ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-13
    Description: To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kostrewa, Dirk -- Zeller, Mirijam E -- Armache, Karim-Jean -- Seizl, Martin -- Leike, Kristin -- Thomm, Michael -- Cramer, Patrick -- England -- Nature. 2009 Nov 19;462(7271):323-30. doi: 10.1038/nature08548.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19820686" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry ; DNA Polymerase II/*chemistry/*metabolism ; Humans ; *Models, Molecular ; Molecular Sequence Data ; Protein Structure, Quaternary ; Saccharomyces cerevisiae/*genetics/*metabolism ; Sequence Alignment ; TATA-Box Binding Protein/chemistry/metabolism ; Transcription Factor TFIIB/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-06
    Description: Gene transcription by RNA polymerase (Pol) II requires the coactivator complex Mediator. Mediator connects transcriptional regulators and Pol II, and is linked to human disease. Mediator from the yeast Saccharomyces cerevisiae has a molecular mass of 1.4 megadaltons and comprises 25 subunits that form the head, middle, tail and kinase modules. The head module constitutes one-half of the essential Mediator core, and comprises the conserved subunits Med6, Med8, Med11, Med17, Med18, Med20 and Med22. Recent X-ray analysis of the S. cerevisiae head module at 4.3 A resolution led to a partial architectural model with three submodules called neck, fixed jaw and moveable jaw. Here we determine de novo the crystal structure of the head module from the fission yeast Schizosaccharomyces pombe at 3.4 A resolution. Structure solution was enabled by new structures of Med6 and the fixed jaw, and previous structures of the moveable jaw and part of the neck, and required deletion of Med20. The S. pombe head module resembles the head of a crocodile with eight distinct elements, of which at least four are mobile. The fixed jaw comprises tooth and nose domains, whereas the neck submodule contains a helical spine and one limb, with shoulder, arm and finger elements. The arm and the essential shoulder contact other parts of Mediator. The jaws and a central joint are implicated in interactions with Pol II and its carboxy-terminal domain, and the joint is required for transcription in vitro. The S. pombe head module structure leads to a revised model of the S. cerevisiae module, reveals a high conservation and flexibility, explains known mutations, and provides the basis for unravelling a central mechanism of gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lariviere, Laurent -- Plaschka, Clemens -- Seizl, Martin -- Wenzeck, Larissa -- Kurth, Fabian -- Cramer, Patrick -- England -- Nature. 2012 Dec 20;492(7429):448-51. doi: 10.1038/nature11670. Epub 2012 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. larivier@genzentrum.lmu.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23123849" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; DNA Polymerase II/metabolism ; Mediator Complex/*chemistry/metabolism ; Models, Molecular ; Pliability ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/metabolism ; RNA Polymerase II/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Schizosaccharomyces/chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-06
    Description: The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 A resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plaschka, C -- Lariviere, L -- Wenzeck, L -- Seizl, M -- Hemann, M -- Tegunov, D -- Petrotchenko, E V -- Borchers, C H -- Baumeister, W -- Herzog, F -- Villa, E -- Cramer, P -- England -- Nature. 2015 Feb 19;518(7539):376-80. doi: 10.1038/nature14229. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. ; Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada. ; 1] Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652824" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism ; Enzyme Activation ; Mediator Complex/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Phosphorylation ; Protein Stability ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Factor TFIIH/chemistry/metabolism ; Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-10
    Description: We present One Hand Clapping (OHC), a method for the detection of condition-specific interactions between transcription factors (TFs) from genome-wide gene activity measurements. OHC is based on a mapping between transcription factors and their target genes. Given a single case–control experiment, it uses a linear regression model to assess whether the common targets of two arbitrary TFs behave differently than expected from the genes targeted by only one of the TFs. When applied to osmotic stress data in S. cerevisiae , OHC produces consistent results across three types of expression measurements: gene expression microarray data, RNA Polymerase II ChIP-chip binding data and messenger RNA synthesis rates. Among the eight novel, condition-specific TF pairs, we validate the interaction between Gcn4p and Arr1p experimentally. We apply OHC to a large gene activity dataset in S. cerevisiae and provide a compendium of condition-specific TF interactions.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-02
    Description: The essential core of the transcription coactivator Mediator consists of two conserved multiprotein modules, the head and middle modules. Whereas the structure of the head module is known, the structure of the middle module is lacking. Here we report a 3D model of a 6-subunit Mediator middle module. The model was obtained by arranging crystal structures and homology models of parts of the module based on lysine–lysine cross-links obtained by mass spectrometric analysis. The model contains a central tetramer formed by the heterodimers Med4/Med9 and Med7/Med21. The Med7/Med21 heterodimer is flanked by subunits Med10 and Med31. The model is highly extended, suggests that the middle module is flexible and contributes to a molecular basis for detailed structure–function studies of RNA polymerase II regulation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...