ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (206)
  • Cell & Developmental Biology  (136)
  • Binding Sites
  • Phosphorylation
  • 2015-2019  (70)
  • 1995-1999
  • 1980-1984
  • 1960-1964  (136)
  • 1955-1959
  • 1945-1949
  • 2015  (70)
  • 1963  (136)
  • Medizin  (206)
  • Informatik  (17)
Sammlung
  • Artikel  (206)
Erscheinungszeitraum
  • 2015-2019  (70)
  • 1995-1999
  • 1980-1984
  • 1960-1964  (136)
  • 1955-1959
  • +
Jahr
Thema
  • 1
    Publikationsdatum: 2015-12-10
    Beschreibung: Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindemans, Caroline A -- Calafiore, Marco -- Mertelsmann, Anna M -- O'Connor, Margaret H -- Dudakov, Jarrod A -- Jenq, Robert R -- Velardi, Enrico -- Young, Lauren F -- Smith, Odette M -- Lawrence, Gillian -- Ivanov, Juliet A -- Fu, Ya-Yuan -- Takashima, Shuichiro -- Hua, Guoqiang -- Martin, Maria L -- O'Rourke, Kevin P -- Lo, Yuan-Hung -- Mokry, Michal -- Romera-Hernandez, Monica -- Cupedo, Tom -- Dow, Lukas E -- Nieuwenhuis, Edward E -- Shroyer, Noah F -- Liu, Chen -- Kolesnick, Richard -- van den Brink, Marcel R M -- Hanash, Alan M -- HHSN272200900059C/PHS HHS/ -- K08 HL115355/HL/NHLBI NIH HHS/ -- K08-HL115355/HL/NHLBI NIH HHS/ -- K99 CA176376/CA/NCI NIH HHS/ -- K99-CA176376/CA/NCI NIH HHS/ -- P01 CA023766/CA/NCI NIH HHS/ -- P01-CA023766/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30-CA008748/CA/NCI NIH HHS/ -- R01 AI080455/AI/NIAID NIH HHS/ -- R01 AI100288/AI/NIAID NIH HHS/ -- R01 AI101406/AI/NIAID NIH HHS/ -- R01 HL069929/HL/NHLBI NIH HHS/ -- R01 HL125571/HL/NHLBI NIH HHS/ -- R01-AI080455/AI/NIAID NIH HHS/ -- R01-AI100288/AI/NIAID NIH HHS/ -- R01-AI101406/AI/NIAID NIH HHS/ -- R01-HL069929/HL/NHLBI NIH HHS/ -- R01-HL125571/HL/NHLBI NIH HHS/ -- U19 AI116497/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):560-4. doi: 10.1038/nature16460. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pediatrics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands. ; Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia. ; Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Cancer Biology &Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. ; Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649819" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Epithelial Cells/*cytology/immunology/pathology ; Female ; Graft vs Host Disease/pathology ; Humans ; Immunity, Mucosal ; Interleukins/deficiency/*immunology ; Intestinal Mucosa/*cytology/immunology/pathology ; Intestine, Small/*cytology/immunology/pathology ; Mice ; Organoids/cytology/growth & development/immunology ; Paneth Cells/cytology ; Phosphorylation ; *Regeneration ; STAT3 Transcription Factor/metabolism ; Signal Transduction ; Stem Cell Niche ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-11-13
    Beschreibung: Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells. Here we investigate the causal DNA variant at this locus and the mechanism by which it leads to neuroblastoma tumorigenesis. We first imputed all possible genotypes across the LMO1 locus and then mapped highly associated single nucleotide polymorphism (SNPs) to areas of chromatin accessibility, evolutionary conservation and transcription factor binding sites. We show that SNP rs2168101 G〉T is the most highly associated variant (combined P = 7.47 x 10(-29), odds ratio 0.65, 95% confidence interval 0.60-0.70), and resides in a super-enhancer defined by extensive acetylation of histone H3 lysine 27 within the first intron of LMO1. The ancestral G allele that is associated with tumour formation resides in a conserved GATA transcription factor binding motif. We show that the newly evolved protective TATA allele is associated with decreased total LMO1 expression (P = 0.028) in neuroblastoma primary tumours, and ablates GATA3 binding (P 〈 0.0001). We demonstrate allelic imbalance favouring the G-containing strand in tumours heterozygous for this SNP, as demonstrated both by RNA sequencing (P 〈 0.0001) and reporter assays (P = 0.002). These findings indicate that a recently evolved polymorphism within a super-enhancer element in the first intron of LMO1 influences neuroblastoma susceptibility through differential GATA transcription factor binding and direct modulation of LMO1 expression in cis, and this leads to an oncogenic dependency in tumour cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldridge, Derek A -- Wood, Andrew C -- Weichert-Leahey, Nina -- Crimmins, Ian -- Sussman, Robyn -- Winter, Cynthia -- McDaniel, Lee D -- Diamond, Maura -- Hart, Lori S -- Zhu, Shizhen -- Durbin, Adam D -- Abraham, Brian J -- Anders, Lars -- Tian, Lifeng -- Zhang, Shile -- Wei, Jun S -- Khan, Javed -- Bramlett, Kelli -- Rahman, Nazneen -- Capasso, Mario -- Iolascon, Achille -- Gerhard, Daniela S -- Guidry Auvil, Jaime M -- Young, Richard A -- Hakonarson, Hakon -- Diskin, Sharon J -- Look, A Thomas -- Maris, John M -- 100210/Wellcome Trust/United Kingdom -- 100210/Z/12/Z/Wellcome Trust/United Kingdom -- 1K99CA178189/CA/NCI NIH HHS/ -- R00-CA151869/CA/NCI NIH HHS/ -- R01 CA124709/CA/NCI NIH HHS/ -- R01 CA180692/CA/NCI NIH HHS/ -- R01-CA109901/CA/NCI NIH HHS/ -- R01-CA124709/CA/NCI NIH HHS/ -- R01-CA180692/CA/NCI NIH HHS/ -- RC1MD004418/MD/NIMHD NIH HHS/ -- T32 HG000046/HG/NHGRI NIH HHS/ -- T32-HG000046/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Dec 17;528(7582):418-21. doi: 10.1038/nature15540. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. ; Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, Auckland Region 1142, New Zealand. ; Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA. ; Whitehead Institute for Biomedical Research and MIT, Boston, Massachusetts 02142, USA. ; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. ; Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA. ; Thermo Fisher Scientific, Austin, Texas 78744, USA. ; The Institute of Cancer Research, London SM2 5NG, UK. ; University of Naples Federico II, 80131 Naples, Italy. ; CEINGE Biotecnologie Avanzate, 80131 Naples, Italy. ; Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland 20892, USA. ; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560027" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Acetylation ; Alleles ; Allelic Imbalance ; Binding Sites ; DNA-Binding Proteins/*genetics ; Enhancer Elements, Genetic/*genetics ; Epigenomics ; GATA3 Transcription Factor/metabolism ; Gene Expression Regulation, Neoplastic/genetics ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Genotype ; Histones/chemistry/metabolism ; Humans ; Introns/genetics ; LIM Domain Proteins/*genetics ; Lysine/metabolism ; Neuroblastoma/*genetics ; Organ Specificity ; Polymorphism, Single Nucleotide/*genetics ; Reproducibility of Results ; Transcription Factors/*genetics
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-02-06
    Beschreibung: Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Youl -- Peterson, Francis C -- Mosquna, Assaf -- Yao, Jin -- Volkman, Brian F -- Cutler, Sean R -- England -- Nature. 2015 Apr 23;520(7548):545-8. doi: 10.1038/nature14123. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA [2] Institute for Integrative Genome Biology, Riverside, California 92521, USA. ; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652827" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Abscisic Acid/*metabolism ; Acclimatization/drug effects ; Agrochemicals/*pharmacology ; Amides/*pharmacology ; Arabidopsis/drug effects/genetics/metabolism ; Arabidopsis Proteins/*genetics/*metabolism ; Binding Sites ; Carboxylic Acids/*pharmacology ; Crystallography, X-Ray ; Droughts ; Genetic Engineering ; Genotype ; Ligands ; Lycopersicon esculentum/drug effects/genetics/metabolism ; Membrane Transport Proteins/*genetics/*metabolism ; Models, Molecular ; Plant Transpiration/drug effects ; Plants/*drug effects/genetics/*metabolism ; Plants, Genetically Modified ; Stress, Physiological/drug effects ; Structure-Activity Relationship ; Water/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-04-23
    Beschreibung: Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 A, reaching 2.9 A resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khatter, Heena -- Myasnikov, Alexander G -- Natchiar, S Kundhavai -- Klaholz, Bruno P -- England -- Nature. 2015 Apr 30;520(7549):640-5. doi: 10.1038/nature14427. Epub 2015 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Sante et de la Recherche Medicale (INSERM) U964, 67404 Illkirch, France [4] Universite de Strasbourg, 67081 Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25901680" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; *Cryoelectron Microscopy ; Electrons ; Humans ; Models, Molecular ; RNA, Ribosomal/chemistry/metabolism/ultrastructure ; RNA, Transfer/chemistry/metabolism/ultrastructure ; Ribosomal Proteins/chemistry/metabolism/ultrastructure ; Ribosome Subunits/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-03-31
    Beschreibung: In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 A resolution, and with a non-nucleotide antagonist BPTU at 2.2 A resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Dandan -- Gao, Zhan-Guo -- Zhang, Kaihua -- Kiselev, Evgeny -- Crane, Steven -- Wang, Jiang -- Paoletta, Silvia -- Yi, Cuiying -- Ma, Limin -- Zhang, Wenru -- Han, Gye Won -- Liu, Hong -- Cherezov, Vadim -- Katritch, Vsevolod -- Jiang, Hualiang -- Stevens, Raymond C -- Jacobson, Kenneth A -- Zhao, Qiang -- Wu, Beili -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Z01 DK031116-21/Intramural NIH HHS/ -- Z01DK031116-26/DK/NIDDK NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):317-21. doi: 10.1038/nature14287. Epub 2015 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA. ; Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA [2] Bridge Institute, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25822790" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adenosine Diphosphate/analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism/pharmacology ; Humans ; Ligands ; Models, Molecular ; Molecular Conformation ; Purinergic P2Y Receptor Antagonists/*chemistry/metabolism/pharmacology ; Receptors, Purinergic P2Y1/*chemistry/*metabolism ; Thionucleotides/chemistry/metabolism ; Uracil/*analogs & derivatives/chemistry/metabolism/pharmacology
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2015-08-11
    Beschreibung: G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vafabakhsh, Reza -- Levitz, Joshua -- Isacoff, Ehud Y -- 2PN2EY018241/EY/NEI NIH HHS/ -- PN2 EY018241/EY/NEI NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):497-501. doi: 10.1038/nature14679. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258295" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding Sites ; Drug Partial Agonism ; *Fluorescence Resonance Energy Transfer ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Conformation ; Rats ; Receptors, Metabotropic Glutamate/*chemistry/*classification/genetics/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-04-10
    Beschreibung: The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to approximately 4 A resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paulsen, Candice E -- Armache, Jean-Paul -- Gao, Yuan -- Cheng, Yifan -- Julius, David -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01 NS055299/NS/NINDS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R01NS055299/NS/NINDS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):511-7. doi: 10.1038/nature14367. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, California 94158-2517, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA. ; 1] Department of Physiology, University of California, San Francisco, California 94158-2517, USA [2] Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855297" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Allosteric Regulation ; Analgesics ; Ankyrin Repeat ; Anti-Inflammatory Agents ; Binding Sites ; Calcium Channels/*chemistry/metabolism/*ultrastructure ; *Cryoelectron Microscopy ; Cytosol/metabolism ; Humans ; Models, Molecular ; Nerve Tissue Proteins/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure ; Polyphosphates/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Transient Receptor Potential Channels/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2015-09-08
    Beschreibung: During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at approximately 6 A resolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉des Georges, Amedee -- Dhote, Vidya -- Kuhn, Lauriane -- Hellen, Christopher U T -- Pestova, Tatyana V -- Frank, Joachim -- Hashem, Yaser -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM059660/GM/NIGMS NIH HHS/ -- R01 GM29169/GM/NIGMS NIH HHS/ -- R01 GM59660/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 24;525(7570):491-5. doi: 10.1038/nature14891. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA. ; CNRS, Proteomic Platform Strasbourg - Esplanade, Strasbourg 67084, France. ; Department of Biological Sciences, Columbia University, New York, New York 10032, USA. ; CNRS, Architecture et Reactivite de l'ARN, Universite de Strasbourg, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344199" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; Codon, Initiator/genetics ; Cryoelectron Microscopy ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; Eukaryotic Initiation Factor-3/*chemistry/*metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; *Peptide Chain Initiation, Translational ; Peptide Initiation Factors/metabolism ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; RNA Helicases/chemistry/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Transfer, Met/metabolism ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism ; Ribosomes/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-02-25
    Beschreibung: V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1-RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1-RAG2 complex at 3.2 A resolution. The 230-kilodalton RAG1-RAG2 heterotetramer is 'Y-shaped', with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1-RAG2 heterodimer composes one arm of the 'Y', with the active site in the middle and RAG2 at its tip. The RAG1-RAG2 structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Min-Sung -- Lapkouski, Mikalai -- Yang, Wei -- Gellert, Martin -- Z01 DK036147-01/Intramural NIH HHS/ -- Z01 DK036147-02/Intramural NIH HHS/ -- Z01 DK036167-01/Intramural NIH HHS/ -- Z01 DK036167-02/Intramural NIH HHS/ -- ZIA DK036147-03/Intramural NIH HHS/ -- ZIA DK036147-04/Intramural NIH HHS/ -- ZIA DK036147-05/Intramural NIH HHS/ -- ZIA DK036147-06/Intramural NIH HHS/ -- ZIA DK036147-07/Intramural NIH HHS/ -- ZIA DK036147-08/Intramural NIH HHS/ -- ZIA DK036167-03/Intramural NIH HHS/ -- ZIA DK036167-04/Intramural NIH HHS/ -- ZIA DK036167-05/Intramural NIH HHS/ -- ZIA DK036167-06/Intramural NIH HHS/ -- ZIA DK036167-07/Intramural NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):507-11. doi: 10.1038/nature14174. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707801" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Homeodomain Proteins/*chemistry/genetics/metabolism ; Humans ; Mice ; Models, Molecular ; Mutation/genetics ; Protein Multimerization ; Protein Structure, Quaternary ; Severe Combined Immunodeficiency/genetics ; Transposases/chemistry ; VDJ Recombinases/*chemistry/metabolism ; X-Linked Combined Immunodeficiency Diseases/genetics
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2015-03-25
    Beschreibung: Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-beta1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to beta1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, alpha5beta1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitorino, Philip -- Yeung, Stacey -- Crow, Ailey -- Bakke, Jesse -- Smyczek, Tanya -- West, Kristina -- McNamara, Erin -- Eastham-Anderson, Jeffrey -- Gould, Stephen -- Harris, Seth F -- Ndubaku, Chudi -- Ye, Weilan -- England -- Nature. 2015 Mar 26;519(7544):425-30. doi: 10.1038/nature14323. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Pathology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA. ; Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799996" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Motifs ; Animals ; Antigens, CD29/chemistry/drug effects/metabolism ; Cell Membrane/drug effects/metabolism ; *Cell Movement ; Cell Shape/drug effects ; Endothelial Cells/*cytology/drug effects/*metabolism ; Epistasis, Genetic ; Focal Adhesions/metabolism ; Humans ; Integrin alpha1/drug effects/metabolism ; Integrins/drug effects/*metabolism ; Intracellular Signaling Peptides and Proteins/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Male ; Mice ; Microfilament Proteins/deficiency/genetics/metabolism ; Neovascularization, Pathologic ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Talin/chemistry/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2015-08-19
    Beschreibung: Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seweryn, Paulina -- Van, Lan Bich -- Kjeldgaard, Morten -- Russo, Christopher J -- Passmore, Lori A -- Hove-Jensen, Bjarne -- Jochimsen, Bjarne -- Brodersen, Ditlev E -- MC_U105192715/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):68-72. doi: 10.1038/nature14683. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280334" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adenosine Triphosphate/metabolism ; Binding Sites ; Biocatalysis ; Carbon/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Hydrolysis ; Iron/chemistry/metabolism ; Lyases/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Organophosphonates/metabolism ; Phosphorus/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sulfur/chemistry/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2015-09-30
    Beschreibung: Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Appen, Alexander -- Kosinski, Jan -- Sparks, Lenore -- Ori, Alessandro -- DiGuilio, Amanda L -- Vollmer, Benjamin -- Mackmull, Marie-Therese -- Banterle, Niccolo -- Parca, Luca -- Kastritis, Panagiotis -- Buczak, Katarzyna -- Mosalaganti, Shyamal -- Hagen, Wim -- Andres-Pons, Amparo -- Lemke, Edward A -- Bork, Peer -- Antonin, Wolfram -- Glavy, Joseph S -- Bui, Khanh Huy -- Beck, Martin -- 1R21AG047433-01/AG/NIA NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):140-3. doi: 10.1038/nature15381. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany. ; Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 507 River St., Hoboken, New Jersey 07030, USA. ; Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tubingen, Germany. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416747" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; *Cryoelectron Microscopy ; HeLa Cells ; Humans ; Mass Spectrometry ; Models, Molecular ; Molecular Chaperones/chemistry/metabolism/ultrastructure ; Nuclear Envelope/metabolism ; Nuclear Pore/*chemistry/metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/*chemistry/metabolism/*ultrastructure ; Protein Conformation ; Protein Multimerization ; Protein Stability
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2015-03-06
    Beschreibung: Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeeles, Joseph T P -- Deegan, Tom D -- Janska, Agnieszka -- Early, Anne -- Diffley, John F X -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Mar 26;519(7544):431-5. doi: 10.1038/nature14285. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739503" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Cell Cycle Proteins/metabolism ; Cyclin-Dependent Kinases/metabolism ; *DNA Replication ; DNA-Binding Proteins/metabolism ; DNA-Directed DNA Polymerase/metabolism ; Minichromosome Maintenance Proteins/metabolism ; Multienzyme Complexes/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Replication Origin/genetics/*physiology ; Replication Protein A/metabolism ; Saccharomyces cerevisiae/enzymology/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*isolation & purification/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2015-07-30
    Beschreibung: DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior beta-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ningning -- Zhai, Yuanliang -- Zhang, Yixiao -- Li, Wanqiu -- Yang, Maojun -- Lei, Jianlin -- Tye, Bik-Kwoon -- Gao, Ning -- England -- Nature. 2015 Aug 13;524(7564):186-91. doi: 10.1038/nature14685. Epub 2015 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26222030" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; Cell Cycle Proteins/chemistry/metabolism/ultrastructure ; Chromatin/chemistry ; Conserved Sequence ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism/ultrastructure ; DNA-Directed DNA Polymerase/chemistry/ultrastructure ; G1 Phase ; Minichromosome Maintenance Proteins/*chemistry/metabolism/*ultrastructure ; Models, Biological ; Models, Molecular ; Multienzyme Complexes/chemistry/ultrastructure ; Nucleic Acid Denaturation ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/metabolism ; Replication Origin ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2015-07-07
    Beschreibung: Abnormal accumulation of triglycerides in the liver, caused in part by increased de novo lipogenesis, results in non-alcoholic fatty liver disease and insulin resistance. Sterol regulatory element-binding protein 1 (SREBP1), an important transcriptional regulator of lipogenesis, is synthesized as an inactive precursor that binds to the endoplasmic reticulum (ER). In response to insulin signalling, SREBP1 is transported from the ER to the Golgi in a COPII-dependent manner, processed by proteases in the Golgi, and then shuttled to the nucleus to induce lipogenic gene expression; however, the mechanisms underlying enhanced SREBP1 activity in insulin-resistant obesity and diabetes remain unclear. Here we show in mice that CREB regulated transcription coactivator 2 (CRTC2) functions as a mediator of mTOR signalling to modulate COPII-dependent SREBP1 processing. CRTC2 competes with Sec23A, a subunit of the COPII complex, to interact with Sec31A, another COPII subunit, thus disrupting SREBP1 transport. During feeding, mTOR phosphorylates CRTC2 and attenuates its inhibitory effect on COPII-dependent SREBP1 maturation. As hepatic overexpression of an mTOR-defective CRTC2 mutant in obese mice improved the lipogenic program and insulin sensitivity, these results demonstrate how the transcriptional coactivator CRTC2 regulates mTOR-mediated lipid homeostasis in the fed state and in obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Jinbo -- Li, Erwei -- Chen, Liqun -- Zhang, Yuanyuan -- Wei, Fangchao -- Liu, Jieyuan -- Deng, Haiteng -- Wang, Yiguo -- England -- Nature. 2015 Aug 13;524(7564):243-6. doi: 10.1038/nature14557. Epub 2015 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26147081" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding, Competitive ; COP-Coated Vesicles/chemistry/metabolism ; Homeostasis ; Insulin Resistance ; *Lipid Metabolism ; Lipogenesis ; Liver/*metabolism ; Male ; Mice ; Mice, Obese ; Obesity/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Protein Transport ; Signal Transduction ; Sterol Regulatory Element Binding Protein 1/*metabolism ; TOR Serine-Threonine Kinases/metabolism ; Transcription Factors/deficiency/genetics/*metabolism ; Vesicular Transport Proteins/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2015-04-10
    Beschreibung: The main organelles of the secretory and endocytic pathways--the endoplasmic reticulum (ER) and endosomes, respectively--are connected through contact sites whose numbers increase as endosomes mature. One function of such sites is to enable dephosphorylation of the cytosolic tails of endosomal signalling receptors by an ER-associated phosphatase, whereas others serve to negatively control the association of endosomes with the minus-end-directed microtubule motor dynein or mediate endosome fission. Cholesterol transfer and Ca(2+) exchange have been proposed as additional functions of such sites. However, the compositions, activities and regulations of ER-endosome contact sites remain incompletely understood. Here we show in human and rat cell lines that protrudin, an ER protein that promotes protrusion and neurite outgrowth, forms contact sites with late endosomes (LEs) via coincident detection of the small GTPase RAB7 and phosphatidylinositol 3-phosphate (PtdIns(3)P). These contact sites mediate transfer of the microtubule motor kinesin 1 from protrudin to the motor adaptor FYCO1 on LEs. Repeated LE-ER contacts promote microtubule-dependent translocation of LEs to the cell periphery and subsequent synaptotagmin-VII-dependent fusion with the plasma membrane. Such fusion induces outgrowth of protrusions and neurites, which requires the abilities of protrudin and FYCO1 to interact with LEs and kinesin 1. Thus, protrudin-containing ER-LE contact sites are platforms for kinesin-1 loading onto LEs, and kinesin-1-mediated translocation of LEs to the plasma membrane, fuelled by repeated ER contacts, promotes protrusion and neurite outgrowth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raiborg, Camilla -- Wenzel, Eva M -- Pedersen, Nina M -- Olsvik, Hallvard -- Schink, Kay O -- Schultz, Sebastian W -- Vietri, Marina -- Nisi, Veronica -- Bucci, Cecilia -- Brech, Andreas -- Johansen, Terje -- Stenmark, Harald -- England -- Nature. 2015 Apr 9;520(7546):234-8. doi: 10.1038/nature14359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway [2] Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway. ; Institute of Medical Biology, University of Tromso - The Arctic University of Norway, N-9037 Tromso, Norway. ; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855459" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding Sites ; Biological Transport ; Cell Line ; Cell Membrane/metabolism ; DNA-Binding Proteins/metabolism ; Endoplasmic Reticulum/*metabolism ; Endosomes/*metabolism ; HeLa Cells ; Humans ; Kinesin/metabolism ; Microtubules/metabolism ; Neurites/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Rats ; Synaptotagmins/metabolism ; Transcription Factors/metabolism ; Vesicular Transport Proteins/metabolism ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2015-08-19
    Beschreibung: Dysfunction of the intramembrane protease gamma-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human gamma-secretase at 3.4 A resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of gamma-secretase function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Xiao-chen -- Yan, Chuangye -- Yang, Guanghui -- Lu, Peilong -- Ma, Dan -- Sun, Linfeng -- Zhou, Rui -- Scheres, Sjors H W -- Shi, Yigong -- MC_UP_A025_101/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 10;525(7568):212-7. doi: 10.1038/nature14892. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280335" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Alzheimer Disease/genetics ; Amyloid Precursor Protein ; Secretases/*chemistry/genetics/metabolism/*ultrastructure ; Binding Sites ; *Cryoelectron Microscopy ; Humans ; Membrane Glycoproteins/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Mutation ; Presenilin-1/*chemistry/genetics/*ultrastructure ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2015-08-08
    Beschreibung: micro-Opioid receptors (microORs) are G-protein-coupled receptors that are activated by a structurally diverse spectrum of natural and synthetic agonists including endogenous endorphin peptides, morphine and methadone. The recent structures of the muOR in inactive and agonist-induced active states (Huang et al., ref. 2) provide snapshots of the receptor at the beginning and end of a signalling event, but little is known about the dynamic sequence of events that span these two states. Here we use solution-state NMR to examine the process of muOR activation using a purified receptor (mouse sequence) preparation in an amphiphile membrane-like environment. We obtain spectra of the muOR in the absence of ligand, and in the presence of the high-affinity agonist BU72 alone, or with BU72 and a G protein mimetic nanobody. Our results show that conformational changes in transmembrane segments 5 and 6 (TM5 and TM6), which are required for the full engagement of a G protein, are almost completely dependent on the presence of both the agonist and the G protein mimetic nanobody, revealing a weak allosteric coupling between the agonist-binding pocket and the G-protein-coupling interface (TM5 and TM6), similar to that observed for the beta2-adrenergic receptor. Unexpectedly, in the presence of agonist alone, we find larger spectral changes involving intracellular loop 1 and helix 8 compared to changes in TM5 and TM6. These results suggest that one or both of these domains may play a role in the initial interaction with the G protein, and that TM5 and TM6 are only engaged later in the process of complex formation. The initial interactions between the G protein and intracellular loop 1 and/or helix 8 may be involved in G-protein coupling specificity, as has been suggested for other family A G-protein-coupled receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sounier, Remy -- Mas, Camille -- Steyaert, Jan -- Laeremans, Toon -- Manglik, Aashish -- Huang, Weijiao -- Kobilka, Brian K -- Demene, Helene -- Granier, Sebastien -- DA036246/DA/NIDA NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):375-8. doi: 10.1038/nature14680. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054- University of Montpellier, 29 rue de Navacelles, 34090 Montpellier Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245377" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Allosteric Regulation ; Animals ; Binding Sites ; Heterotrimeric GTP-Binding Proteins/metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Morphinans/chemistry/metabolism/pharmacology ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation/drug effects ; Pyrroles/chemistry/metabolism/pharmacology ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/metabolism/pharmacology ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2015-06-23
    Beschreibung: Stearoyl-CoA desaturase (SCD) is conserved in all eukaryotes and introduces the first double bond into saturated fatty acyl-CoAs. Because the monounsaturated products of SCD are key precursors of membrane phospholipids, cholesterol esters and triglycerides, SCD is pivotal in fatty acid metabolism. Humans have two SCD homologues (SCD1 and SCD5), while mice have four (SCD1-SCD4). SCD1-deficient mice do not become obese or diabetic when fed a high-fat diet because of improved lipid metabolic profiles and insulin sensitivity. Thus, SCD1 is a pharmacological target in the treatment of obesity, diabetes and other metabolic diseases. SCD1 is an integral membrane protein located in the endoplasmic reticulum, and catalyses the formation of a cis-double bond between the ninth and tenth carbons of stearoyl- or palmitoyl-CoA. The reaction requires molecular oxygen, which is activated by a di-iron centre, and cytochrome b5, which regenerates the di-iron centre. To understand better the structural basis of these characteristics of SCD function, here we crystallize and solve the structure of mouse SCD1 bound to stearoyl-CoA at 2.6 A resolution. The structure shows a novel fold comprising four transmembrane helices capped by a cytosolic domain, and a plausible pathway for lateral substrate access and product egress. The acyl chain of the bound stearoyl-CoA is enclosed in a tunnel buried in the cytosolic domain, and the geometry of the tunnel and the conformation of the bound acyl chain provide a structural basis for the regioselectivity and stereospecificity of the desaturation reaction. The dimetal centre is coordinated by a unique spacial arrangement of nine conserved histidine residues that implies a potentially novel mechanism for oxygen activation. The structure also illustrates a possible route for electron transfer from cytochrome b5 to the di-iron centre.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Yonghong -- McCoy, Jason G -- Levin, Elena J -- Sobrado, Pablo -- Rajashankar, Kanagalaghatta R -- Fox, Brian G -- Zhou, Ming -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41GM103403/GM/NIGMS NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 GM098878/GM/NIGMS NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01DK088057/DK/NIDDK NIH HHS/ -- R01GM050853/GM/NIGMS NIH HHS/ -- R01GM098878/GM/NIGMS NIH HHS/ -- R01HL086392/HL/NHLBI NIH HHS/ -- U54 GM094584/GM/NIGMS NIH HHS/ -- U54GM094584/GM/NIGMS NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 13;524(7564):252-6. doi: 10.1038/nature14549. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ; NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098370" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Acyl Coenzyme A/chemistry/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cytochromes b5/chemistry/metabolism ; Electron Transport ; Histidine/chemistry/metabolism ; Iron/metabolism ; Mice ; Models, Molecular ; Oxygen/metabolism ; Protein Structure, Tertiary ; Static Electricity ; Stearoyl-CoA Desaturase/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2015-12-10
    Beschreibung: Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn's disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertz, Ingrid E -- Newton, Kim -- Seshasayee, Dhaya -- Kusam, Saritha -- Lam, Cynthia -- Zhang, Juan -- Popovych, Nataliya -- Helgason, Elizabeth -- Schoeffler, Allyn -- Jeet, Surinder -- Ramamoorthi, Nandhini -- Kategaya, Lorna -- Newman, Robert J -- Horikawa, Keisuke -- Dugger, Debra -- Sandoval, Wendy -- Mukund, Susmith -- Zindal, Anuradha -- Martin, Flavius -- Quan, Clifford -- Tom, Jeffrey -- Fairbrother, Wayne J -- Townsend, Michael -- Warming, Soren -- DeVoss, Jason -- Liu, Jinfeng -- Dueber, Erin -- Caplazi, Patrick -- Lee, Wyne P -- Goodnow, Christopher C -- Balazs, Mercedesz -- Yu, Kebing -- Kolumam, Ganesh -- Dixit, Vishva M -- England -- Nature. 2015 Dec 17;528(7582):370-5. doi: 10.1038/nature16165. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Discovery Oncology, Genentech, South San Francisco, California 94080, USA. ; Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA. ; Physiological Chemistry, Genentech, South San Francisco, California 94080, USA. ; Immunology, Genentech, South San Francisco, California 94080, USA. ; Molecular Biology, Genentech, South San Francisco, California 94080, USA. ; Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Protein Chemistry, Genentech, South San Francisco, California 94080, USA. ; Structural Biology, Genentech, South San Francisco, California 94080, USA. ; Bioinformatics, Genentech, South San Francisco, California 94080, USA. ; Pathology, Genentech, South San Francisco, California 94080, USA. ; Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Sydney, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649818" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Cell Death ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Female ; Inflammation/genetics/*metabolism/pathology ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Lysine/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Phosphorylation ; Polyubiquitin/chemistry/metabolism ; Protein Binding ; Protein Kinases/metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism ; Ubiquitin/*chemistry/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2015-10-06
    Beschreibung: Na(+)-activated K(+) channels are members of the Slo family of large conductance K(+) channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels fulfil a number of biological roles and have intriguing biophysical properties, including conductance levels that are ten times those of most other K(+) channels and gating sensitivity to intracellular Na(+). Here we present the structure of a complete Na(+)-activated K(+) channel, chicken Slo2.2, in the Na(+)-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 angstroms. The channel is composed of a large cytoplasmic gating ring, in which resides the Na(+)-binding site and a transmembrane domain that closely resembles voltage-gated K(+) channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure reveals features that can explain the unusually high conductance of Slo channels and how contraction of the cytoplasmic gating ring closes the pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hite, Richard K -- Yuan, Peng -- Li, Zongli -- Hsuing, Yichun -- Walz, Thomas -- MacKinnon, Roderick -- GM43949/GM/NIGMS NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):198-203. doi: 10.1038/nature14958. Epub 2015 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26436452" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding Sites ; *Chickens ; *Cryoelectron Microscopy ; Cytoplasm/metabolism ; Electric Conductivity ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Potassium Channels/chemistry/metabolism/*ultrastructure ; Protein Structure, Tertiary ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2015-11-03
    Beschreibung: Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins alpha6beta4 and alpha6beta1 were associated with lung metastasis, while exosomal integrin alphavbeta5 was linked to liver metastasis. Targeting the integrins alpha6beta4 and alphavbeta5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoshino, Ayuko -- Costa-Silva, Bruno -- Shen, Tang-Long -- Rodrigues, Goncalo -- Hashimoto, Ayako -- Tesic Mark, Milica -- Molina, Henrik -- Kohsaka, Shinji -- Di Giannatale, Angela -- Ceder, Sophia -- Singh, Swarnima -- Williams, Caitlin -- Soplop, Nadine -- Uryu, Kunihiro -- Pharmer, Lindsay -- King, Tari -- Bojmar, Linda -- Davies, Alexander E -- Ararso, Yonathan -- Zhang, Tuo -- Zhang, Haiying -- Hernandez, Jonathan -- Weiss, Joshua M -- Dumont-Cole, Vanessa D -- Kramer, Kimberly -- Wexler, Leonard H -- Narendran, Aru -- Schwartz, Gary K -- Healey, John H -- Sandstrom, Per -- Labori, Knut Jorgen -- Kure, Elin H -- Grandgenett, Paul M -- Hollingsworth, Michael A -- de Sousa, Maria -- Kaur, Sukhwinder -- Jain, Maneesh -- Mallya, Kavita -- Batra, Surinder K -- Jarnagin, William R -- Brady, Mary S -- Fodstad, Oystein -- Muller, Volkmar -- Pantel, Klaus -- Minn, Andy J -- Bissell, Mina J -- Garcia, Benjamin A -- Kang, Yibin -- Rajasekhar, Vinagolu K -- Ghajar, Cyrus M -- Matei, Irina -- Peinado, Hector -- Bromberg, Jacqueline -- Lyden, David -- R01 CA169416/CA/NCI NIH HHS/ -- R01-CA169416/CA/NCI NIH HHS/ -- U01 CA169538/CA/NCI NIH HHS/ -- U01-CA169538/CA/NCI NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):329-35. doi: 10.1038/nature15756. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA. ; Department of Plant Pathology and Microbiology and Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan. ; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal. ; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan. ; Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Oncology and Pathology, Karolinska Institutet, 17176 Stockholm, Sweden. ; Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA. ; Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA. ; Department of Surgery, County Council of Ostergotland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58185 Linkoping, Sweden. ; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York 10021, USA. ; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta T3B 6A8, Canada. ; Division of Hematology/Oncology, Columbia University School of Medicine, New York, New York 10032, USA. ; Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Nydalen, Oslo 0424, Norway. ; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Nydalen, Oslo 0424, Norway. ; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA. ; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA. ; Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo 0424, Norway. ; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo 0318, Norway. ; Department of Gynecology, University Medical Center, Martinistrasse 52, 20246 Hamburg, Germany. ; Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. ; Department of Radiation Oncology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. ; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA. ; Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524530" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Biomarkers/metabolism ; Brain/cytology/*metabolism ; Cell Line, Tumor ; Endothelial Cells/cytology/metabolism ; Epithelial Cells/cytology/metabolism ; Exosomes/*metabolism ; Female ; Fibroblasts/cytology/metabolism ; Genes, src ; Humans ; Integrin alpha6beta1/metabolism ; Integrin alpha6beta4/antagonists & inhibitors/metabolism ; Integrin beta Chains/metabolism ; Integrin beta4/metabolism ; Integrins/antagonists & inhibitors/*metabolism ; Kupffer Cells/cytology/metabolism ; Liver/cytology/*metabolism ; Lung/cytology/*metabolism ; Mice ; Mice, Inbred C57BL ; Neoplasm Metastasis/*pathology/*prevention & control ; Organ Specificity ; Phosphorylation ; Receptors, Vitronectin/antagonists & inhibitors/metabolism ; S100 Proteins/genetics ; *Tropism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2015-11-13
    Beschreibung: Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655447/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655447/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabinovich, Shiran -- Adler, Lital -- Yizhak, Keren -- Sarver, Alona -- Silberman, Alon -- Agron, Shani -- Stettner, Noa -- Sun, Qin -- Brandis, Alexander -- Helbling, Daniel -- Korman, Stanley -- Itzkovitz, Shalev -- Dimmock, David -- Ulitsky, Igor -- Nagamani, Sandesh C S -- Ruppin, Eytan -- Erez, Ayelet -- 1 U54 HD083092/HD/NICHD NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):379-83. doi: 10.1038/nature15529. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel. ; The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. ; Biological Services, Weizmann Institute of Science, Rehovot 69978, Israel. ; Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, Wisconsin 53226, USA. ; Genetic and Metabolic Center, Hadassah Medical Center, Jerusalem 91120, Israel. ; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 69978, Israel. ; Texas Children's Hospital, Houston, Texas 77030, USA. ; The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. ; Center for Bioinformatics and Computational Biology &Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560030" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Argininosuccinate Synthase/*deficiency/metabolism ; Aspartate Carbamoyltransferase/metabolism ; Aspartic Acid/*metabolism ; Calcium-Binding Proteins/antagonists & inhibitors/metabolism ; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Citrullinemia/metabolism ; Cytosol/metabolism ; Dihydroorotase/metabolism ; Down-Regulation ; Enzyme Activation ; Humans ; Male ; Mice ; Mice, SCID ; Neoplasms/enzymology/*metabolism/pathology ; Organic Anion Transporters/antagonists & inhibitors/metabolism ; Phosphorylation ; Pyrimidines/*biosynthesis ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2015-10-28
    Beschreibung: Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 A, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hengrung, Narin -- El Omari, Kamel -- Serna Martin, Itziar -- Vreede, Frank T -- Cusack, Stephen -- Rambo, Robert P -- Vonrhein, Clemens -- Bricogne, Gerard -- Stuart, David I -- Grimes, Jonathan M -- Fodor, Ervin -- 075491/Z/04/Wellcome Trust/United Kingdom -- 092931/Z/10/Z/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- G1100138/Medical Research Council/United Kingdom -- MR/K000241/1/Medical Research Council/United Kingdom -- England -- Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK. ; European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK. ; Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503046" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Apoenzymes/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endonucleases/chemistry/metabolism ; Enzyme Activation ; Influenzavirus C/*enzymology ; Models, Molecular ; Peptide Chain Initiation, Translational ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Caps/metabolism ; RNA Replicase/*chemistry/metabolism ; RNA, Viral/biosynthesis/metabolism ; Ribonucleoproteins/chemistry
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2015-03-25
    Beschreibung: Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376618/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376618/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spitale, Robert C -- Flynn, Ryan A -- Zhang, Qiangfeng Cliff -- Crisalli, Pete -- Lee, Byron -- Jung, Jong-Wha -- Kuchelmeister, Hannes Y -- Batista, Pedro J -- Torre, Eduardo A -- Kool, Eric T -- Chang, Howard Y -- F30 CA189514/CA/NCI NIH HHS/ -- F30CA189514/CA/NCI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50HG007735/HG/NHGRI NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- T32AR007422/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 26;519(7544):486-90. doi: 10.1038/nature14263. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Chemistry, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799993" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Acylation ; Adenosine/analogs & derivatives ; Animals ; Binding Sites ; Cell Survival ; Click Chemistry ; Computational Biology ; Embryonic Stem Cells/cytology/metabolism ; *Gene Expression Regulation/genetics ; Genome/genetics ; Mice ; Models, Molecular ; *Nucleic Acid Conformation ; Protein Biosynthesis/genetics ; RNA/*chemistry/classification/*genetics/metabolism ; RNA-Binding Proteins/metabolism ; Regulatory Sequences, Ribonucleic Acid/genetics ; Ribosomes/metabolism ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2015-11-03
    Beschreibung: Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Forster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sternberg, Samuel H -- LaFrance, Benjamin -- Kaplan, Matias -- Doudna, Jennifer A -- T32GM007232/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 5;527(7576):110-3. doi: 10.1038/nature15544. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA. ; Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524520" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Allosteric Regulation ; Bacterial Proteins/chemistry/metabolism ; Base Pairing ; Binding Sites ; CRISPR-Associated Proteins/*chemistry/*metabolism ; *CRISPR-Cas Systems ; Catalytic Domain ; DNA/chemistry/*metabolism ; DNA Breaks, Double-Stranded ; *DNA Cleavage ; Endonucleases/chemistry/*metabolism ; Fluorescence Resonance Energy Transfer ; *Genetic Engineering ; Models, Molecular ; RNA, Guide/chemistry/metabolism ; Streptococcus pyogenes
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2015-08-08
    Beschreibung: Activation of the mu-opioid receptor (muOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for muOR activation, here we report a 2.1 A X-ray crystal structure of the murine muOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the muOR binding pocket are subtle and differ from those observed for agonist-bound structures of the beta2-adrenergic receptor (beta2AR) and the M2 muscarinic receptor. Comparison with active beta2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the muOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Weijiao -- Manglik, Aashish -- Venkatakrishnan, A J -- Laeremans, Toon -- Feinberg, Evan N -- Sanborn, Adrian L -- Kato, Hideaki E -- Livingston, Kathryn E -- Thorsen, Thor S -- Kling, Ralf C -- Granier, Sebastien -- Gmeiner, Peter -- Husbands, Stephen M -- Traynor, John R -- Weis, William I -- Steyaert, Jan -- Dror, Ron O -- Kobilka, Brian K -- R01GM083118/GM/NIGMS NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- R37DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA. ; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA. ; Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany. ; Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. ; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245379" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Allosteric Regulation ; Animals ; Binding Sites ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Morphinans/chemistry/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Pyrroles/chemistry/metabolism/pharmacology ; Receptor, Muscarinic M2/chemistry ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/agonists/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2015-06-18
    Beschreibung: During development, cells interpret complex and often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues, which include a family of secreted peptides called epidermal patterning factors (EPFs). How these signalling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report in Arabidopsis that Stomagen (also called EPF-LIKE9) peptide, which promotes stomatal development, requires ERECTA (ER)-family receptor kinases and interferes with the inhibition of stomatal development by the EPIDERMAL PATTERNING FACTOR 2 (EPF2)-ER module. Both EPF2 and Stomagen directly bind to ER and its co-receptor TOO MANY MOUTHS. Stomagen peptide competitively replaced EPF2 binding to ER. Furthermore, application of EPF2, but not Stomagen, elicited rapid phosphorylation of downstream signalling components in vivo. Our findings demonstrate how a plant receptor agonist and antagonist define inhibitory and inductive cues to fine-tune tissue patterning on the plant epidermis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jin Suk -- Hnilova, Marketa -- Maes, Michal -- Lin, Ya-Chen Lisa -- Putarjunan, Aarthi -- Han, Soon-Ki -- Avila, Julian -- Torii, Keiko U -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 25;522(7557):439-43. doi: 10.1038/nature14561. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA [2] Department of Biology, University of Washington, Seattle, Washington 98195, USA. ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA. ; Department of Biology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083750" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; *Binding, Competitive ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Hypocotyl/metabolism ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Phosphorylation ; Plant Stomata/*growth & development/*metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; Seedlings/enzymology/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2015-04-10
    Beschreibung: Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 A resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanabe, Hiroaki -- Fujii, Yoshifumi -- Okada-Iwabu, Miki -- Iwabu, Masato -- Nakamura, Yoshihiro -- Hosaka, Toshiaki -- Motoyama, Kanna -- Ikeda, Mariko -- Wakiyama, Motoaki -- Terada, Takaho -- Ohsawa, Noboru -- Hato, Masakatsu -- Ogasawara, Satoshi -- Hino, Tomoya -- Murata, Takeshi -- Iwata, So -- Hirata, Kunio -- Kawano, Yoshiaki -- Yamamoto, Masaki -- Kimura-Someya, Tomomi -- Shirouzu, Mikako -- Yamauchi, Toshimasa -- Kadowaki, Takashi -- Yokoyama, Shigeyuki -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- 089809/Wellcome Trust/United Kingdom -- BB/G02325/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Apr 16;520(7547):312-6. doi: 10.1038/nature14301. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [4] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage, Chiba 263-8522, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK [5] Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK [6] RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855295" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Histidine/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, Adiponectin/*chemistry/metabolism ; Structure-Activity Relationship ; Zinc/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2015-06-18
    Beschreibung: The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex and interphase early mitotic inhibitor 1 (Emi1) ensures the correct order and timing of distinct cell-cycle transitions. Here we use cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of future experiments to investigate APC/C functions in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608048/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608048/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Leifu -- Zhang, Ziguo -- Yang, Jing -- McLaughlin, Stephen H -- Barford, David -- A8022/Cancer Research UK/United Kingdom -- MC_UP_1201/6/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jun 25;522(7557):450-4. doi: 10.1038/nature14471. Epub 2015 Jun 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083744" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Anaphase-Promoting Complex-Cyclosome/chemistry/*metabolism/*ultrastructure ; Apc1 Subunit, Anaphase-Promoting ; Complex-Cyclosome/chemistry/metabolism/ultrastructure ; Apc10 Subunit, Anaphase-Promoting ; Complex-Cyclosome/chemistry/metabolism/ultrastructure ; Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry/metabolism ; Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry/metabolism ; Apc8 Subunit, Anaphase-Promoting ; Complex-Cyclosome/chemistry/metabolism/ultrastructure ; Cadherins/chemistry/metabolism/ultrastructure ; Catalytic Domain ; Cell Cycle Proteins/chemistry/metabolism/ultrastructure ; Cryoelectron Microscopy ; Cytoskeletal Proteins/chemistry/metabolism ; F-Box Proteins/chemistry/metabolism/ultrastructure ; Humans ; Lysine/metabolism ; Models, Molecular ; Phosphorylation ; Protein Binding ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin/chemistry/metabolism/ultrastructure ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism/ultrastructure ; *Ubiquitination
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2015-07-15
    Beschreibung: The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal-recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy. PINK1 is stabilized on the outside of depolarized mitochondria and phosphorylates polyubiquitin as well as the PARKIN ubiquitin-like (Ubl) domain. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in patients with AR-JP. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilization of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens up new avenues to identify small-molecule PARKIN activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wauer, Tobias -- Simicek, Michal -- Schubert, Alexander -- Komander, David -- U105192732/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26161729" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding Sites/genetics ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Models, Molecular ; Mutation/genetics ; Parkinsonian Disorders/genetics ; Pediculus/*chemistry ; Phosphates/metabolism ; Phosphoproteins/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinases/metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2015-08-13
    Beschreibung: Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome editing to knockout five autophagy receptors in HeLa cells, here we show that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy. PINK1 recruits NDP52 and optineurin, but not p62, to mitochondria to activate mitophagy directly, independently of parkin. Once recruited to mitochondria, NDP52 and optineurin recruit the autophagy factors ULK1, DFCP1 and WIPI1 to focal spots proximal to mitochondria, revealing a function for these autophagy receptors upstream of LC3. This supports a new model in which PINK1-generated phospho-ubiquitin serves as the autophagy signal on mitochondria, and parkin then acts to amplify this signal. This work also suggests direct and broader roles for ubiquitin phosphorylation in other autophagy pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazarou, Michael -- Sliter, Danielle A -- Kane, Lesley A -- Sarraf, Shireen A -- Wang, Chunxin -- Burman, Jonathon L -- Sideris, Dionisia P -- Fogel, Adam I -- Youle, Richard J -- Intramural NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):309-14. doi: 10.1038/nature14893. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266977" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Autophagy/*physiology ; Carrier Proteins/metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins/metabolism ; Microtubule-Associated Proteins/metabolism ; Mitochondria/metabolism ; Mitochondrial Degradation/*physiology ; Mitochondrial Proteins/metabolism ; Models, Biological ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Transcription Factor TFIIIA/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2015-07-15
    Beschreibung: Epistasis-the non-additive interactions between different genetic loci-constrains evolutionary pathways, blocking some and permitting others. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeast. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analysing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorrells, Trevor R -- Booth, Lauren N -- Tuch, Brian B -- Johnson, Alexander D -- R01 GM037049/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 16;523(7560):361-5. doi: 10.1038/nature14613. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry &Biophysics, Department of Microbiology &Immunology, University of California, San Francisco, California 94158, USA [2] Tetrad Graduate Program, University of California, San Francisco, California 94158, USA. ; 1] Department of Biochemistry &Biophysics, Department of Microbiology &Immunology, University of California, San Francisco, California 94158, USA [2] Biological and Medical Informatics Graduate Program, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153861" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Base Sequence ; Binding Sites ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; Enhancer Elements, Genetic/genetics ; Epistasis, Genetic ; *Evolution, Molecular ; Gene Expression Regulation, Fungal/drug effects/*genetics ; Gene Regulatory Networks/drug effects/*genetics ; Genes, Fungal/genetics ; Kluyveromyces/drug effects/genetics/metabolism ; Peptides/metabolism/pharmacology ; Pheromones/metabolism/pharmacology ; Promoter Regions, Genetic/genetics ; Saccharomyces cerevisiae/drug effects/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2015-01-28
    Beschreibung: The origin of mutations is central to understanding evolution and of key relevance to health. Variation occurs non-randomly across the genome, and mechanisms for this remain to be defined. Here we report that the 5' ends of Okazaki fragments have significantly increased levels of nucleotide substitution, indicating a replicative origin for such mutations. Using a novel method, emRiboSeq, we map the genome-wide contribution of polymerases, and show that despite Okazaki fragment processing, DNA synthesized by error-prone polymerase-alpha (Pol-alpha) is retained in vivo, comprising approximately 1.5% of the mature genome. We propose that DNA-binding proteins that rapidly re-associate post-replication act as partial barriers to Pol-delta-mediated displacement of Pol-alpha-synthesized DNA, resulting in incorporation of such Pol-alpha tracts and increased mutation rates at specific sites. We observe a mutational cost to chromatin and regulatory protein binding, resulting in mutation hotspots at regulatory elements, with signatures of this process detectable in both yeast and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374164/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374164/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reijns, Martin A M -- Kemp, Harriet -- Ding, James -- de Proce, Sophie Marion -- Jackson, Andrew P -- Taylor, Martin S -- MC_PC_U127580972/Medical Research Council/United Kingdom -- MC_PC_U127597124/Medical Research Council/United Kingdom -- MC_U127597124/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Feb 26;518(7540):502-6. doi: 10.1038/nature14183. Epub 2015 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical and Developmental Genetics, MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Biomedical Systems Analysis, MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25624100" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; Chromatin/chemistry/metabolism ; Conserved Sequence/genetics ; DNA/*biosynthesis/*genetics ; DNA Polymerase I/metabolism ; DNA Polymerase III/metabolism ; DNA Replication/*genetics ; DNA-Binding Proteins/metabolism ; Evolution, Molecular ; Genome, Human/*genetics ; Humans ; Models, Biological ; Mutagenesis/genetics ; Mutation/*genetics ; Protein Binding ; Saccharomyces cerevisiae/genetics ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2015-07-28
    Beschreibung: Tissue morphogenesis is orchestrated by cell shape changes. Forces required to power these changes are generated by non-muscle myosin II (MyoII) motor proteins pulling filamentous actin (F-actin). Actomyosin networks undergo cycles of assembly and disassembly (pulses) to cause cell deformations alternating with steps of stabilization to result in irreversible shape changes. Although this ratchet-like behaviour operates in a variety of contexts, the underlying mechanisms remain unclear. Here we investigate the role of MyoII regulation through the conserved Rho1-Rok pathway during Drosophila melanogaster germband extension. This morphogenetic process is powered by cell intercalation, which involves the shrinkage of junctions in the dorsal-ventral axis (vertical junctions) followed by junction extension in the anterior-posterior axis. While polarized flows of medial-apical MyoII pulses deform vertical junctions, MyoII enrichment on these junctions (planar polarity) stabilizes them. We identify two critical properties of MyoII dynamics that underlie stability and pulsatility: exchange kinetics governed by phosphorylation-dephosphorylation cycles of the MyoII regulatory light chain; and advection due to contraction of the motors on F-actin networks. Spatial control over MyoII exchange kinetics establishes two stable regimes of high and low dissociation rates, resulting in MyoII planar polarity. Pulsatility emerges at intermediate dissociation rates, enabling convergent advection of MyoII and its upstream regulators Rho1 GTP, Rok and MyoII phosphatase. Notably, pulsatility is not an outcome of an upstream Rho1 pacemaker. Rather, it is a self-organized system that involves positive and negative biomechanical feedback between MyoII advection and dissociation rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Munjal, Akankshi -- Philippe, Jean-Marc -- Munro, Edwin -- Lecuit, Thomas -- England -- Nature. 2015 Aug 20;524(7565):351-5. doi: 10.1038/nature14603. Epub 2015 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aix Marseille Universite, CNRS, IBDM UMR7288, 13009 Marseille, France. ; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26214737" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Actins/metabolism ; Actomyosin/*metabolism ; Animals ; Cell Polarity ; *Cell Shape ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/*cytology/*embryology/metabolism ; Female ; Kinetics ; Male ; *Morphogenesis ; Myosin Light Chains/metabolism ; Myosin Type II/metabolism ; Myosin-Light-Chain Phosphatase/metabolism ; Phosphorylation ; rho GTP-Binding Proteins/metabolism ; rho-Associated Kinases/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2015-07-07
    Beschreibung: G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are approximately 800 human GPCRs and 16 different Galpha genes, this raises the question of whether a universal allosteric mechanism governs Galpha activation. Here we show that different GPCRs interact with and activate Galpha proteins through a highly conserved mechanism. Comparison of Galpha with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Galpha system diversified rapidly, while conserving the allosteric activation mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flock, Tilman -- Ravarani, Charles N J -- Sun, Dawei -- Venkatakrishnan, A J -- Kayikci, Melis -- Tate, Christopher G -- Veprintsev, Dmitry B -- Babu, M Madan -- MC_U105185859/Medical Research Council/United Kingdom -- MC_U105197215/Medical Research Council/United Kingdom -- England -- Nature. 2015 Aug 13;524(7564):173-9. doi: 10.1038/nature14663. Epub 2015 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland [2] Department of Biology, ETH Zurich, 8039 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26147082" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): *Allosteric Regulation ; Animals ; Binding Sites ; Computational Biology ; Conserved Sequence ; Enzyme Activation ; *Evolution, Molecular ; GTP-Binding Protein alpha Subunits/chemistry/genetics/*metabolism ; Genetic Engineering ; Guanosine Diphosphate/metabolism ; Humans ; Models, Molecular ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; ras Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2015-05-15
    Beschreibung: The tumour microenvironment may contribute to tumorigenesis owing to mechanical forces such as fibrotic stiffness or mechanical pressure caused by the expansion of hyper-proliferative cells. Here we explore the contribution of the mechanical pressure exerted by tumour growth onto non-tumorous adjacent epithelium. In the early stage of mouse colon tumour development in the Notch(+)Apc(+/1638N) mouse model, we observed mechanistic pressure stress in the non-tumorous epithelial cells caused by hyper-proliferative adjacent crypts overexpressing active Notch, which is associated with increased Ret and beta-catenin signalling. We thus developed a method that allows the delivery of a defined mechanical pressure in vivo, by subcutaneously inserting a magnet close to the mouse colon. The implanted magnet generated a magnetic force on ultra-magnetic liposomes, stabilized in the mesenchymal cells of the connective tissue surrounding colonic crypts after intravenous injection. The magnetically induced pressure quantitatively mimicked the endogenous early tumour growth stress in the order of 1,200 Pa, without affecting tissue stiffness, as monitored by ultrasound strain imaging and shear wave elastography. The exertion of pressure mimicking that of tumour growth led to rapid Ret activation and downstream phosphorylation of beta-catenin on Tyr654, imparing its interaction with the E-cadherin in adherens junctions, and which was followed by beta-catenin nuclear translocation after 15 days. As a consequence, increased expression of beta-catenin-target genes was observed at 1 month, together with crypt enlargement accompanying the formation of early tumorous aberrant crypt foci. Mechanical activation of the tumorigenic beta-catenin pathway suggests unexplored modes of tumour propagation based on mechanical signalling pathways in healthy epithelial cells surrounding the tumour, which may contribute to tumour heterogeneity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez-Sanchez, Maria Elena -- Barbier, Sandrine -- Whitehead, Joanne -- Bealle, Gaelle -- Michel, Aude -- Latorre-Ossa, Heldmuth -- Rey, Colette -- Fouassier, Laura -- Claperon, Audrey -- Brulle, Laura -- Girard, Elodie -- Servant, Nicolas -- Rio-Frio, Thomas -- Marie, Helene -- Lesieur, Sylviane -- Housset, Chantal -- Gennisson, Jean-Luc -- Tanter, Mickael -- Menager, Christine -- Fre, Silvia -- Robine, Sylvie -- Farge, Emmanuel -- England -- Nature. 2015 Jul 2;523(7558):92-5. doi: 10.1038/nature14329. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie, Centre de Recherche, PSL Research University, CNRS UMR 168, Physicochimie Curie Mechanics and Genetics of Embryonic and Tumour Development, INSERM, Fondation Pierre-Gilles de Gennes, F-75005 Paris, France. ; UPMC, Sorbonne Universites, Laboratoire PHENIX Physico-chimie des Electrolytes et Nanosystemes Interfaciaux, CNRS UMR 8234, F-75005 Paris, France. ; Langevin Institut, Waves and Images ESPCI ParisTech, PSL Research University, CNRS UMR7587, Inserm U979. F-75005 Paris, France. ; Sorbonne Universites, UPMC and INSERM, UMR-S 938, CDR Saint-Antoine, F-75012 Paris, France. ; CNRS UMR3666/INSERM U1143, Endocytic Trafficking and Therapeutic Delivery, Institut Curie, Centre de Recherche, F-75005 Paris, France. ; Bioinformatic platform, U900, Institut Curie, MINES ParisTech, F-75005 Paris, France. ; Next-generation sequencing platform, Institut Curie, F-75005 Paris, France. ; CNRS UMR 8612, Laboratoire Physico-Chimie des Systemes Polyphases, Institut Galien Paris-Sud, LabEx LERMIT, Faculte de Pharmacie, Universite Paris-Sud, 92 296 Chatenay-Malabry, France. ; CNRS UMR 3215/INSERM U934, Unite de Genetique et Biologie du Developpement, Notch Signaling in Stem Cells and Tumors, Institut Curie, Centre de Recherche, F-75005 Paris, France. ; CNRS UMR144, Compartimentation et dynamique cellulaires, Morphogenesis and Cell Signalling Institut Curie, Centre de Recherche, F-75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970250" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Active Transport, Cell Nucleus ; Animals ; Carcinogenesis/*pathology ; Colonic Neoplasms/*physiopathology ; Epithelial Cells/cytology/pathology ; Female ; Gene Expression Regulation, Neoplastic ; Magnets ; Male ; Metal Nanoparticles ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; *Pressure ; Proto-Oncogene Proteins c-ret/metabolism ; Receptors, Notch/genetics/metabolism ; Signal Transduction ; *Tumor Microenvironment ; beta Catenin/*genetics/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2015-04-08
    Beschreibung: Regulation of protein synthesis is fundamental for all aspects of eukaryotic biology by controlling development, homeostasis and stress responses. The 13-subunit, 800-kilodalton eukaryotic initiation factor 3 (eIF3) organizes initiation factor and ribosome interactions required for productive translation. However, current understanding of eIF3 function does not explain genetic evidence correlating eIF3 deregulation with tissue-specific cancers and developmental defects. Here we report the genome-wide discovery of human transcripts that interact with eIF3 using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). eIF3 binds to a highly specific program of messenger RNAs involved in cell growth control processes, including cell cycling, differentiation and apoptosis, via the mRNA 5' untranslated region. Surprisingly, functional analysis of the interaction between eIF3 and two mRNAs encoding the cell proliferation regulators c-JUN and BTG1 reveals that eIF3 uses different modes of RNA stem-loop binding to exert either translational activation or repression. Our findings illuminate a new role for eIF3 in governing a specialized repertoire of gene expression and suggest that binding of eIF3 to specific mRNAs could be targeted to control carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603833/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603833/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Amy S Y -- Kranzusch, Philip J -- Cate, Jamie H D -- P50 GM102706/GM/NIGMS NIH HHS/ -- S10 RR027303/RR/NCRR NIH HHS/ -- S10 RR029668/RR/NCRR NIH HHS/ -- S10RR025622/RR/NCRR NIH HHS/ -- S10RR027303/RR/NCRR NIH HHS/ -- S10RR029668/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 4;522(7554):111-4. doi: 10.1038/nature14267. Epub 2015 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular &Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; 1] Department of Molecular &Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute (HHMI), University of California, Berkeley, Berkeley, California 94720, USA. ; 1] Department of Molecular &Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA [4] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25849773" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): 5' Untranslated Regions/genetics ; Apoptosis ; Binding Sites ; Cell Differentiation ; Cell Line ; Cell Proliferation/genetics ; Cross-Linking Reagents ; *Down-Regulation ; Eukaryotic Initiation Factor-3/chemistry/*metabolism ; Humans ; Immunoprecipitation ; Neoplasm Proteins/metabolism ; Neoplasms/metabolism/pathology ; Organ Specificity ; *Peptide Chain Initiation, Translational ; Phenotype ; Proto-Oncogene Proteins c-jun/metabolism ; RNA, Messenger/*genetics/*metabolism ; Reproducibility of Results ; Ribonucleosides ; Ribosomes/metabolism ; Substrate Specificity ; Transcriptome
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2015-09-04
    Beschreibung: Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mou, Yun -- Yu, Jiun-Yann -- Wannier, Timothy M -- Guo, Chin-Lin -- Mayo, Stephen L -- England -- Nature. 2015 Sep 10;525(7568):230-3. doi: 10.1038/nature14874. Epub 2015 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26331548" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; *Computer Simulation ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry ; *Drug Design ; Homeodomain Proteins/chemistry/genetics/metabolism ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; Models, Molecular ; Nanotechnology ; Nanowires/*chemistry ; Protein Multimerization ; Transcription Factors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2015-04-11
    Beschreibung: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2015-01-03
    Beschreibung: Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zickermann, Volker -- Wirth, Christophe -- Nasiri, Hamid -- Siegmund, Karin -- Schwalbe, Harald -- Hunte, Carola -- Brandt, Ulrich -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl. ; Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. ; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany. ; Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. ; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany. ; Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl. ; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554780" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/ultrastructure ; Mitochondria/*enzymology ; Mitochondrial Membranes/*enzymology ; Protein Structure, Secondary ; Protons ; Ubiquinone/chemistry ; Yarrowia/enzymology
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2015-07-04
    Beschreibung: Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray crystallography to show that Lar from Lactobacillus plantarum possesses an organometallic nickel-containing prosthetic group. A nicotinic acid mononucleotide derivative is tethered to Lys(184) and forms a tridentate pincer complex that coordinates nickel through one metal-carbon and two metal-sulfur bonds, with His(200) as another ligand. Although similar complexes have been previously synthesized, there was no prior evidence for the existence of pincer cofactors in enzymes. The wide distribution of the accessory proteins without Lar suggests that it may play a role in other enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desguin, Benoit -- Zhang, Tuo -- Soumillion, Patrice -- Hols, Pascal -- Hu, Jian -- Hausinger, Robert P -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):66-9. doi: 10.1126/science.aab2272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Institute of Life Sciences, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. hujian1@msu.edu hausinge@msu.edu. ; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. hujian1@msu.edu hausinge@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138974" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Bacterial Proteins/*chemistry/genetics ; Binding Sites ; Carbon/chemistry ; Catalysis ; Crystallography, X-Ray ; Histidine/chemistry ; Holoenzymes/chemistry ; Lactic Acid/*biosynthesis/chemistry ; Lactobacillus plantarum/*enzymology/genetics ; Ligands ; Lysine/chemistry ; Metalloproteins/*chemistry/genetics ; Niacin/*chemistry ; Nickel/*chemistry ; Nicotinamide Mononucleotide/analogs & derivatives/chemistry ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Racemases and Epimerases/*chemistry/genetics ; Spectrometry, Mass, Electrospray Ionization ; Sulfur
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2015-03-15
    Beschreibung: TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Yin Yao -- Pike, Ashley C W -- Mackenzie, Alexandra -- McClenaghan, Conor -- Aryal, Prafulla -- Dong, Liang -- Quigley, Andrew -- Grieben, Mariana -- Goubin, Solenne -- Mukhopadhyay, Shubhashish -- Ruda, Gian Filippo -- Clausen, Michael V -- Cao, Lishuang -- Brennan, Paul E -- Burgess-Brown, Nicola A -- Sansom, Mark S P -- Tucker, Stephen J -- Carpenter, Elisabeth P -- 084655/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1256-9. doi: 10.1126/science.1261512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK. ; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766236" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Arachidonic Acid/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Fluoxetine/analogs & derivatives/chemistry/metabolism/pharmacology ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2015-01-31
    Beschreibung: The mechanistic basis of eukaryotic circadian oscillators in model systems as diverse as Neurospora, Drosophila, and mammalian cells is thought to be a transcription-and-translation-based negative feedback loop, wherein progressive and controlled phosphorylation of one or more negative elements ultimately elicits their own proteasome-mediated degradation, thereby releasing negative feedback and determining circadian period length. The Neurospora crassa circadian negative element FREQUENCY (FRQ) exemplifies such proteins; it is progressively phosphorylated at more than 100 sites, and strains bearing alleles of frq with anomalous phosphorylation display abnormal stability of FRQ that is well correlated with altered periods or apparent arrhythmicity. Unexpectedly, we unveiled normal circadian oscillations that reflect the allelic state of frq but that persist in the absence of typical degradation of FRQ. This manifest uncoupling of negative element turnover from circadian period length determination is not consistent with the consensus eukaryotic circadian model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrondo, Luis F -- Olivares-Yanez, Consuelo -- Baker, Christopher L -- Loros, Jennifer J -- Dunlap, Jay C -- P01 GM68087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R01 GM083336/GM/NIGMS NIH HHS/ -- R01 GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):1257277. doi: 10.1126/science.1257277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635104" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adenine/analogs & derivatives/pharmacology ; Alleles ; *Circadian Clocks ; *Circadian Rhythm ; Feedback, Physiological ; Fungal Proteins/biosynthesis/*genetics/*metabolism ; Half-Life ; Neurospora crassa/*physiology ; Phosphorylation ; Proteasome Endopeptidase Complex/metabolism ; Protein Kinase Inhibitors/pharmacology ; Protein Stability ; Proteolysis ; Signal Transduction
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2015-06-13
    Beschreibung: Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiruma, Yoshitaka -- Sacristan, Carlos -- Pachis, Spyridon T -- Adamopoulos, Athanassios -- Kuijt, Timo -- Ubbink, Marcellus -- von Castelmur, Eleonore -- Perrakis, Anastassis -- Kops, Geert J P L -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1264-7. doi: 10.1126/science.aaa4055. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068855" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Anaphase ; Binding, Competitive ; Calcium-Binding Proteins/genetics/metabolism ; *Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; HeLa Cells ; Humans ; Kinetochores/*metabolism ; Microfilament Proteins/genetics/metabolism ; Microtubules/*metabolism ; Nuclear Proteins/chemistry/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Spindle Apparatus/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2015-10-17
    Beschreibung: Transcriptional enhancers direct precise on-off patterns of gene expression during development. To explore the basis for this precision, we conducted a high-throughput analysis of the Otx-a enhancer, which mediates expression in the neural plate of Ciona embryos in response to fibroblast growth factor (FGF) signaling and a localized GATA determinant. We provide evidence that enhancer specificity depends on submaximal recognition motifs having reduced binding affinities ("suboptimization"). Native GATA and ETS (FGF) binding sites contain imperfect matches to consensus motifs. Perfect matches mediate robust but ectopic patterns of gene expression. The native sites are not arranged at optimal intervals, and subtle changes in their spacing alter enhancer activity. Multiple tiers of enhancer suboptimization produce specific, but weak, patterns of expression, and we suggest that clusters of weak enhancers, including certain "superenhancers," circumvent this trade-off in specificity and activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farley, Emma K -- Olson, Katrina M -- Zhang, Wei -- Brandt, Alexander J -- Rokhsar, Daniel S -- Levine, Michael S -- GM46638/GM/NIGMS NIH HHS/ -- NS076542/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):325-8. doi: 10.1126/science.aac6948.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. msl2@princeton.edu ekfarley@princeton.edu. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. ; Department of Medicine, University of California, San Diego, CA 92093-0688, USA. ; Department of Chemistry, University of California, Berkeley, CA 94720-3200, USA. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472909" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Base Sequence ; Binding Sites ; Ciona intestinalis/genetics/*growth & development ; Consensus Sequence ; Enhancer Elements, Genetic/genetics/*physiology ; Fas-Associated Death Domain Protein/metabolism ; Fibroblast Growth Factors/*metabolism ; GATA Transcription Factors/*metabolism ; *Gene Expression Regulation, Developmental ; Molecular Sequence Data ; Organ Specificity/genetics/physiology ; Otx Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2015-06-27
    Beschreibung: Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yong-Gang -- Cohen, Susan E -- Phong, Connie -- Myers, William K -- Kim, Yong-Ick -- Tseng, Roger -- Lin, Jenny -- Zhang, Li -- Boyd, Joseph S -- Lee, Yvonne -- Kang, Shannon -- Lee, David -- Li, Sheng -- Britt, R David -- Rust, Michael J -- Golden, Susan S -- LiWang, Andy -- AI081982/AI/NIAID NIH HHS/ -- AI101436/AI/NIAID NIH HHS/ -- GM062419/GM/NIGMS NIH HHS/ -- GM100116/GM/NIGMS NIH HHS/ -- GM107521/GM/NIGMS NIH HHS/ -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM100116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Sciences, University of California, Merced, CA 95343, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry, University of California, Davis, CA 95616, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. ; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA. Health Sciences Research Institute, University of California, Merced, CA 95343, USA. aliwang@ucmerced.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113641" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Bacterial Proteins/*chemistry/genetics/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Folding ; Protein Structure, Secondary ; Synechococcus/metabolism/*physiology
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2015-01-31
    Beschreibung: The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)--〉Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fei -- Liu, Jian -- Zheng, Yi -- Garavito, R Michael -- Ferguson-Miller, Shelagh -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- GM094625/GM/NIGMS NIH HHS/ -- GM26916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):555-8. doi: 10.1126/science.1260590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. fergus20@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635101" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cholesterol/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Polymorphism, Single Nucleotide ; Porphyrins/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protoporphyrins/metabolism ; Receptors, GABA/chemistry/genetics ; Rhodobacter sphaeroides/*chemistry
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2015-02-01
    Beschreibung: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2015-10-31
    Beschreibung: Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigova, Alla A -- Abraham, Brian J -- Ji, Xiong -- Molinie, Benoit -- Hannett, Nancy M -- Guo, Yang Eric -- Jangi, Mohini -- Giallourakis, Cosmas C -- Sharp, Phillip A -- Young, Richard A -- HG002668/HG/NHGRI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):978-81. doi: 10.1126/science.aad3346. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02140, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516199" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Base Sequence ; Binding Sites ; Cell Line ; Consensus Sequence ; DNA/metabolism ; Embryonic Stem Cells/metabolism ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; Mice ; *Promoter Regions, Genetic ; RNA, Messenger/*metabolism ; *Transcription, Genetic ; YY1 Transcription Factor/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2015-02-14
    Beschreibung: Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arner, Erik -- Daub, Carsten O -- Vitting-Seerup, Kristoffer -- Andersson, Robin -- Lilje, Berit -- Drablos, Finn -- Lennartsson, Andreas -- Ronnerblad, Michelle -- Hrydziuszko, Olga -- Vitezic, Morana -- Freeman, Tom C -- Alhendi, Ahmad M N -- Arner, Peter -- Axton, Richard -- Baillie, J Kenneth -- Beckhouse, Anthony -- Bodega, Beatrice -- Briggs, James -- Brombacher, Frank -- Davis, Margaret -- Detmar, Michael -- Ehrlund, Anna -- Endoh, Mitsuhiro -- Eslami, Afsaneh -- Fagiolini, Michela -- Fairbairn, Lynsey -- Faulkner, Geoffrey J -- Ferrai, Carmelo -- Fisher, Malcolm E -- Forrester, Lesley -- Goldowitz, Daniel -- Guler, Reto -- Ha, Thomas -- Hara, Mitsuko -- Herlyn, Meenhard -- Ikawa, Tomokatsu -- Kai, Chieko -- Kawamoto, Hiroshi -- Khachigian, Levon M -- Klinken, S Peter -- Kojima, Soichi -- Koseki, Haruhiko -- Klein, Sarah -- Mejhert, Niklas -- Miyaguchi, Ken -- Mizuno, Yosuke -- Morimoto, Mitsuru -- Morris, Kelly J -- Mummery, Christine -- Nakachi, Yutaka -- Ogishima, Soichi -- Okada-Hatakeyama, Mariko -- Okazaki, Yasushi -- Orlando, Valerio -- Ovchinnikov, Dmitry -- Passier, Robert -- Patrikakis, Margaret -- Pombo, Ana -- Qin, Xian-Yang -- Roy, Sugata -- Sato, Hiroki -- Savvi, Suzana -- Saxena, Alka -- Schwegmann, Anita -- Sugiyama, Daisuke -- Swoboda, Rolf -- Tanaka, Hiroshi -- Tomoiu, Andru -- Winteringham, Louise N -- Wolvetang, Ernst -- Yanagi-Mizuochi, Chiyo -- Yoneda, Misako -- Zabierowski, Susan -- Zhang, Peter -- Abugessaisa, Imad -- Bertin, Nicolas -- Diehl, Alexander D -- Fukuda, Shiro -- Furuno, Masaaki -- Harshbarger, Jayson -- Hasegawa, Akira -- Hori, Fumi -- Ishikawa-Kato, Sachi -- Ishizu, Yuri -- Itoh, Masayoshi -- Kawashima, Tsugumi -- Kojima, Miki -- Kondo, Naoto -- Lizio, Marina -- Meehan, Terrence F -- Mungall, Christopher J -- Murata, Mitsuyoshi -- Nishiyori-Sueki, Hiromi -- Sahin, Serkan -- Nagao-Sato, Sayaka -- Severin, Jessica -- de Hoon, Michiel J L -- Kawai, Jun -- Kasukawa, Takeya -- Lassmann, Timo -- Suzuki, Harukazu -- Kawaji, Hideya -- Summers, Kim M -- Wells, Christine -- FANTOM Consortium -- Hume, David A -- Forrest, Alistair R R -- Sandelin, Albin -- Carninci, Piero -- Hayashizaki, Yoshihide -- P30 CA010815/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1010-4. doi: 10.1126/science.1259418. Epub 2015 Feb 12.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678556" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Binding Sites ; Cattle ; Cell Differentiation/*genetics ; Dogs ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; Mice ; RNA, Messenger/genetics/metabolism ; Rats ; Stem Cells/*cytology/metabolism ; Transcription Factors/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2015-05-16
    Beschreibung: The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodruff, Jeffrey B -- Wueseke, Oliver -- Viscardi, Valeria -- Mahamid, Julia -- Ochoa, Stacy D -- Bunkenborg, Jakob -- Widlund, Per O -- Pozniakovsky, Andrei -- Zanin, Esther -- Bahmanyar, Shirin -- Zinke, Andrea -- Hong, Sun Hae -- Decker, Marcus -- Baumeister, Wolfgang -- Andersen, Jens S -- Oegema, Karen -- Hyman, Anthony A -- R01-GM074207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):808-12. doi: 10.1126/science.aaa3923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany. ; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre 2650, Denmark. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. hyman@mpi-cbg.de koegema@ucsd.edu. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. hyman@mpi-cbg.de koegema@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977552" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Centrosome/*metabolism/ultrasonography ; Metabolic Networks and Pathways ; Phosphorylation ; Polymerization ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2015-04-04
    Beschreibung: Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greber, Basil J -- Bieri, Philipp -- Leibundgut, Marc -- Leitner, Alexander -- Aebersold, Ruedi -- Boehringer, Daniel -- Ban, Nenad -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):303-8. doi: 10.1126/science.aaa3872. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ban@mol.biol.ethz.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837512" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Aminoglycosides/chemistry ; Animals ; Anti-Bacterial Agents/chemistry ; Binding Sites ; GTP-Binding Proteins/chemistry ; Humans ; Mitochondria/*ultrastructure ; Mitochondrial Membranes/ultrastructure ; Mitochondrial Proteins/*biosynthesis/genetics ; Mutation ; Nucleic Acid Conformation ; Protein Structure, Secondary ; RNA, Messenger/chemistry ; RNA, Ribosomal, 16S/chemistry ; RNA, Transfer/chemistry ; Ribosomal Proteins/chemistry ; Ribosome Subunits, Large/chemistry/physiology/*ultrastructure ; Swine
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2015-12-15
    Beschreibung: Release of promoter-proximal paused RNA polymerase II (Pol II) during early elongation is a critical step in transcriptional regulation in metazoan cells. Paused Pol II release is thought to require the kinase activity of cyclin-dependent kinase 9 (CDK9) for the phosphorylation of DRB sensitivity-inducing factor, negative elongation factor, and C-terminal domain (CTD) serine-2 of Pol II. We found that Pol II-associated factor 1 (PAF1) is a critical regulator of paused Pol II release, that positive transcription elongation factor b (P-TEFb) directly regulates the initial recruitment of PAF1 complex (PAF1C) to genes, and that the subsequent recruitment of CDK12 is dependent on PAF1C. These findings reveal cooperativity among P-TEFb, PAF1C, and CDK12 in pausing release and Pol II CTD phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Ming -- Yang, Wenjing -- Ni, Ting -- Tang, Zhanyun -- Nakadai, Tomoyoshi -- Zhu, Jun -- Roeder, Robert G -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1383-6. doi: 10.1126/science.aad2338.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA. ; Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA. ; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China. ; Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA. roeder@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659056" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Cell Line, Tumor ; Cyclin-Dependent Kinase 9/metabolism ; Cyclin-Dependent Kinases/metabolism ; *Gene Expression Regulation ; Humans ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Positive Transcriptional Elongation Factor B/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/genetics/*metabolism ; *Transcription Elongation, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2015-01-31
    Beschreibung: Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 A resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Youzhong -- Kalathur, Ravi C -- Liu, Qun -- Kloss, Brian -- Bruni, Renato -- Ginter, Christopher -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):551-5. doi: 10.1126/science.aaa1534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universitat Munchen, Garching 85748, Germany. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. wayne@xtl.cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635100" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Bacillus cereus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry ; Protoporphyrins/metabolism ; Reactive Oxygen Species/metabolism ; Tryptophan/analysis
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2015-11-21
    Beschreibung: Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saxton, Robert A -- Knockenhauer, Kevin E -- Wolfson, Rachel L -- Chantranupong, Lynne -- Pacold, Michael E -- Wang, Tim -- Schwartz, Thomas U -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA189333/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- F31 CA189437/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01CA103866/CA/NCI NIH HHS/ -- S10 RR029205/RR/NCRR NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):53-8. doi: 10.1126/science.aad2087. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586190" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Leucine/*chemistry/metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/genetics/*metabolism ; Mutation ; Nuclear Proteins/*chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; TOR Serine-Threonine Kinases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2015-12-23
    Beschreibung: Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here we present the crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca(2+). Ca(2+) binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain, the conformational changes of which are coupled to the pair of inner helices from the second 6-TM domains. Luminal Ca(2+) or Ba(2+) can modulate voltage activation by stabilizing the second voltage-sensing domain in the resting state and shift voltage activation towards more positive potentials. Our Ba(2+)-bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Jiangtao -- Zeng, Weizhong -- Chen, Qingfeng -- Lee, Changkeun -- Chen, Liping -- Yang, Yi -- Cang, Chunlei -- Ren, Dejian -- Jiang, Youxing -- GM079179/GM/NIGMS NIH HHS/ -- NS055293/NS/NINDS NIH HHS/ -- NS074257/NS/NINDS NIH HHS/ -- R01 GM079179/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 10;531(7593):196-201. doi: 10.1038/nature16446. Epub 2015 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA. ; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA. ; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26689363" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Arabidopsis/*chemistry ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Barium/metabolism ; Binding Sites ; Calcium/metabolism/pharmacology ; Calcium Channels/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; EF Hand Motifs ; Electric Conductivity ; HEK293 Cells ; Humans ; Ion Channel Gating/drug effects ; Ion Transport/drug effects ; Membrane Potentials/drug effects ; Models, Molecular ; Molecular Sequence Data ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2015-07-23
    Beschreibung: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a approximately 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Yanyong -- Zhou, X Edward -- Gao, Xiang -- He, Yuanzheng -- Liu, Wei -- Ishchenko, Andrii -- Barty, Anton -- White, Thomas A -- Yefanov, Oleksandr -- Han, Gye Won -- Xu, Qingping -- de Waal, Parker W -- Ke, Jiyuan -- Tan, M H Eileen -- Zhang, Chenghai -- Moeller, Arne -- West, Graham M -- Pascal, Bruce D -- Van Eps, Ned -- Caro, Lydia N -- Vishnivetskiy, Sergey A -- Lee, Regina J -- Suino-Powell, Kelly M -- Gu, Xin -- Pal, Kuntal -- Ma, Jinming -- Zhi, Xiaoyong -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Gati, Cornelius -- Zatsepin, Nadia A -- Wang, Dingjie -- James, Daniel -- Basu, Shibom -- Roy-Chowdhury, Shatabdi -- Conrad, Chelsie E -- Coe, Jesse -- Liu, Haiguang -- Lisova, Stella -- Kupitz, Christopher -- Grotjohann, Ingo -- Fromme, Raimund -- Jiang, Yi -- Tan, Minjia -- Yang, Huaiyu -- Li, Jun -- Wang, Meitian -- Zheng, Zhong -- Li, Dianfan -- Howe, Nicole -- Zhao, Yingming -- Standfuss, Jorg -- Diederichs, Kay -- Dong, Yuhui -- Potter, Clinton S -- Carragher, Bridget -- Caffrey, Martin -- Jiang, Hualiang -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Ernst, Oliver P -- Katritch, Vsevolod -- Gurevich, Vsevolod V -- Griffin, Patrick R -- Hubbell, Wayne L -- Stevens, Raymond C -- Cherezov, Vadim -- Melcher, Karsten -- Xu, H Eric -- DK071662/DK/NIDDK NIH HHS/ -- EY005216/EY/NEI NIH HHS/ -- EY011500/EY/NEI NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM077561/GM/NIGMS NIH HHS/ -- GM095583/GM/NIGMS NIH HHS/ -- GM097463/GM/NIGMS NIH HHS/ -- GM102545/GM/NIGMS NIH HHS/ -- GM103310/GM/NIGMS NIH HHS/ -- GM104212/GM/NIGMS NIH HHS/ -- GM108635/GM/NIGMS NIH HHS/ -- P30EY000331/EY/NEI NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 EY011500/EY/NEI NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM109955/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany. ; Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; The National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, New York 10027, USA. ; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Beijing Computational Science Research Center, Haidian District, Beijing 10084, China. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA. ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ; 1] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA [2] Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA. ; Laboratory of Biomolecular Research at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biology, Universitat Konstanz, 78457 Konstanz, Germany. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; 1] Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany [2] Centre for Ultrafast Imaging, 22761 Hamburg, Germany. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [2] Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200343" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Arrestin/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Humans ; Lasers ; Mice ; Models, Molecular ; Multiprotein Complexes/biosynthesis/chemistry/metabolism ; Protein Binding ; Reproducibility of Results ; Rhodopsin/*chemistry/*metabolism ; Signal Transduction ; X-Rays
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2015-05-15
    Beschreibung: Na(+)/Cl(-)-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine X-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine, a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants d-amphetamine and methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kevin H -- Penmatsa, Aravind -- Gouaux, Eric -- F32 MH093120/MH/NIMH NIH HHS/ -- P50 DA018165/DA/NIDA NIH HHS/ -- P50DA018165/DA/NIDA NIH HHS/ -- R37 MH070039/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 21;521(7552):322-7. doi: 10.1038/nature14431. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Howard Hughes Medical Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970245" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Antidepressive Agents/chemistry/metabolism ; Binding Sites ; Central Nervous System Stimulants/chemistry/*metabolism ; Chlorides/metabolism ; Cocaine/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dextroamphetamine/chemistry/metabolism ; Dopamine/analogs & derivatives/chemistry/metabolism ; Dopamine Plasma Membrane Transport Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*chemistry ; Ligands ; Methamphetamine/chemistry/metabolism ; Models, Molecular ; Molecular Conformation ; Neurotransmitter Agents/chemistry/*metabolism ; Phenethylamines/metabolism ; Protein Stability ; Sodium/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2015-12-25
    Beschreibung: Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavahan, William A -- Drier, Yotam -- Liau, Brian B -- Gillespie, Shawn M -- Venteicher, Andrew S -- Stemmer-Rachamimov, Anat O -- Suva, Mario L -- Bernstein, Bradley E -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700815" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Base Sequence ; Binding Sites ; CRISPR-Cas Systems/genetics ; Cell Cycle Proteins/metabolism ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Chromatin/drug effects/genetics/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; CpG Islands/genetics ; DNA Methylation/drug effects/genetics ; Down-Regulation/drug effects ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/drug effects ; *Gene Expression Regulation, Neoplastic/drug effects ; Glioma/drug therapy/*enzymology/*genetics/pathology ; Glutarates/metabolism ; Humans ; Insulator Elements/drug effects/*genetics ; Isocitrate Dehydrogenase/chemistry/*genetics/metabolism ; Mutation/*genetics ; Oncogenes/*genetics ; Phenotype ; Protein Binding ; Receptor, Platelet-Derived Growth Factor alpha/genetics ; Repressor Proteins/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2015-03-04
    Beschreibung: Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376489/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376489/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kakugawa, Satoshi -- Langton, Paul F -- Zebisch, Matthias -- Howell, Steven A -- Chang, Tao-Hsin -- Liu, Yan -- Feizi, Ten -- Bineva, Ganka -- O'Reilly, Nicola -- Snijders, Ambrosius P -- Jones, E Yvonne -- Vincent, Jean-Paul -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 294523/European Research Council/International -- A10976/Cancer Research UK/United Kingdom -- C375/A10976/Cancer Research UK/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- MC_U117584268/Medical Research Council/United Kingdom -- U117584268/Medical Research Council/United Kingdom -- WT093378MA/Wellcome Trust/United Kingdom -- WT099197MA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Mar 12;519(7542):187-92. doi: 10.1038/nature14259. Epub 2015 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. ; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. ; Glycosciences Laboratory, Imperial College London, Department of Medicine, Du Cane Road, London W12 0NN, UK. ; Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731175" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Acylation ; Animals ; Binding Sites ; Carboxylesterase/chemistry/*metabolism ; Drosophila Proteins/chemistry/*metabolism ; Esterases/chemistry/genetics/*metabolism ; Fatty Acids, Monounsaturated/metabolism ; Glycosylphosphatidylinositols/metabolism ; Glypicans/metabolism ; Humans ; Kinetics ; Ligands ; Mass Spectrometry ; Models, Molecular ; Protein Binding ; Wnt Proteins/*chemistry/*metabolism ; *Wnt Signaling Pathway
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2015-08-08
    Beschreibung: The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1beta) subunits. Here we describe crystal structures for each of mouse HIF-2alpha-ARNT and HIF-1alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2alpha-ARNT and HIF-1alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dalei -- Potluri, Nalini -- Lu, Jingping -- Kim, Youngchang -- Rastinejad, Fraydoon -- England -- Nature. 2015 Aug 20;524(7565):303-8. doi: 10.1038/nature14883. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolic Disease Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245371" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): ARNTL Transcription Factors/chemistry/metabolism ; Animals ; Aryl Hydrocarbon Receptor Nuclear Translocator/*chemistry/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*chemistry/metabolism ; Binding Sites ; CLOCK Proteins/chemistry/metabolism ; Cell Hypoxia/genetics ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/*chemistry/metabolism ; Mice ; Models, Molecular ; Mutation/genetics ; Neoplasms/genetics ; Phosphorylation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Response Elements/genetics
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2015-08-08
    Beschreibung: Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 A resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Alan -- Shao, Sichen -- Murray, Jason -- Hegde, Ramanujan S -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A022_1007/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245381" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Motifs ; Binding Sites ; Codon/chemistry/genetics/metabolism ; Codon, Terminator/*chemistry/genetics/*metabolism ; Cryoelectron Microscopy ; Eukaryota ; Humans ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Nucleotides/chemistry/metabolism ; Peptide Termination Factors/*chemistry/*metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Ribosomal, 18S/genetics ; Ribosomes/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2015-11-03
    Beschreibung: Many peroxy-containing secondary metabolites have been isolated and shown to provide beneficial effects to human health. Yet, the mechanisms of most endoperoxide biosyntheses are not well understood. Although endoperoxides have been suggested as key reaction intermediates in several cases, the only well-characterized endoperoxide biosynthetic enzyme is prostaglandin H synthase, a haem-containing enzyme. Fumitremorgin B endoperoxidase (FtmOx1) from Aspergillus fumigatus is the first reported alpha-ketoglutarate-dependent mononuclear non-haem iron enzyme that can catalyse an endoperoxide formation reaction. To elucidate the mechanistic details for this unique chemical transformation, we report the X-ray crystal structures of FtmOx1 and the binary complexes it forms with either the co-substrate (alpha-ketoglutarate) or the substrate (fumitremorgin B). Uniquely, after alpha-ketoglutarate has bound to the mononuclear iron centre in a bidentate fashion, the remaining open site for oxygen binding and activation is shielded from the substrate or the solvent by a tyrosine residue (Y224). Upon replacing Y224 with alanine or phenylalanine, the FtmOx1 catalysis diverts from endoperoxide formation to the more commonly observed hydroxylation. Subsequent characterizations by a combination of stopped-flow optical absorption spectroscopy and freeze-quench electron paramagnetic resonance spectroscopy support the presence of transient radical species in FtmOx1 catalysis. Our results help to unravel the novel mechanism for this endoperoxide formation reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Wupeng -- Song, Heng -- Song, Fuhang -- Guo, Yisong -- Wu, Cheng-Hsuan -- Sae Her, Ampon -- Pu, Yi -- Wang, Shu -- Naowarojna, Nathchar -- Weitz, Andrew -- Hendrich, Michael P -- Costello, Catherine E -- Zhang, Lixin -- Liu, Pinghua -- Zhang, Yan Jessie -- P41 GM104603/GM/NIGMS NIH HHS/ -- R01 GM077387/GM/NIGMS NIH HHS/ -- R01 GM093903/GM/NIGMS NIH HHS/ -- R01 GM104896/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):539-43. doi: 10.1038/nature15519. Epub 2015 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA. ; Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. ; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. ; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA. ; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524521" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Aspergillus fumigatus/*enzymology ; Binding Sites ; *Biocatalysis ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Heme ; Hydroxylation ; Indoles/metabolism ; Iron/metabolism ; Ketoglutaric Acids/*metabolism ; Oxygen/metabolism ; Prostaglandin Endoperoxides/*biosynthesis ; Tyrosine/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2015-12-18
    Beschreibung: Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G〉A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ulaganathan, Vijay K -- Sperl, Bianca -- Rapp, Ulf R -- Ullrich, Axel -- HL-102923/HL/NHLBI NIH HHS/ -- HL-102924/HL/NHLBI NIH HHS/ -- HL-102925/HL/NHLBI NIH HHS/ -- HL-102926/HL/NHLBI NIH HHS/ -- HL-103010/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):570-4. doi: 10.1038/nature16449. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biochemistry, Department of Molecular Biology, Am Klopferspitz 18, 82152, Martinsried. Germany. ; Max Planck Institute for Heart and Lung Research, Molecular Mechanisms of Lung Cancer, Parkstrasse 1, 61231 Bad Nauheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675719" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Motifs/genetics ; Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Breast Neoplasms/genetics/metabolism ; Cell Line ; Cell Membrane/*metabolism ; Disease Models, Animal ; Disease Progression ; Exons/genetics ; Female ; Gene Knock-In Techniques ; *Germ-Line Mutation ; Humans ; Lung Neoplasms/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Polymorphism, Single Nucleotide/genetics ; Receptor, Fibroblast Growth Factor, Type 4/chemistry/*genetics/*metabolism ; STAT3 Transcription Factor/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2015-07-15
    Beschreibung: Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodrigues, Nelio T L -- Lekomtsev, Sergey -- Jananji, Silvana -- Kriston-Vizi, Janos -- Hickson, Gilles R X -- Baum, Buzz -- BB/K009001/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Aug 27;524(7566):489-92. doi: 10.1038/nature14496. Epub 2015 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK. ; Sainte-Justine Hospital Research Center, Montreal, Quebec H3T 1C5, Canada. ; Department of Pathology and Cell Biology, Universite de Montreal, Montreal, Quebec H3T 1J4, Canada. ; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK. ; CelTisPhyBio Labex, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26168397" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Actins/metabolism ; Anaphase ; Animals ; Cell Polarity ; Centrosome/metabolism ; Chromatin/metabolism ; *Chromosome Segregation ; Cytoskeletal Proteins/metabolism ; Drosophila melanogaster/*cytology/enzymology/genetics/metabolism ; Female ; Humans ; Kinetochores/enzymology/*metabolism ; Male ; Membrane Proteins/metabolism ; Microfilament Proteins/metabolism ; Microtubules/metabolism ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2015-09-30
    Beschreibung: Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coric, Ilija -- Mercado, Brandon Q -- Bill, Eckhard -- Vinyard, David J -- Holland, Patrick L -- GM065313/GM/NIGMS NIH HHS/ -- R01 GM065313/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):96-9. doi: 10.1038/nature15246. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA. ; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mulheim an der Ruhr, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416755" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; Carbon/*chemistry ; Electrons ; Iron/*chemistry ; Ligands ; Molybdoferredoxin/chemistry/metabolism ; Nitrogen/*chemistry ; Nitrogenase/metabolism ; Sulfur/*chemistry
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2015-06-25
    Beschreibung: U4/U6.U5 tri-snRNP is a 1.5-megadalton pre-assembled spliceosomal complex comprising U5 small nuclear RNA (snRNA), extensively base-paired U4/U6 snRNAs and more than 30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a precursor messenger RNA substrate bound to U1 and U2 small nuclear ribonucleoprotein particles (snRNPs), and transforms into a catalytically active spliceosome after extensive compositional and conformational changes triggered by unwinding of the U4 and U6 (U4/U6) snRNAs. Here we use cryo-electron microscopy single-particle reconstruction of Saccharomyces cerevisiae tri-snRNP at 5.9 A resolution to reveal the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3' stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the amino-terminal domain of Prp8 position U5 snRNA to insert its loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, Thi Hoang Duong -- Galej, Wojciech P -- Bai, Xiao-chen -- Savva, Christos G -- Newman, Andrew J -- Scheres, Sjors H W -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jul 2;523(7558):47-52. doi: 10.1038/nature14548. Epub 2015 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26106855" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Binding Sites ; Cryoelectron Microscopy ; *Models, Molecular ; Protein Structure, Quaternary ; RNA Helicases/chemistry/metabolism ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry/metabolism ; Ribonucleoprotein, U5 Small Nuclear/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Spliceosomes/chemistry/*physiology
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2015-02-06
    Beschreibung: The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 A resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plaschka, C -- Lariviere, L -- Wenzeck, L -- Seizl, M -- Hemann, M -- Tegunov, D -- Petrotchenko, E V -- Borchers, C H -- Baumeister, W -- Herzog, F -- Villa, E -- Cramer, P -- England -- Nature. 2015 Feb 19;518(7539):376-80. doi: 10.1038/nature14229. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. ; Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada. ; 1] Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652824" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Allosteric Regulation ; Binding Sites ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism ; Enzyme Activation ; Mediator Complex/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Phosphorylation ; Protein Stability ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Factor TFIIH/chemistry/metabolism ; Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2015-04-10
    Beschreibung: HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caskey, Marina -- Klein, Florian -- Lorenzi, Julio C C -- Seaman, Michael S -- West, Anthony P Jr -- Buckley, Noreen -- Kremer, Gisela -- Nogueira, Lilian -- Braunschweig, Malte -- Scheid, Johannes F -- Horwitz, Joshua A -- Shimeliovich, Irina -- Ben-Avraham, Sivan -- Witmer-Pack, Maggi -- Platten, Martin -- Lehmann, Clara -- Burke, Leah A -- Hawthorne, Thomas -- Gorelick, Robert J -- Walker, Bruce D -- Keler, Tibor -- Gulick, Roy M -- Fatkenheuer, Gerd -- Schlesinger, Sarah J -- Nussenzweig, Michel C -- HHSN261200800001E/PHS HHS/ -- U19AI111825-01/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 25;522(7557):487-91. doi: 10.1038/nature14411. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Division of Biology, California Institute of Technology, Pasadena, California 91125, USA. ; 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] Clinical Trials Center Cologne, ZKS Koln, BMBF 01KN1106, University of Cologne, Cologne, Germany. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany. ; 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Celldex Therapeutics, Inc., Hampton, New Jersey 08827, USA. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Ragon Institute of MGH, MIT and Harvard, Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA. ; Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855300" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adult ; Amino Acid Sequence ; Antibodies, Monoclonal/administration & ; dosage/immunology/pharmacokinetics/therapeutic use ; Antibodies, Neutralizing/administration & dosage/adverse ; effects/*immunology/pharmacology/therapeutic use ; Antigens, CD4/metabolism ; Binding Sites ; Case-Control Studies ; Evolution, Molecular ; Female ; HIV Antibodies/administration & dosage/adverse ; effects/*immunology/pharmacology/therapeutic use ; HIV Envelope Protein gp120/chemistry/immunology ; HIV Infections/immunology/*therapy/virology ; HIV-1/chemistry/drug effects/*immunology ; Humans ; Immunization, Passive/methods ; Male ; Middle Aged ; Molecular Sequence Data ; Time Factors ; Viral Load/drug effects/*immunology ; Viremia/immunology/*therapy/virology ; Young Adult
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 2 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963) 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963) 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963) 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963), S. 147-163 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963) 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963), S. 195-214 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 12 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963), S. 215-231 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 112 (1963), S. 261-278 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963), S. 231-243 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 17 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 2 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963), S. 267-274 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963), S. 275-285 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 1 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963) 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963), S. 287-329 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 22 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 2 Tab.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 113 (1963), S. 345-358 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...