ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Binding  (474)
  • Protein Structure, Tertiary  (376)
  • Cell & Developmental Biology
  • Chemistry
  • SPACE SCIENCES
  • Nature Publishing Group (NPG)  (738)
  • 1
    Publication Date: 2016-02-24
    Description: Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of alpha-, beta- and gamma-subunits. eIF2B exchanges GDP for GTP on the gamma-subunit of eIF2 (eIF2gamma), and is inhibited by stress-induced phosphorylation of eIF2alpha. eIF2B is a heterodecameric complex of two copies each of the alpha-, beta-, gamma-, delta- and epsilon-subunits; its alpha-, beta- and delta-subunits constitute the regulatory subcomplex, while the gamma- and epsilon-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the alpha2beta2delta2 hexameric regulatory subcomplex binds two gammaepsilon dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2alpha-binding and eIF2gamma-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2gamma-binding interface is located close to the conserved 'NF motif', which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2alpha, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2alpha phosphorylation generates the 'nonproductive' eIF2-eIF2B complex, which prevents nucleotide exchange on eIF2gamma, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kashiwagi, Kazuhiro -- Takahashi, Mari -- Nishimoto, Madoka -- Hiyama, Takuya B -- Higo, Toshiaki -- Umehara, Takashi -- Sakamoto, Kensaku -- Ito, Takuhiro -- Yokoyama, Shigeyuki -- England -- Nature. 2016 Mar 3;531(7592):122-5. doi: 10.1038/nature16991. Epub 2016 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. ; RIKEN Systems and Structural Biology Center, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Structural Biology Laboratory, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26901872" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Biocatalysis ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-2B/*chemistry/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Models, Molecular ; Phosphorylation ; Protein Binding ; Protein Biosynthesis ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-21
    Description: RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 A resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105 degrees with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernecky, Carrie -- Herzog, Franz -- Baumeister, Wolfgang -- Plitzko, Jurgen M -- Cramer, Patrick -- England -- Nature. 2016 Jan 28;529(7587):551-4. doi: 10.1038/nature16482. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789250" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Animals ; Catalytic Domain ; Cattle ; *Cryoelectron Microscopy ; DNA/genetics/metabolism/ultrastructure ; Humans ; Models, Molecular ; Nucleic Acids/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/chemistry/*metabolism/*ultrastructure ; RNA, Messenger/biosynthesis/genetics/ultrastructure ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-24
    Description: All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the beta-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane beta-barrel of BamA to induce movement of the beta-strands of the barrel and promote insertion of the nascent OMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yinghong -- Li, Huanyu -- Dong, Haohao -- Zeng, Yi -- Zhang, Zhengyu -- Paterson, Neil G -- Stansfeld, Phillip J -- Wang, Zhongshan -- Zhang, Yizheng -- Wang, Wenjian -- Dong, Changjiang -- G1100110/1/Medical Research Council/United Kingdom -- WT106121MA/Wellcome Trust/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):64-9. doi: 10.1038/nature17199. Epub 2016 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China. ; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China. ; Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26901871" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Movement ; Multiprotein Complexes/*chemistry/*metabolism ; Periplasm/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-05
    Description: HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 A resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirchdoerfer, Robert N -- Cottrell, Christopher A -- Wang, Nianshuang -- Pallesen, Jesper -- Yassine, Hadi M -- Turner, Hannah L -- Corbett, Kizzmekia S -- Graham, Barney S -- McLellan, Jason S -- Ward, Andrew B -- R56 AI118016/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):118-21. doi: 10.1038/nature17200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA. ; Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Building 40, Room 2502, 40 Convent Drive, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935699" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Coronavirus/*chemistry/*ultrastructure ; Cryoelectron Microscopy ; Humans ; Membrane Fusion ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Proteolysis ; Receptors, Virus/metabolism ; Spike Glycoprotein, Coronavirus/*chemistry/metabolism/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-07
    Description: CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with 〉85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinstiver, Benjamin P -- Pattanayak, Vikram -- Prew, Michelle S -- Tsai, Shengdar Q -- Nguyen, Nhu T -- Zheng, Zongli -- Joung, J Keith -- DP1 GM105378/DP/NCCDPHP CDC HHS/ -- R01 GM088040/GM/NIGMS NIH HHS/ -- R01 GM107427/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735016" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*genetics/*metabolism ; CRISPR-Cas Systems/*physiology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; DNA/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Endonucleases/genetics/*metabolism ; *Genetic Engineering ; Genome, Human/*genetics ; Humans ; Mutation ; Protein Binding ; RNA/genetics ; Reproducibility of Results ; Sequence Analysis, DNA ; Streptococcus pyogenes/enzymology/genetics ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-15
    Description: Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reimer, Janice M -- Aloise, Martin N -- Harrison, Paul M -- Schmeing, T Martin -- 106615/Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 14;529(7585):239-42. doi: 10.1038/nature16503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, Quebec H3G 0B1, Canada. ; Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/metabolism ; Anti-Bacterial Agents/biosynthesis ; Binding Sites ; *Biocatalysis ; Brevibacillus/*enzymology ; Carbohydrate Metabolism ; Carrier Proteins/chemistry/metabolism ; Catalytic Domain ; Coenzymes/metabolism ; Crystallography, X-Ray ; Gramicidin/*biosynthesis ; Hydroxymethyl and Formyl Transferases/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/chemistry/metabolism ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Transfer/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-29
    Description: Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rentas, Stefan -- Holzapfel, Nicholas T -- Belew, Muluken S -- Pratt, Gabriel A -- Voisin, Veronique -- Wilhelm, Brian T -- Bader, Gary D -- Yeo, Gene W -- Hope, Kristin J -- HG004659/HG/NHGRI NIH HHS/ -- MOP-126030/Canadian Institutes of Health Research/Canada -- NS075449/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):508-11. doi: 10.1038/nature17665.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92037, USA. ; Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California 92037, USA. ; The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada. ; Department of Physiology, National University of Singapore and Molecular Engineering Laboratory, A*STAR, Singapore 138632, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27121842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Count ; *Cell Self Renewal/genetics ; Down-Regulation/genetics ; Female ; Fetal Blood/cytology ; Gene Knockdown Techniques ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Male ; Mice ; Protein Binding ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/genetics/*metabolism ; Receptors, Aryl Hydrocarbon/genetics/*metabolism ; *Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-09
    Description: The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 A resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walls, Alexandra C -- Tortorici, M Alejandra -- Bosch, Berend-Jan -- Frenz, Brandon -- Rottier, Peter J M -- DiMaio, Frank -- Rey, Felix A -- Veesler, David -- GM103310/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):114-7. doi: 10.1038/nature16988. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institut Pasteur, Unite de Virologie Structurale, 75015 Paris, France. ; CNRS UMR 3569 Virologie, 75015 Paris, France. ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855426" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Cell Line ; Coronavirus Infections/immunology/virology ; *Cryoelectron Microscopy ; Drosophila melanogaster ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine hepatitis virus/*chemistry/immunology/*ultrastructure ; Protein Multimerization ; Protein Structure, Tertiary ; Spike Glycoprotein, Coronavirus/*chemistry/immunology/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-15
    Description: Somatic mutations are the driving force of cancer genome evolution. The rate of somatic mutations appears to be greatly variable across the genome due to variations in chromatin organization, DNA accessibility and replication timing. However, other variables that may influence the mutation rate locally are unknown, such as a role for DNA-binding proteins, for example. Here we demonstrate that the rate of somatic mutations in melanomas is highly increased at active transcription factor binding sites and nucleosome embedded DNA, compared to their flanking regions. Using recently available excision-repair sequencing (XR-seq) data, we show that the higher mutation rate at these sites is caused by a decrease of the levels of nucleotide excision repair (NER) activity. Our work demonstrates that DNA-bound proteins interfere with the NER machinery, which results in an increased rate of DNA mutations at the protein binding sites. This finding has important implications for our understanding of mutational and DNA repair processes and in the identification of cancer driver mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabarinathan, Radhakrishnan -- Mularoni, Loris -- Deu-Pons, Jordi -- Gonzalez-Perez, Abel -- Lopez-Bigas, Nuria -- England -- Nature. 2016 Apr 14;532(7598):264-7. doi: 10.1038/nature17661.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Program on Biomedical Informatics, IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain. ; Institucio Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27075101" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA/*genetics/*metabolism ; *DNA Repair ; DNA, Neoplasm/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation, Neoplastic/genetics ; Genome, Human/genetics ; Humans ; Lung Neoplasms/genetics ; Melanoma/*genetics ; Mutagenesis/*genetics ; *Mutation Rate ; Nucleosomes/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Protein Binding ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-18
    Description: Chronic hepatitis B virus infection is a leading cause of cirrhosis and liver cancer. Hepatitis B virus encodes the regulatory HBx protein whose primary role is to promote transcription of the viral genome, which persists as an extrachromosomal DNA circle in infected cells. HBx accomplishes this task by an unusual mechanism, enhancing transcription only from extrachromosomal DNA templates. Here we show that HBx achieves this by hijacking the cellular DDB1-containing E3 ubiquitin ligase to target the 'structural maintenance of chromosomes' (Smc) complex Smc5/6 for degradation. Blocking this event inhibits the stimulatory effect of HBx both on extrachromosomal reporter genes and on hepatitis B virus transcription. Conversely, silencing the Smc5/6 complex enhances extrachromosomal reporter gene transcription in the absence of HBx, restores replication of an HBx-deficient hepatitis B virus, and rescues wild-type hepatitis B virus in a DDB1-knockdown background. The Smc5/6 complex associates with extrachromosomal reporters and the hepatitis B virus genome, suggesting a direct mechanism of transcriptional inhibition. These results uncover a novel role for the Smc5/6 complex as a restriction factor selectively blocking extrachromosomal DNA transcription. By destroying this complex, HBx relieves the inhibition to allow productive hepatitis B virus gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Decorsiere, Adrien -- Mueller, Henrik -- van Breugel, Pieter C -- Abdul, Fabien -- Gerossier, Laetitia -- Beran, Rudolf K -- Livingston, Christine M -- Niu, Congrong -- Fletcher, Simon P -- Hantz, Olivier -- Strubin, Michel -- England -- Nature. 2016 Mar 17;531(7594):386-9. doi: 10.1038/nature17170.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland. ; CRCL, INSERM U1052, CNRS 5286, Universite de Lyon, 151, Cours A Thomas, 69424 Lyon Cedex, France. ; Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26983541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/*metabolism ; Cell Line, Tumor ; DNA, Viral/genetics/metabolism ; Genes, Reporter ; Genome, Viral/genetics ; Hepatitis B/virology ; Hepatitis B virus/genetics/*physiology ; Hepatocytes/virology ; *Host Specificity ; Humans ; Liver/metabolism/virology ; Male ; Mice ; Plasmids/genetics/metabolism ; Protein Binding ; Proteolysis ; Trans-Activators/*metabolism ; Transcription, Genetic ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-03-24
    Description: (beta-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) beta-arrestin proteins (beta-arrestin1 and beta-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (beta-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of beta-arrestin with GPCRs, and the beta-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based beta-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in beta-arrestin2 that occur rapidly after the receptor-beta-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and beta-arrestins. They further indicate that beta-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of beta-arrestins, which permits their active signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nuber, Susanne -- Zabel, Ulrike -- Lorenz, Kristina -- Nuber, Andreas -- Milligan, Graeme -- Tobin, Andrew B -- Lohse, Martin J -- Hoffmann, Carsten -- 1 R01 DA038882/DA/NIDA NIH HHS/ -- BB/K019864/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Rudolf Virchow Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Comprehensive Heart Failure Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. ; MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/chemistry/*metabolism ; Biosensing Techniques ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cell Survival ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-01-07
    Description: Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFalpha transcription factors, most notably HIF2alpha (also known as EPAS1), are expressed in and required for maintenance of cancer stem cells (CSCs). However, the pathways that are engaged by ID2 or drive HIF2alpha accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex, displaces VHL-associated Cullin 2, and impairs HIF2alpha ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2alpha ubiquitylation. In glioblastoma, ID2 positively modulates HIF2alpha activity. Conversely, elevated expression of DYRK1 phosphorylates Thr27 of ID2, leading to HIF2alpha destabilization, loss of glioma stemness, inhibition of tumour growth, and a more favourable outcome for patients with glioblastoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Sang Bae -- Frattini, Veronique -- Bansal, Mukesh -- Castano, Angelica M -- Sherman, Dan -- Hutchinson, Keino -- Bruce, Jeffrey N -- Califano, Andrea -- Liu, Guangchao -- Cardozo, Timothy -- Iavarone, Antonio -- Lasorella, Anna -- R01CA101644/CA/NCI NIH HHS/ -- R01CA131126/CA/NCI NIH HHS/ -- R01CA178546/CA/NCI NIH HHS/ -- R01NS061776/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Jan 14;529(7585):172-7. doi: 10.1038/nature16475. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Columbia University Medical Center, New York 10032, USA. ; Department of Systems Biology, Columbia University Medical Center, New York 10032, USA. ; Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York 10032, USA. ; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York 10014, USA. ; Department of Neurosurgery, Columbia University Medical Center, New York 10032, USA. ; Department of Neurology, Columbia University Medical Center, New York 10032, USA. ; Department of Pathology, Columbia University Medical Center, New York 10032, USA. ; Department of Pediatrics, Columbia University Medical Center, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Cell Hypoxia ; Cell Line, Tumor ; Cullin Proteins/metabolism ; Glioblastoma/*metabolism/*pathology ; Humans ; Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism ; Inhibitor of Differentiation Protein 2/*metabolism ; Male ; Mice ; Neoplastic Stem Cells/*metabolism/pathology ; Oxygen/metabolism ; Phosphorylation ; Phosphothreonine/metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Ubiquitination ; Von Hippel-Lindau Tumor Suppressor Protein/*antagonists & inhibitors/metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-01-15
    Description: Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drake, Eric J -- Miller, Bradley R -- Shi, Ce -- Tarrasch, Jeffrey T -- Sundlov, Jesse A -- Allen, C Leigh -- Skiniotis, Georgios -- Aldrich, Courtney C -- Gulick, Andrew M -- GM-068440/GM/NIGMS NIH HHS/ -- GM-115601/GM/NIGMS NIH HHS/ -- R01 GM068440/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 14;529(7585):235-8. doi: 10.1038/nature16163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA. ; Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, USA. ; Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762461" target="_blank"〉PubMed〈/a〉
    Keywords: Acinetobacter baumannii/*enzymology ; Biocatalysis ; Carrier Proteins/metabolism ; Coenzymes/metabolism ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Holoenzymes/*chemistry/metabolism ; Models, Molecular ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-04-21
    Description: The CRISPR-Cas systems, as exemplified by CRISPR-Cas9, are RNA-guided adaptive immune systems used by bacteria and archaea to defend against viral infection. The CRISPR-Cpf1 system, a new class 2 CRISPR-Cas system, mediates robust DNA interference in human cells. Although functionally conserved, Cpf1 and Cas9 differ in many aspects including their guide RNAs and substrate specificity. Here we report the 2.38 A crystal structure of the CRISPR RNA (crRNA)-bound Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1). LbCpf1 has a triangle-shaped architecture with a large positively charged channel at the centre. Recognized by the oligonucleotide-binding domain of LbCpf1, the crRNA adopts a highly distorted conformation stabilized by extensive intramolecular interactions and the (Mg(H2O)6)(2+) ion. The oligonucleotide-binding domain also harbours a looped-out helical domain that is important for LbCpf1 substrate binding. Binding of crRNA or crRNA lacking the guide sequence induces marked conformational changes but no oligomerization of LbCpf1. Our study reveals the crRNA recognition mechanism and provides insight into crRNA-guided substrate binding of LbCpf1, establishing a framework for engineering LbCpf1 to improve its efficiency and specificity for genome editing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, De -- Ren, Kuan -- Qiu, Xiaolin -- Zheng, Jianlin -- Guo, Minghui -- Guan, Xiaoyu -- Liu, Hongnan -- Li, Ningning -- Zhang, Bailing -- Yang, Daijun -- Ma, Chuang -- Wang, Shuo -- Wu, Dan -- Ma, Yunfeng -- Fan, Shilong -- Wang, Jiawei -- Gao, Ning -- Huang, Zhiwei -- England -- Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096363" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; CRISPR-Associated Proteins/*chemistry/*metabolism ; CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Crystallography, X-Ray ; Firmicutes/*enzymology ; Genetic Engineering ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Structure, Tertiary ; RNA Stability ; RNA, Bacterial/*chemistry/genetics/*metabolism ; RNA, Guide/chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-04-05
    Description: The human sigma1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the sigma1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the sigma1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human sigma1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like beta-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Hayden R -- Zheng, Sanduo -- Gurpinar, Esin -- Koehl, Antoine -- Manglik, Aashish -- Kruse, Andrew C -- T32GM007226/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):527-30. doi: 10.1038/nature17391. Epub 2016 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27042935" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamides/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/metabolism ; Isoxazoles/chemistry/metabolism ; Ligands ; Models, Molecular ; Piperidines/chemistry/metabolism ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism ; Receptors, sigma/*chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Andrew R -- England -- Nature. 2016 May 11;533(7602):S60-1. doi: 10.1038/533S60a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27167393" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Animals ; *Azepines/classification/economics/pharmacology/therapeutic use ; Clinical Trials as Topic ; Drug Discovery/economics/*methods ; Histones/metabolism ; Humans ; *Information Dissemination ; Male ; Mice ; Neoplasms/drug therapy ; Patents as Topic/statistics & numerical data ; Protein Binding ; Protein Structure, Tertiary ; *Triazoles/classification/economics/pharmacology/therapeutic use ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-03-08
    Description: Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61alpha, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 A) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Park, Eunyong -- Ling, JingJing -- Ingram, Jessica -- Ploegh, Hidde -- Rapoport, Tom A -- GM052586/GM/NIGMS NIH HHS/ -- R01 GM052586/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 17;531(7594):395-9. doi: 10.1038/nature17163. Epub 2016 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26950603" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Sorting Signals ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-03-24
    Description: The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louder, Robert K -- He, Yuan -- Lopez-Blanco, Jose Ramon -- Fang, Jie -- Chacon, Pablo -- Nogales, Eva -- GM008295/GM/NIGMS NIH HHS/ -- GM63072/GM/NIGMS NIH HHS/ -- R01 GM063072/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 31;531(7596):604-9. doi: 10.1038/nature17394. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Graduate Group, University of California, Berkeley, California 94720, USA. ; QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Department of Biological Physical Chemistry, Rocasolano Physical Chemistry Institute, CSIC, Serrano 119, Madrid 28006, Spain. ; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007846" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; DNA/chemistry/metabolism/ultrastructure ; Humans ; Models, Molecular ; Promoter Regions, Genetic/*genetics ; Protein Binding ; Substrate Specificity ; TATA Box/genetics ; TATA-Binding Protein Associated Factors/chemistry/metabolism/ultrastructure ; TATA-Box Binding Protein/chemistry/metabolism/ultrastructure ; Transcription Factor TFIIA/chemistry/metabolism/ultrastructure ; Transcription Factor TFIID/chemistry/*metabolism/*ultrastructure ; *Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-04-28
    Description: Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gautam, Rajeev -- Nishimura, Yoshiaki -- Pegu, Amarendra -- Nason, Martha C -- Klein, Florian -- Gazumyan, Anna -- Golijanin, Jovana -- Buckler-White, Alicia -- Sadjadpour, Reza -- Wang, Keyun -- Mankoff, Zachary -- Schmidt, Stephen D -- Lifson, Jeffrey D -- Mascola, John R -- Nussenzweig, Michel C -- Martin, Malcolm A -- AI-100148/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- UM1 AI100663-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):105-9. doi: 10.1038/nature17677. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. ; Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120156" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/administration & dosage/immunology ; Animals ; Antibodies, Monoclonal/administration & dosage/blood/genetics/immunology ; Antibodies, Neutralizing/administration & dosage/blood/genetics/immunology ; Female ; HIV Antibodies/*administration & dosage/blood/genetics/*immunology ; HIV Infections/immunology/prevention & control/transmission ; Half-Life ; Immunoglobulin Fc Fragments/chemistry/genetics/immunology ; Macaca mulatta/immunology/virology ; Male ; Mutation/genetics ; Protein Structure, Tertiary ; SAIDS Vaccines/administration & dosage/immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-03-11
    Description: Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeuchi, Hidenori -- Higashiyama, Tetsuya -- England -- Nature. 2016 Mar 10;531(7593):245-8. doi: 10.1038/nature17413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; 3Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961657" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; GTP-Binding Proteins/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/*growth & development/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-01-21
    Description: Cellular immunity against viral infection and tumour cells depends on antigen presentation by major histocompatibility complex class I (MHC I) molecules. Intracellular antigenic peptides are transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I molecules, which are exported to the cell surface and present peptides to the immune system. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumour development. To escape immune surveillance, some viruses have evolved strategies either to downregulate TAP expression or directly inhibit TAP activity. So far, neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. Here we describe the cryo-electron microscopy structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. Here we show that the 12 transmembrane helices and 2 cytosolic nucleotide-binding domains of the transporter adopt an inward-facing conformation with the two nucleotide-binding domains separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and prevents nucleotide-binding domain closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the endoplasmic reticulum, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Hite, Richard K -- Steffen, Alanna M -- Damko, Ermelinda -- Li, Zongli -- Walz, Thomas -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 28;529(7587):537-40. doi: 10.1038/nature16506. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789246" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/antagonists & ; inhibitors/chemistry/*metabolism/*ultrastructure ; Amino Acid Sequence ; Antigens, Viral/immunology/metabolism ; *Cryoelectron Microscopy ; Endoplasmic Reticulum/metabolism ; Herpesvirus 1, Human/chemistry/*immunology/metabolism/ultrastructure ; Immediate-Early Proteins/chemistry/*metabolism/*ultrastructure ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-04-01
    Description: The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 A resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cavadini, Simone -- Fischer, Eric S -- Bunker, Richard D -- Potenza, Alessandro -- Lingaraju, Gondichatnahalli M -- Goldie, Kenneth N -- Mohamed, Weaam I -- Faty, Mahamadou -- Petzold, Georg -- Beckwith, Rohan E J -- Tichkule, Ritesh B -- Hassiepen, Ulrich -- Abdulrahman, Wassim -- Pantelic, Radosav S -- Matsumoto, Syota -- Sugasawa, Kaoru -- Stahlberg, Henning -- Thoma, Nicolas H -- England -- Nature. 2016 Mar 31;531(7596):598-603. doi: 10.1038/nature17416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. ; University of Basel, Petersplatz 10, 4003 Basel, Switzerland. ; Department of Cancer Biology, Dana-Farber Cancer Institute, LC-4312, 360 Longwood Avenue, Boston, Massachusetts 02215, USA. ; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058 Basel, Switzerland. ; Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland. ; Gatan R&D, 5974 W. Las Positas Boulevard, Pleasanton, California 94588, USA. ; Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan. ; Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27029275" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Apoproteins/chemistry/metabolism/ultrastructure ; Binding Sites ; *Biocatalysis ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cullin Proteins/chemistry/metabolism/ultrastructure ; DNA Damage ; DNA-Binding Proteins/chemistry/metabolism/ultrastructure ; Humans ; Kinetics ; Models, Molecular ; Multiprotein Complexes/chemistry/*metabolism/*ultrastructure ; Peptide Hydrolases/chemistry/*metabolism/*ultrastructure ; Protein Binding ; Ubiquitination ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-01-21
    Description: The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Zapien, Denise -- Ruiz, Francesc Xavier -- Poirson, Juline -- Mitschler, Andre -- Ramirez, Juan -- Forster, Anne -- Cousido-Siah, Alexandra -- Masson, Murielle -- Vande Pol, Scott -- Podjarny, Alberto -- Trave, Gilles -- Zanier, Katia -- R01CA134737/CA/NCI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):541-5. doi: 10.1038/nature16481. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Equipe labellisee Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France. ; Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Human papillomavirus 16/chemistry/*metabolism/pathogenicity ; Humans ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; *Proteolysis ; Repressor Proteins/*chemistry/genetics/*metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-02-19
    Description: Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase-DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNA remained elusive. Here we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein-DNA and protein-protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Zhiqi -- Shi, Ke -- Banerjee, Surajit -- Pandey, Krishan K -- Bera, Sibes -- Grandgenett, Duane P -- Aihara, Hideki -- AI087098/AI/NIAID NIH HHS/ -- AI100682/AI/NIAID NIH HHS/ -- GM109770/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Feb 18;530(7590):362-6. doi: 10.1038/nature16950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, Illinois 60439, USA. ; Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887497" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; DNA, Viral/*chemistry/metabolism ; HIV-1/enzymology/metabolism ; Integrases/*chemistry/metabolism ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Rous sarcoma virus/*chemistry/*enzymology/genetics/metabolism ; Spumavirus/enzymology ; Virus Integration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-03-31
    Description: Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/beta-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zinan -- Tang, Alan T -- Wong, Weng-Yew -- Bamezai, Sharika -- Goddard, Lauren M -- Shenkar, Robert -- Zhou, Su -- Yang, Jisheng -- Wright, Alexander C -- Foley, Matthew -- Arthur, J Simon C -- Whitehead, Kevin J -- Awad, Issam A -- Li, Dean Y -- Zheng, Xiangjian -- Kahn, Mark L -- P01 HL075215/HL/NHLBI NIH HHS/ -- P01 HL120846/HL/NHLBI NIH HHS/ -- P01 NS092521/NS/NINDS NIH HHS/ -- P01NS092521/NS/NINDS NIH HHS/ -- R01 HL094326/HL/NHLBI NIH HHS/ -- R01HL-084516/HL/NHLBI NIH HHS/ -- R01HL094326/HL/NHLBI NIH HHS/ -- R01NS075168/NS/NINDS NIH HHS/ -- T32HL07439/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Apr 7;532(7597):122-6. doi: 10.1038/nature17178. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA. ; Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia. ; Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, USA. ; Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA. ; Sydney Microscopy &Microanalysis, University of Sydney, Sydney, New South Wales 2050, Australia. ; Division of Cell Signaling and Immunology, University of Dundee, Dundee DD1 5EH, UK. ; Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA. ; The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China. ; Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027284" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/metabolism ; Animals ; Animals, Newborn ; Carrier Proteins/genetics/metabolism ; Disease Models, Animal ; Endothelial Cells/enzymology/*metabolism ; Female ; Hemangioma, Cavernous, Central Nervous System/etiology/*metabolism/pathology ; Humans ; Kruppel-Like Transcription Factors/deficiency/*metabolism ; MAP Kinase Kinase Kinase 3/deficiency/*metabolism ; *MAP Kinase Signaling System ; Male ; Mice ; Protein Binding ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-02-26
    Description: Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoued, Abdelrahim -- Durand, Eric -- Brunet, Yannick R -- Spinelli, Silvia -- Douzi, Badreddine -- Guzzo, Mathilde -- Flaugnatti, Nicolas -- Legrand, Pierre -- Journet, Laure -- Fronzes, Remi -- Mignot, Tam -- Cambillau, Christian -- Cascales, Eric -- England -- Nature. 2016 Mar 3;531(7592):59-63. doi: 10.1038/nature17182. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, CNRS UMR7255, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Laboratoire de Chimie Bacterienne, Institut de Microbiologie de la Mediterranee, CNRS UMR7283, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Synchrotron Soleil, L'Orme des merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909579" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry/ultrastructure ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Microscopy, Fluorescence ; Models, Molecular ; *Polymerization ; Protein Structure, Tertiary ; Type VI Secretion Systems/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mullard, Asher -- England -- Nature. 2016 Feb 18;530(7590):367-9. doi: 10.1038/530367a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887498" target="_blank"〉PubMed〈/a〉
    Keywords: Artifacts ; Cells/chemistry/cytology/metabolism ; DNA Probes/*analysis/chemistry/genetics ; Drug Evaluation, Preclinical/*methods ; Drug Industry/*methods ; High-Throughput Screening Assays ; Internationality ; Membrane Proteins/chemistry/metabolism ; Molecular Targeted Therapy ; Protein Binding ; Small Molecule Libraries/*chemical synthesis/chemistry/*pharmacology ; Solubility ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-01-28
    Description: Inflammasomes are intracellular protein complexes that drive the activation of inflammatory caspases. So far, four inflammasomes involving NLRP1, NLRP3, NLRC4 and AIM2 have been described that recruit the common adaptor protein ASC to activate caspase-1, leading to the secretion of mature IL-1beta and IL-18 proteins. The NLRP3 inflammasome has been implicated in the pathogenesis of several acquired inflammatory diseases as well as cryopyrin-associated periodic fever syndromes (CAPS) caused by inherited NLRP3 mutations. Potassium efflux is a common step that is essential for NLRP3 inflammasome activation induced by many stimuli. Despite extensive investigation, the molecular mechanism leading to NLRP3 activation in response to potassium efflux remains unknown. Here we report the identification of NEK7, a member of the family of mammalian NIMA-related kinases (NEK proteins), as an NLRP3-binding protein that acts downstream of potassium efflux to regulate NLRP3 oligomerization and activation. In the absence of NEK7, caspase-1 activation and IL-1beta release were abrogated in response to signals that activate NLRP3, but not NLRC4 or AIM2 inflammasomes. NLRP3-activating stimuli promoted the NLRP3-NEK7 interaction in a process that was dependent on potassium efflux. NLRP3 associated with the catalytic domain of NEK7, but the catalytic activity of NEK7 was shown to be dispensable for activation of the NLRP3 inflammasome. Activated macrophages formed a high-molecular-mass NLRP3-NEK7 complex, which, along with ASC oligomerization and ASC speck formation, was abrogated in the absence of NEK7. NEK7 was required for macrophages containing the CAPS-associated NLRP3(R258W) activating mutation to activate caspase-1. Mouse chimaeras reconstituted with wild-type, Nek7(-/-) or Nlrp3(-/-) haematopoietic cells showed that NEK7 was required for NLRP3 inflammasome activation in vivo. These studies demonstrate that NEK7 is an essential protein that acts downstream of potassium efflux to mediate NLRP3 inflammasome assembly and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuan -- Zeng, Melody Y -- Yang, Dahai -- Motro, Benny -- Nunez, Gabriel -- R01AI063331/AI/NIAID NIH HHS/ -- R01DK091191/DK/NIDDK NIH HHS/ -- T32 HL007517/HL/NHLBI NIH HHS/ -- T32DK094775/DK/NIDDK NIH HHS/ -- T32HL007517/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Feb 18;530(7590):354-7. doi: 10.1038/nature16959. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/deficiency/genetics/metabolism ; Biocatalysis ; Carrier Proteins/chemistry/genetics/*metabolism ; Caspase 1/metabolism ; Catalytic Domain ; Cells, Cultured ; Cryopyrin-Associated Periodic Syndromes/genetics ; Enzyme Activation ; HEK293 Cells ; Humans ; Inflammasomes/*chemistry/*metabolism ; Interleukin-1beta/secretion ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Potassium/*metabolism ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-02-04
    Description: The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davies, Benjamin -- Hatton, Edouard -- Altemose, Nicolas -- Hussin, Julie G -- Pratto, Florencia -- Zhang, Gang -- Hinch, Anjali Gupta -- Moralli, Daniela -- Biggs, Daniel -- Diaz, Rebeca -- Preece, Chris -- Li, Ran -- Bitoun, Emmanuelle -- Brick, Kevin -- Green, Catherine M -- Camerini-Otero, R Daniel -- Myers, Simon R -- Donnelly, Peter -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095552/Z/11/Z/Wellcome Trust/United Kingdom -- 098387/Z/12/Z/Wellcome Trust/United Kingdom -- Intramural NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):171-6. doi: 10.1038/nature16931. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK. ; Department of Statistics, University of Oxford, 24-29 St. Giles', Oxford OX1 3LB, UK. ; Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840484" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Binding Sites ; Chromosome Pairing/genetics ; Chromosomes, Mammalian/genetics/metabolism ; DNA Breaks, Double-Stranded ; Female ; *Genetic Speciation ; Histone-Lysine N-Methyltransferase/*chemistry/genetics/*metabolism ; Humans ; Hybridization, Genetic/*genetics ; Infertility/*genetics ; Male ; Meiosis/genetics ; Mice ; Mice, Inbred C57BL ; Protein Binding ; *Protein Engineering ; Protein Structure, Tertiary/genetics ; Recombination, Genetic/genetics ; Zinc Fingers/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-03-16
    Description: Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herbst, Dominik A -- Jakob, Roman P -- Zahringer, Franziska -- Maier, Timm -- England -- Nature. 2016 Mar 24;531(7595):533-7. doi: 10.1038/nature16993. Epub 2016 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26976449" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*chemistry/*metabolism ; Crystallography, X-Ray ; Fatty Acid Synthases/metabolism ; Models, Molecular ; Mycobacterium smegmatis/enzymology ; Oxidation-Reduction ; Polyketide Synthases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-02-11
    Description: Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tong -- Liang, Liang -- Xue, Yong -- Jia, Peng-Fei -- Chen, Wei -- Zhang, Meng-Xia -- Wang, Ying-Chun -- Li, Hong-Ju -- Yang, Wei-Cai -- England -- Nature. 2016 Mar 10;531(7593):241-4. doi: 10.1038/nature16975. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; University of Chinese Academy of Sciences, Beijing 100049, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863186" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; Cell Membrane/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/growth & development/metabolism ; Protein Kinases/genetics/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-03-31
    Description: Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Zhonghui -- Luo, Xuelian -- Yu, Hongtao -- GM107415/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Apr 7;532(7597):131-4. doi: 10.1038/nature17402. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive/drug effects ; Cell Cycle Proteins/chemistry/*metabolism ; Chaetomium/*enzymology ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; Chromosome Segregation ; Crystallography, X-Ray ; Models, Molecular ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Proteolysis ; Proto-Oncogene Proteins/metabolism ; Securin/chemistry/genetics/metabolism/pharmacology ; Separase/antagonists & inhibitors/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jun 4;522(7554):6. doi: 10.1038/522006a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040858" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry ; *Public Opinion ; Research Personnel/*ethics/standards ; Retraction of Publication as Topic ; Science/ethics/*standards ; Scientific Misconduct/*statistics & numerical data ; *Trust
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-09-22
    Description: Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 A. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Jingpeng -- Li, Wanqiu -- Zhao, Qiancheng -- Li, Ningning -- Chen, Maofei -- Zhi, Peng -- Li, Ruochong -- Gao, Ning -- Xiao, Bailong -- Yang, Maojun -- England -- Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences or Medicine, Tsinghua University, Beijing 100084, China. ; Ministry of Education, Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26390154" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; *Cryoelectron Microscopy ; Electric Conductivity ; Ion Channel Gating ; Ion Channels/*chemistry/metabolism/*ultrastructure ; Mice ; Models, Molecular ; Pliability ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-07-24
    Description: Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large alpha-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, David Yin-wei -- Huang, Shuo -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):425-30. doi: 10.1038/nature14623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Membrane Biology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201595" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/deficiency/metabolism ; Clostridium thermocellum/*chemistry ; Crystallography, X-Ray ; Models, Molecular ; Peptides/*metabolism/secretion ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-07-15
    Description: Surface polysaccharides are important for bacterial interactions with multicellular organisms, and some are virulence factors in pathogens. In the legume-rhizobium symbiosis, bacterial exopolysaccharides (EPS) are essential for the development of infected root nodules. We have identified a gene in Lotus japonicus, Epr3, encoding a receptor-like kinase that controls this infection. We show that epr3 mutants are defective in perception of purified EPS, and that EPR3 binds EPS directly and distinguishes compatible and incompatible EPS in bacterial competition studies. Expression of Epr3 in epidermal cells within the susceptible root zone shows that the protein is involved in bacterial entry, while rhizobial and plant mutant studies suggest that Epr3 regulates bacterial passage through the plant's epidermal cell layer. Finally, we show that Epr3 expression is inducible and dependent on host perception of bacterial nodulation (Nod) factors. Plant-bacterial compatibility and bacterial access to legume roots is thus regulated by a two-stage mechanism involving sequential receptor-mediated recognition of Nod factor and EPS signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaharada, Y -- Kelly, S -- Nielsen, M Wibroe -- Hjuler, C T -- Gysel, K -- Muszynski, A -- Carlson, R W -- Thygesen, M B -- Sandal, N -- Asmussen, M H -- Vinther, M -- Andersen, S U -- Krusell, L -- Thirup, S -- Jensen, K J -- Ronson, C W -- Blaise, M -- Radutoiu, S -- Stougaard, J -- England -- Nature. 2015 Jul 16;523(7560):308-12. doi: 10.1038/nature14611. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark [3] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Chemistry, University of Copenhagen, Frederiksberg 1871 C, Denmark. ; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153863" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbohydrate Sequence ; Lipopolysaccharides/chemistry/*metabolism ; Lotus/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Plant Epidermis/metabolism/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Rhizobium/*metabolism ; Root Nodules, Plant/metabolism/microbiology ; Signal Transduction ; Species Specificity ; Suppression, Genetic/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-02-20
    Description: Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499331/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499331/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsankov, Alexander M -- Gu, Hongcang -- Akopian, Veronika -- Ziller, Michael J -- Donaghey, Julie -- Amit, Ido -- Gnirke, Andreas -- Meissner, Alexander -- 5F32DK095537/DK/NIDDK NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):344-9. doi: 10.1038/nature14233.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Immunology, Weizmann Institute, Rehovot, 76100 Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693565" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Differentiation/genetics ; Cell Lineage ; Chromatin/chemistry/genetics/metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Methylation ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/genetics ; Epigenomics ; Genome, Human/genetics ; Germ Layers/cytology/metabolism ; Histones/chemistry/metabolism ; Humans ; Protein Binding ; Signal Transduction ; Transcription Factors/*metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-09-30
    Description: The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bondy-Denomy, Joseph -- Garcia, Bianca -- Strum, Scott -- Du, Mingjian -- Rollins, MaryClare F -- Hidalgo-Reyes, Yurima -- Wiedenheft, Blake -- Maxwell, Karen L -- Davidson, Alan R -- MOP-130482/Canadian Institutes of Health Research/Canada -- MOP-136845/Canadian Institutes of Health Research/Canada -- P20GM103500/GM/NIGMS NIH HHS/ -- R01GM108888/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):136-9. doi: 10.1038/nature15254. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA. ; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416740" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*metabolism/*virology ; Bacteriophages/*metabolism ; CRISPR-Associated Proteins/*antagonists & inhibitors/metabolism ; CRISPR-Cas Systems/genetics/*physiology ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; DNA Helicases/antagonists & inhibitors/metabolism ; DNA, Viral/metabolism ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Endonucleases/antagonists & inhibitors/metabolism ; *Evolution, Molecular ; Protein Binding ; Protein Subunits/antagonists & inhibitors/metabolism ; Repressor Proteins/genetics/metabolism ; Substrate Specificity ; Viral Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-06-05
    Description: The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaminets, Aliaksandr -- Heinrich, Theresa -- Mari, Muriel -- Grumati, Paolo -- Huebner, Antje K -- Akutsu, Masato -- Liebmann, Lutz -- Stolz, Alexandra -- Nietzsche, Sandor -- Koch, Nicole -- Mauthe, Mario -- Katona, Istvan -- Qualmann, Britta -- Weis, Joachim -- Reggiori, Fulvio -- Kurth, Ingo -- Hubner, Christian A -- Dikic, Ivan -- England -- Nature. 2015 Jun 18;522(7556):354-8. doi: 10.1038/nature14498. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. ; Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Kollegiengasse 10, 07743 Jena, Germany. ; 1] Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands [2] Department of Cell Biology, University Medical Center Utrecht, University of Groningen, Antonious Deusinglaan 1, 3713 AV Groningen, The Netherlands. ; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany. ; Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Ziegelmuhlenweg 1, 07743 Jena, Germany. ; Institute for Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany. ; Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany. ; 1] Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany [2] Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany [3] Institute of Immunology, School of Medicine University of Split, Mestrovicevo setaliste bb, 21 000 Split, Croatia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040720" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis ; Autophagy/*physiology ; Biomarkers/metabolism ; Cell Line ; Endoplasmic Reticulum/chemistry/*metabolism ; Female ; Gene Deletion ; Humans ; Lysosomes/metabolism ; Male ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Neoplasm Proteins/deficiency/genetics/*metabolism ; Phagosomes/metabolism ; Protein Binding ; Sensory Receptor Cells/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-11
    Description: G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vafabakhsh, Reza -- Levitz, Joshua -- Isacoff, Ehud Y -- 2PN2EY018241/EY/NEI NIH HHS/ -- PN2 EY018241/EY/NEI NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):497-501. doi: 10.1038/nature14679. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Drug Partial Agonism ; *Fluorescence Resonance Energy Transfer ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Conformation ; Rats ; Receptors, Metabotropic Glutamate/*chemistry/*classification/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-06-23
    Description: Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1alpha) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1alpha is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific alpha myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, Wataru -- Xiao, Feng -- Canseco, Diana C -- Muralidhar, Shalini -- Thet, SuWannee -- Zhang, Helen M -- Abderrahman, Yezan -- Chen, Rui -- Garcia, Joseph A -- Shelton, John M -- Richardson, James A -- Ashour, Abdelrahman M -- Asaithamby, Aroumougame -- Liang, Hanquan -- Xing, Chao -- Lu, Zhigang -- Zhang, Cheng Cheng -- Sadek, Hesham A -- I01 BX000446/BX/BLRD VA/ -- R01 HL108104/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):226-30. doi: 10.1038/nature14582. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan. ; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Departments of Physiology and Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Medicine, VA North Texas Health Care System, 4600 South Lancaster Road, Dallas, Texas 75216, USA. ; 1] Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Hypoxia ; Cell Proliferation/genetics ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Myocardium/*cytology ; Myocytes, Cardiac/*cytology/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/genetics/*metabolism ; Recombinases/genetics/metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-02-18
    Description: The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pemovska, Tea -- Johnson, Eric -- Kontro, Mika -- Repasky, Gretchen A -- Chen, Jeffrey -- Wells, Peter -- Cronin, Ciaran N -- McTigue, Michele -- Kallioniemi, Olli -- Porkka, Kimmo -- Murray, Brion W -- Wennerberg, Krister -- England -- Nature. 2015 Mar 5;519(7541):102-5. doi: 10.1038/nature14119. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; La Jolla Laboratories, Pfizer Worldwide Research &Development, San Diego, California 92121, USA. ; Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, 00290 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686603" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/chemistry/pharmacology/therapeutic use ; Cell Line ; Cell Proliferation/drug effects ; Crystallization ; Crystallography, X-Ray ; Drug Repositioning ; Drug Resistance, Neoplasm/genetics ; Drug Screening Assays, Antitumor ; Fusion Proteins, bcr-abl/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Imidazoles/*chemistry/*pharmacology/therapeutic use ; Indazoles/*chemistry/*pharmacology/therapeutic use ; Kidney Neoplasms/drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinase Inhibitors/chemistry/pharmacology/therapeutic use ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor Receptor-2/antagonists & ; inhibitors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-01-13
    Description: Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320033/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320033/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Minglei -- Wu, Shenping -- Zhou, Qiangjun -- Vivona, Sandro -- Cipriano, Daniel J -- Cheng, Yifan -- Brunger, Axel T -- 5-U01AI082051-05/AI/NIAID NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM082893/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM082893/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- R37MH63105/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 5;518(7537):61-7. doi: 10.1038/nature14148. Epub 2015 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA. ; 1] Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25581794" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cricetulus ; Cryoelectron Microscopy ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism/ultrastructure ; N-Ethylmaleimide-Sensitive Proteins/chemistry/metabolism/ultrastructure ; Protein Binding ; Protein Structure, Tertiary ; Rats ; SNARE Proteins/*chemistry/*metabolism/ultrastructure ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment ; Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-02-18
    Description: Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diao, Jiajie -- Liu, Rong -- Rong, Yueguang -- Zhao, Minglei -- Zhang, Jing -- Lai, Ying -- Zhou, Qiangjun -- Wilz, Livia M -- Li, Jianxu -- Vivona, Sandro -- Pfuetzner, Richard A -- Brunger, Axel T -- Zhong, Qing -- 5P30CA142543/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 CA133228/CA/NCI NIH HHS/ -- R01 R37-MH63105/MH/NIMH NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- T32 GM007232/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):563-6. doi: 10.1038/nature14147. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3] College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China. ; 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686604" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/*chemistry/*metabolism ; *Autophagy ; Endosomes/*metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Lysosomes/*metabolism ; *Membrane Fusion ; Phagosomes/chemistry/*metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Qa-SNARE Proteins/metabolism ; Qb-SNARE Proteins/metabolism ; Qc-SNARE Proteins/metabolism ; R-SNARE Proteins/metabolism ; SNARE Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yingying -- England -- Nature. 2015 Dec 17;528(7582):S170-3. doi: 10.1038/528S170a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26673023" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Science Disciplines ; Chemistry ; China ; Diffusion of Innovation ; Ecology ; Economic Recession ; Humans ; International Cooperation ; Nobel Prize ; Physics ; Research/economics/manpower/standards/*statistics & numerical data ; Research Personnel/education/standards/supply & distribution ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-09-04
    Description: TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568559/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568559/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Jiajun -- Sammons, Morgan A -- Donahue, Greg -- Dou, Zhixun -- Vedadi, Masoud -- Getlik, Matthaus -- Barsyte-Lovejoy, Dalia -- Al-awar, Rima -- Katona, Bryson W -- Shilatifard, Ali -- Huang, Jing -- Hua, Xianxin -- Arrowsmith, Cheryl H -- Berger, Shelley L -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- P30 ES013508/ES/NIEHS NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 GM069905/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 10;525(7568):206-11. doi: 10.1038/nature15251. Epub 2015 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada. ; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. ; Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, Illinois 60611, USA. ; Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA. ; Princess Margaret Cancer Centre, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26331536" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line, Tumor ; Cell Proliferation/genetics ; Chromatin/chemistry/*genetics/*metabolism ; Female ; Genes, Tumor Suppressor ; Genome, Human/genetics ; Histone Acetyltransferases/metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/metabolism ; Humans ; Male ; Mice ; Mutant Proteins/genetics/metabolism ; Mutation/*genetics ; Myeloid-Lymphoid Leukemia Protein/metabolism ; Neoplasms/*genetics/metabolism/*pathology ; Phenotype ; Protein Binding ; Protein Processing, Post-Translational ; Tumor Suppressor Protein p53/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-12-18
    Description: Eukaryotic transcription factors (TFs) are key determinants of gene activity, yet they bind only a fraction of their corresponding DNA sequence motifs in any given cell type. Chromatin has the potential to restrict accessibility of binding sites; however, in which context chromatin states are instructive for TF binding remains mainly unknown. To explore the contribution of DNA methylation to constrained TF binding, we mapped DNase-I-hypersensitive sites in murine stem cells in the presence and absence of DNA methylation. Methylation-restricted sites are enriched for TF motifs containing CpGs, especially for those of NRF1. In fact, the TF NRF1 occupies several thousand additional sites in the unmethylated genome, resulting in increased transcription. Restoring de novo methyltransferase activity initiates remethylation at these sites and outcompetes NRF1 binding. This suggests that binding of DNA-methylation-sensitive TFs relies on additional determinants to induce local hypomethylation. In support of this model, removal of neighbouring motifs in cis or of a TF in trans causes local hypermethylation and subsequent loss of NRF1 binding. This competition between DNA methylation and TFs in vivo reveals a case of cooperativity between TFs that acts indirectly via DNA methylation. Methylation removal by methylation-insensitive factors enables occupancy of methylation-sensitive factors, a principle that rationalizes hypomethylation of regulatory regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Domcke, Silvia -- Bardet, Anais Flore -- Adrian Ginno, Paul -- Hartl, Dominik -- Burger, Lukas -- Schubeler, Dirk -- England -- Nature. 2015 Dec 24;528(7583):575-9. doi: 10.1038/nature16462. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland. ; University of Basel, Faculty of Sciences, Petersplatz 1, CH 4003 Basel, Switzerland. ; Swiss Institute of Bioinformatics, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Binding, Competitive ; Cells, Cultured ; Chromatin/chemistry/genetics/*metabolism ; *DNA Methylation ; Deoxyribonuclease I/metabolism ; Genome/genetics ; Humans ; Mice ; Mouse Embryonic Stem Cells/metabolism ; Nuclear Respiratory Factor 1/*metabolism ; Protein Binding ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-02-25
    Description: Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus-plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779052/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779052/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zorzatto, Cristiane -- Machado, Joao Paulo B -- Lopes, Kenia V G -- Nascimento, Kelly J T -- Pereira, Welison A -- Brustolini, Otavio J B -- Reis, Pedro A B -- Calil, Iara P -- Deguchi, Michihito -- Sachetto-Martins, Gilberto -- Gouveia, Bianca C -- Loriato, Virgilio A P -- Silva, Marcos A C -- Silva, Fabyano F -- Santos, Anesia A -- Chory, Joanne -- Fontes, Elizabeth P B -- 5R01-GM94428/GM/NIGMS NIH HHS/ -- R01 GM094428/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 30;520(7549):679-82. doi: 10.1038/nature14171. Epub 2015 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Departamento de Bioquimica e Biologia Molecular, National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Vicosa, 36570.000 Vicosa, Minas Gerais, Brazil [2] National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Vicosa, 36570.000 Vicosa, Minas Gerais, Brazil. ; 1] National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Vicosa, 36570.000 Vicosa, Minas Gerais, Brazil [2] Departamento de Genetica, Universidade Federal do Rio de Janeiro, 21944.970 Rio de Janeiro, Brazil. ; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Vicosa, 36570.000 Vicosa, Minas Gerais, Brazil. ; Departamento de Zootecnia, Universidade Federal de Vicosa, 36570.000 Vicosa, Minas Gerais, Brazil. ; 1] National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Vicosa, 36570.000 Vicosa, Minas Gerais, Brazil [2] Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707794" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Arabidopsis/*immunology/*virology ; Arabidopsis Proteins/*metabolism ; Begomovirus/*immunology ; Cell Nucleus/metabolism ; Down-Regulation ; Gene Expression Regulation, Plant ; Immune Tolerance ; *Immunity, Innate ; *Plant Immunity ; Protein Binding ; Protein Biosynthesis/genetics/*immunology ; Protein-Serine-Threonine Kinases/*metabolism ; Ribosomal Proteins/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-11-03
    Description: Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dou, Zhixun -- Xu, Caiyue -- Donahue, Greg -- Shimi, Takeshi -- Pan, Ji-An -- Zhu, Jiajun -- Ivanov, Andrejs -- Capell, Brian C -- Drake, Adam M -- Shah, Parisha P -- Catanzaro, Joseph M -- Ricketts, M Daniel -- Lamark, Trond -- Adam, Stephen A -- Marmorstein, Ronen -- Zong, Wei-Xing -- Johansen, Terje -- Goldman, Robert D -- Adams, Peter D -- Berger, Shelley L -- P01AG031862/AG/NIA NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 GM106023/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Nov 5;527(7576):105-9. doi: 10.1038/nature15548. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA. ; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA. ; Institute of Cancer Sciences, University of Glasgow and Beatson Institute for Cancer Research, Glasgow G61 1BD, UK. ; Department of Biochemistry &Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Molecular Cancer Research Group, Institute of Medical Biology, University of Tromso - The Arctic University of Norway, 9037 Tromso, Norway. ; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524528" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Cell Aging ; Cell Transformation, Neoplastic ; Cells, Cultured ; Chromatin/chemistry/metabolism ; Cytoplasm/metabolism ; Fibroblasts ; HEK293 Cells ; Humans ; Lamin Type B/genetics/metabolism ; Lysosomes/metabolism ; Mice ; Microfilament Proteins/metabolism ; Microtubule-Associated Proteins/metabolism ; Nuclear Lamina/*metabolism ; Oncogene Protein p21(ras)/metabolism ; Protein Binding ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-03-25
    Description: Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-beta1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to beta1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, alpha5beta1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitorino, Philip -- Yeung, Stacey -- Crow, Ailey -- Bakke, Jesse -- Smyczek, Tanya -- West, Kristina -- McNamara, Erin -- Eastham-Anderson, Jeffrey -- Gould, Stephen -- Harris, Seth F -- Ndubaku, Chudi -- Ye, Weilan -- England -- Nature. 2015 Mar 26;519(7544):425-30. doi: 10.1038/nature14323. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Pathology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799996" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antigens, CD29/chemistry/drug effects/metabolism ; Cell Membrane/drug effects/metabolism ; *Cell Movement ; Cell Shape/drug effects ; Endothelial Cells/*cytology/drug effects/*metabolism ; Epistasis, Genetic ; Focal Adhesions/metabolism ; Humans ; Integrin alpha1/drug effects/metabolism ; Integrins/drug effects/*metabolism ; Intracellular Signaling Peptides and Proteins/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Male ; Mice ; Microfilament Proteins/deficiency/genetics/metabolism ; Neovascularization, Pathologic ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Talin/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-19
    Description: Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seweryn, Paulina -- Van, Lan Bich -- Kjeldgaard, Morten -- Russo, Christopher J -- Passmore, Lori A -- Hove-Jensen, Bjarne -- Jochimsen, Bjarne -- Brodersen, Ditlev E -- MC_U105192715/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):68-72. doi: 10.1038/nature14683. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280334" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Biocatalysis ; Carbon/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Hydrolysis ; Iron/chemistry/metabolism ; Lyases/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Organophosphonates/metabolism ; Phosphorus/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sulfur/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-07-30
    Description: DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior beta-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ningning -- Zhai, Yuanliang -- Zhang, Yixiao -- Li, Wanqiu -- Yang, Maojun -- Lei, Jianlin -- Tye, Bik-Kwoon -- Gao, Ning -- England -- Nature. 2015 Aug 13;524(7564):186-91. doi: 10.1038/nature14685. Epub 2015 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26222030" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/chemistry/metabolism/ultrastructure ; Chromatin/chemistry ; Conserved Sequence ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism/ultrastructure ; DNA-Directed DNA Polymerase/chemistry/ultrastructure ; G1 Phase ; Minichromosome Maintenance Proteins/*chemistry/metabolism/*ultrastructure ; Models, Biological ; Models, Molecular ; Multienzyme Complexes/chemistry/ultrastructure ; Nucleic Acid Denaturation ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/metabolism ; Replication Origin ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-02-25
    Description: Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heler, Robert -- Samai, Poulami -- Modell, Joshua W -- Weiner, Catherine -- Goldberg, Gregory W -- Bikard, David -- Marraffini, Luciano A -- 1DP2AI104556-01/AI/NIAID NIH HHS/ -- DP2 AI104556/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; 1] Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707807" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*metabolism ; *CRISPR-Cas Systems/immunology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics/immunology ; DNA, Viral/*genetics/immunology/metabolism ; Molecular Sequence Data ; Nucleotide Motifs ; Protein Binding ; Protein Structure, Tertiary ; Staphylococcus aureus ; Streptococcus pyogenes/*enzymology/*genetics/immunology/virology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-19
    Description: Dysfunction of the intramembrane protease gamma-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human gamma-secretase at 3.4 A resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of gamma-secretase function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Xiao-chen -- Yan, Chuangye -- Yang, Guanghui -- Lu, Peilong -- Ma, Dan -- Sun, Linfeng -- Zhou, Rui -- Scheres, Sjors H W -- Shi, Yigong -- MC_UP_A025_101/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 10;525(7568):212-7. doi: 10.1038/nature14892. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280335" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics ; Amyloid Precursor Protein ; Secretases/*chemistry/genetics/metabolism/*ultrastructure ; Binding Sites ; *Cryoelectron Microscopy ; Humans ; Membrane Glycoproteins/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Mutation ; Presenilin-1/*chemistry/genetics/*ultrastructure ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-08
    Description: micro-Opioid receptors (microORs) are G-protein-coupled receptors that are activated by a structurally diverse spectrum of natural and synthetic agonists including endogenous endorphin peptides, morphine and methadone. The recent structures of the muOR in inactive and agonist-induced active states (Huang et al., ref. 2) provide snapshots of the receptor at the beginning and end of a signalling event, but little is known about the dynamic sequence of events that span these two states. Here we use solution-state NMR to examine the process of muOR activation using a purified receptor (mouse sequence) preparation in an amphiphile membrane-like environment. We obtain spectra of the muOR in the absence of ligand, and in the presence of the high-affinity agonist BU72 alone, or with BU72 and a G protein mimetic nanobody. Our results show that conformational changes in transmembrane segments 5 and 6 (TM5 and TM6), which are required for the full engagement of a G protein, are almost completely dependent on the presence of both the agonist and the G protein mimetic nanobody, revealing a weak allosteric coupling between the agonist-binding pocket and the G-protein-coupling interface (TM5 and TM6), similar to that observed for the beta2-adrenergic receptor. Unexpectedly, in the presence of agonist alone, we find larger spectral changes involving intracellular loop 1 and helix 8 compared to changes in TM5 and TM6. These results suggest that one or both of these domains may play a role in the initial interaction with the G protein, and that TM5 and TM6 are only engaged later in the process of complex formation. The initial interactions between the G protein and intracellular loop 1 and/or helix 8 may be involved in G-protein coupling specificity, as has been suggested for other family A G-protein-coupled receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sounier, Remy -- Mas, Camille -- Steyaert, Jan -- Laeremans, Toon -- Manglik, Aashish -- Huang, Weijiao -- Kobilka, Brian K -- Demene, Helene -- Granier, Sebastien -- DA036246/DA/NIDA NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):375-8. doi: 10.1038/nature14680. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054- University of Montpellier, 29 rue de Navacelles, 34090 Montpellier Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245377" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Heterotrimeric GTP-Binding Proteins/metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Morphinans/chemistry/metabolism/pharmacology ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation/drug effects ; Pyrroles/chemistry/metabolism/pharmacology ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/metabolism/pharmacology ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-06-23
    Description: Stearoyl-CoA desaturase (SCD) is conserved in all eukaryotes and introduces the first double bond into saturated fatty acyl-CoAs. Because the monounsaturated products of SCD are key precursors of membrane phospholipids, cholesterol esters and triglycerides, SCD is pivotal in fatty acid metabolism. Humans have two SCD homologues (SCD1 and SCD5), while mice have four (SCD1-SCD4). SCD1-deficient mice do not become obese or diabetic when fed a high-fat diet because of improved lipid metabolic profiles and insulin sensitivity. Thus, SCD1 is a pharmacological target in the treatment of obesity, diabetes and other metabolic diseases. SCD1 is an integral membrane protein located in the endoplasmic reticulum, and catalyses the formation of a cis-double bond between the ninth and tenth carbons of stearoyl- or palmitoyl-CoA. The reaction requires molecular oxygen, which is activated by a di-iron centre, and cytochrome b5, which regenerates the di-iron centre. To understand better the structural basis of these characteristics of SCD function, here we crystallize and solve the structure of mouse SCD1 bound to stearoyl-CoA at 2.6 A resolution. The structure shows a novel fold comprising four transmembrane helices capped by a cytosolic domain, and a plausible pathway for lateral substrate access and product egress. The acyl chain of the bound stearoyl-CoA is enclosed in a tunnel buried in the cytosolic domain, and the geometry of the tunnel and the conformation of the bound acyl chain provide a structural basis for the regioselectivity and stereospecificity of the desaturation reaction. The dimetal centre is coordinated by a unique spacial arrangement of nine conserved histidine residues that implies a potentially novel mechanism for oxygen activation. The structure also illustrates a possible route for electron transfer from cytochrome b5 to the di-iron centre.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Yonghong -- McCoy, Jason G -- Levin, Elena J -- Sobrado, Pablo -- Rajashankar, Kanagalaghatta R -- Fox, Brian G -- Zhou, Ming -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41GM103403/GM/NIGMS NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 GM098878/GM/NIGMS NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01DK088057/DK/NIDDK NIH HHS/ -- R01GM050853/GM/NIGMS NIH HHS/ -- R01GM098878/GM/NIGMS NIH HHS/ -- R01HL086392/HL/NHLBI NIH HHS/ -- U54 GM094584/GM/NIGMS NIH HHS/ -- U54GM094584/GM/NIGMS NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 13;524(7564):252-6. doi: 10.1038/nature14549. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ; NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098370" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Coenzyme A/chemistry/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cytochromes b5/chemistry/metabolism ; Electron Transport ; Histidine/chemistry/metabolism ; Iron/metabolism ; Mice ; Models, Molecular ; Oxygen/metabolism ; Protein Structure, Tertiary ; Static Electricity ; Stearoyl-CoA Desaturase/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-12-10
    Description: Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn's disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertz, Ingrid E -- Newton, Kim -- Seshasayee, Dhaya -- Kusam, Saritha -- Lam, Cynthia -- Zhang, Juan -- Popovych, Nataliya -- Helgason, Elizabeth -- Schoeffler, Allyn -- Jeet, Surinder -- Ramamoorthi, Nandhini -- Kategaya, Lorna -- Newman, Robert J -- Horikawa, Keisuke -- Dugger, Debra -- Sandoval, Wendy -- Mukund, Susmith -- Zindal, Anuradha -- Martin, Flavius -- Quan, Clifford -- Tom, Jeffrey -- Fairbrother, Wayne J -- Townsend, Michael -- Warming, Soren -- DeVoss, Jason -- Liu, Jinfeng -- Dueber, Erin -- Caplazi, Patrick -- Lee, Wyne P -- Goodnow, Christopher C -- Balazs, Mercedesz -- Yu, Kebing -- Kolumam, Ganesh -- Dixit, Vishva M -- England -- Nature. 2015 Dec 17;528(7582):370-5. doi: 10.1038/nature16165. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Discovery Oncology, Genentech, South San Francisco, California 94080, USA. ; Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA. ; Physiological Chemistry, Genentech, South San Francisco, California 94080, USA. ; Immunology, Genentech, South San Francisco, California 94080, USA. ; Molecular Biology, Genentech, South San Francisco, California 94080, USA. ; Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Protein Chemistry, Genentech, South San Francisco, California 94080, USA. ; Structural Biology, Genentech, South San Francisco, California 94080, USA. ; Bioinformatics, Genentech, South San Francisco, California 94080, USA. ; Pathology, Genentech, South San Francisco, California 94080, USA. ; Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Sydney, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649818" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Female ; Inflammation/genetics/*metabolism/pathology ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Lysine/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Phosphorylation ; Polyubiquitin/chemistry/metabolism ; Protein Binding ; Protein Kinases/metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism ; Ubiquitin/*chemistry/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-11-10
    Description: One of the most important questions in biology is how transcription factors (TFs) and cofactors control enhancer function and thus gene expression. Enhancer activation usually requires combinations of several TFs, indicating that TFs function synergistically and combinatorially. However, while TF binding has been extensively studied, little is known about how combinations of TFs and cofactors control enhancer function once they are bound. It is typically unclear which TFs participate in combinatorial enhancer activation, whether different TFs form functionally distinct groups, or if certain TFs might substitute for each other in defined enhancer contexts. Here we assess the potential regulatory contributions of TFs and cofactors to combinatorial enhancer control with enhancer complementation assays. We recruited GAL4-DNA-binding-domain fusions of 812 Drosophila TFs and cofactors to 24 enhancer contexts and measured enhancer activities by 82,752 luciferase assays in S2 cells. Most factors were functional in at least one context, yet their contributions differed between contexts and varied from repression to activation (up to 289-fold) for individual factors. Based on functional similarities across contexts, we define 15 groups of TFs that differ in developmental functions and protein sequence features. Similar TFs can substitute for each other, enabling enhancer re-engineering by exchanging TF motifs, and TF-cofactor pairs cooperate during enhancer control and interact physically. Overall, we show that activators and repressors can have diverse regulatory functions that typically depend on the enhancer context. The systematic functional characterization of TFs and cofactors should further our understanding of combinatorial enhancer control and gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stampfel, Gerald -- Kazmar, Tomas -- Frank, Olga -- Wienerroither, Sebastian -- Reiter, Franziska -- Stark, Alexander -- England -- Nature. 2015 Dec 3;528(7580):147-51. doi: 10.1038/nature15545. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550828" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Line ; DNA/genetics/metabolism ; Down-Regulation/genetics ; Drosophila melanogaster/genetics ; Enhancer Elements, Genetic/*genetics ; *Gene Expression Regulation/genetics ; Genes, Reporter/genetics ; Genetic Complementation Test ; Luciferases/genetics/metabolism ; Protein Binding ; Transcription Factors/*metabolism ; *Transcription, Genetic/genetics ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-10-06
    Description: Na(+)-activated K(+) channels are members of the Slo family of large conductance K(+) channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels fulfil a number of biological roles and have intriguing biophysical properties, including conductance levels that are ten times those of most other K(+) channels and gating sensitivity to intracellular Na(+). Here we present the structure of a complete Na(+)-activated K(+) channel, chicken Slo2.2, in the Na(+)-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 angstroms. The channel is composed of a large cytoplasmic gating ring, in which resides the Na(+)-binding site and a transmembrane domain that closely resembles voltage-gated K(+) channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure reveals features that can explain the unusually high conductance of Slo channels and how contraction of the cytoplasmic gating ring closes the pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hite, Richard K -- Yuan, Peng -- Li, Zongli -- Hsuing, Yichun -- Walz, Thomas -- MacKinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):198-203. doi: 10.1038/nature14958. Epub 2015 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26436452" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Chickens ; *Cryoelectron Microscopy ; Cytoplasm/metabolism ; Electric Conductivity ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Potassium Channels/chemistry/metabolism/*ultrastructure ; Protein Structure, Tertiary ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-10-13
    Description: Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 A) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously approximately 85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed alpha-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Guizhen -- Baker, Matthew L -- Wang, Zhao -- Baker, Mariah R -- Sinyagovskiy, Pavel A -- Chiu, Wah -- Ludtke, Steven J -- Serysheva, Irina I -- P41 GM103832/GM/NIGMS NIH HHS/ -- P41GM103832/GM/NIGMS NIH HHS/ -- R01 GM072804/GM/NIGMS NIH HHS/ -- R01 GM079429/GM/NIGMS NIH HHS/ -- R01 GM080139/GM/NIGMS NIH HHS/ -- R01GM072804/GM/NIGMS NIH HHS/ -- R01GM079429/GM/NIGMS NIH HHS/ -- R01GM080139/GM/NIGMS NIH HHS/ -- R21 AR063255/AR/NIAMS NIH HHS/ -- R21 GM100229/GM/NIGMS NIH HHS/ -- R21AR063255/AR/NIAMS NIH HHS/ -- R21GM100229/GM/NIGMS NIH HHS/ -- S10 OD016279/OD/NIH HHS/ -- S10OD016279/OD/NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):336-41. doi: 10.1038/nature15249. Epub 2015 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA. ; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26458101" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Apoproteins/chemistry/metabolism/ultrastructure ; Calcium/metabolism ; Calcium Signaling ; *Cryoelectron Microscopy ; Cytosol/chemistry/metabolism ; Inositol 1,4,5-Trisphosphate Receptors/chemistry/*metabolism/*ultrastructure ; Ion Channel Gating ; Models, Molecular ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rats ; Ryanodine Receptor Calcium Release Channel/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-11-03
    Description: DNA methylation is an important epigenetic modification. Ten-eleven translocation (TET) proteins are involved in DNA demethylation through iteratively oxidizing 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Here we show that human TET1 and TET2 are more active on 5mC-DNA than 5hmC/5fC-DNA substrates. We determine the crystal structures of TET2-5hmC-DNA and TET2-5fC-DNA complexes at 1.80 A and 1.97 A resolution, respectively. The cytosine portion of 5hmC/5fC is specifically recognized by TET2 in a manner similar to that of 5mC in the TET2-5mC-DNA structure, and the pyrimidine base of 5mC/5hmC/5fC adopts an almost identical conformation within the catalytic cavity. However, the hydroxyl group of 5hmC and carbonyl group of 5fC face towards the opposite direction because the hydroxymethyl group of 5hmC and formyl group of 5fC adopt restrained conformations through forming hydrogen bonds with the 1-carboxylate of NOG and N4 exocyclic nitrogen of cytosine, respectively. Biochemical analyses indicate that the substrate preference of TET2 results from the different efficiencies of hydrogen abstraction in TET2-mediated oxidation. The restrained conformation of 5hmC and 5fC within the catalytic cavity may prevent their abstractable hydrogen(s) adopting a favourable orientation for hydrogen abstraction and thus result in low catalytic efficiency. Our studies demonstrate that the substrate preference of TET2 results from the intrinsic value of its substrates at their 5mC derivative groups and suggest that 5hmC is relatively stable and less prone to further oxidation by TET proteins. Therefore, TET proteins are evolutionarily tuned to be less reactive towards 5hmC and facilitate the generation of 5hmC as a potentially stable mark for regulatory functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Lulu -- Lu, Junyan -- Cheng, Jingdong -- Rao, Qinhui -- Li, Ze -- Hou, Haifeng -- Lou, Zhiyong -- Zhang, Lei -- Li, Wei -- Gong, Wei -- Liu, Mengjie -- Sun, Chang -- Yin, Xiaotong -- Li, Jie -- Tan, Xiangshi -- Wang, Pengcheng -- Wang, Yinsheng -- Fang, Dong -- Cui, Qiang -- Yang, Pengyuan -- He, Chuan -- Jiang, Hualiang -- Luo, Cheng -- Xu, Yanhui -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 5;527(7576):118-22. doi: 10.1038/nature15713. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China. ; MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China. ; Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, USA. ; Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA. ; Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524525" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Cytosine/analogs & derivatives/metabolism ; DNA/*chemistry/*metabolism ; DNA Methylation ; DNA-Binding Proteins/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Oxidation-Reduction ; Protein Binding ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-12-18
    Description: T helper 17 (TH17) lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORgammat, a ligand-regulated nuclear receptor. Here we identify the RNA helicase DEAD-box protein 5 (DDX5) as a RORgammat partner that coordinates transcription of selective TH17 genes, and is required for TH17-mediated inflammatory pathologies. Surprisingly, the ability of DDX5 to interact with RORgammat and coactivate its targets depends on intrinsic RNA helicase activity and binding of a conserved nuclear long noncoding RNA (lncRNA), Rmrp, which is mutated in patients with cartilage-hair hypoplasia. A targeted Rmrp gene mutation in mice, corresponding to a gene mutation in cartilage-hair hypoplasia patients, altered lncRNA chromatin occupancy, and reduced the DDX5-RORgammat interaction and RORgammat target gene transcription. Elucidation of the link between Rmrp and the DDX5-RORgammat complex reveals a role for RNA helicases and lncRNAs in tissue-specific transcriptional regulation, and provides new opportunities for therapeutic intervention in TH17-dependent diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Wendy -- Thomas, Benjamin -- Flynn, Ryan A -- Gavzy, Samuel J -- Wu, Lin -- Kim, Sangwon V -- Hall, Jason A -- Miraldi, Emily R -- Ng, Charles P -- Rigo, Frank W -- Meadows, Sarah -- Montoya, Nina R -- Herrera, Natalia G -- Domingos, Ana I -- Rastinejad, Fraydoon -- Myers, Richard M -- Fuller-Pace, Frances V -- Bonneau, Richard -- Chang, Howard Y -- Acuto, Oreste -- Littman, Dan R -- 1F30CA189514-01/CA/NCI NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 AI080885/AI/NIAID NIH HHS/ -- R01 AI121436/AI/NIAID NIH HHS/ -- R01 DK103358/DK/NIDDK NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01AI080885/AI/NIAID NIH HHS/ -- R01DK103358/DK/NIDDK NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- T32 AI100853/AI/NIAID NIH HHS/ -- T32 CA009161/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):517-22. doi: 10.1038/nature16193. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA. ; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK. ; Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA. ; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA. ; Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10012, USA. ; Simons Center for Data Analysis, Simons Foundation, New York, New York 10010, USA. ; Isis Pharmaceuticals, Carlsbad, California 92010, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA. ; Instituto Gulbenkian de Ciencia, Oeiras 2780-156, Portugal. ; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Division of Cancer Research, University of Dundee, Dundee DD1 9SY, UK. ; Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/genetics/metabolism ; DEAD-box RNA Helicases/genetics/*metabolism ; Female ; Gene Expression Regulation/genetics ; Hair/abnormalities ; Hirschsprung Disease/genetics ; Humans ; Immunologic Deficiency Syndromes/genetics ; Inflammation/immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Organ Specificity ; Osteochondrodysplasias/congenital/genetics ; Protein Binding ; RNA, Long Noncoding/genetics/*metabolism ; Th17 Cells/*immunology/*metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-10-28
    Description: Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 A, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hengrung, Narin -- El Omari, Kamel -- Serna Martin, Itziar -- Vreede, Frank T -- Cusack, Stephen -- Rambo, Robert P -- Vonrhein, Clemens -- Bricogne, Gerard -- Stuart, David I -- Grimes, Jonathan M -- Fodor, Ervin -- 075491/Z/04/Wellcome Trust/United Kingdom -- 092931/Z/10/Z/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- G1100138/Medical Research Council/United Kingdom -- MR/K000241/1/Medical Research Council/United Kingdom -- England -- Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK. ; European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK. ; Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503046" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endonucleases/chemistry/metabolism ; Enzyme Activation ; Influenzavirus C/*enzymology ; Models, Molecular ; Peptide Chain Initiation, Translational ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Caps/metabolism ; RNA Replicase/*chemistry/metabolism ; RNA, Viral/biosynthesis/metabolism ; Ribonucleoproteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-06-11
    Description: Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals, where it can be both a commensal and a pathogen. Intricate regulatory mechanisms ensure that bacteria have the right complement of beta-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat. Yet no mechanism is known for replacing OMPs in the outer membrane, an issue that is further confounded by the lack of an energy source and the high stability and abundance of OMPs. Here we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature, in which old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form approximately 0.5-mum diameter islands, where their diffusion is restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the outer membrane. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence, the outer membrane of a Gram-negative bacterium is a spatially and temporally organized structure, and this organization lies at the heart of how OMPs are turned over in the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rassam, Patrice -- Copeland, Nikki A -- Birkholz, Oliver -- Toth, Csaba -- Chavent, Matthieu -- Duncan, Anna L -- Cross, Stephen J -- Housden, Nicholas G -- Kaminska, Renata -- Seger, Urban -- Quinn, Diana M -- Garrod, Tamsin J -- Sansom, Mark S P -- Piehler, Jacob -- Baumann, Christoph G -- Kleanthous, Colin -- BB/G020671/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/L002558/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT092970MA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Jul 16;523(7560):333-6. doi: 10.1038/nature14461. Epub 2015 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK [2] Department of Biology, University of York, York YO10 5DD, UK. ; Department of Biology, University of York, York YO10 5DD, UK. ; Department of Biology, University of Osnabruck, Barbarastrasse 11, 49076 Osnabruck, Germany. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26061769" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Cell Polarity ; Diffusion ; Escherichia coli/chemistry/*cytology/genetics/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipid-Linked Proteins/metabolism ; Microscopy, Confocal ; Microscopy, Fluorescence ; Molecular Dynamics Simulation ; Multiprotein Complexes/metabolism ; Protein Binding ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-06-05
    Description: Macroautophagy (hereafter referred to as autophagy) degrades various intracellular constituents to regulate a wide range of cellular functions, and is also closely linked to several human diseases. In selective autophagy, receptor proteins recognize degradation targets and direct their sequestration by double-membrane vesicles called autophagosomes, which transport them into lysosomes or vacuoles. Although recent studies have shown that selective autophagy is involved in quality/quantity control of some organelles, including mitochondria and peroxisomes, it remains unclear how extensively it contributes to cellular organelle homeostasis. Here we describe selective autophagy of the endoplasmic reticulum (ER) and nucleus in the yeast Saccharomyces cerevisiae. We identify two novel proteins, Atg39 and Atg40, as receptors specific to these pathways. Atg39 localizes to the perinuclear ER (or the nuclear envelope) and induces autophagic sequestration of part of the nucleus. Atg40 is enriched in the cortical and cytoplasmic ER, and loads these ER subdomains into autophagosomes. Atg39-dependent autophagy of the perinuclear ER/nucleus is required for cell survival under nitrogen-deprivation conditions. Atg40 is probably the functional counterpart of FAM134B, an autophagy receptor for the ER in mammals that has been implicated in sensory neuropathy. Our results provide fundamental insight into the pathophysiological roles and mechanisms of 'ER-phagy' and 'nucleophagy' in other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mochida, Keisuke -- Oikawa, Yu -- Kimura, Yayoi -- Kirisako, Hiromi -- Hirano, Hisashi -- Ohsumi, Yoshinori -- Nakatogawa, Hitoshi -- England -- Nature. 2015 Jun 18;522(7556):359-62. doi: 10.1038/nature14506. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan. ; Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan. ; Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan. ; 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan [2] CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040717" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Autophagy ; Cell Nucleus/*metabolism ; Endoplasmic Reticulum/*metabolism ; Microbial Viability ; Microtubule-Associated Proteins/metabolism ; Neoplasm Proteins/metabolism ; Nitrogen/deficiency/metabolism ; Nuclear Envelope/metabolism ; Phenotype ; Protein Binding ; Receptors, Cytoplasmic and Nuclear/chemistry/deficiency/genetics/*metabolism ; Saccharomyces cerevisiae/*cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Vesicular Transport Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-11-26
    Description: Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 A resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 A resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681132/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681132/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffmann, Niklas A -- Jakobi, Arjen J -- Moreno-Morcillo, Maria -- Glatt, Sebastian -- Kosinski, Jan -- Hagen, Wim J H -- Sachse, Carsten -- Muller, Christoph W -- England -- Nature. 2015 Dec 10;528(7581):231-6. doi: 10.1038/nature16143. Epub 2015 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26605533" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; *Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; RNA Polymerase III/*chemistry ; Saccharomyces cerevisiae/*enzymology ; Saccharomyces cerevisiae Proteins/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-08-08
    Description: Activation of the mu-opioid receptor (muOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for muOR activation, here we report a 2.1 A X-ray crystal structure of the murine muOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the muOR binding pocket are subtle and differ from those observed for agonist-bound structures of the beta2-adrenergic receptor (beta2AR) and the M2 muscarinic receptor. Comparison with active beta2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the muOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Weijiao -- Manglik, Aashish -- Venkatakrishnan, A J -- Laeremans, Toon -- Feinberg, Evan N -- Sanborn, Adrian L -- Kato, Hideaki E -- Livingston, Kathryn E -- Thorsen, Thor S -- Kling, Ralf C -- Granier, Sebastien -- Gmeiner, Peter -- Husbands, Stephen M -- Traynor, John R -- Weis, William I -- Steyaert, Jan -- Dror, Ron O -- Kobilka, Brian K -- R01GM083118/GM/NIGMS NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- R37DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA. ; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA. ; Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany. ; Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. ; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245379" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Morphinans/chemistry/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Pyrroles/chemistry/metabolism/pharmacology ; Receptor, Muscarinic M2/chemistry ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/agonists/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-06-18
    Description: The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex and interphase early mitotic inhibitor 1 (Emi1) ensures the correct order and timing of distinct cell-cycle transitions. Here we use cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of future experiments to investigate APC/C functions in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608048/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608048/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Leifu -- Zhang, Ziguo -- Yang, Jing -- McLaughlin, Stephen H -- Barford, David -- A8022/Cancer Research UK/United Kingdom -- MC_UP_1201/6/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jun 25;522(7557):450-4. doi: 10.1038/nature14471. Epub 2015 Jun 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083744" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome/chemistry/*metabolism/*ultrastructure ; Apc1 Subunit, Anaphase-Promoting ; Complex-Cyclosome/chemistry/metabolism/ultrastructure ; Apc10 Subunit, Anaphase-Promoting ; Complex-Cyclosome/chemistry/metabolism/ultrastructure ; Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry/metabolism ; Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry/metabolism ; Apc8 Subunit, Anaphase-Promoting ; Complex-Cyclosome/chemistry/metabolism/ultrastructure ; Cadherins/chemistry/metabolism/ultrastructure ; Catalytic Domain ; Cell Cycle Proteins/chemistry/metabolism/ultrastructure ; Cryoelectron Microscopy ; Cytoskeletal Proteins/chemistry/metabolism ; F-Box Proteins/chemistry/metabolism/ultrastructure ; Humans ; Lysine/metabolism ; Models, Molecular ; Phosphorylation ; Protein Binding ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin/chemistry/metabolism/ultrastructure ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism/ultrastructure ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-07-15
    Description: The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal-recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy. PINK1 is stabilized on the outside of depolarized mitochondria and phosphorylates polyubiquitin as well as the PARKIN ubiquitin-like (Ubl) domain. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in patients with AR-JP. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilization of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens up new avenues to identify small-molecule PARKIN activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wauer, Tobias -- Simicek, Michal -- Schubert, Alexander -- Komander, David -- U105192732/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26161729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Models, Molecular ; Mutation/genetics ; Parkinsonian Disorders/genetics ; Pediculus/*chemistry ; Phosphates/metabolism ; Phosphoproteins/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinases/metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-05-20
    Description: Phosphofructokinase-1 (PFK1), the 'gatekeeper' of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose-6-phosphate to fructose-1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over ten metabolites and in response to hormonal signalling fine-tune glycolytic flux to meet energy requirements. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease, and mice deficient in muscle PFK1 have decreased fat stores. Additionally, PFK1 is proposed to have important roles in metabolic reprogramming in cancer. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. Here we report the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg(2+) and ADP at 3.1 and 3.4 A, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterize three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Bradley A -- Forouhar, Farhad -- Szu, Fu-En -- Seetharaman, Jayaraman -- Tong, Liang -- Barber, Diane L -- P30 DK026743/DK/NIDDK NIH HHS/ -- R01 GM047413/GM/NIGMS NIH HHS/ -- U54 GM094597/GM/NIGMS NIH HHS/ -- U54-GM094597/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Jul 2;523(7558):111-4. doi: 10.1038/nature14405. Epub 2015 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA. ; Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25985179" target="_blank"〉PubMed〈/a〉
    Keywords: Enzyme Activation ; Humans ; Microscopy, Electron, Transmission ; *Models, Molecular ; Mutation/genetics ; Neoplasms/*enzymology/genetics ; Phosphofructokinase-1/*chemistry/*genetics/ultrastructure ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-01-28
    Description: The origin of mutations is central to understanding evolution and of key relevance to health. Variation occurs non-randomly across the genome, and mechanisms for this remain to be defined. Here we report that the 5' ends of Okazaki fragments have significantly increased levels of nucleotide substitution, indicating a replicative origin for such mutations. Using a novel method, emRiboSeq, we map the genome-wide contribution of polymerases, and show that despite Okazaki fragment processing, DNA synthesized by error-prone polymerase-alpha (Pol-alpha) is retained in vivo, comprising approximately 1.5% of the mature genome. We propose that DNA-binding proteins that rapidly re-associate post-replication act as partial barriers to Pol-delta-mediated displacement of Pol-alpha-synthesized DNA, resulting in incorporation of such Pol-alpha tracts and increased mutation rates at specific sites. We observe a mutational cost to chromatin and regulatory protein binding, resulting in mutation hotspots at regulatory elements, with signatures of this process detectable in both yeast and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374164/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374164/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reijns, Martin A M -- Kemp, Harriet -- Ding, James -- de Proce, Sophie Marion -- Jackson, Andrew P -- Taylor, Martin S -- MC_PC_U127580972/Medical Research Council/United Kingdom -- MC_PC_U127597124/Medical Research Council/United Kingdom -- MC_U127597124/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Feb 26;518(7540):502-6. doi: 10.1038/nature14183. Epub 2015 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical and Developmental Genetics, MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Biomedical Systems Analysis, MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25624100" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatin/chemistry/metabolism ; Conserved Sequence/genetics ; DNA/*biosynthesis/*genetics ; DNA Polymerase I/metabolism ; DNA Polymerase III/metabolism ; DNA Replication/*genetics ; DNA-Binding Proteins/metabolism ; Evolution, Molecular ; Genome, Human/*genetics ; Humans ; Models, Biological ; Mutagenesis/genetics ; Mutation/*genetics ; Protein Binding ; Saccharomyces cerevisiae/genetics ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-01-22
    Description: DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baubec, Tuncay -- Colombo, Daniele F -- Wirbelauer, Christiane -- Schmidt, Juliane -- Burger, Lukas -- Krebs, Arnaud R -- Akalin, Altuna -- Schubeler, Dirk -- England -- Nature. 2015 Apr 9;520(7546):243-7. doi: 10.1038/nature14176. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] Swiss Institute of Bioinformatics. Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Faculty of Sciences, Petersplatz 1, CH-4001 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607372" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromatin/chemistry/genetics/metabolism ; CpG Islands/genetics ; DNA (Cytosine-5-)-Methyltransferase/chemistry/*metabolism ; DNA Methylation/*genetics ; Embryonic Stem Cells/enzymology/metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Genome/*genetics ; Genomics ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Histones/chemistry/metabolism ; Lysine/metabolism ; Mice ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-01-09
    Description: Intracellular pathogens are responsible for much of the world-wide morbidity and mortality due to infectious diseases. To colonize their hosts successfully, pathogens must sense their environment and regulate virulence gene expression appropriately. Accordingly, on entry into mammalian cells, the facultative intracellular bacterial pathogen Listeria monocytogenes remodels its transcriptional program by activating the master virulence regulator PrfA. Here we show that bacterial and host-derived glutathione are required to activate PrfA. In this study a genetic selection led to the identification of a bacterial mutant in glutathione synthase that exhibited reduced virulence gene expression and was attenuated 150-fold in mice. Genome sequencing of suppressor mutants that arose spontaneously in vivo revealed a single nucleotide change in prfA that locks the protein in the active conformation (PrfA*) and completely bypassed the requirement for glutathione during infection. Biochemical and genetic studies support a model in which glutathione-dependent PrfA activation is mediated by allosteric binding of glutathione to PrfA. Whereas glutathione and other low-molecular-weight thiols have important roles in redox homeostasis in all forms of life, here we demonstrate that glutathione represents a critical signalling molecule that activates the virulence of an intracellular pathogen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305340/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305340/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reniere, Michelle L -- Whiteley, Aaron T -- Hamilton, Keri L -- John, Sonya M -- Lauer, Peter -- Brennan, Richard G -- Portnoy, Daniel A -- 1P01AI63302/AI/NIAID NIH HHS/ -- 1R01 AI27655/AI/NIAID NIH HHS/ -- F32AI104247/AI/NIAID NIH HHS/ -- F32GM008487/GM/NIGMS NIH HHS/ -- P01 AI063302/AI/NIAID NIH HHS/ -- R01 AI027655/AI/NIAID NIH HHS/ -- S10RR027303/RR/NCRR NIH HHS/ -- S10RR029668/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):170-3. doi: 10.1038/nature14029.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Graduate Group in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA. ; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA. ; Aduro BioTech, Inc. Berkeley, California 94710, USA. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] School of Public Health, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567281" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Bacterial Proteins/metabolism ; DNA/metabolism ; Gene Expression Regulation, Bacterial/drug effects/*genetics ; Glutathione/*metabolism/pharmacology ; Intracellular Space/drug effects/*metabolism/*microbiology ; Listeria monocytogenes/drug effects/*genetics/*pathogenicity ; Macrophages/metabolism ; Mutation/genetics ; Peptide Termination Factors/metabolism ; Protein Binding ; Selection, Genetic/genetics ; Suppression, Genetic/genetics ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-07-07
    Description: G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are approximately 800 human GPCRs and 16 different Galpha genes, this raises the question of whether a universal allosteric mechanism governs Galpha activation. Here we show that different GPCRs interact with and activate Galpha proteins through a highly conserved mechanism. Comparison of Galpha with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Galpha system diversified rapidly, while conserving the allosteric activation mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flock, Tilman -- Ravarani, Charles N J -- Sun, Dawei -- Venkatakrishnan, A J -- Kayikci, Melis -- Tate, Christopher G -- Veprintsev, Dmitry B -- Babu, M Madan -- MC_U105185859/Medical Research Council/United Kingdom -- MC_U105197215/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 13;524(7564):173-9. doi: 10.1038/nature14663. Epub 2015 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland [2] Department of Biology, ETH Zurich, 8039 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26147082" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Animals ; Binding Sites ; Computational Biology ; Conserved Sequence ; Enzyme Activation ; *Evolution, Molecular ; GTP-Binding Protein alpha Subunits/chemistry/genetics/*metabolism ; Genetic Engineering ; Guanosine Diphosphate/metabolism ; Humans ; Models, Molecular ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; ras Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-08-27
    Description: Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a beta-strand from the island domain of PSKR, forming an anti-beta-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jizong -- Li, Hongju -- Han, Zhifu -- Zhang, Heqiao -- Wang, Tong -- Lin, Guangzhong -- Chang, Junbiao -- Yang, Weicai -- Chai, Jijie -- England -- Nature. 2015 Sep 10;525(7568):265-8. doi: 10.1038/nature14858. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308901" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Arabidopsis/*chemistry ; Arabidopsis Proteins/*agonists/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Mutation/genetics ; Peptide Hormones/chemistry/metabolism/pharmacology ; Plant Growth Regulators/*chemistry/metabolism/*pharmacology ; Plant Proteins/chemistry/metabolism/pharmacology ; Protein Binding ; Protein Kinases/chemistry/metabolism ; Protein Multimerization/drug effects ; Protein Stability ; Protein Structure, Secondary/drug effects ; Protein Structure, Tertiary/drug effects ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Cell Surface/*agonists/*chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-04-29
    Description: Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 A resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493928/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493928/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bharat, Tanmay A M -- Murshudov, Garib N -- Sachse, Carsten -- Lowe, Jan -- 095514/Wellcome Trust/United Kingdom -- 095514/Z/11/Z/Wellcome Trust/United Kingdom -- MC-UP-A025-1012/Medical Research Council/United Kingdom -- MC_U105184326/Medical Research Council/United Kingdom -- U105184326/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jul 2;523(7558):106-10. doi: 10.1038/nature14356. Epub 2015 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25915019" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/metabolism/*ultrastructure ; Adenylyl Imidodiphosphate/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Escherichia coli/*chemistry/genetics/ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism/*ultrastructure ; *Models, Molecular ; Plasmids/*metabolism ; Protein Binding ; Protein Structure, Quaternary ; *Spindle Apparatus/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-07-23
    Description: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a approximately 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Yanyong -- Zhou, X Edward -- Gao, Xiang -- He, Yuanzheng -- Liu, Wei -- Ishchenko, Andrii -- Barty, Anton -- White, Thomas A -- Yefanov, Oleksandr -- Han, Gye Won -- Xu, Qingping -- de Waal, Parker W -- Ke, Jiyuan -- Tan, M H Eileen -- Zhang, Chenghai -- Moeller, Arne -- West, Graham M -- Pascal, Bruce D -- Van Eps, Ned -- Caro, Lydia N -- Vishnivetskiy, Sergey A -- Lee, Regina J -- Suino-Powell, Kelly M -- Gu, Xin -- Pal, Kuntal -- Ma, Jinming -- Zhi, Xiaoyong -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Gati, Cornelius -- Zatsepin, Nadia A -- Wang, Dingjie -- James, Daniel -- Basu, Shibom -- Roy-Chowdhury, Shatabdi -- Conrad, Chelsie E -- Coe, Jesse -- Liu, Haiguang -- Lisova, Stella -- Kupitz, Christopher -- Grotjohann, Ingo -- Fromme, Raimund -- Jiang, Yi -- Tan, Minjia -- Yang, Huaiyu -- Li, Jun -- Wang, Meitian -- Zheng, Zhong -- Li, Dianfan -- Howe, Nicole -- Zhao, Yingming -- Standfuss, Jorg -- Diederichs, Kay -- Dong, Yuhui -- Potter, Clinton S -- Carragher, Bridget -- Caffrey, Martin -- Jiang, Hualiang -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Ernst, Oliver P -- Katritch, Vsevolod -- Gurevich, Vsevolod V -- Griffin, Patrick R -- Hubbell, Wayne L -- Stevens, Raymond C -- Cherezov, Vadim -- Melcher, Karsten -- Xu, H Eric -- DK071662/DK/NIDDK NIH HHS/ -- EY005216/EY/NEI NIH HHS/ -- EY011500/EY/NEI NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM077561/GM/NIGMS NIH HHS/ -- GM095583/GM/NIGMS NIH HHS/ -- GM097463/GM/NIGMS NIH HHS/ -- GM102545/GM/NIGMS NIH HHS/ -- GM103310/GM/NIGMS NIH HHS/ -- GM104212/GM/NIGMS NIH HHS/ -- GM108635/GM/NIGMS NIH HHS/ -- P30EY000331/EY/NEI NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 EY011500/EY/NEI NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM109955/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany. ; Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; The National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, New York 10027, USA. ; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Beijing Computational Science Research Center, Haidian District, Beijing 10084, China. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA. ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ; 1] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA [2] Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA. ; Laboratory of Biomolecular Research at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biology, Universitat Konstanz, 78457 Konstanz, Germany. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; 1] Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany [2] Centre for Ultrafast Imaging, 22761 Hamburg, Germany. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [2] Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200343" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Humans ; Lasers ; Mice ; Models, Molecular ; Multiprotein Complexes/biosynthesis/chemistry/metabolism ; Protein Binding ; Reproducibility of Results ; Rhodopsin/*chemistry/*metabolism ; Signal Transduction ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-02-03
    Description: Large-scale genomic studies have shown that half of epithelial ovarian cancers (EOCs) have alterations in genes regulating homologous recombination (HR) repair. Loss of HR accounts for the genomic instability of EOCs and for their cellular hyper-dependence on alternative poly-ADP ribose polymerase (PARP)-mediated DNA repair mechanisms. Previous studies have implicated the DNA polymerase theta (Poltheta also known as POLQ, encoded by POLQ) in a pathway required for the repair of DNA double-strand breaks, referred to as the error-prone microhomology-mediated end-joining (MMEJ) pathway. Whether Poltheta interacts with canonical DNA repair pathways to prevent genomic instability remains unknown. Here we report an inverse correlation between HR activity and Poltheta expression in EOCs. Knockdown of Poltheta in HR-proficient cells upregulates HR activity and RAD51 nucleofilament assembly, while knockdown of Poltheta in HR-deficient EOCs enhances cell death. Consistent with these results, genetic inactivation of an HR gene (Fancd2) and Polq in mice results in embryonic lethality. Moreover, Poltheta contains RAD51 binding motifs and it blocks RAD51-mediated recombination. Our results reveal a synthetic lethal relationship between the HR pathway and Poltheta-mediated repair in EOCs, and identify Poltheta as a novel druggable target for cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415602/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415602/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceccaldi, Raphael -- Liu, Jessica C -- Amunugama, Ravindra -- Hajdu, Ildiko -- Primack, Benjamin -- Petalcorin, Mark I R -- O'Connor, Kevin W -- Konstantinopoulos, Panagiotis A -- Elledge, Stephen J -- Boulton, Simon J -- Yusufzai, Timur -- D'Andrea, Alan D -- 104558/Wellcome Trust/United Kingdom -- P50 CA168504/CA/NCI NIH HHS/ -- P50CA168504/CA/NCI NIH HHS/ -- R01 HL052725/HL/NHLBI NIH HHS/ -- R01HL52725/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 12;518(7538):258-62. doi: 10.1038/nature14184. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Biological Chemistry &Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA [3] Department of Molecular &Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK. ; Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Biological Chemistry &Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642963" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Cycle ; Cell Death ; Cell Line, Tumor ; *DNA Breaks, Double-Stranded ; *DNA End-Joining Repair/genetics ; DNA Replication ; DNA-Directed DNA Polymerase/deficiency/*metabolism ; Embryo Loss ; Fanconi Anemia Complementation Group D2 Protein/deficiency/genetics ; Female ; Genomic Instability ; *Homologous Recombination/genetics ; Humans ; Mice ; Molecular Targeted Therapy ; Neoplasms, Glandular and Epithelial/*genetics/*metabolism/pathology ; Ovarian Neoplasms/*genetics/*metabolism/pathology ; Protein Binding ; Rad51 Recombinase/antagonists & inhibitors/metabolism ; Recombinational DNA Repair/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-12-25
    Description: The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNA-DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Dorothy Yanling -- Gish, Gerald -- Braunschweig, Ulrich -- Li, Yue -- Ni, Zuyao -- Schmitges, Frank W -- Zhong, Guoqing -- Liu, Ke -- Li, Weiguo -- Moffat, Jason -- Vedadi, Masoud -- Min, Jinrong -- Pawson, Tony J -- Blencowe, Benjamin J -- Greenblatt, Jack F -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 7;529(7584):48-53. doi: 10.1038/nature16469. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada. ; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700805" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*metabolism ; Cell Line ; DNA Damage ; Humans ; Methylation ; Neurodegenerative Diseases/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/genetics/metabolism ; RNA Helicases/genetics/metabolism ; RNA Polymerase II/*chemistry/*metabolism ; Survival of Motor Neuron 1 Protein/genetics/*metabolism ; Transcription Elongation, Genetic ; *Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-12-25
    Description: Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavahan, William A -- Drier, Yotam -- Liau, Brian B -- Gillespie, Shawn M -- Venteicher, Andrew S -- Stemmer-Rachamimov, Anat O -- Suva, Mario L -- Bernstein, Bradley E -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700815" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; CRISPR-Cas Systems/genetics ; Cell Cycle Proteins/metabolism ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Chromatin/drug effects/genetics/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; CpG Islands/genetics ; DNA Methylation/drug effects/genetics ; Down-Regulation/drug effects ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/drug effects ; *Gene Expression Regulation, Neoplastic/drug effects ; Glioma/drug therapy/*enzymology/*genetics/pathology ; Glutarates/metabolism ; Humans ; Insulator Elements/drug effects/*genetics ; Isocitrate Dehydrogenase/chemistry/*genetics/metabolism ; Mutation/*genetics ; Oncogenes/*genetics ; Phenotype ; Protein Binding ; Receptor, Platelet-Derived Growth Factor alpha/genetics ; Repressor Proteins/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-08-08
    Description: Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nillegoda, Nadinath B -- Kirstein, Janine -- Szlachcic, Anna -- Berynskyy, Mykhaylo -- Stank, Antonia -- Stengel, Florian -- Arnsburg, Kristin -- Gao, Xuechao -- Scior, Annika -- Aebersold, Ruedi -- Guilbride, D Lys -- Wade, Rebecca C -- Morimoto, Richard I -- Mayer, Matthias P -- Bukau, Bernd -- England -- Nature. 2015 Aug 13;524(7564):247-51. doi: 10.1038/nature14884. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. ; Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany. ; Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany. ; 1] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [2] Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, 69120 Heidelberg, Germany. ; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. ; 1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, 8057 Zurich, Switzerland. ; 1] Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany [2] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [3] Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany. ; Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*metabolism ; HSP110 Heat-Shock Proteins/metabolism ; HSP70 Heat-Shock Proteins/chemistry/*metabolism ; Humans ; Models, Molecular ; *Protein Aggregates ; Protein Aggregation, Pathological/metabolism/prevention & control ; Protein Binding ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-05-07
    Description: Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lori, C -- Ozaki, S -- Steiner, S -- Bohm, R -- Abel, S -- Dubey, B N -- Schirmer, T -- Hiller, S -- Jenal, U -- England -- Nature. 2015 Jul 9;523(7559):236-9. doi: 10.1038/nature14473. Epub 2015 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Focal area of Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland. ; Focal area of Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25945741" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics ; Bacterial Proteins/metabolism ; Catalytic Domain ; Caulobacter crescentus/cytology ; Cell Cycle/genetics/*physiology ; Cell Division/genetics/physiology ; Chromosomes/*genetics ; Conserved Sequence ; Cyclic GMP/*analogs & derivatives/metabolism ; Cyclins/metabolism ; DNA Replication/*genetics ; Models, Molecular ; Phosphoric Monoester Hydrolases/metabolism ; Phosphotransferases/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-06-02
    Description: The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains ( approximately 1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct higher-order structure onto X chromosomes while regulating gene expression chromosome-wide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, Emily -- Bian, Qian -- McCord, Rachel Patton -- Lajoie, Bryan R -- Wheeler, Bayly S -- Ralston, Edward J -- Uzawa, Satoru -- Dekker, Job -- Meyer, Barbara J -- R01 GM030702/GM/NIGMS NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- S10RR029668/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030525" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; DNA-Binding Proteins/*metabolism ; Dosage Compensation, Genetic/genetics/*physiology ; Female ; Gene Expression Regulation ; In Situ Hybridization, Fluorescence ; Male ; Multiprotein Complexes/*metabolism ; Protein Binding ; Sequence Analysis, RNA ; X Chromosome/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-03-04
    Description: Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376489/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376489/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kakugawa, Satoshi -- Langton, Paul F -- Zebisch, Matthias -- Howell, Steven A -- Chang, Tao-Hsin -- Liu, Yan -- Feizi, Ten -- Bineva, Ganka -- O'Reilly, Nicola -- Snijders, Ambrosius P -- Jones, E Yvonne -- Vincent, Jean-Paul -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 294523/European Research Council/International -- A10976/Cancer Research UK/United Kingdom -- C375/A10976/Cancer Research UK/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- MC_U117584268/Medical Research Council/United Kingdom -- U117584268/Medical Research Council/United Kingdom -- WT093378MA/Wellcome Trust/United Kingdom -- WT099197MA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Mar 12;519(7542):187-92. doi: 10.1038/nature14259. Epub 2015 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. ; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. ; Glycosciences Laboratory, Imperial College London, Department of Medicine, Du Cane Road, London W12 0NN, UK. ; Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731175" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Binding Sites ; Carboxylesterase/chemistry/*metabolism ; Drosophila Proteins/chemistry/*metabolism ; Esterases/chemistry/genetics/*metabolism ; Fatty Acids, Monounsaturated/metabolism ; Glycosylphosphatidylinositols/metabolism ; Glypicans/metabolism ; Humans ; Kinetics ; Ligands ; Mass Spectrometry ; Models, Molecular ; Protein Binding ; Wnt Proteins/*chemistry/*metabolism ; *Wnt Signaling Pathway
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-03-31
    Description: Small RNAs such as small interfering RNAs (siRNAs) and microRNAs (miRNAs) silence the expression of their complementary target messenger RNAs via the formation of effector RNA-induced silencing complexes (RISCs), which contain Argonaute (Ago) family proteins at their core. Although loading of siRNA duplexes into Drosophila Ago2 requires the Dicer-2-R2D2 heterodimer and the Hsc70/Hsp90 (Hsp90 also known as Hsp83) chaperone machinery, the details of RISC assembly remain unclear. Here we reconstitute RISC assembly using only Ago2, Dicer-2, R2D2, Hsc70, Hsp90, Hop, Droj2 (an Hsp40 homologue) and p23. By following the assembly of single RISC molecules, we find that, in the absence of the chaperone machinery, an siRNA bound to Dicer-2-R2D2 associates with Ago2 only transiently. The chaperone machinery extends the dwell time of the Dicer-2-R2D2-siRNA complex on Ago2, in a manner dependent on recognition of the 5'-phosphate on the siRNA guide strand. We propose that the chaperone machinery supports a productive state of Ago2, allowing it to load siRNA duplexes from Dicer-2-R2D2 and thereby assemble RISC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwasaki, Shintaro -- Sasaki, Hiroshi M -- Sakaguchi, Yuriko -- Suzuki, Tsutomu -- Tadakuma, Hisashi -- Tomari, Yukihide -- England -- Nature. 2015 May 28;521(7553):533-6. doi: 10.1038/nature14254. Epub 2015 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan. ; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan. ; 1] Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan. [2] Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25822791" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*enzymology/*genetics ; Heat-Shock Proteins/metabolism ; In Vitro Techniques ; Janus Kinases/metabolism ; Protein Binding ; RNA Helicases/metabolism ; *RNA Interference ; RNA, Guide/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; RNA-Binding Proteins/metabolism ; RNA-Induced Silencing Complex/*chemistry/*metabolism ; Ribonuclease III/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-10-28
    Description: DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that trigger non-proteolytic ubiquitylation of adjacent chromatin areas to generate binding sites for DNA repair factors. This depends on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 (refs 1-6), and UBC13 (also known as UBE2N), an E2 ubiquitin-conjugating enzyme that specifically generates K63-linked ubiquitin chains. Whereas RNF168 is known to catalyse ubiquitylation of H2A-type histones, leading to the recruitment of repair factors such as 53BP1 (refs 8-10), the critical substrates of RNF8 and K63-linked ubiquitylation remain elusive. Here we elucidate how RNF8 and UBC13 promote recruitment of RNF168 and downstream factors to DSB sites in human cells. We establish that UBC13-dependent K63-linked ubiquitylation at DSB sites is predominantly mediated by RNF8 but not RNF168, and that H1-type linker histones, but not core histones, represent major chromatin-associated targets of this modification. The RNF168 module (UDM1) recognizing RNF8-generated ubiquitylations is a high-affinity reader of K63-ubiquitylated H1, mechanistically explaining the essential roles of RNF8 and UBC13 in recruiting RNF168 to DSBs. Consistently, reduced expression or chromatin association of linker histones impair accumulation of K63-linked ubiquitin conjugates and repair factors at DSB-flanking chromatin. These results identify histone H1 as a key target of RNF8-UBC13 in DSB signalling and expand the concept of the histone code by showing that posttranslational modifications of linker histones can serve as important marks for recognition by factors involved in genome stability maintenance, and possibly beyond.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thorslund, Tina -- Ripplinger, Anita -- Hoffmann, Saskia -- Wild, Thomas -- Uckelmann, Michael -- Villumsen, Bine -- Narita, Takeo -- Sixma, Titia K -- Choudhary, Chunaram -- Bekker-Jensen, Simon -- Mailand, Niels -- England -- Nature. 2015 Nov 19;527(7578):389-93. doi: 10.1038/nature15401. Epub 2015 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. ; Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. ; Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503038" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; DNA-Binding Proteins/metabolism ; Histones/chemistry/*metabolism ; Humans ; Lysine/metabolism ; Protein Structure, Tertiary ; *Signal Transduction ; Ubiquitin/*metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-06-09
    Description: Lipid mediators influence immunity in myriad ways. For example, circulating sphingosine-1-phosphate (S1P) is a key regulator of lymphocyte egress. Although the majority of plasma S1P is bound to apolipoprotein M (ApoM) in the high-density lipoprotein (HDL) particle, the immunological functions of the ApoM-S1P complex are unknown. Here we show that ApoM-S1P is dispensable for lymphocyte trafficking yet restrains lymphopoiesis by activating the S1P1 receptor on bone marrow lymphocyte progenitors. Mice that lacked ApoM (Apom(-/-)) had increased proliferation of Lin(-) Sca-1(+) cKit(+) haematopoietic progenitor cells (LSKs) and common lymphoid progenitors (CLPs) in bone marrow. Pharmacological activation or genetic overexpression of S1P1 suppressed LSK and CLP cell proliferation in vivo. ApoM was stably associated with bone marrow CLPs, which showed active S1P1 signalling in vivo. Moreover, ApoM-bound S1P, but not albumin-bound S1P, inhibited lymphopoiesis in vitro. Upon immune stimulation, Apom(-/-) mice developed more severe experimental autoimmune encephalomyelitis, characterized by increased lymphocytes in the central nervous system and breakdown of the blood-brain barrier. Thus, the ApoM-S1P-S1P1 signalling axis restrains the lymphocyte compartment and, subsequently, adaptive immune responses. Unique biological functions imparted by specific S1P chaperones could be exploited for novel therapeutic opportunities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blaho, Victoria A -- Galvani, Sylvain -- Engelbrecht, Eric -- Liu, Catherine -- Swendeman, Steven L -- Kono, Mari -- Proia, Richard L -- Steinman, Lawrence -- Han, May H -- Hla, Timothy -- F32 CA14211/CA/NCI NIH HHS/ -- F32 CA142117/CA/NCI NIH HHS/ -- HL67330/HL/NHLBI NIH HHS/ -- HL70694/HL/NHLBI NIH HHS/ -- HL89934/HL/NHLBI NIH HHS/ -- P01 HL070694/HL/NHLBI NIH HHS/ -- P20 RR017677/RR/NCRR NIH HHS/ -- P30 CA138313/CA/NCI NIH HHS/ -- R01 HL089934/HL/NHLBI NIH HHS/ -- R37 HL067330/HL/NHLBI NIH HHS/ -- Z01 DK056014-02/Intramural NIH HHS/ -- Z01 DK056015-01/Intramural NIH HHS/ -- England -- Nature. 2015 Jul 16;523(7560):342-6. doi: 10.1038/nature14462. Epub 2015 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York 10065, USA [2] Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA. ; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26053123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins/deficiency/genetics/*metabolism ; Blood-Brain Barrier/pathology ; Cell Movement ; Cell Proliferation/genetics ; Central Nervous System/immunology/metabolism/*pathology ; Encephalomyelitis, Autoimmune, ; Experimental/genetics/immunology/metabolism/pathology ; Female ; Fingolimod Hydrochloride/pharmacology ; Hematopoietic Stem Cells/cytology/metabolism ; Inflammation/immunology/metabolism/pathology ; Lipoproteins, HDL/*metabolism ; Lymphocytes/*cytology/immunology/*metabolism ; Lymphoid Progenitor Cells/cytology/metabolism ; *Lymphopoiesis ; Lysophospholipids/agonists/blood/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Protein Binding ; Receptors, Lysosphingolipid/metabolism ; Signal Transduction ; Sphingosine/agonists/*analogs & derivatives/blood/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-08-08
    Description: The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1beta) subunits. Here we describe crystal structures for each of mouse HIF-2alpha-ARNT and HIF-1alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2alpha-ARNT and HIF-1alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dalei -- Potluri, Nalini -- Lu, Jingping -- Kim, Youngchang -- Rastinejad, Fraydoon -- England -- Nature. 2015 Aug 20;524(7565):303-8. doi: 10.1038/nature14883. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245371" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/chemistry/metabolism ; Animals ; Aryl Hydrocarbon Receptor Nuclear Translocator/*chemistry/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*chemistry/metabolism ; Binding Sites ; CLOCK Proteins/chemistry/metabolism ; Cell Hypoxia/genetics ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/*chemistry/metabolism ; Mice ; Models, Molecular ; Mutation/genetics ; Neoplasms/genetics ; Phosphorylation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-03-13
    Description: Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.5 A resolution, showing that the 270 kilodalton initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ (ATPases associated with a variety of cellular activities) folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident. These include highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighbouring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate an approximately 20 A wide channel in the centre of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the mini-chromosome maintenance 2-7 (MCM2-7) complex during replicative helicase loading; however, an observed out-of-plane rotation of more than 90 degrees for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bleichert, Franziska -- Botchan, Michael R -- Berger, James M -- CA R37-30490/CA/NCI NIH HHS/ -- GM071747/GM/NIGMS NIH HHS/ -- R01 GM071747/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):321-6. doi: 10.1038/nature14239. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762138" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeal Proteins/chemistry/metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Replication ; Drosophila melanogaster/*chemistry ; Eukaryotic Cells/*chemistry ; Minichromosome Maintenance Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Origin Recognition Complex/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-02-27
    Description: RNA-binding proteins control many aspects of cellular biology through binding single-stranded RNA binding motifs (RBMs). However, RBMs can be buried within their local RNA structures, thus inhibiting RNA-protein interactions. N(6)-methyladenosine (m(6)A), the most abundant and dynamic internal modification in eukaryotic messenger RNA, can be selectively recognized by the YTHDF2 protein to affect the stability of cytoplasmic mRNAs, but how m(6)A achieves its wide-ranging physiological role needs further exploration. Here we show in human cells that m(6)A controls the RNA-structure-dependent accessibility of RBMs to affect RNA-protein interactions for biological regulation; we term this mechanism 'the m(6)A-switch'. We found that m(6)A alters the local structure in mRNA and long non-coding RNA (lncRNA) to facilitate binding of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an abundant nuclear RNA-binding protein responsible for pre-mRNA processing. Combining photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and anti-m(6)A immunoprecipitation (MeRIP) approaches enabled us to identify 39,060 m(6)A-switches among HNRNPC-binding sites; and global m(6)A reduction decreased HNRNPC binding at 2,798 high-confidence m(6)A-switches. We determined that these m(6)A-switch-regulated HNRNPC-binding activities affect the abundance as well as alternative splicing of target mRNAs, demonstrating the regulatory role of m(6)A-switches on gene expression and RNA maturation. Our results illustrate how RNA-binding proteins gain regulated access to their RBMs through m(6)A-dependent RNA structural remodelling, and provide a new direction for investigating RNA-modification-coded cellular biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Nian -- Dai, Qing -- Zheng, Guanqun -- He, Chuan -- Parisien, Marc -- Pan, Tao -- GM088599/GM/NIGMS NIH HHS/ -- K01 HG006699/HG/NHGRI NIH HHS/ -- K01HG006699/HG/NHGRI NIH HHS/ -- R01 GM088599/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 26;518(7540):560-4. doi: 10.1038/nature14234.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA. ; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA [2] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [3] Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA [4] Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [2] Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719671" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Alternative Splicing/genetics ; Base Sequence ; Cross-Linking Reagents ; HEK293 Cells ; HeLa Cells ; Heterogeneous-Nuclear Ribonucleoprotein Group C/*metabolism ; Humans ; Immunoprecipitation ; *Nucleic Acid Conformation ; Nucleotide Motifs ; Protein Binding ; RNA, Messenger/analysis/*chemistry/*metabolism ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-02-18
    Description: Innate immunity serves as the first line of defence against invading pathogens such as bacteria and viruses. Toll-like receptors (TLRs) are examples of innate immune receptors, which sense specific molecular patterns from pathogens and activate immune responses. TLR9 recognizes bacterial and viral DNA containing the cytosine-phosphate-guanine (CpG) dideoxynucleotide motif. The molecular basis by which CpG-containing DNA (CpG-DNA) elicits immunostimulatory activity via TLR9 remains to be elucidated. Here we show the crystal structures of three forms of TLR9: unliganded, bound to agonistic CpG-DNA, and bound to inhibitory DNA (iDNA). Agonistic-CpG-DNA-bound TLR9 formed a symmetric TLR9-CpG-DNA complex with 2:2 stoichiometry, whereas iDNA-bound TLR9 was a monomer. CpG-DNA was recognized by both protomers in the dimer, in particular by the amino-terminal fragment (LRRNT-LRR10) from one protomer and the carboxy-terminal fragment (LRR20-LRR22) from the other. The iDNA, which formed a stem-loop structure suitable for binding by intramolecular base pairing, bound to the concave surface from LRR2-LRR10. This structure serves as an important basis for improving our understanding of the functional mechanisms of TLR9.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohto, Umeharu -- Shibata, Takuma -- Tanji, Hiromi -- Ishida, Hanako -- Krayukhina, Elena -- Uchiyama, Susumu -- Miyake, Kensuke -- Shimizu, Toshiyuki -- England -- Nature. 2015 Apr 30;520(7549):702-5. doi: 10.1038/nature14138. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; 1] Division of Innate Immunity, Department of Microbiology and Immunology, Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan. ; 1] Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] U-Medico Corporation, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. ; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. ; Division of Innate Immunity, Department of Microbiology and Immunology, Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. ; 1] Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686612" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CpG Islands/*immunology ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*immunology/metabolism ; Humans ; Ligands ; Models, Molecular ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Toll-Like Receptor 9/agonists/antagonists & inhibitors/*chemistry/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Meara, Sarah -- England -- Nature. 2015 Dec 17;528(7582):S179-81. doi: 10.1038/528S179a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26673025" target="_blank"〉PubMed〈/a〉
    Keywords: Bibliometrics ; Chemistry ; China ; Cities/*statistics & numerical data ; Personnel Selection ; Research/manpower/organization & administration/*statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-12-10
    Description: DNA repair by homologous recombination is highly suppressed in G1 cells to ensure that mitotic recombination occurs solely between sister chromatids. Although many homologous recombination factors are cell-cycle regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2-BRCA2 to constrain BRCA2 function to the S/G2 phases in human cells. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein, in complex with cullin-3 (CUL3)-RBX1 (ref. 6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR-Cas9-based gene-targeting assay. We conclude that the mechanism prohibiting homologous recombination in G1 minimally consists of the suppression of DNA-end resection coupled with a multi-step block of the recruitment of BRCA2 to DNA damage sites that involves the inhibition of BRCA1-PALB2-BRCA2 complex assembly. We speculate that the ability to induce homologous recombination in G1 cells with defined factors could spur the development of gene-targeting applications in non-dividing cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orthwein, Alexandre -- Noordermeer, Sylvie M -- Wilson, Marcus D -- Landry, Sebastien -- Enchev, Radoslav I -- Sherker, Alana -- Munro, Meagan -- Pinder, Jordan -- Salsman, Jayme -- Dellaire, Graham -- Xia, Bing -- Peter, Matthias -- Durocher, Daniel -- FDN143343/Canadian Institutes of Health Research/Canada -- MOP84260/Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Dec 17;528(7582):422-6. doi: 10.1038/nature16142. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; ETH Zurich, Institute of Biochemistry, Department of Biology, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland. ; Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada. ; Departments of Pathology and Biochemistry &Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. ; Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649820" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; BRCA1 Protein/metabolism ; BRCA2 Protein/metabolism ; CRISPR-Cas Systems/genetics ; Carrier Proteins/metabolism ; Cell Line ; Cullin Proteins/metabolism ; DNA/metabolism ; DNA Damage ; DNA Repair ; *G1 Phase ; G2 Phase ; Gene Targeting ; *Homologous Recombination ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Protein Binding ; Rad51 Recombinase/metabolism ; S Phase ; Thiolester Hydrolases/metabolism ; Tumor Suppressor Proteins/chemistry/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-02-06
    Description: Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the 'humanizing' mutations favour structurally 'unlocked' intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akyuz, Nurunisa -- Georgieva, Elka R -- Zhou, Zhou -- Stolzenberg, Sebastian -- Cuendet, Michel A -- Khelashvili, George -- Altman, Roger B -- Terry, Daniel S -- Freed, Jack H -- Weinstein, Harel -- Boudker, Olga -- Blanchard, Scott C -- 5U54GM087519/GM/NIGMS NIH HHS/ -- P01DA012408/DA/NIDA NIH HHS/ -- P41 GM103521/GM/NIGMS NIH HHS/ -- P41GM103521/GM/NIGMS NIH HHS/ -- R01 EB003150/EB/NIBIB NIH HHS/ -- R01 GM025862/GM/NIGMS NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R010EB003150/EB/NIBIB NIH HHS/ -- R01GM098859/GM/NIGMS NIH HHS/ -- R21MH099491/MH/NIMH NIH HHS/ -- R37 NS085318/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Feb 5;518(7537):68-73. doi: 10.1038/nature14158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; 1] National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, USA [2] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA. ; 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland. ; 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, 1305 York Avenue, New York, New York 10065, USA. ; 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Tri-Institutional Training Program in Chemical Biology, 445 East 69th Street, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652997" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems, Acidic/*chemistry/genetics/*metabolism ; Aspartic Acid/*metabolism ; Biological Transport ; Crystallography, X-Ray ; Detergents ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Movement ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation/genetics ; Protein Stability ; Protein Structure, Tertiary ; Proteolipids/metabolism ; Pyrococcus horikoshii/*chemistry ; Sodium/metabolism ; Solvents ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-09-10
    Description: The protein alpha-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human alpha-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 A resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face beta-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length alpha-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length alpha-synuclein fibril, presenting opportunities for the design of inhibitors of alpha-synuclein fibrils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Jose A -- Ivanova, Magdalena I -- Sawaya, Michael R -- Cascio, Duilio -- Reyes, Francis E -- Shi, Dan -- Sangwan, Smriti -- Guenther, Elizabeth L -- Johnson, Lisa M -- Zhang, Meng -- Jiang, Lin -- Arbing, Mark A -- Nannenga, Brent L -- Hattne, Johan -- Whitelegge, Julian -- Brewster, Aaron S -- Messerschmidt, Marc -- Boutet, Sebastien -- Sauter, Nicholas K -- Gonen, Tamir -- Eisenberg, David S -- 1R01-AG029430/AG/NIA NIH HHS/ -- AG016570/AG/NIA NIH HHS/ -- GM095887/GM/NIGMS NIH HHS/ -- GM102520/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM095887/GM/NIGMS NIH HHS/ -- R01 GM102520/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 24;525(7570):486-90. doi: 10.1038/nature15368. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, UCLA-DOE Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Box 951570, UCLA, Los Angeles, California 90095-1570, USA. ; Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Box 42, NPI-Semel Institute, 760 Westwood Plaza, UCLA, Los Angeles, California 90024, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352473" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/chemistry ; Cryoelectron Microscopy ; Electrons ; Humans ; Lewy Bodies/chemistry ; Models, Molecular ; Nanoparticles/*chemistry/*toxicity ; Parkinson Disease ; Protein Structure, Tertiary ; Scattering, Radiation ; alpha-Synuclein/*chemistry/*toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-02-06
    Description: The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 A resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plaschka, C -- Lariviere, L -- Wenzeck, L -- Seizl, M -- Hemann, M -- Tegunov, D -- Petrotchenko, E V -- Borchers, C H -- Baumeister, W -- Herzog, F -- Villa, E -- Cramer, P -- England -- Nature. 2015 Feb 19;518(7539):376-80. doi: 10.1038/nature14229. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. ; Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada. ; 1] Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652824" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism ; Enzyme Activation ; Mediator Complex/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Phosphorylation ; Protein Stability ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Factor TFIIH/chemistry/metabolism ; Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dance, Amber -- England -- Nature. 2015 Dec 10;528(7581):291-4. doi: 10.1038/528291a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659189" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Cytological Techniques/*methods ; Light ; *Optogenetics ; Protein Engineering ; Protein Structure, Tertiary ; Proteins/metabolism/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-04-29
    Description: Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell. Here we develop a method to purify a lncRNA from cells and identify proteins interacting with it directly using quantitative mass spectrometry. We identify ten proteins that specifically associate with Xist, three of these proteins--SHARP, SAF-A and LBR--are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor that activates HDAC3, is not only essential for silencing, but is also required for the exclusion of RNA polymerase II (Pol II) from the inactive X. Both SMRT and HDAC3 are also required for silencing and Pol II exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude Pol II across the X chromosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McHugh, Colleen A -- Chen, Chun-Kan -- Chow, Amy -- Surka, Christine F -- Tran, Christina -- McDonel, Patrick -- Pandya-Jones, Amy -- Blanco, Mario -- Burghard, Christina -- Moradian, Annie -- Sweredoski, Michael J -- Shishkin, Alexander A -- Su, Julia -- Lander, Eric S -- Hess, Sonja -- Plath, Kathrin -- Guttman, Mitchell -- 1S10RR029591-01A1/RR/NCRR NIH HHS/ -- DP2 OD001686/OD/NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- T32GM07616/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 May 14;521(7551):232-6. doi: 10.1038/nature14443. Epub 2015 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; 1] Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA [2] Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA. ; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25915022" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line ; Embryonic Stem Cells/enzymology/metabolism ; Female ; *Gene Silencing ; Heterogeneous-Nuclear Ribonucleoprotein U/metabolism ; Histone Deacetylases/*metabolism ; Histones/metabolism ; Male ; Mass Spectrometry/*methods ; Mice ; Nuclear Proteins/*metabolism ; Nuclear Receptor Co-Repressor 2/metabolism ; Polycomb Repressive Complex 2/metabolism ; Protein Binding ; RNA Polymerase II/metabolism ; RNA, Long Noncoding/genetics/*metabolism ; RNA-Binding Proteins/analysis/metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Transcription, Genetic/*genetics ; X Chromosome/*genetics/metabolism ; X Chromosome Inactivation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-07-23
    Description: Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine-glycine repeat protein G (VgrG) spike and punctures the prey's cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)-TssJ, TssM and TssL-and present a structure of the fully assembled complex at 11.6 A resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct-TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Durand, Eric -- Nguyen, Van Son -- Zoued, Abdelrahim -- Logger, Laureen -- Pehau-Arnaudet, Gerard -- Aschtgen, Marie-Stephanie -- Spinelli, Silvia -- Desmyter, Aline -- Bardiaux, Benjamin -- Dujeancourt, Annick -- Roussel, Alain -- Cambillau, Christian -- Cascales, Eric -- Fronzes, Remi -- England -- Nature. 2015 Jul 30;523(7562):555-60. doi: 10.1038/nature14667. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratoire d'Ingenierie des Systemes Macromoleculaires, Aix-Marseille Universite - CNRS, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France [2] Architecture et Fonction des Macromolecules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France [3] G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [4] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [5] AFMB, Aix-Marseille Universite, IHU Mediterranee Infection, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; 1] Architecture et Fonction des Macromolecules Biologiques, CNRS, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France [2] AFMB, Aix-Marseille Universite, IHU Mediterranee Infection, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; Laboratoire d'Ingenierie des Systemes Macromoleculaires, Aix-Marseille Universite - CNRS, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; 1] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [2] Unite de Bioinformatique Structurale, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; 1] G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [2] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200339" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Secretion Systems ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Cytoplasm/chemistry/metabolism ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/biosynthesis/*chemistry ; Lipopeptides/biosynthesis/*chemistry ; Membrane Proteins/biosynthesis/*chemistry ; Microscopy, Electron ; Models, Molecular ; Multiprotein Complexes/*biosynthesis/*chemistry ; Periplasm/chemistry/metabolism ; Porosity ; Protein Structure, Tertiary ; Protein Subunits/biosynthesis/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-08-15
    Description: The balance between stem cell self-renewal and differentiation is controlled by intrinsic factors and niche signals. In the Drosophila melanogaster ovary, some intrinsic factors promote germline stem cell (GSC) self-renewal, whereas others stimulate differentiation. However, it remains poorly understood how the balance between self-renewal and differentiation is controlled. Here we use D. melanogaster ovarian GSCs to demonstrate that the differentiation factor Bam controls the functional switch of the COP9 complex from self-renewal to differentiation via protein competition. The COP9 complex is composed of eight Csn subunits, Csn1-8, and removes Nedd8 modifications from target proteins. Genetic results indicated that the COP9 complex is required intrinsically for GSC self-renewal, whereas other Csn proteins, with the exception of Csn4, were also required for GSC progeny differentiation. Bam-mediated Csn4 sequestration from the COP9 complex via protein competition inactivated the self-renewing function of COP9 and allowed other Csn proteins to promote GSC differentiation. Therefore, this study reveals a protein-competition-based mechanism for controlling the balance between stem cell self-renewal and differentiation. Because numerous self-renewal factors are ubiquitously expressed throughout the stem cell lineage in various systems, protein competition may function as an important mechanism for controlling the self-renewal-to-differentiation switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Lei -- Wang, Su -- Lu, Tinglin -- Weng, Changjiang -- Song, Xiaoqing -- Park, Joseph K -- Sun, Jin -- Yang, Zhi-Hao -- Yu, Junjing -- Tang, Hong -- McKearin, Dennis M -- Chamovitz, Daniel A -- Ni, Jianquan -- Xie, Ting -- GM64428/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):233-6. doi: 10.1038/nature13562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China [3]. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Department of Cell Biology and Anatomy, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA [3]. ; 1] Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [2]. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA. ; 1] Department of Molecular Biology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA. ; Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China. ; Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China. ; Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Department of Cell Biology and Anatomy, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Binding, Competitive ; *Cell Differentiation ; Cell Proliferation ; DNA Helicases/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*cytology/*metabolism ; Female ; Intracellular Signaling Peptides and Proteins/metabolism ; Male ; Multiprotein Complexes/*chemistry/*metabolism ; Ovary/cytology ; Peptide Hydrolases/*chemistry/*metabolism ; Protein Binding ; Stem Cells/*cytology/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...