robert S -- Courilleau, Celine -- Boyle, Shelagh -- Wood, Andrew J -- Bickmore, Wendy A -- 102560/Wellcome Trust/United Kingdom -- MC_PC_U127527202/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1238-42. doi: 10.1126/science.1259587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. ; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. wendy.bickmore@igmm.ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Line ; Cell Nucleus/*genetics/metabolism/ultrastructure ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA Replication ; Embryonic Stem Cells/*cytology/metabolism ; *Epigenesis, Genetic ; Mice ; Nuclear Envelope/genetics/metabolism/ultrastructure ; Trans-Activators/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-06-07
    Description: Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segawa, Katsumori -- Kurata, Sachiko -- Yanagihashi, Yuichi -- Brummelkamp, Thijn R -- Matsuda, Fumihiko -- Nagata, Shigekazu -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1164-8. doi: 10.1126/science.1252809.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands. ; Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. ; Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan. snagata@mfour.med.kyoto-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904167" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; *Apoptosis ; Caspases/*metabolism ; Cell Line ; Cell Membrane/*enzymology ; Genetic Testing ; Humans ; Membrane Proteins/*metabolism ; Membrane Transport Proteins ; Phosphatidylserines/*metabolism ; Phospholipid Transfer Proteins/genetics/*metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-12-17
    Description: Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-kappaB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selimkhanov, Jangir -- Taylor, Brooks -- Yao, Jason -- Pilko, Anna -- Albeck, John -- Hoffmann, Alexander -- Tsimring, Lev -- Wollman, Roy -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50-GM085764/GM/NIGMS NIH HHS/ -- R01 GM089976/GM/NIGMS NIH HHS/ -- R01-GM071573/GM/NIGMS NIH HHS/ -- R01-GM089976/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA. rwollman@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504722" target="_blank"〉PubMed〈/a〉
    Keywords: *Calcium Signaling ; Cell Line ; Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; NF-kappa B/*metabolism ; *Signal Transduction ; Signal-To-Noise Ratio ; Single-Cell Analysis ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-11-15
    Description: Existence of cellular structures with specific size raises a fundamental question in biology: How do cells measure length? One conceptual answer to this question is by a molecular ruler, but examples of such rulers in eukaryotes are lacking. In this work, we identified a molecular ruler in eukaryotic cilia and flagella. Using cryo-electron tomography, we found that FAP59 and FAP172 form a 96-nanometer (nm)-long complex in Chlamydomonas flagella and that the absence of the complex disrupted 96-nm repeats of axonemes. Furthermore, lengthening of the FAP59/172 complex by domain duplication resulted in extension of the repeats up to 128 nm, as well as duplication of specific axonemal components. Thus, the FAP59/172 complex is the molecular ruler that determines the 96-nm repeat length and arrangements of components in cilia and flagella.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, Toshiyuki -- Yanagisawa, Haruaki -- Kamiya, Ritsu -- Kikkawa, Masahide -- New York, N.Y. -- Science. 2014 Nov 14;346(6211):857-60. doi: 10.1126/science.1260214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan. ; Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan. Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan. ; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan. mkikkawa@m.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25395538" target="_blank"〉PubMed〈/a〉
    Keywords: Axonemal Dyneins/*chemistry/genetics/ultrastructure ; Chlamydomonas/*physiology/ultrastructure ; Cilia/physiology/ultrastructure ; Eukaryotic Cells/physiology/ultrastructure ; Flagella/*physiology/ultrastructure ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-06-28
    Description: Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor alpha-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Herbert, Andrew S -- Kuehne, Ana I -- Wirchnianski, Ariel S -- Soh, Timothy K -- Stubbs, Sarah H -- Janssen, Hans -- Damme, Markus -- Saftig, Paul -- Whelan, Sean P -- Dye, John M -- Brummelkamp, Thijn R -- AI081842/AI/NIAID NIH HHS/ -- AI109740/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI109740/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; Biochemisches Institut, Christian Albrechts-Universitat Kiel, 24118 Kiel, Germany. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Cells, Cultured ; Chickens ; Dystroglycans/genetics/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Lassa Fever/virology ; Lassa virus/*physiology ; Lysosomal-Associated Membrane Protein 1/chemistry/*metabolism ; Lysosomes/metabolism/virology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein Binding ; Receptors, Virus/*metabolism ; Sialyltransferases/metabolism ; Viral Envelope Proteins/*metabolism ; *Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-03-22
    Description: The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane alpha helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaremko, Lukasz -- Jaremko, Mariusz -- Giller, Karin -- Becker, Stefan -- Zweckstetter, Markus -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysikalische Chemie, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; Cholesterol/metabolism ; Hydrophobic and Hydrophilic Interactions ; Isoquinolines/*chemistry/metabolism ; Ligands ; Mice ; Micelles ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, GABA/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-02-22
    Description: Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-alpha treatment can clear HBV but is limited by systemic side effects. We describe how interferon-alpha can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-beta receptor activation as a therapeutic alternative. Interferon-alpha and lymphotoxin-beta receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases-for example, by lymphotoxin-beta receptor activation-allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucifora, Julie -- Xia, Yuchen -- Reisinger, Florian -- Zhang, Ke -- Stadler, Daniela -- Cheng, Xiaoming -- Sprinzl, Martin F -- Koppensteiner, Herwig -- Makowska, Zuzanna -- Volz, Tassilo -- Remouchamps, Caroline -- Chou, Wen-Min -- Thasler, Wolfgang E -- Huser, Norbert -- Durantel, David -- Liang, T Jake -- Munk, Carsten -- Heim, Markus H -- Browning, Jeffrey L -- Dejardin, Emmanuel -- Dandri, Maura -- Schindler, Michael -- Heikenwalder, Mathias -- Protzer, Ulrike -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1221-8. doi: 10.1126/science.1243462. Epub 2014 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Virology, Technische Universitat Munchen-Helmholtz Zentrum Munchen, 81675 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24557838" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antiviral Agents/*pharmacology/therapeutic use ; Cell Line ; Cell Nucleus/virology ; Cytidine/metabolism ; Cytidine Deaminase/biosynthesis ; DNA, Circular/*metabolism ; DNA, Viral/*metabolism ; Hepatitis B/*drug therapy ; Hepatitis B virus/*drug effects/metabolism ; Hepatocytes/*drug effects/metabolism/virology ; Humans ; Interferon-alpha/*pharmacology/therapeutic use ; Liver/drug effects/metabolism/virology ; Lymphotoxin beta Receptor/*agonists/antagonists & inhibitors ; Mice, SCID ; Proteins ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-06-14
    Description: Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Afonso, Olga -- Matos, Irina -- Pereira, Antonio J -- Aguiar, Paulo -- Lampson, Michael A -- Maiato, Helder -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):332-6. doi: 10.1126/science.1251121. Epub 2014 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Center for Mathematics, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal. ; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. maiato@ibmc.up.pt.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24925910" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Animals ; Aurora Kinase B/antagonists & inhibitors/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Chromosome Segregation/genetics/*physiology ; Drosophila ; *Feedback, Physiological ; Humans ; Nuclear Envelope/genetics/*metabolism ; Protein Phosphatase 1/metabolism ; Protein Phosphatase 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-06-21
    Description: Mammalian tissue size is maintained by slow replacement of de-differentiating and dying cells. For adipocytes, key regulators of glucose and lipid metabolism, the renewal rate is only 10% per year. We used computational modeling, quantitative mass spectrometry, and single-cell microscopy to show that cell-to-cell variability, or noise, in protein abundance acts within a network of more than six positive feedbacks to permit pre-adipocytes to differentiate at very low rates. This reconciles two fundamental opposing requirements: High cell-to-cell signal variability is needed to generate very low differentiation rates, whereas low signal variability is needed to prevent differentiated cells from de-differentiating. Higher eukaryotes can thus control low rates of near irreversible cell fate decisions through a balancing act between noise and ultrahigh feedback connectivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733388/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733388/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahrends, Robert -- Ota, Asuka -- Kovary, Kyle M -- Kudo, Takamasa -- Park, Byung Ouk -- Teruel, Mary N -- P50 GM107615/GM/NIGMS NIH HHS/ -- P50GM107615/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1384-9. doi: 10.1126/science.1252079.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA. ; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA. mteruel@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948735" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; *Adipogenesis ; Animals ; CCAAT-Enhancer-Binding Proteins/genetics/metabolism ; Cell Communication ; Cell Differentiation ; Cell Line ; Computer Simulation ; Feedback, Physiological ; Mass Spectrometry ; Mice ; *Models, Biological ; PPAR gamma/genetics/metabolism ; RNA, Small Interfering/genetics ; Single-Cell Analysis ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1072-3, 1075. doi: 10.1126/science.343.6175.1072.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604178" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*antagonists & inhibitors/*chemistry/pharmacology ; Budgets ; Crystallography, X-Ray ; *Drug Design ; Financing, Organized ; Molecular Biology/*economics/*trends ; Protein Conformation ; United States ; beta-Lactamases/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-02-08
    Description: Flaviviruses, the human pathogens responsible for dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever, are endemic in tropical and temperate parts of the world. The flavivirus nonstructural protein 1 (NS1) functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. We report crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses. The NS1 hexamer in crystal structures is similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 binds to lipid bilayers and remodels large liposomes into lipoprotein nanoparticles. The NS1 structures reveal distinct domains for membrane association of the dimer and interactions with the immune system and are a basis for elucidating the molecular mechanism of NS1 function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akey, David L -- Brown, W Clay -- Dutta, Somnath -- Konwerski, Jamie -- Jose, Joyce -- Jurkiw, Thomas J -- DelProposto, James -- Ogata, Craig M -- Skiniotis, Georgios -- Kuhn, Richard J -- Smith, Janet L -- P01 AI055672/AI/NIAID NIH HHS/ -- P01AI055672/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):881-5. doi: 10.1126/science.1247749. Epub 2014 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24505133" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry/*virology ; Crystallography, X-Ray ; DEAD-box RNA Helicases/chemistry/immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immune System/chemistry/*virology ; Immunity, Innate ; Lipid Bilayers ; Microscopy, Electron ; Protein Conformation ; Protein Multimerization ; Viral Nonstructural Proteins/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-11-29
    Description: DNA interstrand cross-links (ICLs) are highly toxic lesions associated with cancer and degenerative diseases. ICLs can be repaired by the Fanconi anemia (FA) pathway and through FA-independent processes involving the FAN1 nuclease. In this work, FAN1-DNA crystal structures and biochemical data reveal that human FAN1 cleaves DNA successively at every third nucleotide. In vitro, this exonuclease mechanism allows FAN1 to excise an ICL from one strand through flanking incisions. DNA access requires a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap, suggesting that FAN1 action is coupled to DNA synthesis or recombination. FAN1's mechanism of ICL excision is well suited for processing other localized DNA adducts as well.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Renjing -- Persky, Nicole S -- Yoo, Barney -- Ouerfelli, Ouathek -- Smogorzewska, Agata -- Elledge, Stephen J -- Pavletich, Nikola P -- P30 CA008748/CA/NCI NIH HHS/ -- R01 HL120922/HL/NHLBI NIH HHS/ -- R01HL120922/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1127-30. doi: 10.1126/science.1258973.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA. ; Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA. Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA. ; Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. pavletin@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430771" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/biosynthesis/*chemistry/genetics ; DNA Adducts/*chemistry/genetics ; *DNA Repair ; DNA Replication ; Exodeoxyribonucleases/*chemistry/genetics ; Humans ; Nucleic Acid Conformation ; Protein Conformation ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-11-08
    Description: The cell tropism of human noroviruses and the development of an in vitro infection model remain elusive. Although susceptibility to individual human norovirus strains correlates with an individual's histo-blood group antigen (HBGA) profile, the biological basis of this restriction is unknown. We demonstrate that human and mouse noroviruses infected B cells in vitro and likely in vivo. Human norovirus infection of B cells required the presence of HBGA-expressing enteric bacteria. Furthermore, mouse norovirus replication was reduced in vivo when the intestinal microbiota was depleted by means of oral antibiotic administration. Thus, we have identified B cells as a cellular target of noroviruses and enteric bacteria as a stimulatory factor for norovirus infection, leading to the development of an in vitro infection model for human noroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Melissa K -- Watanabe, Makiko -- Zhu, Shu -- Graves, Christina L -- Keyes, Lisa R -- Grau, Katrina R -- Gonzalez-Hernandez, Mariam B -- Iovine, Nicole M -- Wobus, Christiane E -- Vinje, Jan -- Tibbetts, Scott A -- Wallet, Shannon M -- Karst, Stephanie M -- R01 AI080611/AI/NIAID NIH HHS/ -- R21 AI103961/AI/NIAID NIH HHS/ -- T90 DE021990/DE/NIDCR NIH HHS/ -- T90 DE021990-02/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):755-9. doi: 10.1126/science.1257147.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA. ; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA. Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA. ; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA. ; Department of Medicine, Division of Infectious Diseases, University of Florida, Gainesville, FL, USA. ; Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA. ; Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA. skarst@ufl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; B-Lymphocytes/immunology/*virology ; Caliciviridae Infections/*immunology/microbiology/virology ; Cell Line ; Enterobacteriaceae/drug effects/*physiology ; Gastroenteritis/*immunology/microbiology/virology ; Genome, Viral/genetics/physiology ; Homeodomain Proteins/genetics ; Humans ; Intestines/immunology/*microbiology ; Mice ; Mice, Mutant Strains ; Norovirus/*physiology ; Peyer's Patches/immunology/virology ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-07-12
    Description: Peptidoglycan (PG) is a polysaccharide matrix that protects bacteria from osmotic lysis. Inhibition of its biogenesis is a proven strategy for killing bacteria with antibiotics. The assembly of PG requires disaccharide-pentapeptide building blocks attached to a polyisoprene lipid carrier called lipid II. Although the stages of lipid II synthesis are known, the identity of the essential flippase that translocates it across the cytoplasmic membrane for PG polymerization is unclear. We developed an assay for lipid II flippase activity and used a chemical genetic strategy to rapidly and specifically block flippase function. We combined these approaches to demonstrate that MurJ is the lipid II flippase in Escherichia coli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sham, Lok-To -- Butler, Emily K -- Lebar, Matthew D -- Kahne, Daniel -- Bernhardt, Thomas G -- Ruiz, Natividad -- F32 GM103056/GM/NIGMS NIH HHS/ -- F32GM103056/GM/NIGMS NIH HHS/ -- R01 AI099144/AI/NIAID NIH HHS/ -- R01 GM076710/GM/NIGMS NIH HHS/ -- R01 GM100951/GM/NIGMS NIH HHS/ -- R01AI099144/AI/NIAID NIH HHS/ -- R01GM100951/GM/NIGMS NIH HHS/ -- R01GM76710/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):220-2. doi: 10.1126/science.1254522.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Microbiology, Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. thomas_bernhardt@hms.harvard.edu ruiz.82@osu.edu. ; Department of Microbiology, Ohio State University, Columbus, OH 43210, USA. thomas_bernhardt@hms.harvard.edu ruiz.82@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013077" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins/antagonists & inhibitors/chemistry/*physiology ; Mesylates/pharmacology ; Models, Molecular ; Peptidoglycan/*biosynthesis/chemistry ; Phospholipid Transfer Proteins/antagonists & inhibitors/chemistry/*physiology ; Protein Conformation ; Uridine Diphosphate N-Acetylmuramic Acid/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-11-23
    Description: Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for 〉99% of schistosomiasis cases worldwide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valentim, Claudia L L -- Cioli, Donato -- Chevalier, Frederic D -- Cao, Xiaohang -- Taylor, Alexander B -- Holloway, Stephen P -- Pica-Mattoccia, Livia -- Guidi, Alessandra -- Basso, Annalisa -- Tsai, Isheng J -- Berriman, Matthew -- Carvalho-Queiroz, Claudia -- Almeida, Marcio -- Aguilar, Hector -- Frantz, Doug E -- Hart, P John -- LoVerde, Philip T -- Anderson, Timothy J C -- 098051/Wellcome Trust/United Kingdom -- 5R21-AI072704/AI/NIAID NIH HHS/ -- 5R21-AI096277/AI/NIAID NIH HHS/ -- C06 RR013556/RR/NCRR NIH HHS/ -- HHSN272201000005I/PHS HHS/ -- R01 AI097576/AI/NIAID NIH HHS/ -- R01-AI097576/AI/NIAID NIH HHS/ -- R21 AI072704/AI/NIAID NIH HHS/ -- R21 AI096277/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1385-9. doi: 10.1126/science.1243106. Epub 2013 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24263136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drug Resistance/*genetics ; Gene Knockdown Techniques ; Genetic Linkage ; Helminth Proteins/*genetics ; Humans ; Molecular Sequence Data ; Mutation ; Oxamniquine/*pharmacology ; Phylogeny ; Protein Conformation ; Quantitative Trait Loci ; RNA Interference ; Schistosoma mansoni/*drug effects/*genetics ; Schistosomicides/*pharmacology ; Sulfotransferases/chemistry/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-07-28
    Description: The essential bacterial protein FtsZ is a guanosine triphosphatase that self-assembles into a structure at the division site termed the "Z ring". During cytokinesis, the Z ring exerts a constrictive force on the membrane by using the chemical energy of guanosine triphosphate hydrolysis. However, the structural basis of this constriction remains unresolved. Here, we present the crystal structure of a guanosine diphosphate-bound Mycobacterium tuberculosis FtsZ protofilament, which exhibits a curved conformational state. The structure reveals a longitudinal interface that is important for function. The protofilament curvature highlights a hydrolysis-dependent conformational switch at the T3 loop that leads to longitudinal bending between subunits, which could generate sufficient force to drive cytokinesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ying -- Hsin, Jen -- Zhao, Lingyun -- Cheng, Yiwen -- Shang, Weina -- Huang, Kerwyn Casey -- Wang, Hong-Wei -- Ye, Sheng -- 1F32GM100677-01A1/GM/NIGMS NIH HHS/ -- DP2 OD006466/OD/NIH HHS/ -- DP2OD006466/OD/NIH HHS/ -- F32 GM100677/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, P.R. China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/physiology ; Crystallography, X-Ray ; *Cytokinesis ; Cytoskeletal Proteins/*chemistry/genetics/*metabolism ; Escherichia coli/chemistry ; Guanosine Diphosphate/chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mycobacterium tuberculosis/*chemistry/physiology ; Point Mutation ; Protein Conformation ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Staphylococcus aureus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-28
    Description: The protein density and arrangement of subunits of a complete, 32-protein, RNA polymerase II (pol II) transcription pre-initiation complex (PIC) were determined by means of cryogenic electron microscopy and a combination of chemical cross-linking and mass spectrometry. The PIC showed a marked division in two parts, one containing all the general transcription factors (GTFs) and the other pol II. Promoter DNA was associated only with the GTFs, suspended above the pol II cleft and not in contact with pol II. This structural principle of the PIC underlies its conversion to a transcriptionally active state; the PIC is poised for the formation of a transcription bubble and descent of the DNA into the pol II cleft.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Kenji -- Elmlund, Hans -- Kalisman, Nir -- Bushnell, David A -- Adams, Christopher M -- Azubel, Maia -- Elmlund, Dominika -- Levi-Kalisman, Yael -- Liu, Xin -- Gibbons, Brian J -- Levitt, Michael -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM063817/GM/NIGMS NIH HHS/ -- GM49885/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM063817/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):1238724. doi: 10.1126/science.1238724. Epub 2013 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072820" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; DNA, Fungal/chemistry/genetics ; *Gene Expression Regulation, Fungal ; Multiprotein Complexes/*chemistry ; Nucleic Acid Conformation ; Protein Conformation ; RNA Polymerase II/*chemistry ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/*chemistry ; Transcription Factors, General/*chemistry ; *Transcription Initiation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-12
    Description: Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang -- Lu, Jinfeng -- Han, Yanhong -- Fan, Xiaoxu -- Ding, Shou-Wei -- AI52447/AI/NIAID NIH HHS/ -- GM94396/GM/NIGMS NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):231-4. doi: 10.1126/science.1241911.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Mice ; Nodaviridae/genetics/*pathogenicity ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Small Interfering/*immunology ; RNA, Viral/genetics/*immunology ; Viral Nonstructural Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-03-23
    Description: Glycosylated alpha-dystroglycan (alpha-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate alpha-DG, but many genes mutated in WWS remain unknown. To identify modifiers of alpha-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated alpha-DG to enter cells. In complementary screens, we profiled cells for absence of alpha-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of alpha-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Riemersma, Moniek -- van Beusekom, Ellen -- Blomen, Vincent A -- Velds, Arno -- Kerkhoven, Ron M -- Carette, Jan E -- Topaloglu, Haluk -- Meinecke, Peter -- Wessels, Marja W -- Lefeber, Dirk J -- Whelan, Sean P -- van Bokhoven, Hans -- Brummelkamp, Thijn R -- AI057159/AI/NIAID NIH HHS/ -- AI081842/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):479-83. doi: 10.1126/science.1233675. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Dystroglycans/*metabolism ; Female ; Glycosylation ; Haploidy ; Host-Pathogen Interactions/*genetics ; Humans ; Infant ; Lassa Fever/*genetics/virology ; Lassa virus/*physiology ; Male ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Pedigree ; Proteome/*metabolism ; *Virus Internalization ; Walker-Warburg Syndrome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-05-21
    Description: Evidence for transcriptional feedback in circadian timekeeping is abundant, yet little is known about the mechanisms underlying translational control. We found that ATAXIN-2 (ATX2), an RNA-associated protein involved in neurodegenerative disease, is a translational activator of the rate-limiting clock component PERIOD (PER) in Drosophila. ATX2 specifically interacted with TWENTY-FOUR (TYF), an activator of PER translation. RNA interference-mediated depletion of Atx2 or the expression of a mutant ATX2 protein that does not associate with polyadenylate-binding protein (PABP) suppressed behavioral rhythms and decreased abundance of PER. Although ATX2 can repress translation, depletion of Atx2 from Drosophila S2 cells inhibited translational activation by RNA-tethered TYF and disrupted the association between TYF and PABP. Thus, ATX2 coordinates an active translation complex important for PER expression and circadian rhythms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Chunghun -- Allada, Ravi -- R01NS059042/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):875-9. doi: 10.1126/science.1234785.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23687047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxins ; Cell Line ; *Circadian Rhythm ; Drosophila Proteins/*biosynthesis/genetics/metabolism ; Drosophila melanogaster/metabolism/*physiology ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Period Circadian Proteins/*biosynthesis ; Poly(A)-Binding Proteins/metabolism ; Protein Biosynthesis ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1442-3. doi: 10.1126/science.342.6165.1442-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357293" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Viral/chemistry/immunology ; *Drug Design ; Humans ; Infant ; Protein Conformation ; Protein Engineering ; Respiratory Syncytial Virus Infections/*prevention & control ; Respiratory Syncytial Virus Vaccines/*chemistry/immunology ; Respiratory Syncytial Viruses/*chemistry/immunology ; Viral Fusion Proteins/*chemistry/immunology ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-03
    Description: An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpenter, Susan -- Aiello, Daniel -- Atianand, Maninjay K -- Ricci, Emiliano P -- Gandhi, Pallavi -- Hall, Lisa L -- Byron, Meg -- Monks, Brian -- Henry-Bezy, Meabh -- Lawrence, Jeanne B -- O'Neill, Luke A J -- Moore, Melissa J -- Caffrey, Daniel R -- Fitzgerald, Katherine A -- AI067497/AI/NIAID NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 AI067497/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):789-92. doi: 10.1126/science.1240925. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Cyclooxygenase 2/genetics ; Cytokines/genetics/metabolism ; Cytosol/metabolism ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/metabolism ; Immunity, Innate/*genetics ; Inflammation/*genetics ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Mice ; Models, Immunological ; RNA Interference ; RNA, Long Noncoding/*genetics/metabolism ; Toll-Like Receptors/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1436. doi: 10.1126/science.342.6165.1436-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357287" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation ; Cloning, Organism/*methods ; Female ; Humans ; *Induced Pluripotent Stem Cells ; Nuclear Transfer Techniques ; Pregnancy ; *Research Embryo Creation ; Surrogate Mothers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633482/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633482/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ward, Andrew B -- Sali, Andrej -- Wilson, Ian A -- P01 AI082362/AI/NIAID NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):913-5. doi: 10.1126/science.1228565.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA. abward@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430643" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Bacterial Secretion Systems ; Biochemistry/*methods ; Chromatin/chemistry ; Computational Biology ; Macromolecular Substances/*chemistry ; *Models, Molecular ; Molecular Biology/*methods ; Molecular Structure ; Multiprotein Complexes/*chemistry ; Proteasome Endopeptidase Complex/chemistry ; Protein Conformation ; Proteins/*chemistry ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-11-30
    Description: In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Haijun -- Zhang, Hao -- Niedzwiedzki, Dariusz M -- Prado, Mindy -- He, Guannan -- Gross, Michael L -- Blankenship, Robert E -- 8 P41 GM103422-35/GM/NIGMS NIH HHS/ -- P41 GM103422/GM/NIGMS NIH HHS/ -- P41 RR000954/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1104-7. doi: 10.1126/science.1242321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288334" target="_blank"〉PubMed〈/a〉
    Keywords: Cross-Linking Reagents/chemistry ; Energy Transfer ; Fluorescence ; *Photosynthesis ; Photosystem I Protein Complex/*chemistry/genetics/isolation & purification ; Photosystem II Protein Complex/*chemistry/genetics/isolation & purification ; Phycobilisomes/*chemistry/genetics/isolation & purification ; Protein Conformation ; Synechocystis/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-06-08
    Description: Genome-scale network reconstruction has enabled predictive modeling of metabolism for many systems. Traditionally, protein structural information has not been represented in such reconstructions. Expansion of a genome-scale model of Escherichia coli metabolism by including experimental and predicted protein structures enabled the analysis of protein thermostability in a network context. This analysis allowed the prediction of protein activities that limit network function at superoptimal temperatures and mechanistic interpretations of mutations found in strains adapted to heat. Predicted growth-limiting factors for thermotolerance were validated through nutrient supplementation experiments and defined metabolic sensitivities to heat stress, providing evidence that metabolic enzyme thermostability is rate-limiting at superoptimal temperatures. Inclusion of structural information expanded the content and predictive capability of genome-scale metabolic networks that enable structural systems biology of metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Roger L -- Andrews, Kathleen -- Kim, Donghyuk -- Li, Zhanwen -- Godzik, Adam -- Palsson, Bernhard O -- R01 GM057089/GM/NIGMS NIH HHS/ -- R01 GM101457/GM/NIGMS NIH HHS/ -- R01GM101457/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54GM094586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1220-3. doi: 10.1126/science.1234012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093-0412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744946" target="_blank"〉PubMed〈/a〉
    Keywords: Escherichia coli/*genetics/growth & development/*metabolism ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; *Hot Temperature ; *Metabolic Networks and Pathways ; Models, Biological ; Protein Conformation ; Systems Biology ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malik, Sohail -- Roeder, Robert G -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):706-7. doi: 10.1126/science.1246170.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24202169" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cryoelectron Microscopy ; Crystallography ; DNA/*chemistry ; Humans ; *Promoter Regions, Genetic ; Protein Conformation ; RNA Polymerase II/*chemistry ; Transcription Factors, General/*chemistry ; *Transcription Initiation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharon, Michal -- New York, N.Y. -- Science. 2013 May 31;340(6136):1059-60. doi: 10.1126/science.1236303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel. michal.sharon@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723227" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Mass Spectrometry/*methods ; Microscopy, Electron ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-09-07
    Description: An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) --〉 Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Yi -- Zhang, Wei -- Wang, Fei -- Qi, Jianxun -- Wu, Ying -- Song, Hao -- Gao, Feng -- Bi, Yuhai -- Zhang, Yanfang -- Fan, Zheng -- Qin, Chengfeng -- Sun, Honglei -- Liu, Jinhua -- Haywood, Joel -- Liu, Wenjun -- Gong, Weimin -- Wang, Dayan -- Shu, Yuelong -- Wang, Yu -- Yan, Jinghua -- Gao, George F -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):243-7. doi: 10.1126/science.1242917. Epub 2013 Sep 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009358" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; Crystallography, X-Ray ; Glycine/chemistry/genetics/metabolism ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/metabolism ; Humans ; Influenza A virus/*metabolism ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Protein Conformation ; Receptors, Cell Surface/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-03-23
    Description: Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shnyrova, Anna V -- Bashkirov, Pavel V -- Akimov, Sergey A -- Pucadyil, Thomas J -- Zimmerberg, Joshua -- Schmid, Sandra L -- Frolov, Vadim A -- GM42455/GM/NIGMS NIH HHS/ -- R01 GM042455/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1433-6. doi: 10.1126/science.1233920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520112" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Dynamin I/*chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Lipid Bilayers/chemistry/*metabolism ; Models, Biological ; Nanotubes ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-10
    Description: Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-beta induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Daxing -- Wu, Jiaxi -- Wu, You-Tong -- Du, Fenghe -- Aroh, Chukwuemika -- Yan, Nan -- Sun, Lijun -- Chen, Zhijian J -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 AI098569/AI/NIAID NIH HHS/ -- R01-AI093967/AI/NIAID NIH HHS/ -- R01-AI098569/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):903-6. doi: 10.1126/science.1240933. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Knockdown Techniques ; HEK293 Cells ; HIV/drug effects/enzymology/*immunology ; HIV Infections/enzymology/*immunology/virology ; HIV Reverse Transcriptase/antagonists & inhibitors ; Humans ; *Immunity, Innate ; Interferon-beta/biosynthesis ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/genetics/*metabolism ; Retroviridae/immunology ; Retroviridae Infections/enzymology/immunology/virology ; Reverse Transcriptase Inhibitors/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-03-23
    Description: Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Jiang, Yi -- Ma, Jinming -- Wu, Huixian -- Wacker, Daniel -- Katritch, Vsevolod -- Han, Gye Won -- Liu, Wei -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Gao, Xiang -- Zhou, X Edward -- Melcher, Karsten -- Zhang, Chenghai -- Bai, Fang -- Yang, Huaiyu -- Yang, Linlin -- Jiang, Hualiang -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- Xu, H Eric -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):610-4. doi: 10.1126/science.1232807. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dihydroergotamine/chemistry/*metabolism ; Ergotamine/chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Sequence Data ; Mutagenesis ; Norfenfluramine/chemistry/metabolism ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propranolol/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/*chemistry/genetics/*metabolism ; Serotonin 5-HT1 Receptor Agonists/*chemistry/*metabolism ; Tryptamines/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-01-26
    Description: The human genome contains ~50 genes that were derived from transposable elements or transposons, and many are now integral components of cellular gene expression programs. The human THAP9 gene is related to the Drosophila P-element transposase. Here, we show that human THAP9 can mobilize Drosophila P-elements in both Drosophila and human cells. Chimeric proteins formed between the Drosophila P-element transposase N-terminal THAP DNA binding domain and the C-terminal regions of human THAP9 can also mobilize Drosophila P elements. Our results indicate that human THAP9 is an active DNA transposase that, although "domesticated," still retains the catalytic activity to mobilize P transposable elements across species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majumdar, Sharmistha -- Singh, Anita -- Rio, Donald C -- R01 GM048862/GM/NIGMS NIH HHS/ -- R01 GM094890/GM/NIGMS NIH HHS/ -- R01 GM097352/GM/NIGMS NIH HHS/ -- R01 GM104385/GM/NIGMS NIH HHS/ -- R01GM094890/GM/NIGMS NIH HHS/ -- R01GM104385/GM/NIGMS NIH HHS/ -- R01GM48862/GM/NIGMS NIH HHS/ -- R01GM61987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):446-8. doi: 10.1126/science.1231789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; *DNA Transposable Elements ; Drosophila/genetics ; Genome, Human ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Transfection ; Transposases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-31
    Description: MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 A resolution, which allows us to visualize the overall architecture, locate Mg(2+) within the active site, and provide a structural basis of catalysis for this class of enzyme.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906829/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906829/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Ben C -- Zhao, Jinshi -- Gillespie, Robert A -- Kwon, Do-Yeon -- Guan, Ziqiang -- Hong, Jiyong -- Zhou, Pei -- Lee, Seok-Yong -- AI-55588/AI/NIAID NIH HHS/ -- GM-069338/GM/NIGMS NIH HHS/ -- GM-51310/GM/NIGMS NIH HHS/ -- R01 AI055588/AI/NIAID NIH HHS/ -- R01 GM051310/GM/NIGMS NIH HHS/ -- R01 GM100984/GM/NIGMS NIH HHS/ -- U54 GM069338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1012-6. doi: 10.1126/science.1236501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990562" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*enzymology ; Bacterial Proteins/*chemistry/genetics ; Catalytic Domain ; Cell Wall/*chemistry/enzymology ; Crystallography, X-Ray ; Cytoplasm/enzymology ; Membrane Proteins/*chemistry/genetics ; Periplasm/enzymology ; Protein Conformation ; Protein Structure, Secondary ; Transferases/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-05-25
    Description: The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achieve specific inhibition of the enzyme. The effect of sulfa drugs on tetrahydrobiopterin-dependent neurotransmitter biosynthesis in cell-based assays provides a rationale for some of their central nervous system-related side effects, particularly in high-dose sulfamethoxazole therapy of Pneumocystis pneumonia. Our findings reveal an unexpected aspect of the pharmacology of sulfa drugs and might translate into their improved medical use.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruki, Hirohito -- Pedersen, Miriam Gronlund -- Gorska, Katarzyna Irena -- Pojer, Florence -- Johnsson, Kai -- New York, N.Y. -- Science. 2013 May 24;340(6135):987-91. doi: 10.1126/science.1232972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EPFL, Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research in Chemical Biology, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704574" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Hydroxytryptophan/biosynthesis ; Adult ; Alcohol Oxidoreductases/*antagonists & inhibitors/*chemistry ; Anti-Infective Agents/adverse effects/*pharmacology/therapeutic use ; Biopterin/*analogs & derivatives/biosynthesis ; Cell Line ; Central Nervous System/drug effects ; Crystallography, X-Ray ; Fibroblasts/drug effects/metabolism ; Humans ; Levodopa/biosynthesis ; NADP/chemistry ; Nausea/chemically induced ; Pneumonia, Pneumocystis/drug therapy ; Protein Conformation ; Structure-Activity Relationship ; Sulfamethoxazole/adverse effects/*pharmacology/therapeutic use ; Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology/therapeutic use ; Vomiting/chemically induced
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-12-07
    Description: Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazarus, Michael B -- Jiang, Jiaoyang -- Kapuria, Vaibhav -- Bhuiyan, Tanja -- Janetzko, John -- Zandberg, Wesley F -- Vocadlo, David J -- Herr, Winship -- Walker, Suzanne -- R01 GM094263/GM/NIGMS NIH HHS/ -- R01GM094263/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1235-9. doi: 10.1126/science.1243990.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311690" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Catalytic Domain ; Crystallography, X-Ray ; Glycosylation ; Host Cell Factor C1/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; N-Acetylglucosaminyltransferases/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Proteolysis ; Pyrrolidonecarboxylic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Uridine Diphosphate N-Acetylglucosamine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-03-30
    Description: Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane alpha-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide-binding site and to the bottom of the chamber.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quigley, Andrew -- Dong, Yin Yao -- Pike, Ashley C W -- Dong, Liang -- Shrestha, Leela -- Berridge, Georgina -- Stansfeld, Phillip J -- Sansom, Mark S P -- Edwards, Aled M -- Bountra, Chas -- von Delft, Frank -- Bullock, Alex N -- Burgess-Brown, Nicola A -- Carpenter, Elisabeth P -- 092809/Wellcome Trust/United Kingdom -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1604-7. doi: 10.1126/science.1231513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539603" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Lamin Type A ; Membrane Proteins/*chemistry/genetics ; Metabolism, Inborn Errors/genetics/*metabolism ; Metalloendopeptidases/*chemistry/genetics ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*metabolism ; Progeria/genetics/metabolism ; Protein Conformation ; Protein Precursors/chemistry/genetics/*metabolism ; Substrate Specificity ; Thermolysin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-01-05
    Description: The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815447/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815447/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, Andreas -- Avvakumov, George -- Tong, Jiefei -- Fan, Yihui -- Zhao, Yanling -- Alberts, Philipp -- Persaud, Avinash -- Walker, John R -- Neculai, Ana-Mirela -- Neculai, Dante -- Vorobyov, Andrew -- Garg, Pankaj -- Beatty, Linda -- Chan, Pak-Kei -- Juang, Yu-Chi -- Landry, Marie-Claude -- Yeh, Christina -- Zeqiraj, Elton -- Karamboulas, Konstantina -- Allali-Hassani, Abdellah -- Vedadi, Masoud -- Tyers, Mike -- Moffat, Jason -- Sicheri, Frank -- Pelletier, Laurence -- Durocher, Daniel -- Raught, Brian -- Rotin, Daniela -- Yang, Jianhua -- Moran, Michael F -- Dhe-Paganon, Sirano -- Sidhu, Sachdev S -- 092076/Wellcome Trust/United Kingdom -- 092381/Wellcome Trust/United Kingdom -- 1R01NS072420-01/Canadian Institutes of Health Research/Canada -- MOP-102536/Canadian Institutes of Health Research/Canada -- MOP-111149/Canadian Institutes of Health Research/Canada -- MOP-13494/Canadian Institutes of Health Research/Canada -- MOP-57795/Canadian Institutes of Health Research/Canada -- R01 NS072420/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):590-5. doi: 10.1126/science.1230161. Epub 2013 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23287719" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Combinatorial Chemistry Techniques ; Conserved Sequence ; Drug Design ; Endopeptidases/chemistry/*metabolism ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Protease Inhibitors/chemistry/*isolation & purification/pharmacology ; Protein Conformation ; Protein Structure, Secondary ; Small Molecule Libraries ; Ubiquitin/chemistry/genetics/*metabolism ; Ubiquitin Thiolesterase/chemistry/*metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism ; Ubiquitination/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-11-10
    Description: The last step in eukaryotic translational initiation involves the joining of the large and small subunits of the ribosome, with initiator transfer RNA (Met-tRNA(i)(Met)) positioned over the start codon of messenger RNA in the P site. This step is catalyzed by initiation factor eIF5B. We used recent advances in cryo-electron microscopy (cryo-EM) to determine a structure of the eIF5B initiation complex to 6.6 angstrom resolution from 〈3% of the population, comprising just 5143 particles. The structure reveals conformational changes in eIF5B, initiator tRNA, and the ribosome that provide insights into the role of eIF5B in translational initiation. The relatively high resolution obtained from such a small fraction of a heterogeneous sample suggests a general approach for characterizing the structure of other dynamic or transient biological complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Israel S -- Bai, Xiao-Chen -- Hussain, Tanweer -- Kelley, Ann C -- Lorsch, Jon R -- Ramakrishnan, V -- Scheres, Sjors H W -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):1240585. doi: 10.1126/science.1240585. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200810" target="_blank"〉PubMed〈/a〉
    Keywords: Analytic Sample Preparation Methods ; Cryoelectron Microscopy/methods ; Eukaryotic Initiation Factors/*chemistry ; Humans ; *Peptide Chain Initiation, Translational ; Protein Conformation ; RNA, Transfer, Met/chemistry ; Ribosomes/*chemistry ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-10-12
    Description: Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vannier, Jean-Baptiste -- Sandhu, Sumit -- Petalcorin, Mark I R -- Wu, Xiaoli -- Nabi, Zinnatun -- Ding, Hao -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):239-42. doi: 10.1126/science.1241779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/genetics/*metabolism ; DNA Helicases/genetics/*metabolism ; *DNA Replication ; Genome/*genetics ; Mice ; Mice, Mutant Strains ; Proliferating Cell Nuclear Antigen/*metabolism ; Telomere/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-04-13
    Description: An ability to mimic the boundaries of biological compartments would improve our understanding of self-assembly and provide routes to new materials for the delivery of drugs and biologicals and the development of protocells. We show that short designed peptides can be combined to form unilamellar spheres approximately 100 nanometers in diameter. The design comprises two, noncovalent, heterodimeric and homotrimeric coiled-coil bundles. These are joined back to back to render two complementary hubs, which when mixed form hexagonal networks that close to form cages. This design strategy offers control over chemistry, self-assembly, reversibility, and size of such particles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fletcher, Jordan M -- Harniman, Robert L -- Barnes, Frederick R H -- Boyle, Aimee L -- Collins, Andrew -- Mantell, Judith -- Sharp, Thomas H -- Antognozzi, Massimo -- Booth, Paula J -- Linden, Noah -- Miles, Mervyn J -- Sessions, Richard B -- Verkade, Paul -- Woolfson, Derek N -- BB/G008833/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 May 3;340(6132):595-9. doi: 10.1126/science.1233936. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579496" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Microscopy, Electron, Scanning ; Models, Molecular ; Molecular Dynamics Simulation ; *Nanostructures ; Peptides/*chemistry ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-02-16
    Description: Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732582/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732582/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kern, Jan -- Alonso-Mori, Roberto -- Tran, Rosalie -- Hattne, Johan -- Gildea, Richard J -- Echols, Nathaniel -- Glockner, Carina -- Hellmich, Julia -- Laksmono, Hartawan -- Sierra, Raymond G -- Lassalle-Kaiser, Benedikt -- Koroidov, Sergey -- Lampe, Alyssa -- Han, Guangye -- Gul, Sheraz -- Difiore, Dorte -- Milathianaki, Despina -- Fry, Alan R -- Miahnahri, Alan -- Schafer, Donald W -- Messerschmidt, Marc -- Seibert, M Marvin -- Koglin, Jason E -- Sokaras, Dimosthenis -- Weng, Tsu-Chien -- Sellberg, Jonas -- Latimer, Matthew J -- Grosse-Kunstleve, Ralf W -- Zwart, Petrus H -- White, William E -- Glatzel, Pieter -- Adams, Paul D -- Bogan, Michael J -- Williams, Garth J -- Boutet, Sebastien -- Messinger, Johannes -- Zouni, Athina -- Sauter, Nicholas K -- Yachandra, Vittal K -- Bergmann, Uwe -- Yano, Junko -- GM095887/GM/NIGMS NIH HHS/ -- GM102520/GM/NIGMS NIH HHS/ -- P01 GM063210/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 GM055302/GM/NIGMS NIH HHS/ -- R01 GM095887/GM/NIGMS NIH HHS/ -- R01 GM102520/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):491-5. doi: 10.1126/science.1234273. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413188" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/methods ; Cyanobacteria/enzymology ; Electrons ; Light ; Manganese Compounds/*chemistry ; Oxidation-Reduction ; Oxides/*chemistry ; Photosystem II Protein Complex/*chemistry/radiation effects ; Protein Conformation ; Spectrometry, X-Ray Emission/methods ; Temperature ; Water/chemistry ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-12-21
    Description: X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wei -- Wacker, Daniel -- Gati, Cornelius -- Han, Gye Won -- James, Daniel -- Wang, Dingjie -- Nelson, Garrett -- Weierstall, Uwe -- Katritch, Vsevolod -- Barty, Anton -- Zatsepin, Nadia A -- Li, Dianfan -- Messerschmidt, Marc -- Boutet, Sebastien -- Williams, Garth J -- Koglin, Jason E -- Seibert, M Marvin -- Wang, Chong -- Shah, Syed T A -- Basu, Shibom -- Fromme, Raimund -- Kupitz, Christopher -- Rendek, Kimberley N -- Grotjohann, Ingo -- Fromme, Petra -- Kirian, Richard A -- Beyerlein, Kenneth R -- White, Thomas A -- Chapman, Henry N -- Caffrey, Martin -- Spence, John C H -- Stevens, Raymond C -- Cherezov, Vadim -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1521-4. doi: 10.1126/science.1244142.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357322" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/*instrumentation/*methods ; Humans ; Lasers ; Protein Conformation ; Receptor, Serotonin, 5-HT2B/chemistry/radiation effects ; Receptors, G-Protein-Coupled/*chemistry/radiation effects ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forrest, Lucy R -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):399-401. doi: 10.1126/science.1228465.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational Structural Biology Group, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany. lucy.forrest@biophys.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349276" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cell Membrane/chemistry ; Ion Channels/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-03-09
    Description: Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shilagardi, Khurts -- Li, Shuo -- Luo, Fengbao -- Marikar, Faiz -- Duan, Rui -- Jin, Peng -- Kim, Ji Hoon -- Murnen, Katherine -- Chen, Elizabeth H -- R01 GM098816/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):359-63. doi: 10.1126/science.1234781. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470732" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules/genetics/*metabolism ; *Cell Communication ; Cell Culture Techniques ; *Cell Fusion ; Cell Line ; Cell Surface Extensions/metabolism/physiology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology ; Immunoglobulins/genetics/metabolism ; Membrane Glycoproteins/genetics/*metabolism ; Membrane Proteins/genetics/metabolism ; Muscle Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-24
    Description: Many studies have implicated a role for conformational motions during the catalytic cycle, acting to optimize the binding pocket or facilitate product release, but a more intimate role in the chemical reaction has not been described. We address this by monitoring active-site loop motion in two protein tyrosine phosphatases (PTPs) using nuclear magnetic resonance spectroscopy. The PTPs, YopH and PTP1B, have very different catalytic rates; however, we find in both that the active-site loop closes to its catalytically competent position at rates that mirror the phosphotyrosine cleavage kinetics. This loop contains the catalytic acid, suggesting that loop closure occurs concomitantly with the protonation of the leaving group tyrosine and explains the different kinetics of two otherwise chemically and mechanistically indistinguishable enzymes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whittier, Sean K -- Hengge, Alvan C -- Loria, J Patrick -- GM47297/GM/NIGMS NIH HHS/ -- T32 GM008283/GM/NIGMS NIH HHS/ -- T32GM008283/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):899-903. doi: 10.1126/science.1241735.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23970698" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry ; Catalysis ; Catalytic Domain ; Humans ; Motion ; Nuclear Magnetic Resonance, Biomolecular ; Phosphates/*chemistry ; Protein Conformation ; Protein Tyrosine Phosphatase, Non-Receptor Type 1/*chemistry ; Protein Tyrosine Phosphatases/*chemistry ; Vanadates/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-03-23
    Description: Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for beta-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Daniel -- Wang, Chong -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Jiang, Yi -- Chu, Meihua -- Siu, Fai Yiu -- Liu, Wei -- Xu, H Eric -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):615-9. doi: 10.1126/science.1232808. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arrestin/metabolism ; Arrestins/metabolism ; Binding Sites ; Crystallography, X-Ray ; Ergolines/chemistry/metabolism ; Ergotamine/chemistry/*metabolism ; HEK293 Cells ; Humans ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/chemistry/*metabolism ; Receptor, Serotonin, 5-HT2B/*chemistry/*metabolism ; Receptors, Serotonin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2013 Sep 13;341(6151):1168-71. doi: 10.1126/science.341.6151.1168.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24030996" target="_blank"〉PubMed〈/a〉
    Keywords: *AIDS Vaccines ; Acquired Immunodeficiency Syndrome/*immunology/*prevention & control ; HIV Antibodies/*chemistry/*immunology ; HIV Envelope Protein gp120/chemistry/immunology ; HIV Envelope Protein gp41/chemistry/immunology ; Humans ; Models, Chemical ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):443-4. doi: 10.1126/science.341.6145.443.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908196" target="_blank"〉PubMed〈/a〉
    Keywords: *Artifacts ; Cryoelectron Microscopy/*methods ; HIV/immunology/*ultrastructure ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV Envelope Protein gp41/*chemistry/immunology ; Humans ; Immune System/virology ; Protein Conformation ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-07-28
    Description: The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seong A -- Pacold, Michael E -- Cervantes, Christopher L -- Lim, Daniel -- Lou, Hua Jane -- Ottina, Kathleen -- Gray, Nathanael S -- Turk, Benjamin E -- Yaffe, Michael B -- Sabatini, David M -- AI047389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM59281/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):1236566. doi: 10.1126/science.1236566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acids/metabolism ; Animals ; Cell Line ; Culture Media ; Humans ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Peptides/chemistry/*metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gura, Trisha -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1390. doi: 10.1126/science.340.6139.1390.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23788774" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cloning, Organism ; DNA Methylation ; *Embryonic Stem Cells/physiology ; Humans ; Induced Pluripotent Stem Cells/physiology ; Nuclear Transfer Techniques ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-02-23
    Description: Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here on a new class of specific, mechanism-based anti-influenza drugs that function through the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we confirm this mode of action with structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro. The similarity of their structure to that of the natural substrate and their mechanism-based design make these attractive antiviral candidates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jin-Hyo -- Resende, Ricardo -- Wennekes, Tom -- Chen, Hong-Ming -- Bance, Nicole -- Buchini, Sabrina -- Watts, Andrew G -- Pilling, Pat -- Streltsov, Victor A -- Petric, Martin -- Liggins, Richard -- Barrett, Susan -- McKimm-Breschkin, Jennifer L -- Niikura, Masahiro -- Withers, Stephen G -- G0600514/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):71-5. doi: 10.1126/science.1232552. Epub 2013 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23429702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/*chemistry/pharmacology ; Crystallography, X-Ray ; Dogs ; Enzyme Inhibitors/*chemistry/pharmacology ; Humans ; Madin Darby Canine Kidney Cells ; Neuraminidase/*antagonists & inhibitors/chemistry ; Orthomyxoviridae/*drug effects/enzymology ; Oseltamivir/chemistry/pharmacology ; Protein Conformation ; Sialic Acids/*chemistry/pharmacology ; Structure-Activity Relationship ; Zanamivir/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-07-28
    Description: Loss of function of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO, small ubiquitin-like modifier) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, whereas PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small-molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bassi, C -- Ho, J -- Srikumar, T -- Dowling, R J O -- Gorrini, C -- Miller, S J -- Mak, T W -- Neel, B G -- Raught, B -- Stambolic, V -- R37 CA49152/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):395-9. doi: 10.1126/science.1236188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888040" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Aminopyridines/pharmacology ; Animals ; Antineoplastic Agents/pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/*enzymology/metabolism ; Cisplatin/pharmacology ; DNA Breaks, Double-Stranded ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Doxorubicin/pharmacology ; Enzyme Inhibitors/pharmacology ; Female ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Morpholines/pharmacology ; Neoplasm Transplantation ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphatidylinositol 3-Kinase/antagonists & inhibitors ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Sumoylation ; Transplantation, Heterologous ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-05-11
    Description: Serum characterization and antibody isolation are transforming our understanding of the humoral immune response to viral infection. Here, we show that epitope specificities of HIV-1-neutralizing antibodies in serum can be elucidated from the serum pattern of neutralization against a diverse panel of HIV-1 isolates. We determined "neutralization fingerprints" for 30 neutralizing antibodies on a panel of 34 diverse HIV-1 strains and showed that similarity in neutralization fingerprint correlated with similarity in epitope. We used these fingerprints to delineate specificities of polyclonal sera from 24 HIV-1-infected donors and a chimeric siman-human immunodeficiency virus-infected macaque. Delineated specificities matched published specificities and were further confirmed by antibody isolation for two sera. Patterns of virus-isolate neutralization can thus afford a detailed epitope-specific understanding of neutralizing-antibody responses to viral infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgiev, Ivelin S -- Doria-Rose, Nicole A -- Zhou, Tongqing -- Kwon, Young Do -- Staupe, Ryan P -- Moquin, Stephanie -- Chuang, Gwo-Yu -- Louder, Mark K -- Schmidt, Stephen D -- Altae-Tran, Han R -- Bailer, Robert T -- McKee, Krisha -- Nason, Martha -- O'Dell, Sijy -- Ofek, Gilad -- Pancera, Marie -- Srivatsan, Sanjay -- Shapiro, Lawrence -- Connors, Mark -- Migueles, Stephen A -- Morris, Lynn -- Nishimura, Yoshiaki -- Martin, Malcolm A -- Mascola, John R -- Kwong, Peter D -- U19 AI51794/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 10;340(6133):751-6. doi: 10.1126/science.1233989.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/blood/*immunology ; Epitope Mapping ; HIV Antibodies/blood/*immunology ; HIV Infections/blood/*immunology ; HIV-1/*immunology/isolation & purification ; Humans ; Immunodominant Epitopes/chemistry/immunology ; Macaca ; Neutralization Tests ; Protein Conformation ; Serum/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-04-27
    Description: The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site O. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Leung, Sherman -- Graepel, Kevin W -- Du, Xiulian -- Yang, Yongping -- Zhou, Tongqing -- Baxa, Ulrich -- Yasuda, Etsuko -- Beaumont, Tim -- Kumar, Azad -- Modjarrad, Kayvon -- Zheng, Zizheng -- Zhao, Min -- Xia, Ningshao -- Kwong, Peter D -- Graham, Barney S -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1113-7. doi: 10.1126/science.1234914. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. mclellanja@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618766" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal, Humanized/immunology ; Antibodies, Neutralizing/chemistry/*immunology ; Crystallography, X-Ray ; Female ; Glycoproteins/chemistry/*immunology ; HEK293 Cells ; Humans ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Neutralization Tests ; Palivizumab ; Protein Conformation ; Protein Multimerization ; Respiratory Syncytial Virus Vaccines/chemistry/*immunology ; Respiratory Syncytial Viruses/*immunology/physiology ; Viral Fusion Proteins/chemistry/*immunology ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- Vogel, Gretchen -- New York, N.Y. -- Science. 2013 May 31;340(6136):1026-7. doi: 10.1126/science.340.6136.1026.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723209" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Culture Techniques ; Cell Line ; *Cloning, Organism ; Embryonic Stem Cells/*cytology ; Humans ; Oregon ; Peer Review, Research/*standards ; Scientific Misconduct ; Skin/*cytology ; Software ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-09-14
    Description: The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom-resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor-gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819204/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819204/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Qiuxiang -- Zhu, Ya -- Li, Jian -- Chen, Zhuxi -- Han, Gye Won -- Kufareva, Irina -- Li, Tingting -- Ma, Limin -- Fenalti, Gustavo -- Li, Jing -- Zhang, Wenru -- Xie, Xin -- Yang, Huaiyu -- Jiang, Hualiang -- Cherezov, Vadim -- Liu, Hong -- Stevens, Raymond C -- Zhao, Qiang -- Wu, Beili -- R01 AI100604/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- U01 GM094612/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1387-90. doi: 10.1126/science.1241475. Epub 2013 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China 201203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24030490" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cyclohexanes/*chemistry/pharmacology ; HIV Envelope Protein gp120/metabolism ; HIV Fusion Inhibitors/*chemistry/pharmacology ; HIV-1/*drug effects/physiology ; Humans ; Ligands ; Protein Conformation ; Receptors, CCR5/*chemistry/metabolism ; Receptors, CXCR4/chemistry ; Triazoles/*chemistry/pharmacology ; Virus Internalization/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulk, Arto -- Cate, Jamie H D -- R01 GM065050/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- R01-GM65050/GM/NIGMS NIH HHS/ -- R01GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1235970. doi: 10.1126/science.1235970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812721" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*enzymology ; Guanosine Triphosphate/*chemistry ; Hydrolysis ; Models, Biological ; Peptide Elongation Factor G/*chemistry ; *Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosome Subunits, Large, Bacterial/*chemistry ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowie, James U -- R01GM063919/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):398-9. doi: 10.1126/science.1228655.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA. bowie@mbi.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349275" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/*chemistry ; Hydrogen Bonding ; Lipid Bilayers/chemistry ; Membrane Proteins/*chemistry ; Models, Molecular ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Protein Subunits/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-05-11
    Description: Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trempe, Jean-Francois -- Sauve, Veronique -- Grenier, Karl -- Seirafi, Marjan -- Tang, Matthew Y -- Menade, Marie -- Al-Abdul-Wahid, Sameer -- Krett, Jonathan -- Wong, Kathy -- Kozlov, Guennadi -- Nagar, Bhushan -- Fon, Edward A -- Gehring, Kalle -- MOP-14219/Canadian Institutes of Health Research/Canada -- MOP-62714/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Parkinson Disease ; Parkinsonian Disorders ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Rats ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-05-04
    Description: Recent studies have identified several mutations in the hemagglutinin (HA) protein that allow the highly pathogenic avian H5N1 influenza A virus to transmit between mammals by airborne route. Here, we determined the complex structures of wild-type and mutant HAs derived from an Indonesia H5N1 virus bound to either avian or human receptor sialic acid analogs. A cis/trans conformational change in the glycosidic linkage of the receptor analog was observed, which explains how the H5N1 virus alters its receptor-binding preference. Furthermore, the mutant HA possessed low affinities for both avian and human receptors. Our findings provide a structural and biophysical basis for the H5N1 adaptation to acquire human, but maintain avian, receptor-binding properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Wei -- Shi, Yi -- Lu, Xishan -- Shu, Yuelong -- Qi, Jianxun -- Gao, George F -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1463-7. doi: 10.1126/science.1236787. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641058" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/genetics/*metabolism ; Humans ; Influenza A Virus, H5N1 Subtype ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Oligosaccharides/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Stability ; Receptors, Cell Surface/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-07-13
    Description: A classic feature of apoptotic cells is the cell-surface exposure of phosphatidylserine (PtdSer) as an "eat me" signal for engulfment. We show that the Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli. Mouse Xkr8(-/-) cells or human cancer cells in which Xkr8 expression was repressed by hypermethylation failed to expose PtdSer during apoptosis and were inefficiently engulfed by phagocytes. Xkr8 was activated directly by caspases and required a caspase-3 cleavage site for its function. CED-8, the only Caenorhabditis elegans Xk-family homolog, also promoted apoptotic PtdSer exposure and cell-corpse engulfment. Thus, Xk-family proteins have evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Jun -- Denning, Daniel P -- Imanishi, Eiichi -- Horvitz, H Robert -- Nagata, Shigekazu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):403-6. doi: 10.1126/science.1236758. Epub 2013 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23845944" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Calcium/metabolism ; Caspases/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Membrane/*metabolism ; CpG Islands ; Humans ; Macrophages/physiology ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Phagocytosis ; Phosphatidylserines/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swift, Joe -- Ivanovska, Irena L -- Buxboim, Amnon -- Harada, Takamasa -- Dingal, P C Dave P -- Pinter, Joel -- Pajerowski, J David -- Spinler, Kyle R -- Shin, Jae-Won -- Tewari, Manorama -- Rehfeldt, Florian -- Speicher, David W -- Discher, Dennis E -- 8UL1TR000003/TR/NCATS NIH HHS/ -- CA010815/CA/NCI NIH HHS/ -- HL038794/HL/NHLBI NIH HHS/ -- P01DK032094/DK/NIDDK NIH HHS/ -- P30-DK090969/DK/NIDDK NIH HHS/ -- R01 EB007049/EB/NIBIB NIH HHS/ -- R01 HL062352/HL/NHLBI NIH HHS/ -- R01EB007049/EB/NIBIB NIH HHS/ -- R01HL062352/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1240104. doi: 10.1126/science.1240104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990565" target="_blank"〉PubMed〈/a〉
    Keywords: Adipogenesis ; Animals ; *Cell Differentiation ; Collagen/analysis/chemistry/metabolism ; *Elasticity ; Extracellular Matrix/chemistry/metabolism ; Gene Expression Regulation, Developmental ; Humans ; Lamin Type A/chemistry/genetics/*metabolism ; Mesenchymal Stromal Cells/*cytology ; Mice ; Models, Biological ; Nuclear Lamina/metabolism ; *Osteogenesis/genetics ; Protein Conformation ; Proteome ; *Stress, Mechanical ; Transcription, Genetic ; Tretinoin/metabolism ; Vitamin A/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-07-03
    Description: Translocation of messenger and transfer RNA (mRNA and tRNA) through the ribosome is a crucial step in protein synthesis, whose mechanism is not yet understood. The crystal structures of three Thermus ribosome-tRNA-mRNA-EF-G complexes trapped with beta,gamma-imidoguanosine 5'-triphosphate (GDPNP) or fusidic acid reveal conformational changes occurring during intermediate states of translocation, including large-scale rotation of the 30S subunit head and body. In all complexes, the tRNA acceptor ends occupy the 50S subunit E site, while their anticodon stem loops move with the head of the 30S subunit to positions between the P and E sites, forming chimeric intermediate states. Two universally conserved bases of 16S ribosomal RNA that intercalate between bases of the mRNA may act as "pawls" of a translocational ratchet. These findings provide new insights into the molecular mechanism of ribosomal translocation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979973/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979973/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jie -- Lancaster, Laura -- Donohue, John Paul -- Noller, Harry F -- GM-105404/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- P41-GM-103393/GM/NIGMS NIH HHS/ -- R01 GM017129/GM/NIGMS NIH HHS/ -- R01 GM059140/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1236086. doi: 10.1126/science.1236086.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812722" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Fusidic Acid/chemistry ; Guanosine Triphosphate/analogs & derivatives/chemistry ; Peptide Elongation Factor G/*chemistry ; *Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosome Subunits, Large, Bacterial/*chemistry ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-02-22
    Description: The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P(1)-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P(1), resulting in the modulation of immune and stromal cell responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338336/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338336/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanson, Michael A -- Roth, Christopher B -- Jo, Euijung -- Griffith, Mark T -- Scott, Fiona L -- Reinhart, Greg -- Desale, Hans -- Clemons, Bryan -- Cahalan, Stuart M -- Schuerer, Stephan C -- Sanna, M Germana -- Han, Gye Won -- Kuhn, Peter -- Rosen, Hugh -- Stevens, Raymond C -- AI055509/AI/NIAID NIH HHS/ -- AI074564/AI/NIAID NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-08/GM/NIGMS NIH HHS/ -- R01 AI055509/AI/NIAID NIH HHS/ -- R01 AI055509-04/AI/NIAID NIH HHS/ -- U01 AI074564/AI/NIAID NIH HHS/ -- U01 AI074564-04/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-02/GM/NIGMS NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-04/MH/NIMH NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):851-5. doi: 10.1126/science.1215904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Receptos, 10835 Road to the Cure, San Diego, CA 92121, USA. mhanson@receptos.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344443" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/chemistry ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Muramidase/chemistry ; Mutagenesis ; Organophosphonates/chemistry ; Protein Conformation ; Receptors, Lysosphingolipid/agonists/antagonists & inhibitors/*chemistry/genetics ; Recombinant Fusion Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-04-21
    Description: Prion conversion from a soluble protein to an aggregated state may be involved in the cellular adaptation of yeast to the environment. However, it remains unclear whether and how cells actively use prion conversion to acquire a fitness advantage in response to environmental stress. We identified Mod5, a yeast transfer RNA isopentenyltransferase lacking glutamine/asparagine-rich domains, as a yeast prion protein and found that its prion conversion in yeast regulated the sterol biosynthetic pathway for acquired cellular resistance against antifungal agents. Furthermore, selective pressure by antifungal drugs on yeast facilitated the de novo appearance of Mod5 prion states for cell survival. Thus, phenotypic changes caused by active prion conversion under environmental selection may contribute to cellular adaptation in living organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Genjiro -- Shimazu, Naoyuki -- Tanaka, Motomasa -- New York, N.Y. -- Science. 2012 Apr 20;336(6079):355-9. doi: 10.1126/science.1219491.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517861" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/genetics/*metabolism ; Antifungal Agents/*pharmacology ; Biosynthetic Pathways ; Crosses, Genetic ; Drug Resistance, Fungal ; Ergosterol/biosynthesis ; Fluorouracil/pharmacology ; Microbial Viability ; Prions/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Fungal/metabolism ; RNA, Transfer/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/*drug effects/genetics/*physiology ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Selection, Genetic ; Solubility ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-09-29
    Description: Most living species exploit a limited range of resources. However, little is known about how tight associations build up during evolution between such specialist species and the hosts they use. We examined the dependence of Drosophila pachea on its single host, the senita cactus. Several amino acid changes in the Neverland oxygenase rendered D. pachea unable to transform cholesterol into 7-dehydrocholesterol (the first reaction in the steroid hormone biosynthetic pathway in insects) and thus made D. pachea dependent on the uncommon sterols of its host plant. The neverland mutations increase survival on the cactus's unusual sterols and are in a genomic region that faced recent positive selection. This study illustrates how relatively few genetic changes in a single gene may restrict the ecological niche of a species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729188/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729188/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, Michael -- Murat, Sophie -- Clark, Andrew G -- Gouppil, Geraldine -- Blais, Catherine -- Matzkin, Luciano M -- Guittard, Emilie -- Yoshiyama-Yanagawa, Takuji -- Kataoka, Hiroshi -- Niwa, Ryusuke -- Lafont, Rene -- Dauphin-Villemant, Chantal -- Orgogozo, Virginie -- AI064950/AI/NIAID NIH HHS/ -- R01 AI064950/AI/NIAID NIH HHS/ -- R01 HG003229/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1658-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS UMR7592, Universite Paris Diderot, Sorbonne Paris Cite, Institut Jacques Monod, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019649" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cactaceae/*metabolism ; Cholesterol/metabolism ; Conserved Sequence ; Dehydrocholesterols/metabolism ; Drosophila/genetics/*physiology ; Drosophila Proteins/chemistry/*genetics/metabolism ; *Food Chain ; Molecular Sequence Data ; *Mutation ; Oxygenases/chemistry/*genetics/metabolism ; Protein Conformation ; RNA Interference ; Selection, Genetic ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...