ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-23
    Description: Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 A, reaching 2.9 A resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khatter, Heena -- Myasnikov, Alexander G -- Natchiar, S Kundhavai -- Klaholz, Bruno P -- England -- Nature. 2015 Apr 30;520(7549):640-5. doi: 10.1038/nature14427. Epub 2015 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Sante et de la Recherche Medicale (INSERM) U964, 67404 Illkirch, France [4] Universite de Strasbourg, 67081 Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25901680" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Cryoelectron Microscopy ; Electrons ; Humans ; Models, Molecular ; RNA, Ribosomal/chemistry/metabolism/ultrastructure ; RNA, Transfer/chemistry/metabolism/ultrastructure ; Ribosomal Proteins/chemistry/metabolism/ultrastructure ; Ribosome Subunits/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-28
    Description: Rational development of adenovirus vectors for therapeutic gene transfer is hampered by the lack of accurate structural information. Here, we report the x-ray structure at 3.5 angstrom resolution of the 150-megadalton adenovirus capsid containing nearly 1 million amino acids. We describe interactions between the major capsid protein (hexon) and several accessory molecules that stabilize the capsid. The virus structure also reveals an altered association between the penton base and the trimeric fiber protein, perhaps reflecting an early event in cell entry. The high-resolution structure provides a substantial advance toward understanding the assembly and cell entry mechanisms of a large double-stranded DNA virus and provides new opportunities for improving adenovirus-mediated gene transfer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Vijay S -- Natchiar, S Kundhavai -- Stewart, Phoebe L -- Nemerow, Glen R -- AI042929/AI/NIAID NIH HHS/ -- EY011431/EY/NEI NIH HHS/ -- HL054352/HL/NHLBI NIH HHS/ -- R01 AI070771/AI/NIAID NIH HHS/ -- R01 AI070771-03/AI/NIAID NIH HHS/ -- R01 EY011431/EY/NEI NIH HHS/ -- R01 EY011431-13/EY/NEI NIH HHS/ -- R01 HL054352/HL/NHLBI NIH HHS/ -- R01 HL054352-17/HL/NHLBI NIH HHS/ -- R29 AI042929/AI/NIAID NIH HHS/ -- R29 AI042929-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1071-5. doi: 10.1126/science.1187292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. reddyv@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798318" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/physiology/*ultrastructure ; Capsid/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Crystallography, X-Ray ; Genetic Vectors ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-22
    Print ISSN: 0108-7673
    Electronic ISSN: 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...