ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-05
    Description: Using electron microscopy and fitting of crystal structures, we present the 3D reconstruction of ligand-induced dimers of intact receptor tyrosine kinase, KIT. We observe that KIT protomers form close contacts throughout the entire structure of ligand-bound receptor dimers, and that the dimeric receptors adopt multiple, defined conformational states. Interestingly, the...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-12
    Description: Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA. We determined the structure of a reconstituted and catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particle electron microscopy. We found that archaeal box C/D sRNPs unexpectedly formed a dimeric structure with an alternative organization of their RNA and protein components that challenges the conventional view of their architecture. Mutational analysis demonstrated that this di-sRNP structure was relevant for the enzymatic function of archaeal box C/D sRNPs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bleichert, Franziska -- Gagnon, Keith T -- Brown, Bernard A 2nd -- Maxwell, E Stuart -- Leschziner, Andres E -- Unger, Vinzenz M -- Baserga, Susan J -- R01 GM052581/GM/NIGMS NIH HHS/ -- R01 GM052581-15/GM/NIGMS NIH HHS/ -- R01GM52581/GM/NIGMS NIH HHS/ -- R01GM69699/GM/NIGMS NIH HHS/ -- RR19895/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1384-7. doi: 10.1126/science.1176099.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745151" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/*chemistry/metabolism/ultrastructure ; Base Sequence ; Chromosomal Proteins, Non-Histone/*chemistry ; Methanococcales/*chemistry ; Microscopy, Electron ; Models, Molecular ; Molecular Weight ; Nucleic Acid Conformation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA, Archaeal/*chemistry/ultrastructure ; Ribonucleoproteins/*chemistry/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-13
    Description: Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. Here we describe the crystal structure of Drosophila ORC at 3.5 A resolution, showing that the 270 kilodalton initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ (ATPases associated with a variety of cellular activities) folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident. These include highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighbouring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate an approximately 20 A wide channel in the centre of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the mini-chromosome maintenance 2-7 (MCM2-7) complex during replicative helicase loading; however, an observed out-of-plane rotation of more than 90 degrees for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bleichert, Franziska -- Botchan, Michael R -- Berger, James M -- CA R37-30490/CA/NCI NIH HHS/ -- GM071747/GM/NIGMS NIH HHS/ -- R01 GM071747/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):321-6. doi: 10.1038/nature14239. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762138" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeal Proteins/chemistry/metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Replication ; Drosophila melanogaster/*chemistry ; Eukaryotic Cells/*chemistry ; Minichromosome Maintenance Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Origin Recognition Complex/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-06-12
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-25
    Description: The heterohexameric minichromosome maintenance (MCM2–7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2–7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2–7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2–7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2–7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2–7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2–7 systems.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-08-06
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...