ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (322)
  • Time Factors
  • American Association for the Advancement of Science (AAAS)  (564)
  • American Geophysical Union
  • Periodicals Archive Online (PAO)
  • 2005-2009  (259)
  • 1980-1984  (305)
  • 1925-1929
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (564)
  • American Geophysical Union
  • Periodicals Archive Online (PAO)
  • Nature Publishing Group (NPG)  (248)
Years
Year
  • 1
    Publication Date: 2006-11-18
    Description: Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Revyakin, Andrey -- Liu, Chenyu -- Ebright, Richard H -- Strick, Terence R -- GM41376/GM/NIGMS NIH HHS/ -- R01 GM041376/GM/NIGMS NIH HHS/ -- R01 GM041376-15/GM/NIGMS NIH HHS/ -- R01 GM041376-16/GM/NIGMS NIH HHS/ -- R01 GM041376-17/GM/NIGMS NIH HHS/ -- R01 GM041376-18/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1139-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110577" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biomechanical Phenomena ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; RNA/biosynthesis ; Transcription Initiation Site/physiology ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-11-11
    Description: The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazantseva, Anastasiya -- Goltsov, Andrey -- Zinchenko, Rena -- Grigorenko, Anastasia P -- Abrukova, Anna V -- Moliaka, Yuri K -- Kirillov, Alexander G -- Guo, Zhiru -- Lyle, Stephen -- Ginter, Evgeny K -- Rogaev, Evgeny I -- K08-AR02179/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095700" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 3/genetics ; Exons ; Female ; Gene Deletion ; Gene Expression ; Genetic Markers ; Hair/*growth & development ; Hair Follicle/enzymology ; Heterozygote ; Homozygote ; Humans ; Hypotrichosis/*genetics ; Lipase/chemistry/*genetics/metabolism ; Lipid Metabolism ; Lod Score ; Male ; Molecular Sequence Data ; Pedigree ; Protein Structure, Tertiary ; Recombination, Genetic ; Retroelements ; Russia ; Tandem Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):180-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chernobyl Nuclear Accident ; Food Contamination, Radioactive ; History, 20th Century ; Humans ; Neoplasms, Radiation-Induced/epidemiology ; Radiation Dosage ; Radiation Injuries/*epidemiology ; Radioactive Fallout/*adverse effects ; Republic of Belarus/epidemiology ; Russia/epidemiology ; Time Factors ; Ukraine/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansma, Paul K -- Schitter, Georg -- Fantner, Georg E -- Prater, Craig -- GM 65354/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):601-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California, Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068247" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Collagen/ultrastructure ; Electronics ; *Microscopy, Atomic Force/instrumentation/methods ; Rats ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Birds ; Databases, Nucleic Acid ; Genetic Variation ; *Genome, Viral ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*pathogenicity ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Ligands ; Poultry ; RNA, Viral/genetics ; Viral Nonstructural Proteins/chemistry/*genetics/metabolism ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-07-11
    Description: We investigated extraneural manifestations in scrapie-infected transgenic mice expressing prion protein lacking the glycophosphatydylinositol membrane anchor. In the brain, blood, and heart, both abnormal protease-resistant prion protein (PrPres) and prion infectivity were readily detected by immunoblot and by inoculation into nontransgenic recipients. The titer of infectious scrapie in blood plasma exceeded 10(7) 50% infectious doses per milliliter. The hearts of these transgenic mice contained PrPres-positive amyloid deposits that led to myocardial stiffness and cardiac disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trifilo, Matthew J -- Yajima, Toshitaka -- Gu, Yusu -- Dalton, Nancy -- Peterson, Kirk L -- Race, Richard E -- Meade-White, Kimberly -- Portis, John L -- Masliah, Eliezer -- Knowlton, Kirk U -- Chesebro, Bruce -- Oldstone, Michael B A -- 5R01HL66424-04/HL/NHLBI NIH HHS/ -- AGO4342/PHS HHS/ -- NS041219-05/NS/NINDS NIH HHS/ -- P01 AG004342/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):94-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Viral-Immunobiology Laboratory, Departments of Molecular and Integrative Neurosciences and Infectology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825571" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*analysis ; Amyloidosis/blood/etiology/*pathology/physiopathology ; Animals ; Blotting, Western ; Cardiac Catheterization ; Coronary Vessels/chemistry/pathology ; Disease Models, Animal ; Glycosylphosphatidylinositols ; Heart Diseases/blood/etiology/*pathology/physiopathology ; Heart Function Tests ; Immunohistochemistry ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microcirculation/chemistry/pathology ; Myocardial Contraction ; Myocardium/*chemistry/*pathology ; PrPC Proteins/chemistry ; PrPSc Proteins/*analysis/blood ; Scrapie/blood/*pathology/physiopathology ; Staining and Labeling ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-10-07
    Description: A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagel, Mark -- Venditti, Chris -- Meade, Andrew -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):119-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. m.pagel@rdg.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bayes Theorem ; DNA/*genetics ; DNA, Fungal/genetics ; DNA, Plant/genetics ; *Evolution, Molecular ; Founder Effect ; Fungi/classification/genetics ; *Genetic Speciation ; Genetic Variation ; Likelihood Functions ; Mathematics ; Models, Statistical ; Mutation ; Phylogeny ; Plants/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-12-16
    Description: A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Mausmi P -- Baross, John A -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1783-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. mausmi@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/genetics/*isolation & purification/*metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Base Sequence ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Geologic Sediments/microbiology ; *Hot Temperature ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation/genetics ; Nitrogenase/chemistry/*genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/metabolism ; Pacific Ocean ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/*microbiology ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-01-10
    Description: It is currently unclear whether observed pelagic ecosystem responses to ocean warming, such as a mid-1970s change in the eastern North Pacific, depart from typical ocean variability. We report variations in planktonic foraminifera from varved sediments off southern California spanning the past 1400 years. Increasing abundances of tropical/subtropical species throughout the 20th century reflect a warming trend superimposed on decadal-scale fluctuations. Decreasing abundances of temperate/subpolar species in the late 20th century indicate a deep, penetrative warming not observed in previous centuries. These results imply that 20th-century warming, apparently anthropogenic, has already affected lower trophic levels of the California Current.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Field, David B -- Baumgartner, Timothy R -- Charles, Christopher D -- Ferreira-Bartrina, Vicente -- Ohman, Mark D -- New York, N.Y. -- Science. 2006 Jan 6;311(5757):63-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA. dfield@mbari.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16400144" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; California ; *Climate ; *Ecosystem ; Environment ; *Eukaryota/classification ; *Geologic Sediments ; Greenhouse Effect ; Population Density ; Population Dynamics ; Principal Component Analysis ; Seasons ; Temperature ; Time Factors ; *Zooplankton/classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walther, Gian-Reto -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):606-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Ecology, University of Bayreuth, 95440 Bayreuth, Germany. gian-reto.walther@uni-bayreuth.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; California ; *Climate ; *Ecosystem ; *Invertebrates/physiology ; *Plant Development ; Poaceae/growth & development ; Population Dynamics ; Rain ; Research Design ; Seasons ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2006-12-23
    Description: Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Kirkness, Ewen F -- Loh, Yong-Hwee -- Halpern, Aaron L -- Lee, Alison P -- Johnson, Justin -- Dandona, Nidhi -- Viswanathan, Lakshmi D -- Tay, Alice -- Venter, J Craig -- Strausberg, Robert L -- Brenner, Sydney -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673. mcbbv@imcb.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA, Intergenic ; Enhancer Elements, Genetic ; Evolution, Molecular ; Genome ; *Genome, Human ; Humans ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sharks/*genetics ; Takifugu/genetics ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parson, William W -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1438-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. parsonb@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556574" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriochlorophylls/chemistry/*metabolism ; Chemistry, Physical ; Energy Transfer ; Pheophytins/chemistry/*metabolism ; Photons ; *Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/chemistry/*metabolism ; Physicochemical Phenomena ; Rhodobacter sphaeroides/chemistry/*metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2007-01-20
    Description: Litter decomposition provides the primary source of mineral nitrogen (N) for biological activity in most terrestrial ecosystems. A 10-year decomposition experiment in 21 sites from seven biomes found that net N release from leaf litter is dominantly driven by the initial tissue N concentration and mass remaining regardless of climate, edaphic conditions, or biota. Arid grasslands exposed to high ultraviolet radiation were an exception, where net N release was insensitive to initial N. Roots released N linearly with decomposition and exhibited little net N immobilization. We suggest that fundamental constraints on decomposer physiologies lead to predictable global-scale patterns in net N release during decomposition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parton, William -- Silver, Whendee L -- Burke, Ingrid C -- Grassens, Leo -- Harmon, Mark E -- Currie, William S -- King, Jennifer Y -- Adair, E Carol -- Brandt, Leslie A -- Hart, Stephen C -- Fasth, Becky -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):361-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Natural Resource Ecology Laboratory, Colorado State University, 200 West Lake, Campus Mail 1499, Fort Collins, CO 80523-1499, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234944" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodegradation, Environmental ; Carbon/metabolism ; Climate ; *Ecosystem ; Humidity ; Mathematics ; Nitrogen/*metabolism ; Plant Leaves/metabolism ; Plant Roots/metabolism ; Plants/*metabolism ; Poaceae ; Regression Analysis ; Seasons ; Soil Microbiology ; Temperature ; Time Factors ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2007-10-20
    Description: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soma, Akiko -- Onodera, Akinori -- Sugahara, Junichi -- Kanai, Akio -- Yachie, Nozomu -- Tomita, Masaru -- Kawamura, Fujio -- Sekine, Yasuhiko -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):450-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947580" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Algal/chemistry/genetics ; *Genes ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Algal/*genetics/metabolism ; RNA, Transfer/*genetics/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Rhodophyta/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-04-07
    Description: Information on responses of higher organisms to climate change is dominated by events in spring. Far less is known about autumnal events and virtually nothing about communities of microorganisms. We analyzed autumnal fruiting patterns of macrofungi over the past 56 years and found that average first fruiting date of 315 species is earlier, while last fruiting date is later. Fruiting of mycorrhizal species that associate with both deciduous and coniferous trees is delayed in deciduous, but not in coniferous, forests. Many species are now fruiting twice a year, indicating increased mycelial activity and possibly greater decay rates in ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gange, A C -- Gange, E G -- Sparks, T H -- Boddy, L -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. a.gange@rhul.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412949" target="_blank"〉PubMed〈/a〉
    Keywords: Coniferophyta/microbiology ; *Ecosystem ; England ; Fruiting Bodies, Fungal/*growth & development ; Fungi/*growth & development ; Mycorrhizae/*growth & development ; Seasons ; Temperature ; Time Factors ; Trees/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-07
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2271071/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2271071/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squire, Larry R -- R01 MH024600/MH/NIMH NIH HHS/ -- R01 MH024600-33/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):57-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉VA Medical Center, San Diego, CA 92161, USA. lsquire@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412942" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Association Learning ; Cues ; Hippocampus/*physiology ; *Memory ; Mental Recall ; Neocortex/*physiology ; Rats ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-03-24
    Description: Grid cells in layer II of rat entorhinal cortex fire to spatial locations in a repeating hexagonal grid, with smaller spacing between grid fields for neurons in more dorsal anatomical locations. Data from in vitro whole-cell patch recordings showed differences in frequency of subthreshold membrane potential oscillations in entorhinal neurons that correspond to different positions along the dorsal-to-ventral axis, supporting a model of physiological mechanisms for grid cell responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giocomo, Lisa M -- Zilli, Eric A -- Fransen, Erik -- Hasselmo, Michael E -- DA16454/DA/NIDA NIH HHS/ -- MH60013/MH/NIMH NIH HHS/ -- MH71702/MH/NIMH NIH HHS/ -- P50 MH071702/MH/NIMH NIH HHS/ -- P50 MH071702-01A20004/MH/NIMH NIH HHS/ -- R01 DA016454/DA/NIDA NIH HHS/ -- R01 DA016454-04/DA/NIDA NIH HHS/ -- R01 DA016454-05/DA/NIDA NIH HHS/ -- R01 MH060013/MH/NIMH NIH HHS/ -- R01 MH060013-05/MH/NIMH NIH HHS/ -- R01 MH060013-06/MH/NIMH NIH HHS/ -- R01 MH061492/MH/NIMH NIH HHS/ -- R01 MH061492-05/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1719-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Memory and Brain, Department of Psychology, Program in Neuroscience, Boston University, 2 Cummington Street, Boston, MA 02215, USA. giocomo@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379810" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Computer Simulation ; Dendrites/physiology ; Electric Stimulation ; Entorhinal Cortex/*cytology/*physiology ; Female ; In Vitro Techniques ; Male ; Mathematics ; Membrane Potentials ; Models, Neurological ; Movement ; Neurons/cytology/*physiology ; Patch-Clamp Techniques ; Periodicity ; Rats ; Rats, Long-Evans ; Space Perception ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-25
    Description: Because bacterial recombination involves the occasional transfer of small DNA fragments between strains, different sets of niche-specific genes may be maintained in populations that freely recombine at other loci. Therefore, genetic isolation may be established at different times for different chromosomal regions during speciation as recombination at niche-specific genes is curtailed. To test this model, we separated sequence divergence into rate and time components, revealing that different regions of the Escherichia coli and Salmonella enterica chromosomes diverged over a approximately 70-million-year period. Genetic isolation first occurred at regions carrying species-specific genes, indicating that physiological distinctiveness between the nascent Escherichia and Salmonella lineages was maintained for tens of millions of years before the complete genetic isolation of their chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Retchless, Adam C -- Lawrence, Jeffrey G -- GM078092/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1093-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717188" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Buchnera/*genetics ; Chromosomes, Bacterial ; Escherichia coli/*genetics ; Genes, Bacterial ; *Genetic Speciation ; Genome, Bacterial ; Models, Genetic ; *Recombination, Genetic ; Salmonella enterica/*genetics ; Species Specificity ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-11-17
    Description: Transection of the direct cortico-motoneuronal pathway at the mid-cervical segment of the spinal cord in the macaque monkey results in a transient impairment of finger movements. Finger dexterity recovers within a few months. Combined brain imaging and reversible pharmacological inactivation of motor cortical regions suggest that the recovery involves the bilateral primary motor cortex during the early recovery stage and more extensive regions of the contralesional primary motor cortex and bilateral premotor cortex during the late recovery stage. These changes in the activation pattern of frontal motor-related areas represent an adaptive strategy for functional compensation after spinal cord injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Yukio -- Onoe, Hirotaka -- Morichika, Yosuke -- Perfiliev, Sergei -- Tsukada, Hideo -- Isa, Tadashi -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1150-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006750" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Brain Mapping ; Female ; Fingers/*physiopathology ; GABA Agonists ; Learning ; Macaca ; Macaca mulatta ; Male ; *Motor Skills ; Muscimol ; Nerve Net/physiopathology ; Positron-Emission Tomography ; *Recovery of Function ; Spinal Cord Injuries/*physiopathology/rehabilitation ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-04-07
    Description: Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tse, Dorothy -- Langston, Rosamund F -- Kakeyama, Masaki -- Bethus, Ingrid -- Spooner, Patrick A -- Wood, Emma R -- Witter, Menno P -- Morris, Richard G M -- G9200370/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):76-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, and Centre for Neuroscience Research, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412951" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Association Learning ; Cues ; Hippocampus/*physiology ; Male ; *Memory ; Mental Recall ; Neocortex/*physiology ; Rats ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-01-16
    Description: A major goal of systems biology is to predict the function of biological networks. Although network topologies have been successfully determined in many cases, the quantitative parameters governing these networks generally have not. Measuring affinities of molecular interactions in high-throughput format remains problematic, especially for transient and low-affinity interactions. We describe a high-throughput microfluidic platform that measures such properties on the basis of mechanical trapping of molecular interactions. With this platform we characterized DNA binding energy landscapes for four eukaryotic transcription factors; these landscapes were used to test basic assumptions about transcription factor binding and to predict their in vivo function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maerkl, Sebastian J -- Quake, Stephen R -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):233-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Biophysics Option, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218526" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Computational Biology ; Computer Simulation ; DNA/*metabolism ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; E-Box Elements ; Gene Expression Regulation, Fungal ; Helix-Loop-Helix Motifs ; Humans ; *Microfluidic Analytical Techniques ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Protein Isoforms/metabolism ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; *Systems Biology ; Templates, Genetic ; Thermodynamics ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheke, Robert A -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):577-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Natural Resources Institute, University of Greenwich at Medway, Chatham Maritime, Kent ME4 4TB, UK. r.a.cheke@greenwich.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962543" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; *Climate ; Disasters ; *Ecology ; Europe ; *Grasshoppers/physiology ; Greenhouse Effect ; *Larix ; *Moths/physiology ; Population Density ; Population Dynamics ; Rain ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2008-01-26
    Description: We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Daniel G -- Benders, Gwynedd A -- Andrews-Pfannkoch, Cynthia -- Denisova, Evgeniya A -- Baden-Tillson, Holly -- Zaveri, Jayshree -- Stockwell, Timothy B -- Brownley, Anushka -- Thomas, David W -- Algire, Mikkel A -- Merryman, Chuck -- Young, Lei -- Noskov, Vladimir N -- Glass, John I -- Venter, J Craig -- Hutchison, Clyde A 3rd -- Smith, Hamilton O -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1215-20. doi: 10.1126/science.1151721. Epub 2008 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218864" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Bacterial/*chemical synthesis ; DNA, Recombinant ; Escherichia coli/genetics ; Genetic Vectors ; *Genome, Bacterial ; Genomics/*methods ; Mycoplasma genitalium/*genetics ; Oligodeoxyribonucleotides/chemical synthesis ; Plasmids ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics ; Sequence Analysis, DNA ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):884-5. doi: 10.1126/science.319.5865.884.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276854" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Glucose/*analysis ; Cardiovascular Diseases/epidemiology/prevention & control ; Controlled Clinical Trials as Topic ; Diabetes Mellitus, Type 2/blood/complications/*drug therapy/mortality ; Hemoglobin A, Glycosylated/analysis ; Humans ; Hypoglycemic Agents/*therapeutic use ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyon, Bruce E -- Chaine, Alexis S -- Winkler, David W -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1051-2. doi: 10.1126/science.1159822.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA. lyon@biology.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719273" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Climate ; Cues ; Environment ; Female ; Male ; *Oviposition ; Passeriformes/genetics/*physiology ; Phenotype ; Photoperiod ; Seasons ; Selection, Genetic ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: Cadherin-mediated cell adhesion and signaling is essential for metazoan development and yet is absent from all other multicellular organisms. We found cadherin genes at numbers similar to those observed in complex metazoans in one of the closest single-celled relatives of metazoans, the choanoflagellate Monosiga brevicollis. Because the evolution of metazoans from a single-celled ancestor required novel cell adhesion and signaling mechanisms, the discovery of diverse cadherins in choanoflagellates suggests that cadherins may have contributed to metazoan origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abedin, Monika -- King, Nicole -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):946-8. doi: 10.1126/science.1151084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276888" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Cadherins/*chemistry/*genetics/physiology ; Cell Adhesion ; Ciona intestinalis/chemistry ; Cnidaria/chemistry ; Drosophila melanogaster/chemistry ; Eukaryota/*chemistry ; Eukaryotic Cells/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2008-07-05
    Description: It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alroy, John -- Aberhan, Martin -- Bottjer, David J -- Foote, Michael -- Fursich, Franz T -- Harries, Peter J -- Hendy, Austin J W -- Holland, Steven M -- Ivany, Linda C -- Kiessling, Wolfgang -- Kosnik, Matthew A -- Marshall, Charles R -- McGowan, Alistair J -- Miller, Arnold I -- Olszewski, Thomas D -- Patzkowsky, Mark E -- Peters, Shanan E -- Villier, Loic -- Wagner, Peter J -- Bonuso, Nicole -- Borkow, Philip S -- Brenneis, Benjamin -- Clapham, Matthew E -- Fall, Leigh M -- Ferguson, Chad A -- Hanson, Victoria L -- Krug, Andrew Z -- Layou, Karen M -- Leckey, Erin H -- Nurnberg, Sabine -- Powers, Catherine M -- Sessa, Jocelyn A -- Simpson, Carl -- Tomasovych, Adam -- Visaggi, Christy C -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):97-100. doi: 10.1126/science.1156963.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, University of California-Santa Barbara, 735 State Street, Santa Barbara, CA 93101, USA. alroy@nceas.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599780" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biological Evolution ; Databases, Factual ; Environment ; *Fossils ; Geography ; Geologic Sediments ; *Invertebrates/classification ; *Paleontology/methods ; Population Dynamics ; Sampling Studies ; Seawater ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2008-12-20
    Description: Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Conjugation, Genetic ; DNA, Bacterial/*genetics/metabolism ; Deoxyribonuclease I/genetics/metabolism ; *Gene Silencing ; *Gene Transfer, Horizontal ; Plasmids/genetics ; RNA Splicing ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics ; Staphylococcus Phages/genetics ; Staphylococcus aureus/genetics ; Staphylococcus epidermidis/*genetics ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2008-01-19
    Description: Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down alpha-carotene versus beta-carotene branches of the carotenoid pathway. Four natural lcyE polymorphisms explained 58% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harjes, Carlos E -- Rocheford, Torbert R -- Bai, Ling -- Brutnell, Thomas P -- Kandianis, Catherine Bermudez -- Sowinski, Stephen G -- Stapleton, Ann E -- Vallabhaneni, Ratnakar -- Williams, Mark -- Wurtzel, Eleanore T -- Yan, Jianbing -- Buckler, Edward S -- S06-GM08225/GM/NIGMS NIH HHS/ -- SC1 GM081160/GM/NIGMS NIH HHS/ -- SC1 GM081160-01/GM/NIGMS NIH HHS/ -- SC1 GM081160-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):330-3. doi: 10.1126/science.1150255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202289" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breeding ; Carotenoids/*analysis/metabolism ; Crosses, Genetic ; Cryptoxanthins ; Gene Expression Regulation, Plant ; *Genetic Variation ; Haplotypes ; Intramolecular Lyases/*genetics/metabolism ; Molecular Sequence Data ; Mutagenesis ; Nutritive Value ; Polymorphism, Genetic ; Quantitative Trait Loci ; Xanthophylls/analysis/metabolism ; Zea mays/chemistry/enzymology/*genetics ; beta Carotene/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherwood, Steven C -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):900. doi: 10.1126/science.319.5865.900b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276868" target="_blank"〉PubMed〈/a〉
    Keywords: *Climate ; *Policy Making ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2008-05-24
    Description: Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, Anders F -- Banfield, Jillian F -- New York, N.Y. -- Science. 2008 May 23;320(5879):1047-50. doi: 10.1126/science.1157358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Earth and Planetary Science and Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/*genetics/physiology/*virology ; Archaeal Viruses/genetics/*physiology ; Bacteria/*genetics/*virology ; Bacterial Physiological Phenomena ; Bacteriophages/genetics/*physiology ; Base Sequence ; Biofilms ; DNA, Intergenic ; Ecosystem ; Genome, Archaeal ; Genome, Bacterial ; Genome, Viral ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Thermoplasmales/genetics/physiology/virology ; Viral Proteins/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):24-5. doi: 10.1126/science.321.5885.24b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599747" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; *Climate ; *Ecosystem ; Flowers/*growth & development ; Greenhouse Effect ; Massachusetts ; *Plant Development ; Seasons ; Species Specificity ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-26
    Description: The statistical methods applied to the analysis of genomic data do not account for uncertainty in the sequence alignment. Indeed, the alignment is treated as an observation, and all of the subsequent inferences depend on the alignment being correct. This may not have been too problematic for many phylogenetic studies, in which the gene is carefully chosen for, among other things, ease of alignment. However, in a comparative genomics study, the same statistical methods are applied repeatedly on thousands of genes, many of which will be difficult to align. Using genomic data from seven yeast species, we show that uncertainty in the alignment can lead to several problems, including different alignment methods resulting in different conclusions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Karen M -- Suchard, Marc A -- Huelsenbeck, John P -- GM-069801/GM/NIGMS NIH HHS/ -- R01 GM069801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):473-6. doi: 10.1126/science.1151532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218900" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; Evolution, Molecular ; *Genome, Fungal ; *Genomics ; Models, Statistical ; Monte Carlo Method ; Open Reading Frames ; Phylogeny ; Saccharomyces/*genetics ; Selection, Genetic ; Sequence Alignment/*methods ; Software ; Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2008-02-09
    Description: Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fargione, Joseph -- Hill, Jason -- Tilman, David -- Polasky, Stephen -- Hawthorne, Peter -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1235-8. doi: 10.1126/science.1152747. Epub 2008 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Nature Conservancy, 1101 West River Parkway, Suite 200, Minneapolis, MN 55415, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18258862" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; Brazil ; Carbon ; *Carbon Dioxide/metabolism ; Crops, Agricultural ; *Ecosystem ; *Energy-Generating Resources ; Greenhouse Effect ; Indonesia ; Malaysia ; Plant Development ; *Plants/metabolism ; *Soil ; Time Factors ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):167. doi: 10.1126/science.320.5873.167a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403684" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/*pathology ; Brain Chemistry ; *Brain Tissue Transplantation ; *Fetal Tissue Transplantation ; Graft Survival ; Humans ; Neurons/chemistry/*pathology/transplantation ; Parkinson Disease/metabolism/*pathology/*surgery ; Time Factors ; Ubiquitin/analysis ; alpha-Synuclein/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2008-12-06
    Description: Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repeat domains and document cytogenetic and functional polymorphism for drive within a population of M. guttatus. In conspecific crosses, D had a 58:42 transmission advantage over nondriving alternative alleles. However, individuals homozygous for the driving allele suffered reduced pollen viability. These fitness effects and molecular population genetic data suggest that balancing selection prevents the fixation or loss of D and that selfish chromosomal transmission may affect both individual fitness and population genetic load.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman, Lila -- Saunders, Arpiar -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1559-62. doi: 10.1126/science.1161406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA. lila.fishman@mso.umt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056989" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Biological Evolution ; Centromere/*physiology ; Chromosome Segregation ; Chromosomes, Plant/*physiology ; Crosses, Genetic ; Genetic Markers ; Heterozygote ; Hybridization, Genetic ; Linkage Disequilibrium ; *Meiosis ; Mimulus/*genetics/physiology ; Molecular Sequence Data ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2008-01-26
    Description: The residence time of fine-root carbon in soil is one of the least understood aspects of the global carbon cycle, and fine-root dynamics are one of the least understood aspects of plant function. Most recent studies of these belowground dynamics have used one of two methodological strategies. In one approach, based on analysis of carbon isotopes, the persistence of carbon is inferred; in the other, based on direct observations of roots with cameras, the longevity of individual roots is measured. We show that the contribution of fine roots to the global carbon cycle has been overstated because observations of root lifetimes systematically overestimate the turnover of fine-root biomass. On the other hand, isotopic techniques systematically underestimate the turnover of individual roots. These differences, by virtue of the separate processes or pools measured, are irreconcilable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strand, Allan E -- Pritchard, Seth G -- McCormack, M Luke -- Davis, Micheal A -- Oren, Ram -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):456-8. doi: 10.1126/science.1151382.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, College of Charleston, Charleston, SC 29424, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218895" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Botany/methods ; Carbon/*analysis ; Carbon Dioxide/analysis/metabolism ; Carbon Isotopes ; Chemistry Techniques, Analytical/methods ; Miniaturization ; Plant Roots/chemistry/*physiology ; Soil/*analysis ; Time Factors ; Video Recording
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strasser, Bruno J -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):537-8. doi: 10.1126/science.1163399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of the History of Medicine, Yale University, New Haven, CT 06520, USA. bruno.strasser@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948528" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Databases, Nucleic Acid/*history/organization & administration ; Editorial Policies ; History, 20th Century ; History, 21st Century ; National Institutes of Health (U.S.)/*history ; National Library of Medicine (U.S.)/history ; Natural History/history ; Publishing ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2008-07-19
    Description: Cyclic di-guanosine monophosphate (di-GMP) is a circular RNA dinucleotide that functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes, including cell differentiation, conversion between motile and biofilm lifestyles, and virulence gene expression. However, the mechanisms by which cyclic di-GMP regulates gene expression have remained a mystery. We found that cyclic di-GMP in many bacterial species is sensed by a riboswitch class in messenger RNA that controls the expression of genes involved in numerous fundamental cellular processes. A variety of cyclic di-GMP regulons are revealed, including some riboswitches associated with virulence gene expression, pilus formation, and flagellum biosynthesis. In addition, sequences matching the consensus for cyclic di-GMP riboswitches are present in the genome of a bacteriophage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudarsan, N -- Lee, E R -- Weinberg, Z -- Moy, R H -- Kim, J N -- Link, K H -- Breaker, R R -- GM 068819/GM/NIGMS NIH HHS/ -- HV28186/HV/NHLBI NIH HHS/ -- R33 DK07027/DK/NIDDK NIH HHS/ -- RR19895-02/RR/NCRR NIH HHS/ -- T32GM007223/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):411-3. doi: 10.1126/science.1159519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635805" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/*metabolism ; Bacillus cereus/genetics/metabolism ; Bacteria/*genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Clostridium difficile/genetics/metabolism ; Cyclic GMP/*analogs & derivatives/metabolism ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; Regulon ; *Second Messenger Systems ; Vibrio cholerae/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2008-04-05
    Description: Recent experiments with rats suggest that they show episodic-like or what-where-when memory for a preferred food found on a radial maze. Although memory for when a salient event occurred suggests that rats can mentally travel in time to a moment in the past, an alternative possibility is that they remember how long ago the food was found. Three groups of rats were tested for memory of previously encountered food. The different groups could use only the cues of when, how long ago, or when + how long ago. Only the cue of how long ago food was encountered was used successfully. These results suggest that episodic-like memory in rats is qualitatively different from human episodic memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, William A -- Feeney, Miranda C -- Macpherson, Krista -- Petter, Mark -- McMillan, Neil -- Musolino, Evanya -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):113-5. doi: 10.1126/science.1152709.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada. roberts@uwo.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Male ; Maze Learning ; *Memory ; Random Allocation ; Rats ; Rats, Long-Evans ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2008-10-11
    Description: We provide a century-scale view of small-mammal responses to global warming, without confounding effects of land-use change, by repeating Grinnell's early-20th century survey across a 3000-meter-elevation gradient that spans Yosemite National Park, California, USA. Using occupancy modeling to control for variation in detectability, we show substantial ( approximately 500 meters on average) upward changes in elevational limits for half of 28 species monitored, consistent with the observed approximately 3 degrees C increase in minimum temperatures. Formerly low-elevation species expanded their ranges and high-elevation species contracted theirs, leading to changed community composition at mid- and high elevations. Elevational replacement among congeners changed because species' responses were idiosyncratic. Though some high-elevation species are threatened, protection of elevation gradients allows other species to respond via migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moritz, Craig -- Patton, James L -- Conroy, Chris J -- Parra, Juan L -- White, Gary C -- Beissinger, Steven R -- New York, N.Y. -- Science. 2008 Oct 10;322(5899):261-4. doi: 10.1126/science.1163428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA. craigm@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18845755" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Altitude ; Animal Migration ; Animals ; *Biodiversity ; California ; *Climate ; *Ecosystem ; *Greenhouse Effect ; *Mammals ; Population Dynamics ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2009-03-17
    Description: The three-dimensional molecular structure of DNA, specifically the shape of the backbone and grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause differences in protein-binding affinity and phenotype. We developed an algorithm to measure constraint on the basis of similarity of DNA topography among multiple species, using hydroxyl radical cleavage patterns to interrogate the solvent-accessible surface area of DNA. This algorithm found that 12% of bases in the human genome are evolutionarily constrained-double the number detected by nucleotide sequence-based algorithms. Topography-informed constrained regions correlated with functional noncoding elements, including enhancers, better than did regions identified solely on the basis of nucleotide sequence. These results support the idea that the molecular shape of DNA is under selection and can identify evolutionary history.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Stephen C J -- Hansen, Loren -- Abaan, Hatice Ozel -- Tullius, Thomas D -- Margulies, Elliott H -- R01 HG003541/HG/NHGRI NIH HHS/ -- R01 HG003541-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):389-92. doi: 10.1126/science.1169050. Epub 2009 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics Program, Boston University, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286520" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Base Sequence ; Binding Sites ; Conserved Sequence ; DNA/*chemistry/genetics ; Deoxyribonuclease I/metabolism ; Early Growth Response Protein 1/genetics/metabolism ; Evolution, Molecular ; *Genome, Human ; Humans ; Mutant Proteins/metabolism ; Nucleic Acid Conformation ; Phenotype ; Polymorphism, Single Nucleotide ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2009-12-08
    Description: Hepatitis delta virus (HDV) and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) ribozymes form a family of self-cleaving RNAs characterized by a conserved nested double-pseudoknot and minimal sequence conservation. Secondary structure-based searches were used to identify sequences capable of forming this fold, and their self-cleavage activity was confirmed in vitro. Active sequences were uncovered in several marine organisms, two nematodes, an arthropod, a bacterium, and an insect virus, often in multiple sequence families and copies. Sequence searches based on identified ribozymes showed that plants, fungi, and a unicellular eukaryote also harbor the ribozymes. In Anopheles gambiae, the ribozymes were found differentially expressed and self-cleaved at basic developmental stages. Our results indicate that HDV-like ribozymes are abundant in nature and suggest that self-cleaving RNAs may play a variety of biological roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Chiu-Ho T -- Riccitelli, Nathan J -- Ruminski, Dana J -- Luptak, Andrej -- R01 GM094929/GM/NIGMS NIH HHS/ -- R01 GM094929-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):953. doi: 10.1126/science.1178084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/enzymology/*genetics/growth & development ; Base Sequence ; Catalysis ; Eukaryota/enzymology/*genetics ; Expressed Sequence Tags ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2008-11-22
    Description: We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eid, John -- Fehr, Adrian -- Gray, Jeremy -- Luong, Khai -- Lyle, John -- Otto, Geoff -- Peluso, Paul -- Rank, David -- Baybayan, Primo -- Bettman, Brad -- Bibillo, Arkadiusz -- Bjornson, Keith -- Chaudhuri, Bidhan -- Christians, Frederick -- Cicero, Ronald -- Clark, Sonya -- Dalal, Ravindra -- Dewinter, Alex -- Dixon, John -- Foquet, Mathieu -- Gaertner, Alfred -- Hardenbol, Paul -- Heiner, Cheryl -- Hester, Kevin -- Holden, David -- Kearns, Gregory -- Kong, Xiangxu -- Kuse, Ronald -- Lacroix, Yves -- Lin, Steven -- Lundquist, Paul -- Ma, Congcong -- Marks, Patrick -- Maxham, Mark -- Murphy, Devon -- Park, Insil -- Pham, Thang -- Phillips, Michael -- Roy, Joy -- Sebra, Robert -- Shen, Gene -- Sorenson, Jon -- Tomaney, Austin -- Travers, Kevin -- Trulson, Mark -- Vieceli, John -- Wegener, Jeffrey -- Wu, Dawn -- Yang, Alicia -- Zaccarin, Denis -- Zhao, Peter -- Zhong, Frank -- Korlach, Jonas -- Turner, Stephen -- R01HG003710/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):133-8. doi: 10.1126/science.1162986. Epub 2008 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Biosciences, 1505 Adams Drive, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023044" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Consensus Sequence ; DNA/biosynthesis ; DNA, Circular/chemistry ; DNA, Single-Stranded/chemistry ; DNA-Directed DNA Polymerase/*metabolism ; Deoxyribonucleotides/metabolism ; Enzymes, Immobilized ; Fluorescent Dyes ; Kinetics ; Nanostructures ; Sequence Analysis, DNA/*methods ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2009-05-09
    Description: Despite tremendous progress in understanding the nature of the immune system, the full diversity of an organism's antibody repertoire is unknown. We used high-throughput sequencing of the variable domain of the antibody heavy chain from 14 zebrafish to analyze VDJ usage and antibody sequence. Zebrafish were found to use between 50 and 86% of all possible VDJ combinations and shared a similar frequency distribution, with some correlation of VDJ patterns between individuals. Zebrafish antibodies retained a few thousand unique heavy chains that also exhibited a shared frequency distribution. We found evidence of convergence, in which different individuals made the same antibody. This approach provides insight into the breadth of the expressed antibody repertoire and immunological diversity at the level of an individual organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinstein, Joshua A -- Jiang, Ning -- White, Richard A 3rd -- Fisher, Daniel S -- Quake, Stephen R -- DP1 OD000251/OD/NIH HHS/ -- DP1 OD000251-04/OD/NIH HHS/ -- DP1 OD000251-05/OD/NIH HHS/ -- DP1 OD000251-06/OD/NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):807-10. doi: 10.1126/science.1170020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics ; Antibody Diversity ; Base Sequence ; Complementarity Determining Regions/*genetics ; Computational Biology ; Female ; Gene Library ; *Genes, Immunoglobulin Heavy Chain ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin Joining Region/genetics ; Immunoglobulin M/*genetics ; Male ; Molecular Sequence Data ; Recombination, Genetic ; Sequence Analysis, DNA ; VDJ Exons ; Zebrafish/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2009-04-04
    Description: We modeled the mobility of mobile phone users in order to study the fundamental spreading patterns that characterize a mobile virus outbreak. We find that although Bluetooth viruses can reach all susceptible handsets with time, they spread slowly because of human mobility, offering ample opportunities to deploy antiviral software. In contrast, viruses using multimedia messaging services could infect all users in hours, but currently a phase transition on the underlying call graph limits them to only a small fraction of the susceptible users. These results explain the lack of a major mobile virus breakout so far and predict that once a mobile operating system's market share reaches the phase transition point, viruses will pose a serious threat to mobile communications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Pu -- Gonzalez, Marta C -- Hidalgo, Cesar A -- Barabasi, Albert-Laszlo -- New York, N.Y. -- Science. 2009 May 22;324(5930):1071-6. doi: 10.1126/science.1167053. Epub 2009 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Complex Network Research, Departments of Physics, Biology, and Computer Science, Northeastern University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342553" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Phones ; *Computer Security ; Humans ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2009-03-03
    Description: Plants have distinct RNA polymerase complexes (Pol IV and Pol V) with largely unknown roles in maintaining small RNA-associated gene silencing. Curiously, the eudicot Arabidopsis thaliana is not affected when either function is lost. By use of mutation selection and positional cloning, we showed that the largest subunit of the presumed maize Pol IV is involved in paramutation, an inherited epigenetic change facilitated by an interaction between two alleles, as well as normal maize development. Bioinformatics analyses and nuclear run-on transcription assays indicate that Pol IV does not engage in the efficient RNA synthesis typical of the three major eukaryotic DNA-dependent RNA polymerases. These results indicate that Pol IV employs abnormal RNA polymerase activities to achieve genome-wide silencing and that its absence affects both maize development and heritable epigenetic changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erhard, Karl F Jr -- Stonaker, Jennifer L -- Parkinson, Susan E -- Lim, Jana P -- Hale, Christopher J -- Hollick, Jay B -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1201-5. doi: 10.1126/science.1164508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251626" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Epigenesis, Genetic ; Gene Silencing ; Genes, Plant ; Molecular Sequence Data ; *Mutation ; Phylogeny ; Protein Subunits/chemistry/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Transcription, Genetic ; Zea mays/*enzymology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2009-05-16
    Description: Sequence preferences of DNA binding proteins are a primary mechanism by which cells interpret the genome. Despite the central importance of these proteins in physiology, development, and evolution, comprehensive DNA binding specificities have been determined experimentally for only a few proteins. Here, we used microarrays containing all 10-base pair sequences to examine the binding specificities of 104 distinct mouse DNA binding proteins representing 22 structural classes. Our results reveal a complex landscape of binding, with virtually every protein analyzed possessing unique preferences. Roughly half of the proteins each recognized multiple distinctly different sequence motifs, challenging our molecular understanding of how proteins interact with their DNA binding sites. This complexity in DNA recognition may be important in gene regulation and in the evolution of transcriptional regulatory networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badis, Gwenael -- Berger, Michael F -- Philippakis, Anthony A -- Talukder, Shaheynoor -- Gehrke, Andrew R -- Jaeger, Savina A -- Chan, Esther T -- Metzler, Genita -- Vedenko, Anastasia -- Chen, Xiaoyu -- Kuznetsov, Hanna -- Wang, Chi-Fong -- Coburn, David -- Newburger, Daniel E -- Morris, Quaid -- Hughes, Timothy R -- Bulyk, Martha L -- R01 HG003985/HG/NHGRI NIH HHS/ -- R01 HG003985-01/HG/NHGRI NIH HHS/ -- R01 HG003985-02/HG/NHGRI NIH HHS/ -- R01 HG003985-03/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Gene Regulatory Networks ; Humans ; Mice ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2009-07-04
    Description: The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whiteway, J A -- Komguem, L -- Dickinson, C -- Cook, C -- Illnicki, M -- Seabrook, J -- Popovici, V -- Duck, T J -- Davy, R -- Taylor, P A -- Pathak, J -- Fisher, D -- Carswell, A I -- Daly, M -- Hipkin, V -- Zent, A P -- Hecht, M H -- Wood, S E -- Tamppari, L K -- Renno, N -- Moores, J E -- Lemmon, M T -- Daerden, F -- Smith, P H -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):68-70. doi: 10.1126/science.1172344.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada. whiteway@yorku.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574386" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; *Ice ; *Mars ; Spacecraft ; *Steam ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2009-09-12
    Description: Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition. Although not directly related to its autonomous element, the MITE has less affinity for the transposase than does the autonomous element but lacks a motif repressing transposition in the autonomous element. The MITE contains internal sequences that enhance transposition. These findings suggest that MITEs achieve high transposition activity by scavenging transposases encoded by distantly related and self-restrained autonomous elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Guojun -- Nagel, Dawn Holligan -- Feschotte, Cedric -- Hancock, C Nathan -- Wessler, Susan R -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1391-4. doi: 10.1126/science.1175688.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745152" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA Transposable Elements ; *Genome, Plant ; Inverted Repeat Sequences ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oryza/*genetics/metabolism ; Transposases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):670-2. doi: 10.1126/science.325_670.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661398" target="_blank"〉PubMed〈/a〉
    Keywords: Athletic Injuries/etiology/metabolism/*pathology ; Brain/*pathology ; Brain Chemistry ; Brain Concussion ; Brain Injury, Chronic/etiology/metabolism/*pathology ; Football/*injuries ; Humans ; Male ; Post-Concussion Syndrome/etiology/metabolism/pathology ; Risk Factors ; Tauopathies/etiology/metabolism/pathology ; Time Factors ; tau Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2009-12-08
    Description: Although the nematode Caenorhabditis elegans produces self-fertile hermaphrodites, it descended from a male/female species, so hermaphroditism provides a model for the origin of novel traits. In the related species C. remanei, which has only male and female sexes, lowering the activity of tra-2 by RNA interference created XX animals that made spermatids as well as oocytes, but their spermatids could not activate without the addition of male seminal fluid. However, by lowering the expression of both tra-2 and swm-1, a gene that regulates sperm activation in C. elegans, we produced XX animals with active sperm that were self-fertile. Thus, the evolution of hermaphroditism in Caenorhabditis probably required two steps: a mutation in the sex-determination pathway that caused XX spermatogenesis and a mutation that allowed these spermatids to self-activate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldi, Chris -- Cho, Soochin -- Ellis, Ronald E -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):1002-5. doi: 10.1126/science.1176013.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Caenorhabditis/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Crosses, Genetic ; Disorders of Sex Development/genetics ; Female ; Genes, Helminth ; Germ Cells/physiology ; Male ; Membrane Proteins/genetics/physiology ; Molecular Sequence Data ; *Mutation ; Oogenesis ; Ovulation ; Phylogeny ; Reproduction ; Selection, Genetic ; Sex Determination Processes ; Spermatids/physiology ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2009-03-28
    Description: In the early stages of viral infection, outcomes depend on a race between expansion of infection and the immune response generated to contain it. We combined in situ tetramer staining with in situ hybridization to visualize, map, and quantify relationships between immune effector cells and their targets in tissues. In simian immunodeficiency virus infections in macaques and lymphocytic choriomeningitis virus infections in mice, the magnitude and timing of the establishment of an excess of effector cells versus targets were found to correlate with the extent of control and the infection outcome (i.e., control and clearance versus partial or poor control and persistent infection). This method highlights the importance of the location, timing, and magnitude of the immune response needed for a vaccine to be effective against agents of persistent infection, such as HIV-1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753492/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753492/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Qingsheng -- Skinner, Pamela J -- Ha, Sang-Jun -- Duan, Lijie -- Mattila, Teresa L -- Hage, Aaron -- White, Cara -- Barber, Daniel L -- O'Mara, Leigh -- Southern, Peter J -- Reilly, Cavan S -- Carlis, John V -- Miller, Christopher J -- Ahmed, Rafi -- Haase, Ashley T -- AI066314/AI/NIAID NIH HHS/ -- AI20048/AI/NIAID NIH HHS/ -- AI48484/AI/NIAID NIH HHS/ -- P01 AI066314/AI/NIAID NIH HHS/ -- P01 AI066314-010003/AI/NIAID NIH HHS/ -- P01 AI066314-020003/AI/NIAID NIH HHS/ -- P01 AI066314-030003/AI/NIAID NIH HHS/ -- P01 AI066314-040003/AI/NIAID NIH HHS/ -- P51 RR000169/RR/NCRR NIH HHS/ -- P51 RR000169-430198/RR/NCRR NIH HHS/ -- R01 AI048484/AI/NIAID NIH HHS/ -- R01 AI048484-01/AI/NIAID NIH HHS/ -- R01 AI048484-02/AI/NIAID NIH HHS/ -- R01 AI048484-03/AI/NIAID NIH HHS/ -- R01 AI048484-04/AI/NIAID NIH HHS/ -- RR00169/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1726-9. doi: 10.1126/science.1168676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325114" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arenaviridae Infections/*immunology/virology ; Cell Count ; Cervix Uteri/immunology/virology ; Female ; In Situ Hybridization ; Lymph Nodes/immunology/virology ; Lymphocytic choriomeningitis virus/*immunology ; Lymphoid Tissue/immunology/virology ; Macaca mulatta ; Mice ; RNA, Viral/analysis ; Simian Acquired Immunodeficiency Syndrome/*immunology/virology ; Simian Immunodeficiency Virus/*immunology/physiology ; Spleen/immunology/virology ; Staining and Labeling ; T-Lymphocytes, Cytotoxic/*immunology ; Time Factors ; Vagina/immunology/virology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2009-01-20
    Description: Combining biomolecular function with integrated circuit technology could usher in a new era of biologically enabled electronics. A key challenge has been coupling different molecular functions to specific chip locations for communication with the circuit. We used spatially confined electric fields to assemble different populations of DNA-coated nanowires to desired positions with an accuracy that enabled postassembly fabrication of contacts to each individual nanowire, with high yield and without loss of DNA function. This combination of off-chip synthesis and biofunctionalization with high-density, heterogeneous assembly and integration at the individual nanowire level points to new ways of incorporating biological functionality with silicon electronics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrow, Thomas J -- Li, Mingwei -- Kim, Jaekyun -- Mayer, Theresa S -- Keating, Christine D -- R01 EB000268/EB/NIBIB NIH HHS/ -- R01 EB000268-08/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):352. doi: 10.1126/science.1165921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150837" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA/chemistry ; Electricity ; Electronics/*instrumentation/methods ; Nanotechnology/methods ; *Nanowires/chemistry ; Oligodeoxyribonucleotides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2009-08-22
    Description: The paradigmatic feature of long-term memory (LTM) is its persistence. However, little is known about the mechanisms that make some LTMs last longer than others. In rats, a long-lasting fear LTM vanished rapidly when the D1 dopamine receptor antagonist SCH23390 was injected into the dorsal hippocampus 12 hours, but not immediately or 9 hours, after the fearful experience. Conversely, intrahippocampal application of the D1 agonist SK38393 at the same critical post-training time converted a rapidly decaying fear LTM into a persistent one. This effect was mediated by brain-derived neurotrophic factor and regulated by the ventral tegmental area (VTA). Thus, the persistence of LTM depends on activation of VTA/hippocampus dopaminergic connections and can be specifically modulated by manipulating this system at definite post-learning time points.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rossato, Janine I -- Bevilaqua, Lia R M -- Izquierdo, Ivan -- Medina, Jorge H -- Cammarota, Martin -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):1017-20. doi: 10.1126/science.1172545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Memoria, Instituto do Cerebro, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19696353" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Benzazepines/pharmacology ; Brain-Derived Neurotrophic Factor/metabolism ; Dopamine/*physiology ; Dopamine Agonists/pharmacology ; Dopamine Antagonists/pharmacology ; Fear ; Hippocampus/drug effects/*physiology ; Male ; Memory/drug effects/*physiology ; Phosphorylation ; Rats ; Rats, Wistar ; Receptors, Dopamine D1/agonists/antagonists & inhibitors/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Time Factors ; Tyrosine 3-Monooxygenase ; Ventral Tegmental Area/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2009-03-28
    Description: Similarities in the behavior of diverse animal species that form large groups have motivated attempts to establish general principles governing animal group behavior. It has been difficult, however, to make quantitative measurements of the temporal and spatial behavior of extensive animal groups in the wild, such as bird flocks, fish shoals, and locust swarms. By quantifying the formation processes of vast oceanic fish shoals during spawning, we show that (i) a rapid transition from disordered to highly synchronized behavior occurs as population density reaches a critical value; (ii) organized group migration occurs after this transition; and (iii) small sets of leaders significantly influence the actions of much larger groups. Each of these findings confirms general theoretical predictions believed to apply in nature irrespective of animal species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makris, Nicholas C -- Ratilal, Purnima -- Jagannathan, Srinivasan -- Gong, Zheng -- Andrews, Mark -- Bertsatos, Ioannis -- Godo, Olav Rune -- Nero, Redwood W -- Jech, J Michael -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1734-7. doi: 10.1126/science.1169441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. makris@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325116" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration ; Animals ; Atlantic Ocean ; *Behavior, Animal ; Ecosystem ; Fishes/*physiology ; Population Density ; Reproduction ; Spatial Behavior ; *Swimming ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2009-09-26
    Description: The identification and modeling of patterns of human activity have important ramifications for applications ranging from predicting disease spread to optimizing resource allocation. Because of its relevance and availability, written correspondence provides a powerful proxy for studying human activity. One school of thought is that human correspondence is driven by responses to received correspondence, a view that requires a distinct response mechanism to explain e-mail and letter correspondence observations. We demonstrate that, like e-mail correspondence, the letter correspondence patterns of 16 writers, performers, politicians, and scientists are well described by the circadian cycle, task repetition, and changing communication needs. We confirm the universality of these mechanisms by rescaling letter and e-mail correspondence statistics to reveal their underlying similarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malmgren, R Dean -- Stouffer, Daniel B -- Campanharo, Andriana S L O -- Amaral, Luis A Nunes -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1696-700. doi: 10.1126/science.1174562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA. dean.malmgren@u.northwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779200" target="_blank"〉PubMed〈/a〉
    Keywords: *Behavior ; Circadian Rhythm ; *Communication ; *Correspondence as Topic ; Electronic Mail ; *Human Activities ; Humans ; Models, Statistical ; Monte Carlo Method ; Normal Distribution ; Occupations ; Poisson Distribution ; Politics ; Probability ; Science ; Time Factors ; Writing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2009-06-13
    Description: Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ura, Yasuyuki -- Beierle, John M -- Leman, Luke J -- Orgel, Leslie E -- Ghadiri, M Reza -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):73-7. doi: 10.1126/science.1174577. Epub 2009 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry ; Amino Acids/chemistry ; Base Pairing ; Base Sequence ; Biotinylation ; DNA/*chemistry ; Dipeptides/chemistry ; Models, Molecular ; Molecular Structure ; Nucleic Acid Conformation ; Oligonucleotides/chemistry ; Peptide Nucleic Acids/*chemistry ; Peptides/chemistry ; RNA/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2009-10-17
    Description: Words, grammar, and phonology are linguistically distinct, yet their neural substrates are difficult to distinguish in macroscopic brain regions. We investigated whether they can be separated in time and space at the circuit level using intracranial electrophysiology (ICE), namely by recording local field potentials from populations of neurons using electrodes implanted in language-related brain regions while people read words verbatim or grammatically inflected them (present/past or singular/plural). Neighboring probes within Broca's area revealed distinct neuronal activity for lexical (approximately 200 milliseconds), grammatical (approximately 320 milliseconds), and phonological (approximately 450 milliseconds) processing, identically for nouns and verbs, in a region activated in the same patients and task in functional magnetic resonance imaging. This suggests that a linguistic processing sequence predicted on computational grounds is implemented in the brain in fine-grained spatiotemporally patterned activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sahin, Ned T -- Pinker, Steven -- Cash, Sydney S -- Schomer, Donald -- Halgren, Eric -- HD18381/HD/NICHD NIH HHS/ -- NS18741/NS/NINDS NIH HHS/ -- NS44623/NS/NINDS NIH HHS/ -- P41 RR014075/RR/NCRR NIH HHS/ -- P41 RR014075-02/RR/NCRR NIH HHS/ -- P41-RR14075/RR/NCRR NIH HHS/ -- R01 HD018381-18/HD/NICHD NIH HHS/ -- R01 NS018741/NS/NINDS NIH HHS/ -- R01 NS018741-22/NS/NINDS NIH HHS/ -- R01 NS044623/NS/NINDS NIH HHS/ -- R01 NS044623-03/NS/NINDS NIH HHS/ -- T32 MH070328-03/MH/NIMH NIH HHS/ -- T32-MH070328/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):445-9. doi: 10.1126/science.1174481.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiology, University of California-San Diego, La Jolla, CA 92037, USA. sahin@post.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833971" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; *Brain Mapping ; Electrodes, Implanted ; Electrophysiological Phenomena ; Epilepsy/physiopathology ; Female ; Frontal Lobe/*physiology ; Humans ; *Language ; *Linguistics ; Magnetic Resonance Imaging ; Mental Processes/*physiology ; Middle Aged ; Neurons/*physiology ; Speech/*physiology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2009-04-11
    Description: In vertebrates, the readily apparent left/right (L/R) anatomical asymmetries of the internal organs can be traced to molecular events initiated at or near the time of gastrulation. However, the earliest steps of this process do not seem to be universally conserved. In particular, how this axis is first defined in chicks has remained problematic. Here we show that asymmetric cell rearrangements take place within chick embryos, creating a leftward movement of cells around the node. It is the relative displacement of cells expressing sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8) that is responsible for establishing their asymmetric expression patterns. The creation of asymmetric expression domains as a passive effect of cell movements represents an alternative strategy for breaking L/R symmetry in gene activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, Jerome -- Feistel, Kerstin -- Viebahn, Christoph -- Blum, Martin -- Tabin, Clifford J -- R01 HD045499/HD/NICHD NIH HHS/ -- R01 HD045499-06/HD/NICHD NIH HHS/ -- R01-HD045499/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):941-4. doi: 10.1126/science.1172478. Epub 2009 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Body Patterning ; *Cell Movement ; Chick Embryo ; Fibroblast Growth Factor 8/genetics ; *Gastrulation ; *Gene Expression ; Gene Expression Profiling ; Hedgehog Proteins/genetics ; Molecular Sequence Data ; Organizers, Embryonic/*cytology/embryology/*metabolism ; Primitive Streak/*cytology/embryology/metabolism ; Swine/embryology ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2008-12-17
    Description: Might DNA sequence variation reflect germline genetic activity and underlying chromatin structure? We investigated this question using medaka (Japanese killifish, Oryzias latipes), by comparing the genomic sequences of two strains (Hd-rR and HNI) and by mapping approximately 37.3 million nucleosome cores from Hd-rR blastulae and 11,654 representative transcription start sites from six embryonic stages. We observed a distinctive approximately 200-base pair (bp) periodic pattern of genetic variation downstream of transcription start sites; the rate of insertions and deletions longer than 1 bp peaked at positions of approximately +200, +400, and +600 bp, whereas the point mutation rate showed corresponding valleys. This approximately 200-bp periodicity was correlated with the chromatin structure, with nucleosome occupancy minimized at positions 0, +200, +400, and +600 bp. These data exemplify the potential for genetic activity (transcription) and chromatin structure to contribute to molding the DNA sequence on an evolutionary time scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Shin -- Mello, Cecilia C -- Shimada, Atsuko -- Nakatani, Yoichiro -- Hashimoto, Shin-Ichi -- Ogawa, Masako -- Matsushima, Kouji -- Gu, Sam Guoping -- Kasahara, Masahiro -- Ahsan, Budrul -- Sasaki, Atsushi -- Saito, Taro -- Suzuki, Yutaka -- Sugano, Sumio -- Kohara, Yuji -- Takeda, Hiroyuki -- Fire, Andrew -- Morishita, Shinichi -- R01 GM037706/GM/NIGMS NIH HHS/ -- R01 GM037706-24/GM/NIGMS NIH HHS/ -- R01 GM37706/GM/NIGMS NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA09151/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):401-4. doi: 10.1126/science.1163183. Epub 2008 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, 277-0882, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Chromatin/*physiology/ultrastructure ; DNA/chemistry/*genetics ; DNA Repair ; *Genetic Variation ; Genome ; INDEL Mutation ; Mutagenesis ; Mutation ; Nucleosomes/*physiology/ultrastructure ; Oryzias/embryology/*genetics ; Point Mutation ; Promoter Regions, Genetic ; *Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2009-12-08
    Description: To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guell, Marc -- van Noort, Vera -- Yus, Eva -- Chen, Wei-Hua -- Leigh-Bell, Justine -- Michalodimitrakis, Konstantinos -- Yamada, Takuji -- Arumugam, Manimozhiyan -- Doerks, Tobias -- Kuhner, Sebastian -- Rode, Michaela -- Suyama, Mikita -- Schmidt, Sabine -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965477" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mycoplasma pneumoniae/*genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Operon ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/analysis/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, David G -- Kashi, Yechezkel -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):229-30. doi: 10.1126/science.326_229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Southern Illinois University, Carbondale, IL 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/chemistry/*genetics ; Evolution, Molecular ; Mutation ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otterstrom, Jason J -- van Oijen, Antoine M -- R01 GM077248/GM/NIGMS NIH HHS/ -- R01 GM077248-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):547-8. doi: 10.1126/science.1177311.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644099" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalytic Domain ; DNA/chemistry/*metabolism ; Diffusion ; Nucleosomes/*metabolism ; Optical Tweezers ; RNA Polymerase II/chemistry/*metabolism ; RNA, Messenger/metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2009-12-08
    Description: Phytoplankton--the microalgae that populate the upper lit layers of the ocean--fuel the oceanic food web and affect oceanic and atmospheric carbon dioxide levels through photosynthetic carbon fixation. Here, we show that multidecadal changes in global phytoplankton abundances are related to basin-scale oscillations of the physical ocean, specifically the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. This relationship is revealed in approximately 20 years of satellite observations of chlorophyll and sea surface temperature. Interaction between the main pycnocline and the upper ocean seasonal mixed layer is one mechanism behind this correlation. Our findings provide a context for the interpretation of contemporary changes in global phytoplankton and should improve predictions of their future evolution with climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez, Elodie -- Antoine, David -- D'Ortenzio, Fabrizio -- Gentili, Bernard -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1253-6. doi: 10.1126/science.1177012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPMC University of Paris 06, UMR 7093, Laboratoire d'Oceanographie de Villefranche (LOV), 06230 Villefranche-sur-Mer, France. martinez@obs-vlfr.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965473" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; Biomass ; Chlorophyll/*analysis ; *Climate ; *Ecosystem ; Global Warming ; Indian Ocean ; Oceans and Seas ; Pacific Ocean ; Phytoplankton/*physiology ; Population Dynamics ; Seasons ; *Seawater/chemistry ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-07-18
    Description: Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNA(Sec) in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate-dependent mechanism of Sec-tRNA(Sec) formation. Two tRNA(Sec) molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13-base pair acceptor-TPsiC arm (where Psi indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme's active site that allows a phosphoserine covalently attached to tRNA(Sec), but not free phosphoserine, to be oriented properly for the reaction to occur.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857584/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857584/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palioura, Sotiria -- Sherrer, R Lynn -- Steitz, Thomas A -- Soll, Dieter -- Simonovic, Miljan -- R01 GM022854/GM/NIGMS NIH HHS/ -- R01 GM022854-33/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):321-5. doi: 10.1126/science.1173755.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19608919" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/*metabolism ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/chemistry/metabolism ; Phosphoserine/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; RNA, Transfer, Amino Acid-Specific/*chemistry/*metabolism ; RNA, Transfer, Amino Acyl/*metabolism ; Selenocysteine/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2005-02-26
    Description: The genomic diversity and relative importance of distinct genotypes within natural bacterial populations have remained largely unknown. Here, we analyze the diversity and annual dynamics of a group of coastal bacterioplankton (greater than 99% 16S ribosomal RNA identity to Vibrio splendidus). We show that this group consists of at least a thousand distinct genotypes, each occurring at extremely low environmental concentrations (on average less than one cell per milliliter). Overall, the genomes show extensive allelic diversity and size variation. Individual genotypes rarely recurred in samples, and allelic distribution did not show spatial or temporal substructure. Ecological considerations suggest that much genotypic and possibly phenotypic variation within natural populations should be considered neutral.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, Janelle R -- Pacocha, Sarah -- Pharino, Chanathip -- Klepac-Ceraj, Vanja -- Hunt, Dana E -- Benoit, Jennifer -- Sarma-Rupavtarm, Ramahi -- Distel, Daniel L -- Polz, Martin F -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1311-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731455" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chaperonin 60/genetics ; *Ecosystem ; Electrophoresis, Gel, Pulsed-Field ; *Genetic Variation ; Genome, Bacterial ; Genotype ; Molecular Sequence Data ; Plankton/classification/*genetics/growth & development/isolation & purification ; Polymerase Chain Reaction ; Ribotyping ; Seawater/*microbiology ; Time Factors ; Vibrio/classification/*genetics/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-09-06
    Description: Large numbers of noncoding RNA transcripts (ncRNAs) are being revealed by complementary DNA cloning and genome tiling array studies in animals. The big and as yet largely unanswered question is whether these transcripts are relevant. A paper by Willingham et al. shows the way forward by developing a strategy for large-scale functional screening of ncRNAs, involving small interfering RNA knockdowns in cell-based screens, which identified a previously unidentified ncRNA repressor of the transcription factor NFAT. It appears likely that ncRNAs constitute a critical hidden layer of gene regulation in complex organisms, the understanding of which requires new approaches in functional genomics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattick, John S -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1527-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia. j.mattick@imb.uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Conserved Sequence ; DNA-Binding Proteins/antagonists & inhibitors ; *Genomics ; Humans ; Mice ; NFATC Transcription Factors ; Nuclear Proteins/antagonists & inhibitors ; *RNA Interference ; RNA, Untranslated/antagonists & inhibitors/genetics/*physiology ; Transcription Factors/antagonists & inhibitors ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2005-06-11
    Description: In animal societies, chemical communication plays an important role in conflict and cooperation. For ants, cuticular hydrocarbon (CHC) blends produced by non-nestmates elicit overt aggression. We describe a sensory sensillum on the antennae of the carpenter ant Camponotus japonicus that functions in nestmate discrimination. This sensillum is multiporous and responds only to non-nestmate CHC blends. This suggests a role for a peripheral recognition mechanism in detecting colony-specific chemical signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozaki, Mamiko -- Wada-Katsumata, Ayako -- Fujikawa, Kazuyo -- Iwasaki, Masayuki -- Yokohari, Fumio -- Satoji, Yuji -- Nisimura, Tomoyosi -- Yamaoka, Ryohei -- New York, N.Y. -- Science. 2005 Jul 8;309(5732):311-4. Epub 2005 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. mamiko@kit.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947139" target="_blank"〉PubMed〈/a〉
    Keywords: Aggression ; Amino Acid Sequence ; Animals ; Ants/*physiology ; Base Sequence ; *Behavior, Animal ; Carrier Proteins/chemistry/isolation & purification/metabolism ; Chemoreceptor Cells/*physiology ; Cues ; Electrophysiology ; *Hydrocarbons ; Insect Proteins/chemistry/isolation & purification/metabolism ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Neurons, Afferent/*physiology ; Sense Organs/physiology ; Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2005-09-17
    Description: The activation dynamics of the transcription factor NF-kappaB exhibit damped oscillatory behavior when cells are stimulated by tumor necrosis factor-alpha (TNFalpha) but stable behavior when stimulated by lipopolysaccharide (LPS). LPS binding to Toll-like receptor 4 (TLR4) causes activation of NF-kappaB that requires two downstream pathways, each of which when isolated exhibits damped oscillatory behavior. Computational modeling of the two TLR4-dependent signaling pathways suggests that one pathway requires a time delay to establish early anti-phase activation of NF-kappaB by the two pathways. The MyD88-independent pathway required Inferon regulatory factor 3-dependent expression of TNFalpha to activate NF-kappaB, and the time required for TNFalpha synthesis established the delay.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Covert, Markus W -- Leung, Thomas H -- Gaston, Jahlionais E -- Baltimore, David -- GM039458-21/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166516" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport/deficiency/physiology ; Animals ; Antigens, Differentiation/physiology ; Cell Line ; Cells, Cultured ; Computer Simulation ; Cycloheximide/pharmacology ; DNA-Binding Proteins/genetics/physiology ; Gene Expression Profiling ; Gene Expression Regulation ; I-kappa B Kinase ; I-kappa B Proteins/biosynthesis/genetics/metabolism ; Interferon Regulatory Factor-3 ; Kinetics ; Lipopolysaccharides/*immunology/metabolism ; Mice ; Models, Biological ; Myeloid Differentiation Factor 88 ; NF-kappa B/*metabolism ; Oligonucleotide Array Sequence Analysis ; Protein Synthesis Inhibitors/pharmacology ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Immunologic/deficiency/metabolism/physiology ; Signal Transduction ; Time Factors ; Toll-Like Receptor 4 ; Transcription Factors/genetics/physiology ; Tumor Necrosis Factor-alpha/biosynthesis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2005-10-01
    Description: The oceans are becoming more acidic due to absorption of anthropogenic carbon dioxide from the atmosphere. The impact of ocean acidification on marine ecosystems is unclear, but it will likely depend on species adaptability and the rate of change of seawater pH relative to its natural variability. To constrain the natural variability in reef-water pH, we measured boron isotopic compositions in a approximately 300-year-old massive Porites coral from the southwestern Pacific. Large variations in pH are found over approximately 50-year cycles that covary with the Interdecadal Pacific Oscillation of ocean-atmosphere anomalies, suggesting that natural pH cycles can modulate the impact of ocean acidification on coral reef ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelejero, Carles -- Calvo, Eva -- McCulloch, Malcolm T -- Marshall, John F -- Gagan, Michael K -- Lough, Janice M -- Opdyke, Bradley N -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2204-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia. pelejero@cmima.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/chemistry/*physiology ; Atmosphere ; Boron/analysis ; Carbon Dioxide/analysis ; *Ecosystem ; Hydrogen-Ion Concentration ; Isotopes/analysis ; Pacific Ocean ; Seasons ; *Seawater ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, Russell -- New York, N.Y. -- Science. 2005 Sep 23;309(5743):2007-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Auckland, Auckland 92019, New Zealand. rd.gray@auckland.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179464" target="_blank"〉PubMed〈/a〉
    Keywords: Asia ; *Cultural Evolution ; Databases, Factual ; History, Ancient ; Humans ; *Language ; *Linguistics ; Pacific Islands ; Papua New Guinea ; Software ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2005-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Ruiter, Peter C -- Wolters, Volkmar -- Moore, John C -- Winemiller, Kirk O -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):68-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Sciences, Copernicus Research Institute for Sustainable Development and Innovation, Utrecht University, 3508 TC Utrecht, Netherlands. p.deruiter@geo.uu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Body Size ; *Ecosystem ; Fishes ; *Food Chain ; Population Density ; Population Dynamics ; Predatory Behavior ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2005-11-15
    Description: The ancestry of modern Europeans is a subject of debate among geneticists, archaeologists, and anthropologists. A crucial question is the extent to which Europeans are descended from the first European farmers in the Neolithic Age 7500 years ago or from Paleolithic hunter-gatherers who were present in Europe since 40,000 years ago. Here we present an analysis of ancient DNA from early European farmers. We successfully extracted and sequenced intact stretches of maternally inherited mitochondrial DNA (mtDNA) from 24 out of 57 Neolithic skeletons from various locations in Germany, Austria, and Hungary. We found that 25% of the Neolithic farmers had one characteristic mtDNA type and that this type formerly was widespread among Neolithic farmers in Central Europe. Europeans today have a 150-times lower frequency (0.2%) of this mtDNA type, revealing that these first Neolithic farmers did not have a strong genetic influence on modern European female lineages. Our finding lends weight to a proposed Paleolithic ancestry for modern Europeans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haak, Wolfgang -- Forster, Peter -- Bramanti, Barbara -- Matsumura, Shuichi -- Brandt, Guido -- Tanzer, Marc -- Villems, Richard -- Renfrew, Colin -- Gronenborn, Detlef -- Alt, Kurt Werner -- Burger, Joachim -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1016-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Anthropologie, Johannes Gutenberg Universitat Mainz, Saarstrasse 21, D-55099 Mainz, Germany. haakw@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284177" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Austria ; Base Sequence ; Computer Simulation ; Cultural Evolution ; DNA, Mitochondrial/chemistry/classification/*genetics/history ; Emigration and Immigration ; Europe ; European Continental Ancestry Group/*genetics/history ; Female ; Gene Frequency ; Genetic Drift ; Genetics, Population ; Germany ; Haplotypes ; History, Ancient ; Humans ; Hungary ; Male ; Molecular Sequence Data ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2005-07-30
    Description: To study adaptation, it is essential to identify multiple adaptive mutations and to characterize their molecular, phenotypic, selective, and ecological consequences. Here we describe a genomic screen for adaptive insertions of transposable elements in Drosophila. Using a pilot application of this screen, we have identified an adaptive transposable element insertion, which truncates a gene and apparently generates a functional protein in the process. The insertion of this transposable element confers increased resistance to an organophosphate pesticide and has spread in D. melanogaster recently.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aminetzach, Yael T -- Macpherson, J Michael -- Petrov, Dmitri A -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):764-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051794" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Alleles ; Amino Acid Substitution ; Animals ; Azinphosmethyl/pharmacology ; Base Sequence ; Choline/metabolism ; Crosses, Genetic ; *DNA Transposable Elements ; Drosophila/drug effects/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/physiology ; Drosophila melanogaster/drug effects/*genetics/physiology ; *Evolution, Molecular ; Exons ; Female ; Gene Expression ; *Genes, Insect ; Haplotypes ; Insecticide Resistance/*genetics ; Insecticides/pharmacology ; Introns ; Long Interspersed Nucleotide Elements ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Recombination, Genetic ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2005-05-28
    Description: The typical scales for plant and fungal movements vary over many orders of magnitude in time and length, but they are ultimately based on hydraulics and mechanics. We show that quantification of the length and time scales involved in plant and fungal motions leads to a natural classification, whose physical basis can be understood through an analysis of the mechanics of water transport through an elastic tissue. Our study also suggests a design principle for nonmuscular hydraulically actuated structures: Rapid actuation requires either small size or the enhancement of motion on large scales via elastic instabilities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skotheim, Jan M -- Mahadevan, L -- New York, N.Y. -- Science. 2005 May 27;308(5726):1308-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15919993" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/physiology ; Droseraceae/anatomy & histology/physiology ; Elasticity ; Euphorbiaceae/anatomy & histology/physiology ; Fungi/cytology/*physiology ; Mathematics ; Movement ; Mucorales/cytology/physiology ; Physical Phenomena ; Physics ; Plant Leaves/*physiology ; *Plant Physiological Phenomena ; Plants/anatomy & histology ; Pressure ; Time Factors ; Viscosity ; Water/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-10-15
    Description: Only recently have we begun to characterize fine-scale recombination rates in mammals. In her Perspective, Przeworski discusses the work by Myers et al. in which linkage disequilibrium data have been used to produce a high-resolution recombination map for most of the human genome. More than 25,000 putative hotspots have been identified, as well as the first motifs that appear to influence their intensity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Przeworski, Molly -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):247-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Chicago, 920 East 57th Street, 507F CLSC, Chicago, IL 60637, USA. mfp@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224010" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, X ; Female ; *Genome, Human ; Humans ; Male ; Recombination, Genetic/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2005-06-11
    Description: Repetitive microsatellites mutate at relatively high rates and may contribute to the rapid evolution of species-typical traits. We show that individual alleles of a repetitive polymorphic microsatellite in the 5' region of the prairie vole vasopressin 1a receptor (avpr1a) gene modify gene expression in vitro. In vivo, we observe that this regulatory polymorphism predicts both individual differences in receptor distribution patterns and socio-behavioral traits. These data suggest that individual differences in gene expression patterns may be conferred via polymorphic microsatellites in the cis-regulatory regions of genes and may contribute to normal variation in behavioral traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammock, Elizabeth A D -- Young, Larry J -- MH56897/MH/NIMH NIH HHS/ -- MH64692/MH/NIMH NIH HHS/ -- MH67397/MH/NIMH NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1630-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947188" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Anxiety ; Arvicolinae/*genetics/physiology/psychology ; Base Sequence ; *Behavior, Animal ; Brain/metabolism ; *Gene Expression Regulation ; Genes, Reporter ; Genetic Variation ; Genotype ; Grooming ; Male ; *Microsatellite Repeats ; Molecular Sequence Data ; Odors ; Pair Bond ; Paternal Behavior ; Receptors, Vasopressin/*genetics/metabolism ; *Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2005-08-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anfinrud, Philip -- Schotte, Friedrich -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1192-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institutes of Health, Bethesda, MD 20892-0520, USA. anfinrud@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109869" target="_blank"〉PubMed〈/a〉
    Keywords: Hydrocarbons, Iodinated/*chemistry ; Molecular Structure ; Scattering, Radiation ; Solutions ; Solvents ; Time Factors ; X-Ray Diffraction/*methods ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2005-08-16
    Description: Flowering of Arabidopsis is regulated by several environmental and endogenous signals. An important integrator of these inputs is the FLOWERING LOCUS T (FT) gene, which encodes a small, possibly mobile protein. A primary response to floral induction is the activation of FT RNA expression in leaves. Because flowers form at a distant site, the shoot apex, these data suggest that FT primarily controls the timing of flowering. Integration of temporal and spatial information is mediated in part by the bZIP transcription factor FD, which is already expressed at the shoot apex before floral induction. A complex of FT and FD proteins in turn can activate floral identity genes such as APETALA1 (AP1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wigge, Philip A -- Kim, Min Chul -- Jaeger, Katja E -- Busch, Wolfgang -- Schmid, Markus -- Lohmann, Jan U -- Weigel, Detlef -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1056-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany. philip.wigge@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099980" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/genetics/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Homeodomain Proteins/genetics/metabolism ; MADS Domain Proteins ; Models, Biological ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/metabolism ; Plant Proteins/genetics/metabolism ; Plant Shoots/metabolism ; Protein Interaction Mapping ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Time Factors ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2005-11-15
    Description: Rapid global warming of 5 degrees to 10 degrees C during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by approximately 5 degrees C during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO2 during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wing, Scott L -- Harrington, Guy J -- Smith, Francesca A -- Bloch, Jonathan I -- Boyer, Douglas M -- Freeman, Katherine H -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):993-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, Smithsonian Museum of Natural History, 10th Street and Constitution Avenue, NW, Washington, DC 20560, USA. wings@si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Carbon Isotopes/analysis ; *Climate ; *Ecosystem ; *Fossils ; Geologic Sediments ; *Greenhouse Effect ; Oxygen Isotopes/analysis ; Plant Development ; Plant Leaves/anatomy & histology ; *Plants/anatomy & histology/classification ; Rain ; Temperature ; Time Factors ; Wyoming
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2005-07-30
    Description: The open oceans comprise most of the biosphere, yet patterns and trends of species diversity there are enigmatic. Here, we derive worldwide patterns of tuna and billfish diversity over the past 50 years, revealing distinct subtropical "hotspots" that appeared to hold generally for other predators and zooplankton. Diversity was positively correlated with thermal fronts and dissolved oxygen and a nonlinear function of temperature (approximately 25 degrees C optimum). Diversity declined between 10 and 50% in all oceans, a trend that coincided with increased fishing pressure, superimposed on strong El Nino-Southern Oscillation-driven variability across the Pacific. We conclude that predator diversity shows a predictable yet eroding pattern signaling ecosystem-wide changes linked to climate and fishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worm, Boris -- Sandow, Marcel -- Oschlies, Andreas -- Lotze, Heike K -- Myers, Ransom A -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1365-9. Epub 2005 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Dalhousie University, Halifax, NS, Canada B3H 4J1. bworm@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051749" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Climate ; *Ecosystem ; Fisheries ; Oceans and Seas ; Oxygen/analysis ; *Perciformes ; Population Density ; *Predatory Behavior ; Regression Analysis ; Seasons ; Temperature ; Time Factors ; *Tuna ; Zooplankton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2005-09-06
    Description: Twin-ribozyme introns are formed by two ribozymes belonging to the group I family and occur in some ribosomal RNA transcripts. The group I-like ribozyme, GIR1, liberates the 5' end of a homing endonuclease messenger RNA in the slime mold Didymium iridis. We demonstrate that this cleavage occurs by a transesterification reaction with the joining of the first and the third nucleotide of the messenger by a 2',5'-phosphodiester linkage. Thus, a group I-like ribozyme catalyzes an RNA branching reaction similar to the first step of splicing in group II introns and spliceosomal introns. The resulting short lariat, by forming a protective 5' cap, might have been useful in a primitive RNA world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Henrik -- Westhof, Eric -- Johansen, Steinar -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, DK-2200N Copenhagen, Denmark. hamra@imbg.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141078" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Endonucleases/biosynthesis/*genetics ; Esterification ; *Introns ; Molecular Sequence Data ; RNA Caps/*chemistry ; *RNA Splicing ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2005-02-05
    Description: Plants encode subunits for a fourth RNA polymerase (Pol IV) in addition to the well-known DNA-dependent RNA polymerases I, II, and III. By mutation of the two largest subunits (NRPD1a and NRPD2), we show that Pol IV silences certain transposons and repetitive DNA in a short interfering RNA pathway involving RNA-dependent RNA polymerase 2 and Dicer-like 3. The existence of this distinct silencing polymerase may explain the paradoxical involvement of an RNA silencing pathway in maintenance of transcriptional silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herr, A J -- Jensen, M B -- Dalmay, T -- Baulcombe, D C -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):118-20. Epub 2005 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692015" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/chemistry/genetics/metabolism ; Base Sequence ; Chromatin/metabolism ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/*genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Gene Silencing ; Genes, Plant ; Genetic Complementation Test ; Green Fluorescent Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Oryza/enzymology/genetics ; Plants, Genetically Modified ; Protein Subunits/chemistry/genetics/metabolism ; RNA Interference ; RNA Polymerase II/metabolism ; RNA, Plant/metabolism ; RNA, Small Interfering/metabolism ; Repetitive Sequences, Nucleic Acid ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2005-02-26
    Description: Determining what fraction of texts and manuscripts have survived from Antiquity and the Middle Ages has been highly problematic. Analyzing the transmission of texts as the "paleodemography" of their manuscripts yields definite and surprisingly high estimates. Parchment copies of the foremost medieval textbooks on arithmetical and calendrical calculation closely fit age distributions expected for populations with logistic growth and manuscripts with exponential survivorship. The estimated half-lives of copies agree with Bischoff's paleographically based suggestion that roughly one in seven manuscripts survive in some form from ninth-century Carolingian workshops. On this basis, many if not most of the leading technical titles circulating in Latin probably survived, even from late Antiquity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cisne, John L -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1305-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA. cisne@geology.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731453" target="_blank"〉PubMed〈/a〉
    Keywords: History, 15th Century ; History, 16th Century ; History, Ancient ; History, Medieval ; Logistic Models ; Manuscripts as Topic/*history ; Markov Chains ; Mathematics ; Probability ; Science/*history ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2005-04-30
    Description: The capacity to generate and analyze mental visual images is essential for many cognitive abilities. We combined triple-pulse transcranial magnetic stimulation (tpTMS) and repetitive TMS (rTMS) to determine which distinct aspect of mental imagery is carried out by the left and right parietal lobe and to reveal interhemispheric compensatory interactions. The left parietal lobe was predominant in generating mental images, whereas the right parietal lobe was specialized in the spatial comparison of the imagined content. Furthermore, in case of an rTMS-induced left parietal lesion, the right parietal cortex could immediately compensate such a left parietal disruption by taking over the specific function of the left hemisphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sack, A T -- Camprodon, J A -- Pascual-Leone, A -- Goebel, R -- K24 RR018875/RR/NCRR NIH HHS/ -- NCRR MO1 RR01032/RR/NCRR NIH HHS/ -- R01MH60734/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 29;308(5722):702-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Post Office Box 616, 6200 MD Maastricht, Netherlands. a.sack@psychology.unimaas.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860630" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Brain Mapping ; *Cognition ; Diagnostic Techniques, Neurological ; Functional Laterality ; Humans ; *Imagination ; Magnetics ; Male ; Parietal Lobe/*physiology ; Task Performance and Analysis ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2005-02-01
    Description: DNA translocases are molecular motors that move rapidly along DNA using adenosine triphosphate as the source of energy. We directly observed the movement of purified FtsK, an Escherichia coli translocase, on single DNA molecules. The protein moves at 5 kilobases per second and against forces up to 60 piconewtons, and locally reverses direction without dissociation. On three natural substrates, independent of its initial binding position, FtsK efficiently translocates over long distances to the terminal region of the E. coli chromosome, as it does in vivo. Our results imply that FtsK is a bidirectional motor that changes direction in response to short, asymmetric directing DNA sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pease, Paul J -- Levy, Oren -- Cost, Gregory J -- Gore, Jeff -- Ptacin, Jerod L -- Sherratt, David -- Bustamante, Carlos -- Cozzarelli, Nicholas R -- GM07232-27/GM/NIGMS NIH HHS/ -- GM08295-15/GM/NIGMS NIH HHS/ -- GM31657/GM/NIGMS NIH HHS/ -- GM32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):586-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681387" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Bacteriophage lambda ; Base Sequence ; Chromosomes, Bacterial ; DNA, Bacterial/chemistry/*metabolism ; DNA, Superhelical/chemistry/metabolism ; DNA, Viral/chemistry/*metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/isolation & purification/*metabolism ; Kinetics ; Membrane Proteins/isolation & purification/*metabolism ; Models, Biological ; Molecular Motor Proteins/isolation & purification/*metabolism ; Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2005-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilman, Sharon Larimer -- Glaze, Florence Eliza -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1208-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Coastal Carolina University, Conway, SC 29528, USA. sgilman@coastal.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731431" target="_blank"〉PubMed〈/a〉
    Keywords: History, Ancient ; History, Medieval ; Logistic Models ; Manuscripts as Topic/*history ; Markov Chains ; Probability ; Science/*history ; Time Factors ; Translations
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...