ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-05
    Description: At the onset of metazoan cell division the nuclear envelope breaks down to enable capture of chromosomes by the microtubule-containing spindle apparatus. During anaphase, when chromosomes have separated, the nuclear envelope is reassembled around the forming daughter nuclei. How the nuclear envelope is sealed, and how this is coordinated with spindle disassembly, is largely unknown. Here we show that endosomal sorting complex required for transport (ESCRT)-III, previously found to promote membrane constriction and sealing during receptor sorting, virus budding, cytokinesis and plasma membrane repair, is transiently recruited to the reassembling nuclear envelope during late anaphase. ESCRT-III and its regulatory AAA (ATPase associated with diverse cellular activities) ATPase VPS4 are specifically recruited by the ESCRT-III-like protein CHMP7 to sites where the reforming nuclear envelope engulfs spindle microtubules. Subsequent association of another ESCRT-III-like protein, IST1, directly recruits the AAA ATPase spastin to sever microtubules. Disrupting spastin function impairs spindle disassembly and results in extended localization of ESCRT-III at the nuclear envelope. Interference with ESCRT-III functions in anaphase is accompanied by delayed microtubule disassembly, compromised nuclear integrity and the appearance of DNA damage foci in subsequent interphase. We propose that ESCRT-III, VPS4 and spastin cooperate to coordinate nuclear envelope sealing and spindle disassembly at nuclear envelope-microtubule intersection sites during mitotic exit to ensure nuclear integrity and genome safeguarding, with a striking mechanistic parallel to cytokinetic abscission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vietri, Marina -- Schink, Kay O -- Campsteijn, Coen -- Wegner, Catherine Sem -- Schultz, Sebastian W -- Christ, Liliane -- Thoresen, Sigrid B -- Brech, Andreas -- Raiborg, Camilla -- Stenmark, Harald -- England -- Nature. 2015 Jun 11;522(7555):231-5. doi: 10.1038/nature14408. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway [2] Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway. ; 1] Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway [2] Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway [3] Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040712" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Anaphase ; Cell Cycle Checkpoints ; Chromatin/genetics/metabolism ; DNA Damage ; Endosomal Sorting Complexes Required for Transport/*metabolism ; Humans ; *Membrane Fusion ; Microtubules/metabolism ; Nuclear Envelope/*metabolism ; Spindle Apparatus/*metabolism ; Vacuolar Proton-Translocating ATPases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-10
    Description: The main organelles of the secretory and endocytic pathways--the endoplasmic reticulum (ER) and endosomes, respectively--are connected through contact sites whose numbers increase as endosomes mature. One function of such sites is to enable dephosphorylation of the cytosolic tails of endosomal signalling receptors by an ER-associated phosphatase, whereas others serve to negatively control the association of endosomes with the minus-end-directed microtubule motor dynein or mediate endosome fission. Cholesterol transfer and Ca(2+) exchange have been proposed as additional functions of such sites. However, the compositions, activities and regulations of ER-endosome contact sites remain incompletely understood. Here we show in human and rat cell lines that protrudin, an ER protein that promotes protrusion and neurite outgrowth, forms contact sites with late endosomes (LEs) via coincident detection of the small GTPase RAB7 and phosphatidylinositol 3-phosphate (PtdIns(3)P). These contact sites mediate transfer of the microtubule motor kinesin 1 from protrudin to the motor adaptor FYCO1 on LEs. Repeated LE-ER contacts promote microtubule-dependent translocation of LEs to the cell periphery and subsequent synaptotagmin-VII-dependent fusion with the plasma membrane. Such fusion induces outgrowth of protrusions and neurites, which requires the abilities of protrudin and FYCO1 to interact with LEs and kinesin 1. Thus, protrudin-containing ER-LE contact sites are platforms for kinesin-1 loading onto LEs, and kinesin-1-mediated translocation of LEs to the plasma membrane, fuelled by repeated ER contacts, promotes protrusion and neurite outgrowth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raiborg, Camilla -- Wenzel, Eva M -- Pedersen, Nina M -- Olsvik, Hallvard -- Schink, Kay O -- Schultz, Sebastian W -- Vietri, Marina -- Nisi, Veronica -- Bucci, Cecilia -- Brech, Andreas -- Johansen, Terje -- Stenmark, Harald -- England -- Nature. 2015 Apr 9;520(7546):234-8. doi: 10.1038/nature14359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway [2] Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway. ; Institute of Medical Biology, University of Tromso - The Arctic University of Norway, N-9037 Tromso, Norway. ; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855459" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Transport ; Cell Line ; Cell Membrane/metabolism ; DNA-Binding Proteins/metabolism ; Endoplasmic Reticulum/*metabolism ; Endosomes/*metabolism ; HeLa Cells ; Humans ; Kinesin/metabolism ; Microtubules/metabolism ; Neurites/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Rats ; Synaptotagmins/metabolism ; Transcription Factors/metabolism ; Vesicular Transport Proteins/metabolism ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Georgian mathematical journal 1 (1994), S. 229-233 
    ISSN: 1572-9176
    Keywords: 39A12
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We discuss the dynamics of the positive solutions of the delay difference equation in the title for some special values of the parametersA, p, andk, and we pose a conjecture and two open problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...