ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-13
    Description: We investigate differences of the ocean response in the Amazon domain to the seasonal variability of the river discharge that are either introduced via assimilating climatological temperature and salinity or by specifying seasonally varying river runoff. The role of the seasonal cycle of the Amazon freshwater discharge for the evolution of the barrier layer (BL) in the western tropical Atlantic and on the freshwater budget is estimated. During the experiments, three different runoff fields are being applied, including a time-mean runoff, a seasonally varying runoff, and one that results from the GECCO assimilation approach. The simulation forced with a seasonal Amazon discharge appears to be closer to the constrained solution and moves away from the run with a constant runoff, demonstrating that the seasonal variability of the Amazon is an essential contributor in the freshwater forcing of the western tropical Atlantic. The modeled time-mean BL thickness seems to be overestimated by the model relative to the data. On the seasonal timescale, the simulated spatial mean BL is found to vary between 13 and 30 m, with a maximum occurring in July, following the Amazon high discharge period in May. Analyzing the freshwater content balance, we find integrated near-surface freshwater import from the western tropical Atlantic interior of around 0.20 Sv in October–November at 38°W and cumulative freshwater export out of the domain with a maximum of around 0.4 Sv in June as an effect of the Amazon flood in May.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-27
    Description: Ocean bottom pressure variability is analyzed from three monthly products available from (1) the Gravity Recovery and Climate Experiment (GRACE), (2) sterically corrected altimetry, and (3) from a forward run of the German part of the Estimating the Circulation and Climate of the Ocean (GECCO-2) model. Results lead to an approximate error estimate for each of the ocean bottom pressure (OBP) maps under the assumption of noncorrelated errors among the three products. The estimated error maps are consistent with the misfits of individual fields against OBP sensor data, with the caveat that a general underestimation of the signal strength, as a common, correlated error in all products, cannot be recovered by the method. The signal-to-noise ratio (SNR) increases in all products, when a 3 month running mean filter is applied. Using this filter, we estimate globally averaged errors of 8.6, 11.1, and 5.7 mm of equivalent water height for GRACE, nonsteric altimetry, and GECCO2, respectively. Based on resulting uncertainties, a new OBP product is being produced by merging all three data sets. When validated with bottom pressure observations this new OBP product has a 20% increased SNR compared to the best individual product (GECCO2-ref). Estimated total ocean mass variations explain a considerable part of OBP variability with a SNR above 1 in most of the ocean. In some regions the nonuniform part is weaker than the estimated error. However, most dynamic ocean models are designed to reproduce only the nonuniform, dynamic, OBP variability, but do not accurately describe total mass variability.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-27
    Description: Author(s): C. Lenser, A. Köhl, M. Patt, C. M. Schneider, R. Waser, and R. Dittmann Nonvolatile memory elements, known as memristors, have recently received an attention boost by introducing transition-metal oxide /transition-metal bilayer structures. These structures enable the engineering of the electrical properties of the devices and the removal of unwanted forming steps though a redox-reaction at the interface. This work provides much needed information for the understanding of memristive behavior in such devices by providing the first systematic study of the electronic band alignment at the interface, which plays essential role in charge carrier transport. [Phys. Rev. B 90, 115312] Published Fri Sep 26, 2014
    Keywords: Semiconductors II: surfaces, interfaces, microstructures, and related topics
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-12-01
    Description: The first step in processing olfactory information, before neural filtering, is the physical capture of odor molecules from the surrounding fluid. Many animals capture odors from turbulent water currents or wind using antennae that bear chemosensory hairs. We used planar laser-induced fluorescence to reveal how lobster olfactory antennules hydrodynamically alter the spatiotemporal patterns of concentration in turbulent odor plumes. As antennules flick, water penetrates their chemosensory hair array during the fast downstroke, carrying fine-scale patterns of concentration into the receptor area. This spatial pattern, blurred by flow along the antennule during the downstroke, is retained during the slower return stroke and is not shed until the next flick.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koehl, M A -- Koseff, J R -- Crimaldi, J P -- McCay, M G -- Cooper, T -- Wiley, M B -- Moore, P A -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1948-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA. cnidaria@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729325" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemoreceptor Cells/physiology ; Fluorescence ; Kinetics ; Lasers ; Nephropidae/*physiology ; *Odors ; Smell/physiology ; *Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: Recent advances in integrative studies of locomotion have revealed several general principles. Energy storage and exchange mechanisms discovered in walking and running bipeds apply to multilegged locomotion and even to flying and swimming. Nonpropulsive lateral forces can be sizable, but they may benefit stability, maneuverability, or other criteria that become apparent in natural environments. Locomotor control systems combine rapid mechanical preflexes with multimodal sensory feedback and feedforward commands. Muscles have a surprising variety of functions in locomotion, serving as motors, brakes, springs, and struts. Integrative approaches reveal not only how each component within a locomotor system operates but how they function as a collective whole.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickinson, M H -- Farley, C T -- Full, R J -- Koehl, M A -- Kram, R -- Lehman, S -- AR44008A/AR/NIAMS NIH HHS/ -- AR44688/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):100-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. flymanmd@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Energy Metabolism ; Feedback ; Locomotion/*physiology ; Muscle Contraction ; Muscles/*physiology ; *Musculoskeletal Physiological Phenomena ; *Nervous System Physiological Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-05
    Description: The human sigma1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the sigma1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the sigma1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human sigma1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like beta-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Hayden R -- Zheng, Sanduo -- Gurpinar, Esin -- Koehl, Antoine -- Manglik, Aashish -- Kruse, Andrew C -- T32GM007226/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):527-30. doi: 10.1038/nature17391. Epub 2016 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27042935" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamides/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/metabolism ; Isoxazoles/chemistry/metabolism ; Ligands ; Models, Molecular ; Piperidines/chemistry/metabolism ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism ; Receptors, sigma/*chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1981-11-13
    Description: Coral reefs of north Jamaica, normally sheltered, were severely damaged by Hurricane Allen, the strongest Caribbean hurricane of this century. Immediate studies were made at Discovery Bay, where reef populations were already known in some detail. Data are presented to show how damage varied with the position and orientation of the substraturn and with the shape, size, and mechanical properties of exposed organisms. Data collected over succeeding weeks showed striking differences in the ability of organisms to heal and survive.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodley, J D -- Chornesky, E A -- Clifford, P A -- Jackson, J B -- Kaufman, L S -- Knowlton, N -- Lang, J C -- Pearson, M P -- Porter, J W -- Rooney, M C -- Rylaarsdam, K W -- Tunnicliffe, V J -- Wahle, C M -- Wulff, J L -- Curtis, A S -- Dallmeyer, M D -- Jupp, B P -- Koehl, M A -- Neigel, J -- Sides, E M -- New York, N.Y. -- Science. 1981 Nov 13;214(4522):749-55.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17744383" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-26
    Description: Several existing statistical and dynamical reconstructions of past regional sea level variability and trends are compared with each other and with tide gauges over the 48-yr period 1960–2007, partially pre-dating the satellite altimetry era. Evaluated statistical reconstructions were built from tide gauge data (TGR), and dynamical reconstructions from ocean data assimilation (ODA) approaches. Although most of the TGRs yield global-mean time series of sea level with trends deviating within only ±0.1 mm yr −1 , the spatial anomalies of the trends deviate substantially between the reconstructions over the period predating altimetry. In contrast, TGRs match observed regional trend patterns fairly well during the satellite altimetry era. TGRs match tide gauge data better than ODA results; however, they exhibit less variability in the open ocean compared to altimetric data. Over the pre-altimetry period, all reconstructed regional sea level trend patterns deviate substantially from each other. In terms of detrended correlations in this earlier period, the reconstructions match tide gauges, and each other, much better in the Pacific than in the Atlantic. An ensemble of all TGR and ODA estimates provides some improvements in correlations and trends to both tide gauges and altimetry. Nevertheless, a lack of independent open-ocean sea surface height data predating altimetry makes impossible the validation of the ensemble for pre-altimetry open ocean sea level trends and variability. Estimating regional sea level changes prior to altimetry therefore remains an unsolved challenge.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-27
    Description: In a pilot attempt, the GECCO2 synthesis system is being used to investigate the impact of SMOS sea surface salinity (SSS) observations on estimates of SSS and freshwater fluxes. The paper focuses on the period 2010 - 2011, during which, in addition to traditional in situ and satellite observations, SMOS SSS is assimilated. A prior SMOS SSS error field is inferred through a comparison of the satellite data with in situ salinity data and reveals large biases (〉1 g/kg) in the SMOS product near continents and in the Southern Ocean. Employing this error estimate in the assimilation procedure leads only to an insignificant impact of SMOS SSS on the estimated ocean state. However, when reducing the error artificially by a factor of 10, the SMOS data can be reproduced well in the interior ocean. In this case, the previously remaining positive model bias with respect to in situ salinity is changed to a negative bias while the misfit slightly increased. The clear freshening can be attributed to the SMOS bias with respect to in situ data. The associated increase in freshwater input in the tropical oceans enhances slightly the correspondence of the estimated fluxes to the independent satellite based estimate from HOAPS except for the South Pacific and South Atlantic. On short time scales, changes in the estimated surface salinity result primarily from changes in surface freshwater fluxes, while over longer periods ocean dynamics become increasingly more important for changing the near-surface salinity.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-21
    Description: Author(s): C. Praetorius, M. Zinner, A. Köhl, H. Kießling, S. Brück, B. Muenzing, M. Kamp, T. Kachel, F. Choueikani, P. Ohresser, F. Wilhelm, A. Rogalev, and K. Fauth We present an extensive study of the structure, composition, electronic, and magnetic properties of Ce-Pt surface intermetallic phases on Pt(111) as a function of their thickness. The sequence of structural phases appearing in low-energy electron diffraction may invariably be attributed to a single … [Phys. Rev. B 92, 045116] Published Fri Jul 17, 2015
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...