ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-05
    Description: The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaminets, Aliaksandr -- Heinrich, Theresa -- Mari, Muriel -- Grumati, Paolo -- Huebner, Antje K -- Akutsu, Masato -- Liebmann, Lutz -- Stolz, Alexandra -- Nietzsche, Sandor -- Koch, Nicole -- Mauthe, Mario -- Katona, Istvan -- Qualmann, Britta -- Weis, Joachim -- Reggiori, Fulvio -- Kurth, Ingo -- Hubner, Christian A -- Dikic, Ivan -- England -- Nature. 2015 Jun 18;522(7556):354-8. doi: 10.1038/nature14498. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. ; Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Kollegiengasse 10, 07743 Jena, Germany. ; 1] Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands [2] Department of Cell Biology, University Medical Center Utrecht, University of Groningen, Antonious Deusinglaan 1, 3713 AV Groningen, The Netherlands. ; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany. ; Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Ziegelmuhlenweg 1, 07743 Jena, Germany. ; Institute for Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany. ; Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany. ; 1] Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany [2] Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany [3] Institute of Immunology, School of Medicine University of Split, Mestrovicevo setaliste bb, 21 000 Split, Croatia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040720" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis ; Autophagy/*physiology ; Biomarkers/metabolism ; Cell Line ; Endoplasmic Reticulum/chemistry/*metabolism ; Female ; Gene Deletion ; Humans ; Lysosomes/metabolism ; Male ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Neoplasm Proteins/deficiency/genetics/*metabolism ; Phagosomes/metabolism ; Protein Binding ; Sensory Receptor Cells/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-17
    Description: Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/ . In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 16 (1997), S. 1925-1928 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-08-03
    Description: Isoprene is the most abundant type of nonmethane, biogenic volatile organic compound in the atmosphere, and it is produced mainly by terrestrial plants. The tropical tree species Ficus septica Burm. F. (Rosales: Moraceae) has been shown to cease isoprene emissions when exposed to temperatures of 12 °C or lower and to re-induce isoprene synthesis upon subsequent exposure to temperatures of 30 °C or higher for 24 h. To elucidate the regulation of genes underlying the disabling and then induction of isoprene emission during acclimatization to ambient temperature, we conducted gene expression analyses of F. septica plants under changing temperature using quantitative real-time polymerase chain reaction and western blotting. Transcription levels were analyzed for 17 genes that are involved in metabolic pathways potentially associated with isoprene biosynthesis, including isoprene synthase ( ispS ). The protein levels of ispS were also measured. Changes in transcription and protein levels of the ispS gene, but not in the other assessed genes, showed identical temporal patterns to isoprene emission capacity under the changing temperature regime. The ispS protein levels strongly and positively correlated with isoprene emission capacity ( R 2  = 0.92). These results suggest that transcriptional regulation of ispS gave rise to the temporal variation in isoprene emission capacity in response to changing temperature.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-09
    Description: Crimean Congo hemorrhagic fever virus (CCHFV) is a deadly human pathogen that evades innate immune responses by efficiently interfering with antiviral signaling pathways mediated by NF-κB, IRF3, and IFNα/β. These pathways rely on protein ubiquitination for their activation, and one outcome is the modification of proteins with the ubiquitin (Ub)-like modifier interferon-stimulated gene (ISG)15. CCHFV and related viruses encode a deubiquitinase (DUB) of the ovarian tumor (OTU) family, which unlike eukaryotic OTU DUBs also targets ISG15 modifications. Here we characterized the viral OTU domain of CCHFV (vOTU) biochemically and structurally, revealing that it hydrolyzes four out of six tested Ub linkages, but lacks activity against linear and K29-linked Ub chains. vOTU cleaved Ub and ISG15 with similar kinetics, and we were able to understand vOTU cross-reactivity at the molecular level from crystal structures of vOTU in complex with Ub and ISG15. An N-terminal extension in vOTU not present in eukaryotic OTU binds to the hydrophobic Ile44 patch of Ub, which results in a dramatically different Ub orientation compared to a eukaryotic OTU–Ub complex. The C-terminal Ub-like fold of ISG15 (ISG15-C) adopts an equivalent binding orientation. Interestingly, ISG15-C contains an additional second hydrophobic surface that is specifically contacted by vOTU. These subtle differences in Ub/ISG15 binding allowed the design of vOTU variants specific for either Ub or ISG15, which will be useful tools to understand the relative contribution of ubiquitination vs. ISGylation in viral infection. Furthermore, the crystal structures will allow structure-based design of antiviral agents targeting this enzyme.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 1986-10-01
    Description: Studies were undertaken to determine whether leukemia and lymphoma cells would be lysed by autologous and allogeneic lymphokine-activated killer (LAK) cells. Peripheral blood mononuclear cells (PBMC) from patients and normal donors were cultured for five days, 2 weeks, and 4 weeks with medium containing 2,500 units of recombinant interleukin 2 (IL-2) per mL, and their cytotoxicity was assayed by a five-hour 51Cr- release test. Of primary tumors isolated from patients with acute nonlymphoblastic leukemia, acute lymphoblastic leukemia, and non- Hodgkin's lymphoma, tumors of 37 out of 40 patients tested were shown to be susceptible to normal donors' LAK, and tumors of 18 of 20 patients tested were shown to be susceptible to autologous LAK. LAK cultured for longer periods showed a tendency to have lower cytotoxicity. LAK had also low, but significant, levels of cytotoxicity for nonmalignant target cells. Because PBMC expanded in IL-2-containing medium consisted mainly of OKT3-positive pan T cells, OKT8-positive suppressor/cytotoxic cells, and Leu-11-positive natural killer (NK) cells, and treatment with OKT3 and Leu-11 monoclonal antibodies (mAb) reduced LAK activity for autologous and allogeneic tumor cells, both T and NK cells appeared to be effector cells for LAK activity. Mechanisms of target-cell recognition in the LAK system seem to be different from those in alloreactive cytotoxic T lymphocytes (CTL) based on the results that, while cytotoxicity of alloreactive CTL was inhibited by the treatment of effector cells with mAb, OKT3, and OKT8, and by the treatment of target cells with a mAb that reacts with HLA class I antigen, LAK activity was not inhibited by the above treatment. When chromosomes of IL-2-expanded PBMC in nine patients and two normal individuals were analyzed, PBMC from one patient showed chromosomes of clonal abnormalities, and PBMC from five donors showed those of nonclonal abnormalities.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1986-10-01
    Description: Studies were undertaken to determine whether leukemia and lymphoma cells would be lysed by autologous and allogeneic lymphokine-activated killer (LAK) cells. Peripheral blood mononuclear cells (PBMC) from patients and normal donors were cultured for five days, 2 weeks, and 4 weeks with medium containing 2,500 units of recombinant interleukin 2 (IL-2) per mL, and their cytotoxicity was assayed by a five-hour 51Cr- release test. Of primary tumors isolated from patients with acute nonlymphoblastic leukemia, acute lymphoblastic leukemia, and non- Hodgkin's lymphoma, tumors of 37 out of 40 patients tested were shown to be susceptible to normal donors' LAK, and tumors of 18 of 20 patients tested were shown to be susceptible to autologous LAK. LAK cultured for longer periods showed a tendency to have lower cytotoxicity. LAK had also low, but significant, levels of cytotoxicity for nonmalignant target cells. Because PBMC expanded in IL-2-containing medium consisted mainly of OKT3-positive pan T cells, OKT8-positive suppressor/cytotoxic cells, and Leu-11-positive natural killer (NK) cells, and treatment with OKT3 and Leu-11 monoclonal antibodies (mAb) reduced LAK activity for autologous and allogeneic tumor cells, both T and NK cells appeared to be effector cells for LAK activity. Mechanisms of target-cell recognition in the LAK system seem to be different from those in alloreactive cytotoxic T lymphocytes (CTL) based on the results that, while cytotoxicity of alloreactive CTL was inhibited by the treatment of effector cells with mAb, OKT3, and OKT8, and by the treatment of target cells with a mAb that reacts with HLA class I antigen, LAK activity was not inhibited by the above treatment. When chromosomes of IL-2-expanded PBMC in nine patients and two normal individuals were analyzed, PBMC from one patient showed chromosomes of clonal abnormalities, and PBMC from five donors showed those of nonclonal abnormalities.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-08-23
    Print ISSN: 0108-7673
    Electronic ISSN: 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...