ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation  (1,100)
  • American Association for the Advancement of Science (AAAS)  (1,100)
Collection
Keywords
  • 1
    Publication Date: 2002-04-06
    Description: Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Celeste, Arkady -- Petersen, Simone -- Romanienko, Peter J -- Fernandez-Capetillo, Oscar -- Chen, Hua Tang -- Sedelnikova, Olga A -- Reina-San-Martin, Bernardo -- Coppola, Vincenzo -- Meffre, Eric -- Difilippantonio, Michael J -- Redon, Christophe -- Pilch, Duane R -- Olaru, Alexandru -- Eckhaus, Michael -- Camerini-Otero, R Daniel -- Tessarollo, Lino -- Livak, Ferenc -- Manova, Katia -- Bonner, William M -- Nussenzweig, Michel C -- Nussenzweig, Andre -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2002 May 3;296(5569):922-7. Epub 2002 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11934988" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/physiology ; Base Sequence ; Cell Aging ; Cell Cycle ; Cells, Cultured ; *Chromosome Aberrations ; DNA Damage ; *DNA Repair ; Female ; Gene Targeting ; Histones/chemistry/*genetics/*physiology ; Immunoglobulin Class Switching ; Infertility, Male/genetics/physiopathology ; Lymphocyte Count ; Male ; Meiosis ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Recombination, Genetic ; Spermatocytes/physiology ; T-Lymphocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundersen, Gregg G -- Bretscher, Anthony -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2040-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology and Department of Pathology, Columbia University, New York, NY 10032, USA. ggg1@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829769" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Cell Polarity ; Cyclins/metabolism ; Microtubule Proteins/metabolism ; Microtubule-Organizing Center/*metabolism/ultrastructure ; Microtubules/*metabolism/ultrastructure ; Models, Biological ; Mutation ; Myosin Heavy Chains/metabolism ; Myosin Type V/metabolism ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Saccharomyces cerevisiae/cytology/metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/metabolism ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-07-05
    Description: Raf kinases have been linked to endothelial cell survival. Here, we show that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) differentially activate Raf, resulting in protection from distinct pathways of apoptosis in human endothelial cells and chick embryo vasculature. bFGF activated Raf-1 via p21-activated protein kinase-1 (PAK-1) phosphorylation of serines 338 and 339, resulting in Raf-1 mitochondrial translocation and endothelial cell protection from the intrinsic pathway of apoptosis, independent of the mitogen-activated protein kinase kinase-1 (MEK1). In contrast, VEGF activated Raf-1 via Src kinase, leading to phosphorylation of tyrosines 340 and 341 and MEK1-dependent protection from extrinsic-mediated apoptosis. These findings implicate Raf-1 as a pivotal regulator of endothelial cell survival during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alavi, Alireza -- Hood, John D -- Frausto, Ricardo -- Stupack, Dwayne G -- Cheresh, David A -- CA45726/CA/NCI NIH HHS/ -- CA50286/CA/NCI NIH HHS/ -- CA75924/CA/NCI NIH HHS/ -- P01 CA78045/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):94-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Survival ; Cells, Cultured ; Chick Embryo ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/*cytology/drug effects ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Flavonoids/pharmacology ; Humans ; Intercellular Signaling Peptides and Proteins/pharmacology ; Lymphokines/pharmacology ; MAP Kinase Kinase 1 ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Neovascularization, Pathologic ; *Neovascularization, Physiologic/drug effects ; Phosphorylation ; Point Mutation ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins B-raf ; Proto-Oncogene Proteins c-raf/chemistry/genetics/*metabolism ; Signal Transduction ; Umbilical Veins ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; p21-Activated Kinases ; src-Family Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-11-25
    Description: Three distinct classes of drugs: dopaminergic agonists (such as D-amphetamine), serotonergic agonists (such as LSD), and glutamatergic antagonists (such as PCP) all induce psychotomimetic states in experimental animals that closely resemble schizophrenia symptoms in humans. Here we implicate a common signaling pathway in mediating these effects. In this pathway, dopamine- and an adenosine 3',5'-monophosphate (cAMP)-regulated phospho-protein of 32 kilodaltons (DARPP-32) is phosphorylated or dephosphorylated at three sites, in a pattern predicted to cause a synergistic inhibition of protein phosphatase-1 and concomitant regulation of its downstream effector proteins glycogen synthesis kinase-3 (GSK-3), cAMP response element-binding protein (CREB), and c-Fos. In mice with a genetic deletion of DARPP-32 or with point mutations in phosphorylation sites of DARPP-32, the effects of D-amphetamine, LSD, and PCP on two behavioral parameters-sensorimotor gating and repetitive movements-were strongly attenuated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Svenningsson, Per -- Tzavara, Eleni T -- Carruthers, Robert -- Rachleff, Ilan -- Wattler, Sigrid -- Nehls, Michael -- McKinzie, David L -- Fienberg, Allen A -- Nomikos, George G -- Greengard, Paul -- DA10044/DA/NIDA NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1412-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631045" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology ; Animals ; Brain/drug effects/*metabolism ; Central Nervous System Agents/*pharmacology ; Corpus Striatum/drug effects/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dextroamphetamine/pharmacology ; Dopamine/metabolism ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Frontal Lobe/drug effects/metabolism ; Genes, fos ; Glycogen Synthase Kinase 3/metabolism ; Lysergic Acid Diethylamide/pharmacology ; Male ; Mice ; Mice, Knockout ; Motor Activity/drug effects ; Nerve Tissue Proteins/metabolism ; Phencyclidine/pharmacology ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein Phosphatase 1 ; RNA, Messenger/genetics/metabolism ; Receptors, Dopamine D1/genetics/metabolism ; Reflex, Startle/drug effects ; *Signal Transduction ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-01-25
    Description: Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Yi -- Katuri, Varalakshmi -- Dillner, Allan -- Mishra, Bibhuti -- Deng, Chu-Xia -- Mishra, Lopa -- R01 DK56111/DK/NIDDK NIH HHS/ -- R01 DK58637/DK/NIDDK NIH HHS/ -- R03 DK53861/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543979" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple ; Animals ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Contractile Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Filamins ; Gene Targeting ; Genes, fos ; Liver/abnormalities/embryology/*metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins/metabolism ; Microscopy, Confocal ; Mutation ; Phenotype ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; *Signal Transduction ; Smad2 Protein ; Smad3 Protein ; Smad4 Protein ; Spectrin/genetics/*metabolism ; Trans-Activators/metabolism ; Transcriptional Activation ; Transforming Growth Factor beta/*metabolism/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-12-18
    Description: CTLA-4, a negative regulator of T cell function, was found to associate with the T cell receptor (TCR) complex zeta chain in primary T cells. The association of TCRzeta with CTLA-4, reconstituted in 293 transfectants, was enhanced by p56(lck)-induced tyrosine phosphorylation. Coexpression of the CTLA-4-associated tyrosine phosphatase, SHP-2, resulted in dephosphorylation of TCRzeta bound to CTLA-4 and abolished the p56(lck)-inducible TCRzeta-CTLA-4 interaction. Thus, CTLA-4 inhibits TCR signal transduction by binding to TCRzeta and inhibiting tyrosine phosphorylation after T cell activation. These findings have broad implications for the negative regulation of T cell function and T cell tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, K M -- Chuang, E -- Griffin, M -- Khattri, R -- Hong, D K -- Zhang, W -- Straus, D -- Samelson, L E -- Thompson, C B -- Bluestone, J A -- P01 AI35294-6/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2263-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ben May Institute for Cancer Research, and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856951" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, Differentiation/*metabolism ; CTLA-4 Antigen ; Cell Line ; Cells, Cultured ; Humans ; *Immunoconjugates ; Intracellular Signaling Peptides and Proteins ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Models, Immunological ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/genetics/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; SH2 Domain-Containing Protein Tyrosine Phosphatases ; *Signal Transduction ; T-Lymphocytes/*immunology ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1998-08-28
    Description: A large protein complex mediates the phosphorylation of the inhibitor of kappaB (IkappaB), which results in the activation of nuclear factor kappaB (NF-kappaB). Two subunits of this complex, IkappaB kinase alpha (IKKalpha) and IkappaB kinase beta (IKKbeta), are required for NF-kappaB activation. Purified recombinant IKKalpha and IKKbeta expressed in insect cells were used to demonstrate that each protein can directly phosphorylate IkappaB proteins. IKKalpha and IKKbeta were found to form both homodimers and heterodimers. Both IKKalpha and IKKbeta phosphorylated IkappaB bound to NF-kappaB more efficiently than they phosphorylated free IkappaB. This result explains how free IkappaB can accumulate in cells in which IKK is still active and thus can contribute to the termination of NF-kappaB activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zandi, E -- Chen, Y -- Karin, M -- AI 43477/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Dimerization ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; Leucine Zippers ; Mutation ; NF-kappa B/antagonists & inhibitors/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Spodoptera ; Transcription Factor RelB ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1998-11-30
    Description: The NPH1 gene of Arabidopsis thaliana encodes a 120-kilodalton serine-threonine protein kinase hypothesized to function as a photoreceptor for phototropism. When expressed in insect cells, the NPH1 protein is phosphorylated in response to blue light irradiation. The biochemical and photochemical properties of the photosensitive protein reflect those of the native protein in microsomal membranes. Recombinant NPH1 noncovalently binds flavin mononucleotide, a likely chromophore for light-dependent autophosphorylation. The fluorescence excitation spectrum of the recombinant protein is similar to the action spectrum for phototropism, consistent with the conclusion that NPH1 is an autophosphorylating flavoprotein photoreceptor mediating phototropic responses in higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christie, J M -- Reymond, P -- Powell, G K -- Bernasconi, P -- Raibekas, A A -- Liscum, E -- Briggs, W R -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1698-701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; Cell Line ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavin Mononucleotide/metabolism ; Flavoproteins/physiology ; Genes, Plant ; Light ; Mutation ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; *Photoreceptor Cells, Invertebrate ; *Phototropism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, G-Protein-Coupled ; Recombinant Proteins/metabolism ; Spectrometry, Fluorescence ; Spodoptera ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hafen, E -- New York, N.Y. -- Science. 1998 May 22;280(5367):1212-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zoologisches Institut der Universitat Zurich, Zurich, Switzerland. hafen@zool.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9634402" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Down-Regulation ; Dual Specificity Phosphatase 6 ; Enzyme Activation ; Mitogen-Activated Protein Kinase 1 ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1200-1, 1203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10484727" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/chemistry/metabolism ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Chromatin/chemistry/*metabolism/*ultrastructure ; *Gene Expression Regulation ; Histone Acetyltransferases ; Histones/*metabolism ; Methylation ; *Mitosis ; Phosphorylation ; Protein Structure, Secondary ; Protein-Arginine N-Methyltransferases/metabolism ; Transcription Factors ; p300-CBP Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1999-11-05
    Description: The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortez, D -- Wang, Y -- Qin, J -- Elledge, S J -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550055" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/*metabolism ; Breast Neoplasms/genetics ; Cell Cycle Proteins ; Cell Line ; *DNA Damage ; *DNA Repair ; DNA, Complementary ; DNA-Binding Proteins ; Female ; Gamma Rays ; Genes, BRCA1 ; Genetic Predisposition to Disease ; HeLa Cells ; Heterozygote ; Humans ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1999-04-09
    Description: Phosphorylation of inhibitor of kappa B (IkappaB) proteins is an important step in the activation of the transcription nuclear factor kappa B (NF-kappaB) and requires two IkappaB kinases, IKK1 (IKKalpha) and IKK2 (IKKbeta). Mice that are devoid of the IKK2 gene had extensive liver damage from apoptosis and died as embryos, but these mice could be rescued by the inactivation of the gene encoding tumor necrosis factor receptor 1. Mouse embryonic fibroblast cells that were isolated from IKK2-/- embryos showed a marked reduction in tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1alpha-induced NF-kappaB activity and an enhanced apoptosis in response to TNF-alpha. IKK1 associated with NF-kappaB essential modulator (IKKgamma/IKKAP1), another component of the IKK complex. These results show that IKK2 is essential for mouse development and cannot be substituted with IKK1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Q -- Van Antwerp, D -- Mercurio, F -- Lee, K F -- Verma, I M -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA. Signal Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Liver/cytology/*embryology ; Mice ; NF-kappa B/metabolism ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factor RelA ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1999-09-18
    Description: The bacterial pathogen Yersinia uses a type III secretion system to inject several virulence factors into target cells. One of the Yersinia virulence factors, YopJ, was shown to bind directly to the superfamily of MAPK (mitogen-activated protein kinase) kinases (MKKs) blocking both phosphorylation and subsequent activation of the MKKs. These results explain the diverse activities of YopJ in inhibiting the extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38, and nuclear factor kappa B signaling pathways, preventing cytokine synthesis and promoting apoptosis. YopJ-related proteins that are found in a number of bacterial pathogens of animals and plants may function to block MKKs so that host signaling responses can be modulated upon infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orth, K -- Palmer, L E -- Bao, Z Q -- Stewart, S -- Rudolph, A E -- Bliska, J B -- Dixon, J E -- 18024/PHS HHS/ -- AI35175/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1920-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489373" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Calcium-Calmodulin-Dependent Protein Kinases/*antagonists & inhibitors ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/*pharmacology ; HeLa Cells ; Humans ; *MAP Kinase Kinase Kinase 1 ; NF-kappa B/metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Transfection ; Virulence ; Yersinia pseudotuberculosis/genetics/metabolism/pathogenicity/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1999-09-11
    Description: To characterize the mechanism by which receptors propagate conformational changes across membranes, nitroxide spin labels were attached at strategic positions in the bacterial aspartate receptor. By collecting the electron paramagnetic resonance spectra of these labeled receptors in the presence and absence of the ligand aspartate, ligand binding was shown to generate an approximately 1 angstrom intrasubunit piston-type movement of one transmembrane helix downward relative to the other transmembrane helix. The receptor-associated phosphorylation cascade proteins CheA and CheW did not alter the ligand-induced movement. Because the piston movement is very small, the ability of receptors to produce large outcomes in response to stimuli is caused by the ability of the receptor-coupled enzymes to detect small changes in the conformation of the receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ottemann, K M -- Xiao, W -- Shin, Y K -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- GM51290/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1751-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481014" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/*metabolism ; Bacterial Proteins/metabolism ; Cell Membrane/*metabolism ; Chemotaxis ; Dimerization ; Electron Spin Resonance Spectroscopy ; Escherichia coli/metabolism ; *Escherichia coli Proteins ; Fourier Analysis ; Ligands ; Lipid Bilayers ; Membrane Proteins/metabolism ; Methylation ; *Models, Biological ; Mutagenesis ; Phosphorylation ; Protein Conformation ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Receptors, Amino Acid/*chemistry/genetics/*metabolism ; *Signal Transduction ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1999-11-13
    Description: The p42 and p44 mitogen-activated protein kinases (MAPKs), also called Erk2 and Erk1, respectively, have been implicated in proliferation as well as in differentiation programs. The specific role of the p44 MAPK isoform in the whole animal was evaluated by generation of p44 MAPK-deficient mice by homologous recombination in embryonic stem cells. The p44 MAPK-/- mice were viable, fertile, and of normal size. Thus, p44 MAPK is apparently dispensable and p42 MAPK (Erk2) may compensate for its loss. However, in p44 MAPK-/- mice, thymocyte maturation beyond the CD4+CD8+ stage was reduced by half, with a similar diminution in the thymocyte subpopulation expressing high levels of T cell receptor (CD3high). In p44 MAPK-/- thymocytes, proliferation in response to activation with a monoclonal antibody to the T cell receptor in the presence of phorbol myristate acetate was severely reduced even though activation of p42 MAPK was more sustained in these cells. The p44 MAPK apparently has a specific role in thymocyte development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pages, G -- Guerin, S -- Grall, D -- Bonino, F -- Smith, A -- Anjuere, F -- Auberger, P -- Pouyssegur, J -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1374-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France. gpages@unice.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antigens, CD/analysis ; Antigens, CD3/immunology ; Cell Differentiation ; Cell Division ; Cells, Cultured ; DNA/biosynthesis ; Enzyme Activation ; Gene Targeting ; Isoenzymes/genetics/metabolism ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/deficiency/genetics/*metabolism ; Phosphorylation ; Polymorphism, Restriction Fragment Length ; Receptors, Antigen, T-Cell, alpha-beta/analysis/physiology ; T-Lymphocyte Subsets/*cytology/enzymology/immunology ; Tetradecanoylphorbol Acetate/pharmacology ; Thymus Gland/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1999-02-26
    Description: Cell proliferation and differentiation are regulated by growth regulatory factors such as transforming growth factor-beta (TGF-beta) and the liphophilic hormone vitamin D. TGF-beta causes activation of SMAD proteins acting as coactivators or transcription factors in the nucleus. Vitamin D controls transcription of target genes through the vitamin D receptor (VDR). Smad3, one of the SMAD proteins downstream in the TGF-beta signaling pathway, was found in mammalian cells to act as a coactivator specific for ligand-induced transactivation of VDR by forming a complex with a member of the steroid receptor coactivator-1 protein family in the nucleus. Thus, Smad3 may mediate cross-talk between vitamin D and TGF-beta signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yanagisawa, J -- Yanagi, Y -- Masuhiro, Y -- Suzawa, M -- Watanabe, M -- Kashiwagi, K -- Toriyabe, T -- Kawabata, M -- Miyazono, K -- Kato, S -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1317-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/pharmacology ; COS Cells ; Calcitriol/*metabolism/pharmacology ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Histone Acetyltransferases ; Ligands ; Nuclear Receptor Coactivator 1 ; Phosphorylation ; Receptor Cross-Talk ; Receptors, Calcitriol/*metabolism ; Receptors, Cell Surface/metabolism ; *Receptors, Growth Factor ; Receptors, Retinoic Acid/metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Signal Transduction ; Smad3 Protein ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lisman, J E -- Fallon, J R -- P01 NS039321/NS/NINDS NIH HHS/ -- R01 HD023924/HD/NICHD NIH HHS/ -- R01 HD052083/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):339-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Brandeis University, Waltham, MA 02254, USA. lisman@binah.cc.brandeis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9925495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Computer Simulation ; Enzyme Activation ; Feedback ; Gene Expression ; Long-Term Potentiation ; Memory/*physiology ; Models, Neurological ; Phosphorylation ; Protein Biosynthesis ; Protein Kinase C/metabolism ; RNA, Messenger/metabolism ; Second Messenger Systems ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1999-04-09
    Description: IkappaB [inhibitor of nuclear factor kappaB (NF-kappaB)] kinase (IKK) phosphorylates IkappaB inhibitory proteins, causing their degradation and activation of transcription factor NF-kappaB, a master activator of inflammatory responses. IKK is composed of three subunits-IKKalpha and IKKbeta, which are highly similar protein kinases, and IKKgamma, a regulatory subunit. In mammalian cells, phosphorylation of two sites at the activation loop of IKKbeta was essential for activation of IKK by tumor necrosis factor and interleukin-1. Elimination of equivalent sites in IKKalpha, however, did not interfere with IKK activation. Thus, IKKbeta, not IKKalpha, is the target for proinflammatory stimuli. Once activated, IKKbeta autophosphorylated at a carboxyl-terminal serine cluster. Such phosphorylation decreased IKK activity and may prevent prolonged activation of the inflammatory response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delhase, M -- Hayakawa, M -- Chen, Y -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):309-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195894" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Leucine Zippers ; *MAP Kinase Kinase Kinase 1 ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuker, C S -- Ranganathan, R -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):650-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, University of California, San Diego, CA 92093-0649, USA. charles@flyeye.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9988659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Membrane/metabolism ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; Humans ; Models, Biological ; Mutation ; Phosphorylation ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; Receptor Cross-Talk ; Receptors, Adrenergic, beta-2/*metabolism ; *Signal Transduction ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1999-03-05
    Description: Protein tyrosine phosphatase-1B (PTP-1B) has been implicated in the negative regulation of insulin signaling. Disruption of the mouse homolog of the gene encoding PTP-1B yielded healthy mice that, in the fed state, had blood glucose concentrations that were slightly lower and concentrations of circulating insulin that were one-half those of their PTP-1B+/+ littermates. The enhanced insulin sensitivity of the PTP-1B-/- mice was also evident in glucose and insulin tolerance tests. The PTP-1B-/- mice showed increased phosphorylation of the insulin receptor in liver and muscle tissue after insulin injection in comparison to PTP-1B+/+ mice. On a high-fat diet, the PTP-1B-/- and PTP-1B+/- mice were resistant to weight gain and remained insulin sensitive, whereas the PTP-1B+/+ mice rapidly gained weight and became insulin resistant. These results demonstrate that PTP-1B has a major role in modulating both insulin sensitivity and fuel metabolism, thereby establishing it as a potential therapeutic target in the treatment of type 2 diabetes and obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elchebly, M -- Payette, P -- Michaliszyn, E -- Cromlish, W -- Collins, S -- Loy, A L -- Normandin, D -- Cheng, A -- Himms-Hagen, J -- Chan, C C -- Ramachandran, C -- Gresser, M J -- Tremblay, M L -- Kennedy, B P -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada, H3G 1Y6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10066179" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Diabetes Mellitus, Type 2/therapy ; Dietary Fats/administration & dosage ; Gene Targeting ; Glucose Tolerance Test ; Insulin/blood/*metabolism/pharmacology ; Insulin Receptor Substrate Proteins ; Insulin Resistance ; Liver/metabolism ; Male ; Mice ; Mice, Knockout ; Muscle, Skeletal/metabolism ; Obesity/*metabolism/therapy ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatases/*genetics/*metabolism ; Receptor, Insulin/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1999-04-09
    Description: The oligomeric IkappaB kinase (IKK) is composed of three polypeptides: IKKalpha and IKKbeta, the catalytic subunits, and IKKgamma, a regulatory subunit. IKKalpha and IKKbeta are similar in structure and thought to have similar function-phosphorylation of the IkappaB inhibitors in response to proinflammatory stimuli. Such phosphorylation leads to degradation of IkappaB and activation of nuclear factor kappaB transcription factors. The physiological function of these protein kinases was explored by analysis of IKKalpha-deficient mice. IKKalpha was not required for activation of IKK and degradation of IkappaB by proinflammatory stimuli. Instead, loss of IKKalpha interfered with multiple morphogenetic events, including limb and skeletal patterning and proliferation and differentiation of epidermal keratinocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Y -- Baud, V -- Delhase, M -- Zhang, P -- Deerinck, T -- Ellisman, M -- Johnson, R -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):316-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Cancer Center, University of California San Diego, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195896" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/enzymology/genetics ; Animals ; Apoptosis ; Body Patterning ; Bone and Bones/abnormalities/embryology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; Dimerization ; *Embryonic and Fetal Development ; Enzyme Activation ; Epidermis/cytology/embryology ; Female ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Keratinocytes ; Limb Deformities, Congenital/enzymology ; Male ; Mice ; *Morphogenesis ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Skin/embryology ; Skin Abnormalities/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1999-05-13
    Description: Interleukin-12 (IL-12) and type 2 NO synthase (NOS2) are crucial for defense against bacterial and parasitic pathogens, but their relationship in innate immunity is unknown. In the absence of NOS2 activity, IL-12 was unable to prevent spreading of Leishmania parasites, did not stimulate natural killer (NK) cells for cytotoxicity or interferon-gamma (IFN-gamma) release, and failed to activate Tyk2 kinase and to tyrosine phosphorylate Stat4 (the central signal transducer of IL-12) in NK cells. Activation of Tyk2 in NK cells by IFN-alpha/beta also required NOS2. Thus, NOS2-derived NO is a prerequisite for cytokine signaling and function in innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diefenbach, A -- Schindler, H -- Rollinghoff, M -- Yokoyama, W M -- Bogdan, C -- New York, N.Y. -- Science. 1999 May 7;284(5416):951-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Klinische Mikrobiologie, Immunologie und Hygiene, Universitat Erlangen, Wasserturmstrasse 3, D-91054 Erlangen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cyclic GMP/metabolism ; Cytotoxicity, Immunologic ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Immunity, Innate ; Interferon-gamma/biosynthesis/genetics ; Interferons/pharmacology ; Interleukin-12/pharmacology/*physiology ; Janus Kinase 2 ; Killer Cells, Natural/*immunology/metabolism ; *Leishmania major ; Leishmaniasis, Cutaneous/*immunology/metabolism ; Lysine/analogs & derivatives/pharmacology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/*metabolism ; Nitric Oxide Synthase Type II ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; STAT4 Transcription Factor ; *Signal Transduction ; TYK2 Kinase ; Trans-Activators/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-07-31
    Description: Many psychotropic drugs interfere with the reuptake of dopamine, norepinephrine, and serotonin. Transport capacity is regulated by kinase-linked pathways, particularly those involving protein kinase C (PKC), resulting in transporter phosphorylation and sequestration. Phosphorylation and sequestration of the serotonin transporter (SERT) were substantially impacted by ligand occupancy. Ligands that can permeate the transporter, such as serotonin or the amphetamines, prevented PKC-dependent SERT phosphorylation. Nontransported SERT antagonists such as cocaine and antidepressants were permissive for SERT phosphorylation but blocked serotonin effects. PKC-dependent SERT sequestration was also blocked by serotonin. These findings reveal activity-dependent modulation of neurotransmitter reuptake and identify previously unknown consequences of amphetamine, cocaine, and antidepressant action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramamoorthy, S -- Blakely, R D -- DA07390/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):763-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Center for Molecular Neuroscience, School of Medicine, Vanderbilt University, Nashville, TN 37232-6420, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427004" target="_blank"〉PubMed〈/a〉
    Keywords: Antidepressive Agents/metabolism/pharmacology ; Biogenic Monoamines/metabolism/pharmacology ; Biotinylation ; Carrier Proteins/antagonists & inhibitors/*metabolism ; Cell Line ; Central Nervous System Agents/metabolism/*pharmacology ; Cocaine/metabolism/pharmacology ; Dextroamphetamine/metabolism/pharmacology ; Enzyme Activation ; Humans ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*metabolism ; *Membrane Transport Proteins ; Models, Biological ; *Nerve Tissue Proteins ; Neurotransmitter Agents/metabolism/*pharmacology ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Kinases/metabolism ; Serotonin/*metabolism/pharmacology ; Serotonin Antagonists/pharmacology ; Serotonin Plasma Membrane Transport Proteins ; Serotonin Uptake Inhibitors/metabolism/pharmacology ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1999-11-13
    Description: A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Brunet, A -- West, A E -- Datta, S R -- Takasu, M A -- Greenberg, M E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 HD 24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Carrier Proteins/genetics/metabolism ; *Cell Survival ; Cells, Cultured ; Cerebellum/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Kinase 1 ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Mutation ; Neurons/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; *Protein-Serine-Threonine Kinases ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; bcl-Associated Death Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1247, 1249.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10084927" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Cell Cycle Proteins/metabolism ; Cell Nucleus/metabolism ; *Conserved Sequence ; Mitosis ; Peptidylprolyl Isomerase/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphotyrosine/metabolism ; Protein Binding ; Proteins/*chemistry/*metabolism ; *Tyrosine 3-Monooxygenase ; cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1999-12-30
    Description: The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, G -- Chen, Y G -- Ozdamar, B -- Gyuricza, C A -- Chong, P A -- Wrana, J L -- Massague, J -- Shi, Y -- CA85171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):92-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615055" target="_blank"〉PubMed〈/a〉
    Keywords: *Activin Receptors, Type I ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Smad2 Protein ; Trans-Activators/*chemistry/genetics/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2000-09-23
    Description: When DNA replication is inhibited during the synthesis (S) phase of the cell cycle, a signaling pathway (checkpoint) is activated that serves to prevent mitosis from initiating before completion of replication. This replication checkpoint acts by down-regulating the activity of the mitotic inducer cdc2-cyclin B. Here, we report the relation between chromatin structure and induction of the replication checkpoint. Chromatin was competent to initiate a checkpoint response only after the DNA was unwound and DNA polymerase alpha had been loaded. Checkpoint induction did not require new DNA synthesis on the unwound template strand but did require RNA primer synthesis by primase. These findings identify the RNA portion of the primer as an important component of the signal that activates the replication checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michael, W M -- Ott, R -- Fanning, E -- Newport, J -- 52948/PHS HHS/ -- R01GM33523-16/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2133-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA. matt@mcb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aphidicolin/pharmacology ; *CDC2-CDC28 Kinases ; Carrier Proteins/metabolism ; Chromatin/*metabolism ; Cyclin E/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; DNA Helicases/metabolism ; DNA Polymerase I/antagonists & inhibitors/metabolism ; DNA Primase/*metabolism ; *DNA Replication/drug effects ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; Mitosis ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RNA/*biosynthesis ; Recombinant Proteins/metabolism ; S Phase ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2000-10-20
    Description: Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, M -- Wang, L C -- Hymowitz, S G -- Schilbach, S -- Lee, J -- Goddard, A -- de Vos, A M -- Gao, W Q -- Dixit, V M -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Cell Line ; DNA-Binding Proteins/metabolism ; Ectodermal Dysplasia/genetics ; Ectodysplasins ; Epidermis/embryology/*metabolism ; Humans ; *I-kappa B Proteins ; In Situ Hybridization ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Morphogenesis ; NF-kappa B/metabolism ; Phosphorylation ; Point Mutation ; Protein Conformation ; Proteins/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2000-09-01
    Description: Epithelia of the vertebrate intestinal tract characteristically maintain an inflammatory hyporesponsiveness toward the lumenal prokaryotic microflora. We report the identification of enteric organisms (nonvirulent Salmonella strains) whose direct interaction with model human epithelia attenuate synthesis of inflammatory effector molecules elicited by diverse proinflammatory stimuli. This immunosuppressive effect involves inhibition of the inhibitor kappaB/nuclear factor kappaB (IkappaB/NF-kappaB) pathway by blockade of IkappaB-alpha degradation, which prevents subsequent nuclear translocation of active NF-kappaB dimer. Although phosphorylation of IkappaB-alpha occurs, subsequent polyubiquitination necessary for regulated IkappaB-alpha degradation is completely abrogated. These data suggest that prokaryotic determinants could be responsible for the unique tolerance of the gastrointestinal mucosa to proinflammatory stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neish, A S -- Gewirtz, A T -- Zeng, H -- Young, A N -- Hobert, M E -- Karmali, V -- Rao, A S -- Madara, J L -- DK-35932/DK/NIDDK NIH HHS/ -- DK-47662/DK/NIDDK NIH HHS/ -- DK09800/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1560-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. aneish@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968793" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeletal Proteins/metabolism ; DNA-Binding Proteins/*metabolism ; Dimerization ; Humans ; *I-kappa B Proteins ; Inflammation Mediators/pharmacology ; Interleukin-8/genetics/metabolism ; Intestinal Mucosa/*metabolism/*microbiology ; Leupeptins/pharmacology ; Ligases/metabolism ; NF-kappa B/genetics/*metabolism ; Phosphorylation ; Salmonella/pathogenicity/*physiology ; Salmonella typhimurium/pathogenicity/physiology ; *Trans-Activators ; Transcription Factor RelA ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2000-09-16
    Description: The inadvertent activation of the Abelson tyrosine kinase (Abl) causes chronic myelogenous leukemia (CML). A small-molecule inhibitor of Abl (STI-571) is effective in the treatment of CML. We report the crystal structure of the catalytic domain of Abl, complexed to a variant of STI-571. Critical to the binding of STI-571 is the adoption by the kinase of an inactive conformation, in which a centrally located "activation loop" is not phosphorylated. The conformation of this loop is distinct from that in active protein kinases, as well as in the inactive form of the closely related Src kinases. These results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schindler, T -- Bornmann, W -- Pellicena, P -- Miller, W T -- Clarkson, B -- Kuriyan, J -- GM29362/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 15;289(5486):1938-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratories of Molecular Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10988075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Benzamides ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Enzyme Inhibitors/chemistry/*pharmacology ; Humans ; Imatinib Mesylate ; Mice ; Models, Molecular ; Phosphorylation ; *Piperazines ; Protein Conformation ; Proto-Oncogene Proteins c-abl/*antagonists & inhibitors/chemistry/metabolism ; Pyrimidines/chemistry/*pharmacology ; Recombinant Fusion Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2000-05-29
    Description: To protect genome integrity and ensure survival, eukaryotic cells exposed to genotoxic stress cease proliferating to provide time for DNA repair. Human cells responded to ultraviolet light or ionizing radiation by rapid, ubiquitin- and proteasome-dependent protein degradation of Cdc25A, a phosphatase that is required for progression from G1 to S phase of the cell cycle. This response involved activated Chk1 protein kinase but not the p53 pathway, and the persisting inhibitory tyrosine phosphorylation of Cdk2 blocked entry into S phase and DNA replication. Overexpression of Cdc25A bypassed this mechanism, leading to enhanced DNA damage and decreased cell survival. These results identify specific degradation of Cdc25A as part of the DNA damage checkpoint mechanism and suggest how Cdc25A overexpression in human cancers might contribute to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mailand, N -- Falck, J -- Lukas, C -- Syljuasen, R G -- Welcker, M -- Bartek, J -- Lukas, J -- New York, N.Y. -- Science. 2000 May 26;288(5470):1425-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827953" target="_blank"〉PubMed〈/a〉
    Keywords: *CDC2-CDC28 Kinases ; Cell Line ; Cell Survival ; Cyclin E/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/antagonists & inhibitors/metabolism ; Cysteine Endopeptidases/metabolism ; *DNA Damage ; DNA Repair ; DNA Replication ; G1 Phase ; Humans ; Multienzyme Complexes/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Proteasome Endopeptidase Complex ; Protein Kinase Inhibitors ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Recombinant Fusion Proteins/metabolism ; S Phase ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/metabolism ; Ultraviolet Rays ; cdc25 Phosphatases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2000-11-25
    Description: Evidence for a new signaling mechanism consisting of ligand-independent lateral propagation of receptor activation in the plasma membrane is presented. We visualized the phosphorylation of green fluorescent protein (GFP)-tagged ErbB1 (ErbB1-GFP) receptors in cells focally stimulated with epidermal growth factor (EGF) covalently attached to beads. This was achieved by quantitative imaging of protein reaction states in cells by fluorescence resonance energy transfer (FRET) with global analysis of fluorescence lifetime imaging microscopy (FLIM) data. The rapid and extensive propagation of receptor phosphorylation over the entire cell after focal stimulation demonstrates a signaling wave at the plasma membrane resulting in full activation of all receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verveer, P J -- Wouters, F S -- Reynolds, A R -- Bastiaens, P I -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1567-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090353" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenicals/pharmacology ; Carbocyanines ; Cell Membrane/*metabolism ; Diffusion ; Dimerization ; Endocytosis ; Energy Transfer ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/*metabolism/pharmacology ; Fluorescence ; Fluorescent Dyes ; Green Fluorescent Proteins ; Humans ; Immunoglobulin Fab Fragments ; Ligands ; Luminescent Proteins ; Microscopy, Confocal ; Microscopy, Fluorescence ; Microspheres ; Phosphorylation ; Phosphotyrosine/immunology ; Protein Tyrosine Phosphatases/antagonists & inhibitors/metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; *Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2000-02-11
    Description: DARPP-32, a dopamine- and adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (32 kilodaltons in size), is an obligate intermediate in progesterone (P)-facilitated sexual receptivity in female rats and mice. The facilitative effect of P on sexual receptivity in female rats was blocked by antisense oligonucleotides to DARPP-32. Homozygous mice carrying a null mutation for the DARPP-32 gene exhibited minimal levels of P-facilitated sexual receptivity when compared to their wild-type littermates. P significantly increased hypothalamic cAMP levels and cAMP-dependent protein kinase activity. These increases were not inhibited by a D1 subclass dopamine receptor antagonist. P also enhanced phosphorylation of DARPP-32 on threonine 34 in the hypothalamus of mice. DARPP-32 activation is thus an obligatory step in progestin receptor regulation of sexual receptivity in rats and mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mani, S K -- Fienberg, A A -- O'Callaghan, J P -- Snyder, G L -- Allen, P B -- Dash, P K -- Moore, A N -- Mitchell, A J -- Bibb, J -- Greengard, P -- O'Malley, B W -- MH49662/MH/NIMH NIH HHS/ -- MH57442/MH/NIMH NIH HHS/ -- NS 35457/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1053-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. smani@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669419" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; Animals ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dopamine/pharmacology ; Dopamine Agonists/pharmacology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Female ; Hypothalamus/metabolism ; Injections, Intraventricular ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; *Nerve Tissue Proteins ; Oligonucleotides, Antisense/pharmacology ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Posture ; Progesterone/*pharmacology ; Proteins/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Progesterone/metabolism ; Serotonin/pharmacology ; Sexual Behavior, Animal/*drug effects ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2001-03-27
    Description: Receptor-mediated activation of heterotrimeric GTP-binding proteins (G-proteins) was visualized in living Dictyostelium discoideum cells by monitoring fluorescence resonance energy transfer (FRET) between alpha- and beta- subunits fused to cyan and yellow fluorescent proteins. The G-protein heterotrimer rapidly dissociated and reassociated upon addition and removal of chemoattractant. During continuous stimulation, G-protein activation reached a dose-dependent steady-state level. Even though physiological responses subsided, the activation did not decline. Thus, adaptation occurs at another point in the signaling pathway, and occupied receptors, whether or not they are phosphorylated, catalyze the G-protein cycle. Construction of similar energy-transfer pairs of mammalian G-proteins should enable direct in situ mechanistic studies and applications such as drug screening and identifying ligands of newly found G-protein-coupled receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janetopoulos, C -- Jin, T -- Devreotes, P -- GM28007/GM/NIGMS NIH HHS/ -- GM34933/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264536" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Bacterial Proteins ; Cyclic AMP/metabolism/*pharmacology ; Deoxyadenine Nucleotides/pharmacology ; Dictyostelium/*metabolism ; Energy Transfer ; Fluorescence ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Kinetics ; Ligands ; Luminescent Proteins ; Microscopy, Fluorescence ; Phosphorylation ; Receptors, Cyclic AMP/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Spectrometry, Fluorescence ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2001-11-03
    Description: The Arabidopsis thaliana response regulator 4, expressed in response to phytochrome B action, specifically interacts with the extreme amino-terminus of the photoreceptor. The response regulator 4 stabilizes the active Pfr form of phytochrome B in yeast and in planta, thus elevates the level of the active photoreceptor in vivo. Accordingly, transgenic Arabidopsis plants overexpressing the response regulator 4 display hypersensitivity to red light but not to light of other wavelengths. We propose that the response regulator 4 acts as an output element of a two-component system that modulates red light signaling on the level of the phytochrome B photoreceptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sweere, U -- Eichenberg, K -- Lohrmann, J -- Mira-Rodado, V -- Baurle, I -- Kudla, J -- Nagy, F -- Schafer, E -- Harter, K -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1108-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biologie II / Botanik, Universitat Freiburg, Schanzlestrasse 1, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691995" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/radiation effects ; Arabidopsis Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Darkness ; Genes, Plant ; *Light ; Phenotype ; Phosphorylation ; *Photoreceptor Cells ; Phytochrome/chemistry/*metabolism ; Phytochrome B ; Plants, Genetically Modified ; Protein Conformation ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; *Transcription Factors ; Two-Hybrid System Techniques ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-11
    Description: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a "histone code" that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenuwein, T -- Allis, C D -- GM53512/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1074-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP) at the Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria. jenuwein@nt.imp.univie.ac.at〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498575" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/ultrastructure ; *Gene Expression Regulation ; *Gene Silencing ; Genomic Imprinting ; Histones/chemistry/genetics/*metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2001-11-27
    Description: Adhesions between fibroblastic cells and extracellular matrix have been studied extensively in vitro, but little is known about their in vivo counterparts. Here, we characterized the composition and function of adhesions in three-dimensional (3D) matrices derived from tissues or cell culture. "3D-matrix adhesions" differ from focal and fibrillar adhesions characterized on 2D substrates in their content of alpha5beta1 and alphavbeta3 integrins, paxillin, other cytoskeletal components, and tyrosine phosphorylation of focal adhesion kinase (FAK). Relative to 2D substrates, 3D-matrix interactions also display enhanced cell biological activities and narrowed integrin usage. These distinctive in vivo 3D-matrix adhesions differ in structure, localization, and function from classically described in vitro adhesions, and as such they may be more biologically relevant to living organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cukierman, E -- Pankov, R -- Stevens, D R -- Yamada, K M -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1708-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721053" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Adhesion/drug effects ; Cell Culture Techniques/methods ; Cell Division ; Cell Movement ; Cell Size ; Cells, Cultured ; Culture Techniques/methods ; Cycloheximide/pharmacology ; Cytoskeletal Proteins/metabolism ; Extracellular Matrix/chemistry/metabolism ; Fibroblasts/chemistry/*cytology/*metabolism ; Fibronectins/metabolism ; Fluorescent Antibody Technique, Indirect ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Focal Adhesions/chemistry/metabolism ; Glutaral/metabolism ; Humans ; Imaging, Three-Dimensional/*methods ; Integrins/metabolism ; Mice ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Conformation ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: How does human immunodeficiency virus (HIV) gain access to the carefully guarded nucleus of the host cell? In a Perspective, Segura-Totten and Wilson elaborate on new findings (de Noronha et al.) showing that the HIV protein Vpr is crucial for causing transient herniations in the host cell nuclear envelope. These ruptures are sufficient to enable the preintegration complexes of invading virions to enter the nucleus and to integrate with host cell DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segura-Totten, M -- Wilson, K L -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1016-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691977" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/*metabolism/*virology ; Chromatin/metabolism ; DNA-Binding Proteins/metabolism ; G2 Phase ; Gene Products, vpr/genetics/*metabolism ; HIV/*physiology ; HeLa Cells ; Humans ; Lamins ; Membrane Proteins/metabolism ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Proteins/metabolism ; Phosphorylation ; Thymopoietins/metabolism ; *Virus Integration ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2001-03-10
    Description: GADS is an adaptor protein implicated in CD3 signaling because of its ability to link SLP-76 to LAT. A GADS-deficient mouse was generated by gene targeting, and the function of GADS in T cell development and activation was examined. GADS- CD4-CD8- thymocytes exhibited a severe block in proliferation but still differentiated into mature T cells. GADS- thymocytes failed to respond to CD3 cross-linking in vivo and were impaired in positive and negative selection. Immunoprecipitation experiments revealed that the association between SLP-76 and LAT was uncoupled in GADS- thymocytes. These observations indicate that GADS is a critical adaptor for CD3 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoder, J -- Pham, C -- Iizuka, Y M -- Kanagawa, O -- Liu, S K -- McGlade, J -- Cheng, A M -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1987-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239162" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD3/metabolism ; Carrier Proteins/*metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Size ; Female ; Gene Targeting ; Lymphocyte Activation ; Male ; *Membrane Proteins ; Mice ; Mice, Transgenic ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; Spleen/cytology/immunology ; T-Lymphocytes/*cytology/immunology ; Thymus Gland/cytology/immunology ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2001-06-26
    Description: Clinical studies with the Abl tyrosine kinase inhibitor STI-571 in chronic myeloid leukemia demonstrate that many patients with advanced stage disease respond initially but then relapse. Through biochemical and molecular analysis of clinical material, we find that drug resistance is associated with the reactivation of BCR-ABL signal transduction in all cases examined. In six of nine patients, resistance was associated with a single amino acid substitution in a threonine residue of the Abl kinase domain known to form a critical hydrogen bond with the drug. This substitution of threonine with isoleucine was sufficient to confer STI-571 resistance in a reconstitution experiment. In three patients, resistance was associated with progressive BCR-ABL gene amplification. These studies provide evidence that genetically complex cancers retain dependence on an initial oncogenic event and suggest a strategy for identifying inhibitors of STI-571 resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorre, M E -- Mohammed, M -- Ellwood, K -- Hsu, N -- Paquette, R -- Rao, P N -- Sawyers, C L -- GM07185/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):876-80. Epub 2001 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423618" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/metabolism/pharmacology/therapeutic use ; Base Sequence ; Benzamides ; Blast Crisis/genetics ; Cell Line ; Drug Resistance, Neoplasm/genetics ; Fusion Proteins, bcr-abl/*metabolism ; Gene Amplification ; *Genes, abl ; Humans ; Hydrogen Bonding ; Imatinib Mesylate ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*drug therapy/*genetics ; Molecular Sequence Data ; Philadelphia Chromosome ; Phosphorylation ; Piperazines/metabolism/*pharmacology/therapeutic use ; Point Mutation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-crk ; Pyrimidines/metabolism/*pharmacology/therapeutic use ; Recurrence ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gottifredi, V -- Prives, C -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1851-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397937" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Cycle ; Cell Line ; Cell Nucleus/*metabolism ; Cysteine Endopeptidases/metabolism ; Cytoplasm/metabolism ; DNA Damage ; Humans ; Multienzyme Complexes/metabolism ; Nuclear Localization Signals ; Nuclear Pore/metabolism ; *Nuclear Proteins ; Phosphorylation ; Proteasome Endopeptidase Complex ; *Protein Sorting Signals ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Protein p53/chemistry/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2001-08-25
    Description: beta-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuropathological hallmarks of Alzheimer's disease, but their pathophysiological relation is unclear. Injection of beta-amyloid Abeta42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold increases in the numbers of NFTs in cell bodies within the amygdala from where neurons project to the injection sites. Gallyas silver impregnation identified NFTs that contained tau phosphorylated at serine 212/threonine 214 and serine 422. NFTs were composed of twisted filaments and occurred in 6-month-old mice as early as 18 days after Abeta42 injections. Our data support the hypothesis that Abeta42 fibrils can accelerate NFT formation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gotz, J -- Chen, F -- van Dorpe, J -- Nitsch, R M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland. goetz@bli.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520988" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/*pathology ; Amygdala/*pathology ; Amyloid beta-Peptides/administration & dosage/*metabolism ; Animals ; Brain/*pathology ; Epitopes ; Female ; Fluorescent Antibody Technique ; Humans ; Male ; Mice ; Mice, Transgenic ; Microscopy, Immunoelectron ; Mutation ; Neurofibrillary Tangles/*metabolism/pathology ; Peptide Fragments/administration & dosage/*metabolism ; Phosphorylation ; Plaque, Amyloid/*metabolism/pathology ; Protein Conformation ; Protein Isoforms ; Sex Characteristics ; tau Proteins/chemistry/genetics/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2001-09-05
    Description: We show that high doses of salicylates reverse hyperglycemia, hyperinsulinemia, and dyslipidemia in obese rodents by sensitizing insulin signaling. Activation or overexpression of the IkappaB kinase beta (IKKbeta) attenuated insulin signaling in cultured cells, whereas IKKbeta inhibition reversed insulin resistance. Thus, IKKbeta, rather than the cyclooxygenases, appears to be the relevant molecular target. Heterozygous deletion (Ikkbeta+/-) protected against the development of insulin resistance during high-fat feeding and in obese Lep(ob/ob) mice. These findings implicate an inflammatory process in the pathogenesis of insulin resistance in obesity and type 2 diabetes mellitus and identify the IKKbeta pathway as a target for insulin sensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, M -- Konstantopoulos, N -- Lee, J -- Hansen, L -- Li, Z W -- Karin, M -- Shoelson, S E -- AI43477/AI/NIAID NIH HHS/ -- DK45493/DK/NIDDK NIH HHS/ -- DK51729/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Aspirin/administration & dosage/*pharmacology ; Blood Glucose/metabolism ; Cell Line ; Dietary Fats/*administration & dosage ; Gene Deletion ; Gene Targeting ; Glucose Tolerance Test ; I-kappa B Kinase ; Insulin/administration & dosage/blood/*metabolism/pharmacology ; *Insulin Resistance ; Lipids/blood ; Liver/metabolism ; Male ; Mice ; Mice, Obese ; Muscles/metabolism ; Obesity/metabolism/*physiopathology ; Phosphorylation ; Prostaglandin-Endoperoxide Synthases/genetics/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/genetics/*metabolism ; Rats ; Rats, Zucker ; Receptor, Insulin/metabolism ; Signal Transduction ; Sodium Salicylate/administration & dosage/*pharmacology ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2001-06-09
    Description: The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Y -- Xiong, Y -- CA65572/CA/NCI NIH HHS/ -- K01 CA087580/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1910-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397945" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Fusion ; Cell Line ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; *DNA Damage ; Mice ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p14ARF ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davenport, R J -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2415-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431544" target="_blank"〉PubMed〈/a〉
    Keywords: CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; *Cell Division ; Cell Nucleus/metabolism ; *DNA Replication ; DNA, Fungal/*biosynthesis ; Fungal Proteins/metabolism ; Genes, Fungal ; Phosphorylation ; Replication Origin ; *Saccharomyces cerevisiae Proteins ; Yeasts/cytology/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: Nerve cells communicate with each other through two mechanisms, referred to as fast and slow synaptic transmission. Fast-acting neurotransmitters, e.g., glutamate (excitatory) and gamma-aminobutyric acid (GABA) (inhibitory), achieve effects on their target cells within one millisecond by virtue of opening ligand-operated ion channels. In contrast, all of the effects of the biogenic amine and peptide neurotransmitters, as well as many of the effects of glutamate and GABA, are achieved over hundreds of milliseconds to minutes by slow synaptic transmission. This latter process is mediated through an enormously more complicated sequence of biochemical steps, involving second messengers, protein kinases, and protein phosphatases. Slow-acting neurotransmitters control the efficacy of fast synaptic transmission by regulating the efficiency of neurotransmitter release from presynaptic terminals and by regulating the efficiency with which fast-acting neurotransmitters produce their effects on postsynaptic receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greengard, P -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1024-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. greengd@mail.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691979" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Animals ; Brain/*physiology ; Dopamine/physiology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Glutamic Acid/physiology ; Humans ; *Nerve Tissue Proteins ; Neurons/*physiology ; Neurotransmitter Agents/*physiology ; Phosphoprotein Phosphatases/metabolism ; Phosphoproteins/physiology ; Phosphorylation ; Presynaptic Terminals/physiology ; Protein Kinases/metabolism ; Receptors, Neurotransmitter/physiology ; Second Messenger Systems/physiology ; Signal Transduction ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, A -- Tsai, L H -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):236-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11305318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/*pharmacology ; Corpus Striatum/*drug effects/metabolism ; Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cyclin-Dependent Kinase 5 ; Cyclin-Dependent Kinases/antagonists & inhibitors/genetics/*metabolism ; Dopamine/metabolism ; Dopamine Uptake Inhibitors/*pharmacology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Mice ; Mice, Knockout ; Motor Activity/drug effects ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Phosphoprotein Phosphatases/antagonists & inhibitors/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-fos/metabolism ; Rats ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2001-11-03
    Description: The bacterial macrolide rapamycin is an efficacious anticancer agent against solid tumors. In a hypoxic environment, the increase in mass of solid tumors is dependent on the recruitment of mitogens and nutrients. When nutrient concentrations change, particularly those of essential amino acids, the mammalian Target of Rapamycin (mTOR) functions in regulatory pathways that control ribosome biogenesis and cell growth. In bacteria, ribosome biogenesis is independently regulated by amino acids and adenosine triphosphate (ATP). Here we demonstrate that the mTOR pathway is influenced by the intracellular concentration of ATP, independent of the abundance of amino acids, and that mTOR itself is an ATP sensor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dennis, P B -- Jaeschke, A -- Saitoh, M -- Fowler, B -- Kozma, S C -- Thomas, G -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1102-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691993" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Adenosine Triphosphate/*metabolism ; Amino Acids/metabolism ; Androstadienes/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Deoxyglucose/pharmacology ; Enzyme Activation ; Homeostasis ; Humans ; Insulin/pharmacology ; Kinetics ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/antagonists & inhibitors/metabolism ; Ribosomes/metabolism ; Rotenone/pharmacology ; Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2001-03-27
    Description: Protein actions are usually discussed in terms of static structures, but function requires motion. We find a strong correlation between phosphorylation-driven activation of the signaling protein NtrC and microsecond time-scale backbone dynamics. Using nuclear magnetic resonance relaxation, we characterized the motions of NtrC in three functional states: unphosphorylated (inactive), phosphorylated (active), and a partially active mutant. These dynamics are indicative of exchange between inactive and active conformations. Both states are populated in unphosphorylated NtrC, and phosphorylation shifts the equilibrium toward the active species. These results support a dynamic population shift between two preexisting conformations as the underlying mechanism of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, B F -- Lipson, D -- Wemmer, D E -- Kern, D -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2429-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264542" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Binding Sites ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Time ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-04
    Description: What do the regulation of translation initiation and glucose metabolism have to do with each other? Quite a lot, it seems, according to Sonenberg and Newgard in their Perspective. They discuss new findings that identify the kinase responsible for inactivating eIF2--a factor that is required for translation initiation (and hence protein synthesis)--when the endoplasmic reticulum is under stress. Loss of this kinase results in destruction of insulin-producing b cells in the pancreas and dysregulation of glucose homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonenberg, N -- Newgard, C B -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):818-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Endoplasmic Reticulum/*metabolism ; Eukaryotic Initiation Factor-2/*metabolism ; Gluconeogenesis ; Glucose/*metabolism ; Homeostasis ; Hyperglycemia/etiology ; Hypoglycemia/etiology ; Islets of Langerhans/enzymology/metabolism ; Liver/metabolism ; Mice ; Mutation ; Phosphorylation ; *Protein Biosynthesis ; Protein Folding ; eIF-2 Kinase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishioka, K -- Reinberg, D -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2497-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752565" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; *Gene Expression Regulation ; Histone Acetyltransferases ; Methylation ; Nuclear Proteins/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wand, A J -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA. wand@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520951" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Calcium/metabolism ; Calmodulin/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; Protein Conformation ; Thermodynamics ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2001-09-05
    Description: Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koepp, D M -- Schaefer, L K -- Ye, X -- Keyomarsi, K -- Chu, C -- Harper, J W -- Elledge, S J -- R01 AG011085/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):173-7. Epub 2001 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Breast Neoplasms/genetics/metabolism ; *CDC2-CDC28 Kinases ; *Cell Cycle ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cyclin E/*metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; Drosophila Proteins ; Drosophila melanogaster ; *F-Box Proteins ; Humans ; Mice ; Molecular Sequence Data ; Peptide Synthases/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Double-Stranded ; Recombinant Fusion Proteins/metabolism ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Transfection ; Tumor Cells, Cultured ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheney, R E -- Rodriguez, O C -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1263-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. cheneyr@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509712" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Animals ; Biological Transport ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Calmodulin-Binding Proteins/chemistry/*metabolism ; Cell Cycle ; Humans ; Intermediate Filament Proteins/metabolism ; Melanosomes/*metabolism ; Molecular Motor Proteins/*metabolism ; *Myosin Heavy Chains ; *Myosin Type V ; Nerve Tissue Proteins/chemistry/*metabolism ; Organelles/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Xenopus ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wasserman, S A -- DiNardo, S -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2495-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Genetics, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0634, USA. stevenw@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752564" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Division ; Cell Nucleus/metabolism ; Drosophila/cytology/embryology/physiology ; Drosophila Proteins/*metabolism ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/*metabolism ; Ligands ; Male ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Spermatids/cytology/physiology ; Spermatogenesis ; Stem Cells/cytology/metabolism/*physiology ; Testis/cytology ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2002-06-01
    Description: Integrins are transmembrane proteins that serve as primary sensors of the extracellular matrix (ECM) environment. In response to interactions with the ECM, integrins initiate signaling pathways that regulate cell migration, growth, and survival. Advances in imaging have contributed to the understanding of the dynamic nature of these cell-ECM interactions and the complexes that form at these sites and have provided insights into their regulation and signal organizing functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Karen H -- Slack, Jill K -- Boerner, Scott A -- Martin, Clifford C -- Parsons, J Thomas -- New York, N.Y. -- Science. 2002 May 31;296(5573):1652-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Virginia Health System, Box 800734, Charlottesville, VA 22908-0734, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040184" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Animals ; Cell Adhesion ; Cell Survival ; Extracellular Matrix/metabolism ; Focal Adhesions/metabolism ; Humans ; Integrins/*metabolism ; Phosphorylation ; *Signal Transduction ; ras Proteins/metabolism ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chicurel, M -- New York, N.Y. -- Science. 2001 Jan 12;291(5502):226-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11253206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*genetics ; Casein Kinases ; Chromosomes, Human, Pair 2/genetics ; Circadian Rhythm/*genetics ; Humans ; Mutation ; Nuclear Proteins ; Period Circadian Proteins ; Phosphorylation ; Protein Kinases/metabolism ; Proteins/*genetics/metabolism ; Sleep Disorders, Circadian Rhythm/*genetics/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2002-08-10
    Description: Intracellular signaling networks receive and process information to control cellular machines. The mitogen-activated protein kinase (MAPK) 1,2/protein kinase C (PKC) system is one such network that regulates many cellular machines, including the cell cycle machinery and autocrine/paracrine factor synthesizing machinery. We used a combination of computational analysis and experiments in mouse NIH-3T3 fibroblasts to understand the design principles of this controller network. We find that the growth factor-stimulated signaling network containing MAPK 1, 2/PKC can operate with one (monostable) or two (bistable) stable states. At low concentrations of MAPK phosphatase, the system exhibits bistable behavior, such that brief stimulus results in sustained MAPK activation. The MAPK-induced increase in the amounts of MAPK phosphatase eliminates the prolonged response capability and moves the network to a monostable state, in which it behaves as a proportional response system responding acutely to stimulus. Thus, the MAPK 1, 2/PKC controller network is flexibly designed, and MAPK phosphatase may be critical for this flexible response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhalla, Upinder S -- Ram, Prahlad T -- Iyengar, Ravi -- CA-79134/CA/NCI NIH HHS/ -- CA-81050/CA/NCI NIH HHS/ -- GM-54508/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):1018-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biological Sciences, Bangalore 560065 India. bhalla@ncbs.res.in〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169734" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adaptation, Physiological ; Animals ; *Cell Cycle Proteins ; Computer Simulation ; Dose-Response Relationship, Drug ; Dual Specificity Phosphatase 1 ; *Feedback, Physiological ; Immediate-Early Proteins/*metabolism ; *MAP Kinase Signaling System ; Mathematics ; Mice ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; Phospholipases A/antagonists & inhibitors/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-02
    Description: Although ligand activation of receptor signaling is well understood, less is known about how a cell switches off signaling by the activated receptor. In his Perspective, Gill discusses new work (Haj et al.) that visualizes one step in the process of deactivating a ligand-activated receptor tyrosine kinase--the dephosphorylation of the internalized receptor by a phosphatase in the endoplasmic reticulum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gill, Gordon N -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1654-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, San Diego, La Jolla, CA 92093-0650, USA. ggill@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872824" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/enzymology ; Endocytosis ; Endoplasmic Reticulum/*enzymology ; Endosomes/enzymology/metabolism ; Energy Transfer ; Fluorescence ; Ligands ; Lysosomes/metabolism ; Mice ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Protein Transport ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptors, Platelet-Derived Growth Factor/chemistry/*metabolism ; Ubiquitin/metabolism ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2002-01-19
    Description: Aberrant centrosome duplication is observed in many tumor cells and may contribute to genomic instability through the formation of multipolar mitotic spindles. Cyclin-dependent kinase 2 (Cdk2) is required for multiple rounds of centrosome duplication in Xenopus egg extracts but not for the initial round of replication. Egg extracts undergo periodic oscillations in the level of free calcium. We show here that chelation of calcium in egg extracts or specific inactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) blocks even initial centrosome duplication, whereas inactivation of Cdk2 does not. Duplication can be restored to inhibited extracts by addition of CaMKII and calmodulin. These results indicate that calcium, calmodulin, and CaMKII are required for an essential step in initiation of centrosome duplication. Our data suggest that calcium oscillations in the cell cycle may be linked to centrosome duplication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumoto, Yutaka -- Maller, James L -- CA46934/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):499-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799245" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *CDC2-CDC28 Kinases ; Calcium/*metabolism ; *Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Calmodulin/*metabolism/pharmacology ; Cell Extracts ; Centrosome/*metabolism ; Chelating Agents/pharmacology ; Cyclin E ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/antagonists & inhibitors/metabolism ; Egtazic Acid/*analogs & derivatives/pharmacology ; Embryo, Nonmammalian/cytology/metabolism ; Enzyme Inhibitors/pharmacology ; Fluorescent Antibody Technique ; Heparin/pharmacology ; Microtubules/metabolism/ultrastructure ; Ovum/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; *S Phase ; Xenopus ; Xenopus Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2002-04-20
    Description: Simian virus 40 (SV40) utilizes endocytosis through caveolae for infectious entry into host cells. We found that after binding to caveolae, virus particles induced transient breakdown of actin stress fibers. Actin was then recruited to virus-loaded caveolae as actin patches that served as sites for actin "tail" formation. Dynamin II was also transiently recruited. These events depended on the presence of cholesterol and on the activation of tyrosine kinases that phosphorylated proteins in caveolae. They were necessary for formation of caveolae-derived endocytic vesicles and for infection of the cell. Thus, caveolar endocytosis is ligand-triggered and involves extensive rearrangement of the actin cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelkmans, Lucas -- Puntener, Daniel -- Helenius, Ari -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):535-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Institute of Technology Zurich (ETHZ), HPM1 Building, ETH Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964480" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology/ultrastructure ; Actins/*metabolism ; Animals ; Bicyclo Compounds, Heterocyclic/pharmacology ; Caveolae/*metabolism/ultrastructure/virology ; Caveolin 1 ; Caveolins/metabolism ; Cell Line ; Cholesterol/physiology ; *Depsipeptides ; Dynamins ; *Endocytosis ; GTP Phosphohydrolases/genetics/*metabolism ; Haplorhini ; Peptides, Cyclic/pharmacology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Recombinant Fusion Proteins/metabolism ; Simian virus 40/*physiology ; Stress Fibers/metabolism ; Thiazoles/pharmacology ; Thiazolidines ; Transport Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-02
    Description: More than 2000 transcription factors are encoded in the human genome. Such proteins have often been classified according to common structural elements. But because transcription factors evolved in the service of biologic function, we propose an alternative grouping of eukaryotic transcription factors on the basis of characteristics that describe their roles within cellular regulatory circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brivanlou, Ali H -- Darnell, James E Jr -- 1RO1EY12370-03/EY/NEI NIH HHS/ -- 2RO1HD/GM32105-06A1/HD/NICHD NIH HHS/ -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):813-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Vertebrate Embryology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823631" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; *Gene Expression Regulation ; Phosphorylation ; Phosphoserine/metabolism ; Receptors, Cell Surface/metabolism ; Second Messenger Systems ; *Signal Transduction ; Transcription Factors/chemistry/*classification/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2002-03-02
    Description: When bound by extracellular ligands, receptor tyrosine kinases (RTKs) on the cell surface transmit critical signals to the cell interior. Although signal termination is less well understood, protein tyrosine phosphatase-1B (PTP1B) is implicated in the dephosphorylation and inactivation of several RTKs. However, PTP1B resides on the cytoplasmic surface of the endoplasmic reticulum (ER), so how and when it accesses RTKs has been unclear. Using fluorescence resonance energy transfer (FRET) methods, we monitored interactions between the epidermal- and platelet-derived growth factor receptors and PTP1B. PTP1B-catalyzed dephosphorylation required endocytosis of the receptors and occurred at specific sites on the surface of the ER. Most of the RTKs activated at the cell surface showed interaction with PTP1B after internalization, establishing that RTK activation and inactivation are spatially and temporally partitioned within cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haj, Fawaz G -- Verveer, Peter J -- Squire, Anthony -- Neel, Benjamin G -- Bastiaens, Philippe I H -- R01 CA49152/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1708-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872838" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Catalytic Domain ; Cell Membrane/enzymology ; Cells, Cultured ; *Endocytosis ; Endoplasmic Reticulum/*enzymology ; Energy Transfer ; Epidermal Growth Factor/metabolism/pharmacology ; Fluorescence ; Mice ; Microscopy, Confocal ; Microscopy, Fluorescence ; Phosphorylation ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Protein Transport ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases/chemistry/genetics/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Receptors, Platelet-Derived Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2002-09-07
    Description: The Golgi-localized, gamma-ear-containing, adenosine diphosphate ribosylation factor-binding proteins (GGAs) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) in the Golgi and have an essential role in lysosomal enzyme sorting. Here the GGAs and the coat protein adaptor protein-1 (AP-1) were shown to colocalize in clathrin-coated buds of the trans-Golgi networks of mouse L cells and human HeLa cells. Binding studies revealed a direct interaction between the hinge domains of the GGAs and the gamma-ear domain of AP-1. Further, AP-1 contained bound casein kinase-2 that phosphorylated GGA1 and GGA3, thereby causing autoinhibition. This could induce the directed transfer of the MPRs from GGAs to AP-1. MPRs that are defective in binding to GGAs are poorly incorporated into AP-1-containing clathrin-coated vesicles. Thus, the GGAs and AP-1 interact to package MPRs into AP-1-containing coated vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doray, Balraj -- Ghosh, Pradipta -- Griffith, Janice -- Geuze, Hans J -- Kornfeld, Stuart -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215646" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Adaptor Proteins, Vesicular Transport ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cattle ; Cell Line ; Clathrin-Coated Vesicles/metabolism ; HeLa Cells ; Humans ; L Cells (Cell Line) ; Membrane Proteins/*metabolism ; Mice ; Mutation ; Phosphorylation ; Protein Binding ; Receptor, IGF Type 2/genetics/*metabolism ; Recombinant Proteins/metabolism ; trans-Golgi Network/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2002-12-21
    Description: The immunoglobulin G (IgG)-containing B lymphocyte antigen receptor (IgG-BCR) transmits a signal distinct from that of IgM-BCR or IgD-BCR, although all three use the same signal-transducing component, Igalpha/Igbeta. Here we demonstrate that the inhibitory coreceptor CD22 down-modulates signaling through IgM-BCR and IgD-BCR, but not that through IgG-BCR, because of the IgG cytoplasmic tail, which prevents CD22 phosphorylation. These results suggest that the cytoplasmic tail of IgG specifically enhances IgG-BCR signaling by preventing CD22-mediated signal inhibition. Enhanced signaling through IgG-BCR may be involved in efficient IgG production, which is crucial for immunity to pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakabayashi, Chisato -- Adachi, Takahiro -- Wienands, Jurgen -- Tsubata, Takeshi -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2392-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510 Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Antigens, Differentiation, B-Lymphocyte/metabolism ; B-Lymphocytes/immunology/metabolism ; Calcium/metabolism ; Calcium Signaling ; *Cell Adhesion Molecules ; Cells, Cultured ; Immunoglobulin D/immunology/metabolism ; Immunoglobulin G/chemistry/immunology/*metabolism ; Intracellular Signaling Peptides and Proteins ; Lectins/metabolism ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/metabolism ; Receptors, Antigen, B-Cell/chemistry/immunology/*metabolism ; Sialic Acid Binding Ig-like Lectin 2 ; *Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2002-07-27
    Description: Checkpoint-mediated control of replicating chromosomes is essential for preventing cancer. In yeast, Rad53 kinase protects stalled replication forks from pathological rearrangements. To characterize the mechanisms controlling fork integrity, we analyzed replication intermediates formed in response to replication blocks using electron microscopy. At the forks, wild-type cells accumulate short single-stranded regions, which likely causes checkpoint activation, whereas rad53 mutants exhibit extensive single-stranded gaps and hemi-replicated intermediates, consistent with a lagging-strand synthesis defect. Further, rad53 cells accumulate Holliday junctions through fork reversal. We speculate that, in checkpoint mutants, abnormal replication intermediates begin to form because of uncoordinated replication and are further processed by unscheduled recombination pathways, causing genome instability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sogo, Jose M -- Lopes, Massimo -- Foiani, Marco -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):599-602.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, ETH Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142537" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Cycle Proteins ; Checkpoint Kinase 2 ; Cross-Linking Reagents/pharmacology ; *DNA Replication ; DNA, Fungal/biosynthesis/chemistry/*metabolism ; DNA, Single-Stranded/chemistry/*metabolism ; Furocoumarins/pharmacology ; Hydroxyurea/pharmacology ; Microscopy, Electron ; Mutation ; Nucleic Acid Conformation ; Nucleosomes/metabolism/ultrastructure ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/metabolism ; *Recombination, Genetic ; Saccharomyces cerevisiae/*genetics/*metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1998-09-11
    Description: Leptin is a hormone that regulates food intake, and its receptor (OB-Rb) is expressed primarily in the hypothalamus. Here, it is shown that OB-Rb is also expressed in human vasculature and in primary cultures of human endothelial cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In vivo, leptin induced neovascularization in corneas from normal rats but not in corneas from fa/fa Zucker rats, which lack functional leptin receptors. These observations indicate that the vascular endothelium is a target for leptin and suggest a physiological mechanism whereby leptin-induced angiogenesis may facilitate increased energy expenditure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sierra-Honigmann, M R -- Nath, A K -- Murakami, C -- Garcia-Cardena, G -- Papapetropoulos, A -- Sessa, W C -- Madge, L A -- Schechner, J S -- Schwabb, M B -- Polverini, P J -- Flores-Riveros, J R -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA. rocio_sierra-honigmann@qm.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733517" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/analysis/*physiology ; Cells, Cultured ; Corneal Neovascularization ; DNA-Binding Proteins/metabolism ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/chemistry/cytology/*physiology ; Energy Metabolism ; Humans ; Leptin ; Lipid Metabolism ; Lymphokines/pharmacology ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/pharmacology/*physiology ; Rats ; Rats, Zucker ; *Receptors, Cell Surface ; Receptors, Leptin ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1998-09-11
    Description: The p53 tumor suppressor protein is activated and phosphorylated on serine-15 in response to various DNA damaging agents. The gene product mutated in ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction pathway initiated by ionizing radiation. Immunoprecipitated ATM had intrinsic protein kinase activity and phosphorylated p53 on serine-15 in a manganese-dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly enhanced this p53-directed kinase activity of endogenous ATM. These observations, along with the fact that phosphorylation of p53 on serine-15 in response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest that ATM is a protein kinase that phosphorylates p53 in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canman, C E -- Lim, D S -- Cimprich, K A -- Taya, Y -- Tamai, K -- Sakaguchi, K -- Appella, E -- Kastan, M B -- Siliciano, J D -- CA71387/CA/NCI NIH HHS/ -- ES05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins School of Medicine, Oncology Center, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733515" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Enzyme Activation ; Humans ; Lymphocytes/metabolism/radiation effects ; Mutation ; Nuclear Proteins ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/genetics/*metabolism ; *Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; Transfection ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1998-07-17
    Description: Activation of nonreceptor protein tyrosine kinases (PTKs) is essential for T cell receptor (TCR) responsiveness; however, the function of individual PTK substrates is often uncertain. A mutant T cell line was isolated that lacked expression of SLP-76 (SH2 domain-containing leukocyte protein of 76 kilodaltons), a hematopoietically expressed adaptor protein and PTK substrate. SLP-76 was not required for TCR-induced tyrosine phosphorylation of most proteins, but was required for optimal tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), as well as Ras pathway activation. TCR-inducible gene expression was dependent on SLP-76. Thus, coupling of TCR-regulated PTKs to downstream signaling pathways requires SLP-76.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yablonski, D -- Kuhne, M R -- Kadlecek, T -- Weiss, A -- CA72531/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Howard Hughes Medical Institute, Box 0795, University of California, San Francisco, San Francisco, CA 94143-0795, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665884" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Humans ; Inositol Phosphates/metabolism ; Interleukin-2/genetics ; Isoenzymes/*metabolism ; Jurkat Cells ; *Membrane Proteins ; Mitogen-Activated Protein Kinase 1 ; NFATC Transcription Factors ; *Nuclear Proteins ; Phospholipase C gamma ; Phosphoproteins/metabolism/*physiology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/*metabolism ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection ; Type C Phospholipases/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, D J -- Evans, P R -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1327-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812899" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Protein Complex 1 ; Adaptor Protein Complex 2 ; *Adaptor Protein Complex 3 ; Adaptor Protein Complex alpha Subunits ; *Adaptor Protein Complex mu Subunits ; Adaptor Proteins, Vesicular Transport ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Endocytosis ; *Glycoproteins ; Humans ; Hydrogen Bonding ; Membrane Glycoproteins/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Sorting Signals/*chemistry/metabolism ; Protein Structure, Secondary ; Receptor, Epidermal Growth Factor/*chemistry/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1998-12-04
    Description: Targeted disruption of the gene encoding MEK kinase 1 (MEKK1), a mitogen-activated protein kinase (MAPK) kinase kinase, defined its function in the regulation of MAPK pathways and cell survival. MEKK1(-/-) embryonic stem cells from mice had lost or altered responses of the c-Jun amino-terminal kinase (JNK) to microtubule disruption and cold stress but activated JNK normally in response to heat shock, anisomycin, and ultraviolet irradiation. Activation of JNK was lost and that of extracellular signal-regulated protein kinase (ERK) was diminished in response to hyperosmolarity and serum factors in MEKK1(-/-) cells. Loss of MEKK1 expression resulted in a greater apoptotic response of cells to hyperosmolarity and microtubule disruption. When activated by specific stresses that alter cell shape and the cytoskeleton, MEKK1 signals to protect cells from apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yujiri, T -- Sather, S -- Fanger, G R -- Johnson, G L -- DK37871/DK/NIDDK NIH HHS/ -- GM30324/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, CO 80206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anisomycin/pharmacology ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Size ; *Cell Survival ; Enzyme Activation ; Gene Targeting ; JNK Mitogen-Activated Protein Kinases ; Lysophospholipids/pharmacology ; *MAP Kinase Kinase 4 ; *MAP Kinase Kinase Kinase 1 ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Nocodazole/pharmacology ; Osmolar Concentration ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/metabolism ; Stem Cells ; Temperature ; Transfection ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1998-09-04
    Description: Recruitment of the coactivator, CREB binding protein (CBP), by signal-regulated transcription factors, such as CREB [adenosine 3', 5'-monophosphate (cAMP) response element binding protein], is critical for stimulation of gene expression. The mouse pituitary cell line AtT20 was used to show that the CBP recruitment step (CREB phosphorylation on serine-133) can be uncoupled from CREB/CBP-activated transcription. CBP was found to contain a signal-regulated transcriptional activation domain that is controlled by nuclear calcium and calcium/calmodulin-dependent (CaM) protein kinase IV and by cAMP. Cytoplasmic calcium signals that stimulate the Ras mitogen-activated protein kinase signaling cascade or expression of the activated form of Ras provided the CBP recruitment signal but did not increase CBP activity and failed to activate CREB- and CBP-mediated transcription. These results identify CBP as a signal-regulated transcriptional coactivator and define a regulatory role for nuclear calcium and cAMP in CBP-dependent gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chawla, S -- Hardingham, G E -- Quinn, D R -- Bading, H -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1505-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CREB-Binding Protein ; Calcium/*metabolism ; Calcium Channels/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclic AMP/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Genes, Reporter ; Mice ; Models, Genetic ; Nuclear Proteins/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription, Genetic ; *Transcriptional Activation ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1998-02-28
    Description: The calcium-calmodulin-dependent kinase II (CaMKII) is required for hippocampal long-term potentiation (LTP) and spatial learning. In addition to its calcium-calmodulin (CaM)-dependent activity, CaMKII can undergo autophosphorylation, resulting in CaM-independent activity. A point mutation was introduced into the alphaCaMKII gene that blocked the autophosphorylation of threonine at position 286 (Thr286) of this kinase without affecting its CaM-dependent activity. The mutant mice had no N-methyl-D-aspartate receptor-dependent LTP in the hippocampal CA1 area and showed no spatial learning in the Morris water maze. Thus, the autophosphorylation of alphaCaMKII at Thr286 appears to be required for LTP and learning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giese, K P -- Fedorov, N B -- Filipkowski, R K -- Silva, A J -- AG13622/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 6;279(5352):870-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9452388" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Amino-5-phosphonovalerate/pharmacology ; 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology ; Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; Calmodulin/metabolism ; Gene Targeting ; Hippocampus/metabolism/*physiology ; *Long-Term Potentiation/drug effects ; *Maze Learning ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Patch-Clamp Techniques ; Phosphorylation ; Phosphothreonine/metabolism ; Picrotoxin/pharmacology ; Point Mutation ; Pyramidal Cells/*physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: Transforming growth factor-beta (TGF-beta) inhibits cell proliferation, and acquisition of TGF-beta resistance has been linked to tumorigenesis. A genetic screen was performed to identify complementary DNAs that abrogated TGF-beta sensitivity in mink lung epithelial cells. Ectopic expression of murine double minute 2 rescued TGF-beta-induced growth arrest in a p53-independent manner by interference with retinoblastoma susceptibility gene product (Rb)/E2F function. In human breast tumor cells, increased MDM2 expression levels correlated with TGF-beta resistance. Thus, MDM2 may confer TGF-beta resistance in a subset of tumors and may promote tumorigenesis by interference with two independent tumor suppressors, p53 and Rb.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, P -- Dong, P -- Dai, K -- Hannon, G J -- Beach, D -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2270-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856953" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/metabolism/pathology ; *Carrier Proteins ; *Cell Cycle Proteins ; *Cell Division ; Cell Line ; Cell Transformation, Neoplastic ; *DNA-Binding Proteins ; Drug Resistance, Neoplasm ; E2F Transcription Factors ; Gene Expression ; Genes, Retinoblastoma ; Genes, p53 ; Genetic Vectors ; Humans ; Mice ; Mink ; *Nuclear Proteins ; Phosphorylation ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-mdm2 ; Retinoblastoma Protein/metabolism ; Retinoblastoma-Binding Protein 1 ; Signal Transduction ; Transcription Factor DP1 ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transforming Growth Factor beta/*pharmacology/physiology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1998-06-11
    Description: The tumor suppressor PTEN is a phosphatase with sequence similarity to the cytoskeletal protein tensin. Here the cellular roles of PTEN were investigated. Overexpression of PTEN inhibited cell migration, whereas antisense PTEN enhanced migration. Integrin-mediated cell spreading and the formation of focal adhesions were down-regulated by wild-type PTEN but not by PTEN with an inactive phosphatase domain. PTEN interacted with the focal adhesion kinase FAK and reduced its tyrosine phosphorylation. Overexpression of FAK partially antagonized the effects of PTEN. Thus, PTEN phosphatase may function as a tumor suppressor by negatively regulating cell interactions with the extracellular matrix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, M -- Gu, J -- Matsumoto, K -- Aota, S -- Parsons, R -- Yamada, K M -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. mtamura@yoda.nidr.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616126" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Cell Line ; *Cell Movement ; Cell Size ; Concanavalin A ; Down-Regulation ; Ecdysone/pharmacology ; Fibronectins ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Genes, Tumor Suppressor ; Humans ; Integrins/physiology ; Mice ; Mutation ; PTEN Phosphohydrolase ; *Phosphoric Monoester Hydrolases ; Phosphorylation ; Polylysine ; Protein Tyrosine Phosphatases/genetics/metabolism/pharmacology/*physiology ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Transfection ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1999-04-02
    Description: Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, K -- Meyer, T -- GM-48113/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Department of Pharmacology and Cancer Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102820" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cells, Cultured ; Cytosol/metabolism ; Dendrites/*enzymology ; Electric Stimulation ; Glutamic Acid/pharmacology ; Green Fluorescent Proteins ; Hippocampus/cytology/*enzymology ; Isoenzymes/metabolism ; Luminescent Proteins ; Microscopy, Fluorescence ; Nerve Tissue Proteins/analysis ; Neurons/*enzymology ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Synapses/*enzymology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1999-04-24
    Description: Control of cyclin levels is critical for proper cell cycle regulation. In yeast, the stability of the G1 cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1-Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippel-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skowyra, D -- Koepp, D M -- Kamura, T -- Conrad, M N -- Conaway, R C -- Conaway, J W -- Elledge, S J -- Harper, J W -- AG11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- GM54137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Carrier Proteins/chemistry/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclins/*metabolism ; F-Box Proteins ; Fungal Proteins/*metabolism ; Ligases/metabolism ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Ubiquitin-Conjugating Enzymes ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1999-11-24
    Description: Contraction and relaxation of smooth muscle are regulated by myosin light-chain kinase and myosin phosphatase through phosphorylation and dephosphorylation of myosin light chains. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase Ialpha (cGKIalpha) mediates physiologic relaxation of vascular smooth muscle in response to nitric oxide and cGMP. It is shown here that cGKIalpha is targeted to the smooth muscle cell contractile apparatus by a leucine zipper interaction with the myosin-binding subunit (MBS) of myosin phosphatase. Uncoupling of the cGKIalpha-MBS interaction prevents cGMP-dependent dephosphorylation of myosin light chain, demonstrating that this interaction is essential to the regulation of vascular smooth muscle cell tone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surks, H K -- Mochizuki, N -- Kasai, Y -- Georgescu, S P -- Tang, K M -- Ito, M -- Lincoln, T M -- Mendelsohn, M E -- HL09330/HL/NHLBI NIH HHS/ -- HL55309/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1583-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cardiology Research Institute and Cardiology Division, Department of Medicine, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Histones/metabolism ; Humans ; Isoenzymes/chemistry/metabolism ; Leucine Zippers ; Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth, Vascular/*enzymology/physiology ; Mutagenesis, Site-Directed ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Phosphatase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Phosphorylation ; Precipitin Tests ; Rats ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1999-07-03
    Description: Most isolates of hepatitis C virus (HCV) infections are resistant to interferon, the only available therapy, but the mechanism underlying this resistance has not been defined. Here it is shown that the HCV envelope protein E2 contains a sequence identical with phosphorylation sites of the interferon-inducible protein kinase PKR and the translation initiation factor eIF2alpha, a target of PKR. E2 inhibited the kinase activity of PKR and blocked its inhibitory effect on protein synthesis and cell growth. This interaction of E2 and PKR may be one mechanism by which HCV circumvents the antiviral effect of interferon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, D R -- Shi, S T -- Romano, P R -- Barber, G N -- Lai, M M -- AI 40038/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Immunology and Howard Hughes Medical Institute, University of Southern California, School of Medicine, Los Angeles, CA 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390359" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chloramphenicol O-Acetyltransferase/biosynthesis ; Drug Resistance, Microbial ; Endoplasmic Reticulum/metabolism ; Enzyme Induction ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; HeLa Cells ; *Hepacivirus/drug effects ; Humans ; Interferon-alpha/*pharmacology ; Phosphorylation ; Protein Biosynthesis ; Recombinant Fusion Proteins/metabolism/pharmacology ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Transfection ; Transformation, Genetic ; Viral Envelope Proteins/chemistry/metabolism/pharmacology/*physiology ; eIF-2 Kinase/*antagonists & inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1999-07-20
    Description: A phytochrome-like protein called Ppr was discovered in the purple photosynthetic bacterium Rhodospirillum centenum. Ppr has a photoactive yellow protein (PYP) amino-terminal domain, a central domain with similarity to phytochrome, and a carboxyl-terminal histidine kinase domain. Reconstitution experiments demonstrate that Ppr covalently attaches the blue light-absorbing chromophore p-hydroxycinnamic acid and that it has a photocycle that is spectrally similar to, but kinetically slower than, that of PYP. Ppr also regulates chalcone synthase gene expression in response to blue light with autophosphorylation inhibited in vitro by blue light. Phylogenetic analysis demonstrates that R. centenum Ppr may be ancestral to cyanobacterial and plant phytochromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Z -- Swem, L R -- Rushing, B G -- Devanathan, S -- Tollin, G -- Bauer, C E -- GM 40941/GM/NIGMS NIH HHS/ -- R01 GM040941/GM/NIGMS NIH HHS/ -- R01 GM053940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):406-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411503" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics ; Amino Acid Sequence ; Apoproteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/genetics/physiology ; Chemotaxis ; Cloning, Molecular ; Coumaric Acids/metabolism ; Gene Expression Regulation, Bacterial ; Light ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Photoreceptors, Microbial ; Phylogeny ; Phytochrome/*chemistry ; Protein Kinases/metabolism ; Rhodospirillum/*chemistry/genetics/physiology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2000-01-05
    Description: The ability of morphine to alleviate pain is mediated through a heterotrimeric guanine nucleotide binding protein (G protein)-coupled heptahelical receptor (GPCR), the mu opioid receptor (muOR). The efficiency of GPCR signaling is tightly regulated and ultimately limited by the coordinated phosphorylation of the receptors by specific GPCR kinases and the subsequent interaction of the phosphorylated receptors with beta-arrestin 1 and beta-arrestin 2. Functional deletion of the beta-arrestin 2 gene in mice resulted in remarkable potentiation and prolongation of the analgesic effect of morphine, suggesting that muOR desensitization was impaired. These results provide evidence in vivo for the physiological importance of beta-arrestin 2 in regulating the function of a specific GPCR, the muOR. Moreover, they suggest that inhibition of beta-arrestin 2 function might lead to enhanced analgesic effectiveness of morphine and provide potential new avenues for the study and treatment of pain, narcotic tolerance, and dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohn, L M -- Lefkowitz, R J -- Gainetdinov, R R -- Peppel, K -- Caron, M G -- Lin, F T -- F32 DA006023/DA/NIDA NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- NS 19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2495-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute Laboratories, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617462" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesia ; Analgesics, Opioid/administration & dosage/metabolism/*pharmacology ; Animals ; Arrestins/genetics/*physiology ; Binding Sites ; Body Temperature/drug effects ; Brain/metabolism ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology ; GTP-Binding Proteins/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Morphine/administration & dosage/metabolism/*pharmacology ; Naloxone/metabolism/pharmacology ; Narcotic Antagonists/metabolism/pharmacology ; Pain Measurement ; Pain Threshold ; Phosphorylation ; Receptors, Opioid, mu/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1999-12-22
    Description: Alzheimer's disease (AD) has a substantial inflammatory component, and activated microglia may play a central role in neuronal degeneration. CD40 expression was increased on cultured microglia treated with freshly solublized amyloid-beta (Abeta, 500 nanomolar) and on microglia from a transgenic murine model of AD (Tg APPsw). Increased tumor necrosis factor alpha production and induction of neuronal injury occurred when Abeta-stimulated microglia were treated with CD40 ligand (CD40L). Microglia from Tg APPsw mice deficient for CD40L demonstrated reduction in activation, suggesting that the CD40-CD40L interaction is necessary for Abeta-induced microglial activation. Finally, abnormal tau phosphorylation was reduced in Tg APPsw animals deficient for CD40L, suggesting that the CD40-CD40L interaction is an early event in AD pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, J -- Town, T -- Paris, D -- Mori, T -- Suo, Z -- Crawford, F -- Mattson, M P -- Flavell, R A -- Mullan, M -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Roskamp Institute, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600748" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Antigens, CD40/biosynthesis/*metabolism ; CD40 Ligand ; Cell Death ; Cells, Cultured ; Interferon-gamma/pharmacology ; Interleukins/pharmacology ; Ligands ; Membrane Glycoproteins/*metabolism/pharmacology ; Mice ; Mice, Transgenic ; Microglia/cytology/immunology/*metabolism ; Neurons/cytology ; Peptide Fragments/pharmacology ; Phosphorylation ; Signal Transduction ; Tumor Necrosis Factor-alpha/biosynthesis/pharmacology ; tau Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1999-01-29
    Description: The Ras-dependent activation of mitogen-activated protein (MAP) kinase pathways by many receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) requires the activation of Src family tyrosine kinases. Stimulation of beta2 adrenergic receptors resulted in the assembly of a protein complex containing activated c-Src and the receptor. Src recruitment was mediated by beta-arrestin, which functions as an adapter protein, binding both c-Src and the agonist-occupied receptor. beta-Arrestin 1 mutants, impaired either in c-Src binding or in the ability to target receptors to clathrin-coated pits, acted as dominant negative inhibitors of beta2 adrenergic receptor-mediated activation of the MAP kinases Erk1 and Erk2. These data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ferguson, S S -- Daaka, Y -- Miller, W E -- Maudsley, S -- Della Rocca, G J -- Lin, F -- Kawakatsu, H -- Owada, K -- Luttrell, D K -- Caron, M G -- Lefkowitz, R J -- DK02352/DK/NIDDK NIH HHS/ -- DK55524/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):655-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924018" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/metabolism/pharmacology ; Animals ; Arrestins/genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line ; Cell Membrane/metabolism ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; Humans ; Isoproterenol/metabolism/pharmacology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Models, Biological ; Phosphorylation ; Point Mutation ; Precipitin Tests ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; Receptor Cross-Talk ; Receptors, Adrenergic, beta-2/*metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonks, N K -- Myers, M P -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2096-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. tonks@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; Membrane Lipids/metabolism ; Models, Biological ; Mutation ; Neoplasms/*etiology/genetics ; PTEN Phosphohydrolase ; Phosphatidylinositol 3-Kinases/chemistry/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1999-08-07
    Description: The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maekawa, M -- Ishizaki, T -- Boku, S -- Watanabe, N -- Fujita, A -- Iwamatsu, A -- Obinata, T -- Ohashi, K -- Mizuno, K -- Narumiya, S -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8315, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436159" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actin Depolymerizing Factors ; Actins/metabolism ; Amides/pharmacology ; Animals ; COS Cells ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins ; Lim Kinases ; Lysophospholipids/pharmacology ; Membrane Proteins/*metabolism ; Microfilament Proteins/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Pyridines/pharmacology ; *Signal Transduction ; Tumor Cells, Cultured ; rho-Associated Kinases ; rhoB GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉May, M J -- Ghosh, S -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):271-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10232975" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/enzymology/genetics ; Animals ; Bone Development ; DNA-Binding Proteins/metabolism ; Dimerization ; *Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Mice ; Morphogenesis ; NF-kappa B/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Signal Transduction ; Skin/embryology ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1999-11-27
    Description: Extracellular signals often result in simultaneous activation of both the Raf-MEK-ERK and PI3K-Akt pathways (where ERK is extracellular-regulated kinase, MEK is mitogen-activated protein kinase or ERK kinase, and PI3K is phosphatidylinositol 3-kinase). However, these two signaling pathways were shown to exert opposing effects on muscle cell hypertrophy. Furthermore, the PI3K-Akt pathway was shown to inhibit the Raf-MEK-ERK pathway; this cross-regulation depended on the differentiation state of the cell: Akt activation inhibited the Raf-MEK-ERK pathway in differentiated myotubes, but not in their myoblast precursors. The stage-specific inhibitory action of Akt correlated with its stage-specific ability to form a complex with Raf, suggesting the existence of differentially expressed mediators of an inhibitory Akt-Raf complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rommel, C -- Clarke, B A -- Zimmermann, S -- Nunez, L -- Rossman, R -- Reid, K -- Moelling, K -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1738-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/genetics ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinases/*antagonists & inhibitors/metabolism ; Muscle, Skeletal/*cytology/*metabolism ; Myogenin/genetics ; Phenotype ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-raf/*antagonists & inhibitors/metabolism ; Signal Transduction ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1999-04-24
    Description: T cell receptor (TCR) signaling requires activation of Zap-70 and Src family tyrosine kinases, but requirements for other tyrosine kinases are less clear. Combined deletion in mice of two Tec kinases, Rlk and Itk, caused marked defects in TCR responses including proliferation, cytokine production, and apoptosis in vitro and adaptive immune responses to Toxoplasma gondii in vivo. Molecular events immediately downstream from the TCR were intact in rlk-/-itk-/- cells, but intermediate events including inositol trisphosphate production, calcium mobilization, and mitogen-activated protein kinase activation were impaired, establishing Tec kinases as critical regulators of TCR signaling required for phospholipase C-gamma activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaeffer, E M -- Debnath, J -- Yap, G -- McVicar, D -- Liao, X C -- Littman, D R -- Sher, A -- Varmus, H E -- Lenardo, M J -- Schwartzberg, P L -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):638-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, National Cancer Institute, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; CD4-CD8 Ratio ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Diglycerides/metabolism ; Gene Targeting ; Inositol Phosphates/metabolism ; Interferon-gamma/biosynthesis ; Interleukin-2/biosynthesis/pharmacology ; Isoenzymes/metabolism ; Killer Cells, Natural/immunology ; Lymphocyte Activation ; Mice ; Mutation ; Phospholipase C gamma ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; *Signal Transduction ; T-Lymphocytes/*enzymology/*immunology ; Toxoplasmosis, Animal/immunology ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1999-04-09
    Description: The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H G -- Pathan, N -- Ethell, I M -- Krajewski, S -- Yamaguchi, Y -- Shibasaki, F -- McKeon, F -- Bobo, T -- Franke, T F -- Reed, J C -- AG-1593/AG/NIA NIH HHS/ -- CA-69381/CA/NCI NIH HHS/ -- HD25938/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195903" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Animals ; *Apoptosis ; Calcineurin/genetics/*metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism/pharmacology ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Dimerization ; Enzyme Inhibitors/pharmacology ; Glutamic Acid/pharmacology ; Hippocampus/cytology ; Humans ; Mitochondria/metabolism ; Neurons/cytology/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Transfection ; *Tyrosine 3-Monooxygenase ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-13
    Description: Transcription factors are often phosphorylated at multiple sites. Here it is shown that multiple phosphorylation sites on the budding yeast transcription factor Pho4 play distinct and separable roles in regulating the factor's activity. Phosphorylation of Pho4 at two sites promotes the factor's nuclear export and phosphorylation at a third site inhibits its nuclear import. Phosphorylation of a fourth site blocks the interaction of Pho4 with the transcription factor Pho2. Multiple phosphorylation sites provide overlapping and partially redundant layers of regulation that function to efficiently control the activity of Pho4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Komeili, A -- O'Shea, E K -- New York, N.Y. -- Science. 1999 May 7;284(5416):977-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California-San Francisco, Department of Biochemistry and Biophysics, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320381" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Phosphatase/metabolism ; Amino Acid Substitution ; Cell Nucleus/*metabolism ; Cyclin-Dependent Kinases/metabolism ; Cyclins/metabolism ; *DNA-Binding Proteins ; Fungal Proteins/genetics/*metabolism ; *Homeodomain Proteins ; Karyopherins ; *Membrane Transport Proteins ; Nuclear Localization Signals ; Phosphorylation ; Receptors, Cytoplasmic and Nuclear/metabolism ; Recombinant Fusion Proteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Trans-Activators/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1999-03-26
    Description: Dysregulation of Wnt-beta-catenin signaling disrupts axis formation in vertebrate embryos and underlies multiple human malignancies. The adenomatous polyposis coli (APC) protein, axin, and glycogen synthase kinase 3beta form a Wnt-regulated signaling complex that mediates the phosphorylation-dependent degradation of beta-catenin. A protein phosphatase 2A (PP2A) regulatory subunit, B56, interacted with APC in the yeast two-hybrid system. Expression of B56 reduced the abundance of beta-catenin and inhibited transcription of beta-catenin target genes in mammalian cells and Xenopus embryo explants. The B56-dependent decrease in beta-catenin was blocked by oncogenic mutations in beta-catenin or APC, and by proteasome inhibitors. B56 may direct PP2A to dephosphorylate specific components of the APC-dependent signaling complex and thereby inhibit Wnt signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seeling, J M -- Miller, J R -- Gil, R -- Moon, R T -- White, R -- Virshup, D M -- 3P30CA42014/CA/NCI NIH HHS/ -- R01 CA71074/CA/NCI NIH HHS/ -- T32CA09602/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2089-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092233" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeletal Proteins/genetics/*metabolism ; Down-Regulation ; Genes, Reporter ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Leupeptins/pharmacology ; Multienzyme Complexes/metabolism ; Mutation ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Phosphatase 2 ; Proto-Oncogene Proteins/*metabolism ; *Signal Transduction ; *Trans-Activators ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; Wnt Proteins ; Xenopus ; Xenopus Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...