ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-06-12
    Description: In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawes, H E -- Berlin, D S -- Lapidus, D M -- Nusbaum, C -- Davis, T L -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1800-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/*genetics/physiology ; *Caenorhabditis elegans Proteins ; *DNA-Binding Proteins ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Helminth Proteins/genetics/*physiology ; Male ; Molecular Sequence Data ; Mutation ; Promoter Regions, Genetic ; Repressor Proteins/genetics/*physiology ; *Sex Determination Processes ; Transgenes ; X Chromosome/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-06
    Description: Meiotic crossovers (COs) are tightly regulated to ensure that COs on the same chromosome are distributed far apart (crossover interference, COI) and that at least one CO is formed per homolog pair (CO homeostasis). CO formation is controlled in part during meiotic double-strand break (DSB) creation in Caenorhabditis elegans, but a second level of control must also exist because meiotic DSBs outnumber COs. We show that the antirecombinase RTEL-1 is required to prevent excess meiotic COs, probably by promoting meiotic synthesis-dependent strand annealing. Two distinct classes of meiotic COs are increased in rtel-1 mutants, and COI and homeostasis are compromised. We propose that RTEL-1 implements the second level of CO control by promoting noncrossovers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770885/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770885/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youds, Jillian L -- Mets, David G -- McIlwraith, Michael J -- Martin, Julie S -- Ward, Jordan D -- ONeil, Nigel J -- Rose, Ann M -- West, Stephen C -- Meyer, Barbara J -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1254-8. doi: 10.1126/science.1183112.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Chromatids/genetics ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; *Crossing Over, Genetic ; DNA Breaks, Double-Stranded ; DNA Helicases/genetics/*metabolism ; DNA Repair ; DNA, Helminth/genetics/metabolism ; Homeostasis ; *Meiosis ; Mutation ; Polymorphism, Single Nucleotide ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-21
    Description: To achieve X-chromosome dosage compensation, organisms must distinguish X chromosomes from autosomes. We identified multiple, cis-acting regions that recruit the Caenorhabditis elegans dosage compensation complex (DCC) through a search for regions of X that bind the complex when detached from X. The DCC normally assembles along the entire X chromosome, but not all detached regions recruit the complex, despite having genes known to be dosage compensated on the native X. Thus, the DCC binds first to recruitment sites, then spreads to neighboring X regions to accomplish chromosome-wide gene repression. From a large chromosomal domain, we defined a 793-base pair fragment that functions in vivo as an X-recognition element to recruit the DCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Csankovszki, Gyorgyi -- McDonel, Patrick -- Meyer, Barbara J -- F32-GM065007/GM/NIGMS NIH HHS/ -- R37-GM30702/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1182-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Carrier Proteins/metabolism ; Chromosomes/metabolism ; Cosmids ; DNA-Binding Proteins/metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; In Situ Hybridization, Fluorescence ; Male ; Models, Genetic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Repetitive Sequences, Nucleic Acid ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-05-29
    Description: Cytokinesis is the essential process that partitions cellular contents into daughter cells. To identify and characterize cytokinesis proteins rapidly, we used a functional proteomic and comparative genomic strategy. Midbodies were isolated from mammalian cells, proteins were identified by multidimensional protein identification technology (MudPIT), and protein function was assessed in Caenorhabditis elegans. Of 172 homologs disrupted by RNA interference, 58% displayed defects in cleavage furrow formation or completion, or germline cytokinesis. Functional dissection of the midbody demonstrated the importance of lipid rafts and vesicle trafficking pathways in cytokinesis, and the utilization of common membrane cytoskeletal components in diverse morphogenetic events in the cleavage furrow, the germline, and neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679889/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679889/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skop, Ahna R -- Liu, Hongbin -- Yates, John 3rd -- Meyer, Barbara J -- Heald, Rebecca -- F32 GM064159/GM/NIGMS NIH HHS/ -- F32 GM064159-01/GM/NIGMS NIH HHS/ -- F32 GM064159-02/GM/NIGMS NIH HHS/ -- F32 GM064159-03/GM/NIGMS NIH HHS/ -- F32 GM64159-01/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- RR1823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 2;305(5680):61-6. Epub 2004 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. skop@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15166316" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Caenorhabditis elegans/cytology/genetics/physiology ; Carrier Proteins/analysis/isolation & purification/physiology ; Cell Cycle/physiology ; *Cell Division ; Cell Fractionation ; Cell Membrane/physiology ; Computational Biology ; Cricetinae ; Cytoskeletal Proteins/analysis/isolation & purification/physiology ; Cytoskeleton/physiology ; Germ Cells/physiology ; HeLa Cells ; Humans ; Membrane Microdomains/physiology ; Morphogenesis ; Organelles/chemistry/*physiology ; Protein Transport ; Proteins/analysis/isolation & purification/*physiology ; Proteome/*analysis ; Proteomics ; Signal Transduction ; Spindle Apparatus/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-11
    Description: Crossover recombination events between homologous chromosomes are required to form chiasmata, temporary connections between homologues that ensure their proper segregation at meiosis I. Despite this requirement for crossovers and an excess of the double-strand DNA breaks that are the initiating events for meiotic recombination, most organisms make very few crossovers per chromosome pair. Moreover, crossovers tend to inhibit the formation of other crossovers nearby on the same chromosome pair, a poorly understood phenomenon known as crossover interference. Here we show that the synaptonemal complex, a meiosis-specific structure that assembles between aligned homologous chromosomes, both constrains and is altered by crossover recombination events. Using a cytological marker of crossover sites in Caenorhabditis elegans, we show that partial depletion of the synaptonemal complex central region proteins attenuates crossover interference, increasing crossovers and reducing the effective distance over which interference operates, indicating that synaptonemal complex proteins limit crossovers. Moreover, we show that crossovers are associated with a local 0.4-0.5-micrometre increase in chromosome axis length. We propose that meiotic crossover regulation operates as a self-limiting system in which meiotic chromosome structures establish an environment that promotes crossover formation, which in turn alters chromosome structure to inhibit other crossovers at additional sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libuda, Diana E -- Uzawa, Satoru -- Meyer, Barbara J -- Villeneuve, Anne M -- K99 HD076165/HD/NICHD NIH HHS/ -- P40 OD010440/OD/NIH HHS/ -- R01 GM067268/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Oct 31;502(7473):703-6. doi: 10.1038/nature12577. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University, School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*genetics ; Caenorhabditis elegans Proteins/metabolism ; Chromosome Pairing ; Chromosome Segregation ; Chromosomes/chemistry/*genetics/*metabolism ; *Crossing Over, Genetic ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/metabolism ; Homologous Recombination ; *Meiosis/genetics ; Nuclear Proteins/deficiency/metabolism ; Synaptonemal Complex/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-06
    Description: In nematodes, flies, and mammals, dosage compensation equalizes X-chromosome gene expression between the sexes through chromosome-wide regulatory mechanisms that function in one sex to adjust the levels of X-linked transcripts. Here, a dosage compensation complex was identified in the nematode Caenorhabditis elegans that reduces transcript levels from the two X chromosomes in hermaphrodites. This complex contains at least four proteins, including products of the dosage compensation genes dpy-26 and dpy-27. Specific localization of the complex to the hermaphrodite X chromosomes is conferred by XX-specific regulatory genes that coordinately control both sex determination and dosage compensation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chuang, P T -- Lieb, J D -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/metabolism ; *Caenorhabditis elegans Proteins ; Carrier Proteins/analysis/chemistry/*metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Electrophoresis, Polyacrylamide Gel ; Female ; Genes, Helminth ; Genes, Regulator ; Helminth Proteins/analysis/chemistry/*metabolism ; Male ; Nuclear Proteins/analysis/chemistry/*metabolism ; Precipitin Tests ; RNA, Helminth/metabolism ; RNA, Messenger/metabolism ; Sex Determination Analysis ; X Chromosome/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-12-06
    Description: The DPY-26 protein is required in the nematode Caenorhabditis elegans for X-chromosome dosage compensation as well as for proper meiotic chromosome segregation. DPY-26 was shown to mediate both processes through its association with chromosomes. In somatic cells, DPY-26 associates specifically with hermaphrodite X chromosomes to reduce their transcript levels. In germ cells, DPY-26 associates with all meiotic chromosomes to mediate its role in chromosome segregation. The X-specific localization of DPY-26 requires two dosage compensation proteins (DPY-27 and DPY-30) and two proteins that coordinately control both sex determination and dosage compensation (SDC-2 and SDC-3).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieb, J D -- Capowski, E E -- Meneely, P -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- HD24324/HD/NICHD NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1732-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/genetics/*physiology ; *Caenorhabditis elegans Proteins ; Carrier Proteins/physiology ; Cell Nucleus/chemistry ; Chromosomes/*physiology ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Embryonic Development ; Female ; Gene Expression ; Genes, Helminth ; Germ Cells/physiology ; Helminth Proteins/analysis/genetics/*physiology ; Male ; *Meiosis ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/physiology ; X Chromosome/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-28
    Description: Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Andrew J -- Lo, Te-Wen -- Zeitler, Bryan -- Pickle, Catherine S -- Ralston, Edward J -- Lee, Andrew H -- Amora, Rainier -- Miller, Jeffrey C -- Leung, Elo -- Meng, Xiangdong -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Meyer, Barbara J -- GM30702/GM/NIGMS NIH HHS/ -- R01 GM030702/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):307. doi: 10.1126/science.1207773. Epub 2011 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis/*genetics ; Caenorhabditis elegans/*genetics ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Gene Targeting ; Genes, Helminth ; *Genetic Techniques ; *Genome, Helminth ; INDEL Mutation ; Mutagenesis ; Regulatory Elements, Transcriptional/*genetics ; Transcription Factors/chemistry ; Transgenes ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-02
    Description: The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains ( approximately 1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct higher-order structure onto X chromosomes while regulating gene expression chromosome-wide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, Emily -- Bian, Qian -- McCord, Rachel Patton -- Lajoie, Bryan R -- Wheeler, Bayly S -- Ralston, Edward J -- Uzawa, Satoru -- Dekker, Job -- Meyer, Barbara J -- R01 GM030702/GM/NIGMS NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- S10RR029668/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030525" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; DNA-Binding Proteins/*metabolism ; Dosage Compensation, Genetic/genetics/*physiology ; Female ; Gene Expression Regulation ; In Situ Hybridization, Fluorescence ; Male ; Multiprotein Complexes/*metabolism ; Protein Binding ; Sequence Analysis, RNA ; X Chromosome/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-05
    Description: To reveal impacts of sexual mode on genome content, we compared chromosome-scale assemblies of the outcrossing nematode Caenorhabditis nigoni to its self-fertile sibling species, C. briggsae . C. nigoni ’s genome resembles that of outcrossing relatives but encodes 31% more protein-coding genes than C. briggsae . C. nigoni genes lacking C. briggsae orthologs were disproportionately small and male-biased in expression. These include the male secreted short ( mss ) gene family, which encodes sperm surface glycoproteins conserved only in outcrossing species. Sperm from mss -null males of outcrossing C. remanei failed to compete with wild-type sperm, despite normal fertility in noncompetitive mating. Restoring mss to C. briggsae males was sufficient to enhance sperm competitiveness. Thus, sex has a pervasive influence on genome content that can be used to identify sperm competition factors.
    Keywords: Evolution, Genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...