ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-04
    Description: Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 A. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended alpha-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the alpha-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zalk, Ran -- Clarke, Oliver B -- des Georges, Amedee -- Grassucci, Robert A -- Reiken, Steven -- Mancia, Filippo -- Hendrickson, Wayne A -- Frank, Joachim -- Marks, Andrew R -- P01 HL081172/HL/NHLBI NIH HHS/ -- R01 AR060037/AR/NIAMS NIH HHS/ -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 HL061503/HL/NHLBI NIH HHS/ -- R01 HL083418/HL/NHLBI NIH HHS/ -- R01AR060037/AR/NIAMS NIH HHS/ -- R01GM29169/GM/NIGMS NIH HHS/ -- R01HL061503/HL/NHLBI NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA [3] Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Medicine, Columbia University, New York, New York 10032, USA [3] Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/deficiency/metabolism/pharmacology ; Cell Membrane/metabolism ; Cryoelectron Microscopy ; Cytosol/metabolism ; Ion Channel Gating/drug effects ; Muscle, Skeletal/chemistry ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Tacrolimus Binding Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-08
    Description: During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at approximately 6 A resolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉des Georges, Amedee -- Dhote, Vidya -- Kuhn, Lauriane -- Hellen, Christopher U T -- Pestova, Tatyana V -- Frank, Joachim -- Hashem, Yaser -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM059660/GM/NIGMS NIH HHS/ -- R01 GM29169/GM/NIGMS NIH HHS/ -- R01 GM59660/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 24;525(7570):491-5. doi: 10.1038/nature14891. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA. ; CNRS, Proteomic Platform Strasbourg - Esplanade, Strasbourg 67084, France. ; Department of Biological Sciences, Columbia University, New York, New York 10032, USA. ; CNRS, Architecture et Reactivite de l'ARN, Universite de Strasbourg, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344199" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Codon, Initiator/genetics ; Cryoelectron Microscopy ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; Eukaryotic Initiation Factor-3/*chemistry/*metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; *Peptide Chain Initiation, Translational ; Peptide Initiation Factors/metabolism ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; RNA Helicases/chemistry/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Transfer, Met/metabolism ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism ; Ribosomes/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-05
    Description: Hepatitis C virus (HCV) and classical swine fever virus (CSFV) messenger RNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5'-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound initiator methionyl transfer RNA to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF3 (refs 2, 5-7, 9-12), but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF3 and the HCV IRES revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components. Here we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Remarkably, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S-IRES binary complex, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favouring translation of viral mRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashem, Yaser -- des Georges, Amedee -- Dhote, Vidya -- Langlois, Robert -- Liao, Hstau Y -- Grassucci, Robert A -- Pestova, Tatyana V -- Hellen, Christopher U T -- Frank, Joachim -- R01 AI51340/AI/NIAID NIH HHS/ -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM59660/GM/NIGMS NIH HHS/ -- R01GM29169/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 28;503(7477):539-43. doi: 10.1038/nature12658. Epub 2013 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032, USA [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24185006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Classical swine fever virus/*genetics ; Cryoelectron Microscopy ; Eukaryotic Initiation Factor-3/chemistry/*metabolism/ultrastructure ; Humans ; Models, Molecular ; Protein Biosynthesis ; RNA, Viral/*genetics/*metabolism ; Rabbits ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Ribosome Subunits, Small, Eukaryotic/chemistry/*metabolism/ultrastructure ; Ribosomes/chemistry/*metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-12
    Description: Ribosomes, the protein factories of living cells, translate genetic information carried by messenger RNAs into proteins, and are thus involved in virtually all aspects of cellular development and maintenance. The few available structures of the eukaryotic ribosome reveal that it is more complex than its prokaryotic counterpart, owing mainly to the presence of eukaryote-specific ribosomal proteins and additional ribosomal RNA insertions, called expansion segments. The structures also differ among species, partly in the size and arrangement of these expansion segments. Such differences are extreme in kinetoplastids, unicellular eukaryotic parasites often infectious to humans. Here we present a high-resolution cryo-electron microscopy structure of the ribosome of Trypanosoma brucei, the parasite that is transmitted by the tsetse fly and that causes African sleeping sickness. The atomic model reveals the unique features of this ribosome, characterized mainly by the presence of unusually large expansion segments and ribosomal-protein extensions leading to the formation of four additional inter-subunit bridges. We also find additional rRNA insertions, including one large rRNA domain that is not found in other eukaryotes. Furthermore, the structure reveals the five cleavage sites of the kinetoplastid large ribosomal subunit (LSU) rRNA chain, which is known to be cleaved uniquely into six pieces, and suggests that the cleavage is important for the maintenance of the T. brucei ribosome in the observed structure. We discuss several possible implications of the large rRNA expansion segments for the translation-regulation process. The structure could serve as a basis for future experiments aimed at understanding the functional importance of these kinetoplastid-specific ribosomal features in protein-translation regulation, an essential step towards finding effective and safe kinetoplastid-specific drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659406/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659406/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashem, Yaser -- des Georges, Amedee -- Fu, Jie -- Buss, Sarah N -- Jossinet, Fabrice -- Jobe, Amy -- Zhang, Qin -- Liao, Hstau Y -- Grassucci, Robert A -- Bajaj, Chandrajit -- Westhof, Eric -- Madison-Antenucci, Susan -- Frank, Joachim -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM29169/GM/NIGMS NIH HHS/ -- R01-EB004873/EB/NIBIB NIH HHS/ -- R01-GM074258/GM/NIGMS NIH HHS/ -- T32 GM008798/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Feb 21;494(7437):385-9. doi: 10.1038/nature11872. Epub 2013 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23395961" target="_blank"〉PubMed〈/a〉
    Keywords: *Cryoelectron Microscopy ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Protein Biosynthesis ; RNA, Protozoan/genetics/metabolism ; RNA, Ribosomal/genetics/metabolism ; Ribosomes/chemistry/genetics/*ultrastructure ; Trypanosoma brucei brucei/chemistry/*cytology/genetics/*ultrastructure ; Yeasts/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-13
    Description: Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3’s GTPase activity.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...