ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paulsen, Candice E -- Armache, Jean-Paul -- Gao, Yuan -- Cheng, Yifan -- Julius, David -- England -- Nature. 2015 Sep 24;525(7570):552. doi: 10.1038/nature14871. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200340" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-10
    Description: The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to approximately 4 A resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paulsen, Candice E -- Armache, Jean-Paul -- Gao, Yuan -- Cheng, Yifan -- Julius, David -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01 NS055299/NS/NINDS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R01NS055299/NS/NINDS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):511-7. doi: 10.1038/nature14367. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, California 94158-2517, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA. ; 1] Department of Physiology, University of California, San Francisco, California 94158-2517, USA [2] Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855297" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Analgesics ; Ankyrin Repeat ; Anti-Inflammatory Agents ; Binding Sites ; Calcium Channels/*chemistry/metabolism/*ultrastructure ; *Cryoelectron Microscopy ; Cytosol/metabolism ; Humans ; Models, Molecular ; Nerve Tissue Proteins/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure ; Polyphosphates/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Transient Receptor Potential Channels/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-26
    Description: Expression of the Escherichia coli tryptophanase operon depends on ribosome stalling during translation of the upstream TnaC leader peptide, a process for which interactions between the TnaC nascent chain and the ribosomal exit tunnel are critical. We determined a 5.8 angstrom-resolution cryo-electron microscopy and single-particle reconstruction of a ribosome stalled during translation of the tnaC leader gene. The nascent chain was extended within the exit tunnel, making contacts with ribosomal components at distinct sites. Upon stalling, two conserved residues within the peptidyltransferase center adopted conformations that preclude binding of release factors. We propose a model whereby interactions within the tunnel are relayed to the peptidyltransferase center to inhibit translation. Moreover, we show that nascent chains adopt distinct conformations within the ribosomal exit tunnel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920484/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920484/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seidelt, Birgit -- Innis, C Axel -- Wilson, Daniel N -- Gartmann, Marco -- Armache, Jean-Paul -- Villa, Elizabeth -- Trabuco, Leonardo G -- Becker, Thomas -- Mielke, Thorsten -- Schulten, Klaus -- Steitz, Thomas A -- Beckmann, Roland -- GM022778/GM/NIGMS NIH HHS/ -- P41 RR005969/RR/NCRR NIH HHS/ -- P41 RR005969-19/RR/NCRR NIH HHS/ -- P41-RR05969/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1412-5. doi: 10.1126/science.1177662. Epub 2009 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Center for Integrated Protein Science Munich (CIPSM), Department for Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933110" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism/ultrastructure ; Gene Expression Regulation, Bacterial ; Image Processing, Computer-Assisted ; Models, Biological ; Models, Molecular ; Operon ; Peptidyl Transferases/metabolism ; *Protein Biosynthesis ; Protein Conformation ; RNA-Binding Proteins/chemistry/metabolism/ultrastructure ; Ribosomal Proteins/chemistry/metabolism/ultrastructure ; Ribosomes/*metabolism/ultrastructure ; Tryptophanase/biosynthesis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-07
    Description: The biogenesis of secretory as well as transmembrane proteins requires the activity of the universally conserved protein-conducting channel (PCC), the Sec61 complex (SecY complex in bacteria). In eukaryotic cells the PCC is located in the membrane of the endoplasmic reticulum where it can bind to translating ribosomes for co-translational protein transport. The Sec complex consists of three subunits (Sec61alpha, beta and gamma) and provides an aqueous environment for the translocation of hydrophilic peptides as well as a lateral opening in the Sec61alpha subunit that has been proposed to act as a gate for the membrane partitioning of hydrophobic domains. A plug helix and a so-called pore ring are believed to seal the PCC against ion flow and are proposed to rearrange for accommodation of translocating peptides. Several crystal and cryo-electron microscopy structures revealed different conformations of closed and partially open Sec61 and SecY complexes. However, in none of these samples has the translocation state been unambiguously defined biochemically. Here we present cryo-electron microscopy structures of ribosome-bound Sec61 complexes engaged in translocation or membrane insertion of nascent peptides. Our data show that a hydrophilic peptide can translocate through the Sec complex with an essentially closed lateral gate and an only slightly rearranged central channel. Membrane insertion of a hydrophobic domain seems to occur with the Sec complex opening the proposed lateral gate while rearranging the plug to maintain an ion permeability barrier. Taken together, we provide a structural model for the basic activities of the Sec61 complex as a protein-conducting channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gogala, Marko -- Becker, Thomas -- Beatrix, Birgitta -- Armache, Jean-Paul -- Barrio-Garcia, Clara -- Berninghausen, Otto -- Beckmann, Roland -- England -- Nature. 2014 Feb 6;506(7486):107-10. doi: 10.1038/nature12950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499919" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism/ultrastructure ; Cryoelectron Microscopy ; Dogs ; Hydrophobic and Hydrophilic Interactions ; Membrane Proteins/chemistry/*metabolism/*ultrastructure ; Models, Molecular ; Multiprotein Complexes/chemistry/metabolism/*ultrastructure ; Peptides/chemistry/*metabolism ; *Protein Biosynthesis ; Protein Subunits/*chemistry/metabolism ; Protein Transport ; Ribosomes/chemistry/*metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-24
    Description: Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Thomas -- Franckenberg, Sibylle -- Wickles, Stephan -- Shoemaker, Christopher J -- Anger, Andreas M -- Armache, Jean-Paul -- Sieber, Heidemarie -- Ungewickell, Charlotte -- Berninghausen, Otto -- Daberkow, Ingo -- Karcher, Annette -- Thomm, Michael -- Hopfner, Karl-Peter -- Green, Rachel -- Beckmann, Roland -- U19 AI083025/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;482(7386):501-6. doi: 10.1038/nature10829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. becker@lmb.uni-muenchen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22358840" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/chemistry/metabolism ; Cell Cycle Proteins/chemistry/metabolism ; Cryoelectron Microscopy ; Endoribonucleases/chemistry/metabolism ; *Evolution, Molecular ; Iron-Sulfur Proteins/chemistry/metabolism ; Models, Molecular ; Movement ; Multiprotein Complexes/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Peptide Termination Factors/chemistry/metabolism ; Protein Binding ; Protein Stability ; Protein Structure, Tertiary ; Pyrococcus furiosus/*chemistry/metabolism ; Ribosomes/*chemistry/*metabolism/ultrastructure ; Saccharomyces cerevisiae/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-03
    Description: Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anger, Andreas M -- Armache, Jean-Paul -- Berninghausen, Otto -- Habeck, Michael -- Subklewe, Marion -- Wilson, Daniel N -- Beckmann, Roland -- England -- Nature. 2013 May 2;497(7447):80-5. doi: 10.1038/nature12104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636399" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cryoelectron Microscopy ; DNA-Binding Proteins/chemistry ; Drosophila melanogaster/*chemistry/ultrastructure ; Eukaryotic Cells ; Evolution, Molecular ; Humans ; Models, Molecular ; Molecular Conformation ; Molecular Weight ; Peptide Elongation Factor 2/metabolism ; RNA, Ribosomal/chemistry/metabolism/ultrastructure ; RNA, Transfer/chemistry/metabolism/ultrastructure ; Ribosomal Proteins/chemistry/isolation & purification/metabolism/ultrastructure ; Ribosome Subunits/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-26
    Description: The trimeric Sec61/SecY complex is a protein-conducting channel (PCC) for secretory and membrane proteins. Although Sec complexes can form oligomers, it has been suggested that a single copy may serve as an active PCC. We determined subnanometer-resolution cryo-electron microscopy structures of eukaryotic ribosome-Sec61 complexes. In combination with biochemical data, we found that in both idle and active states, the Sec complex is not oligomeric and interacts mainly via two cytoplasmic loops with the universal ribosomal adaptor site. In the active state, the ribosomal tunnel and a central pore of the monomeric PCC were occupied by the nascent chain, contacting loop 6 of the Sec complex. This provides a structural basis for the activity of a solitary Sec complex in cotranslational protein translocation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920595/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920595/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Thomas -- Bhushan, Shashi -- Jarasch, Alexander -- Armache, Jean-Paul -- Funes, Soledad -- Jossinet, Fabrice -- Gumbart, James -- Mielke, Thorsten -- Berninghausen, Otto -- Schulten, Klaus -- Westhof, Eric -- Gilmore, Reid -- Mandon, Elisabet C -- Beckmann, Roland -- GM35687/GM/NIGMS NIH HHS/ -- P41 RR005969/RR/NCRR NIH HHS/ -- P41 RR005969-19/RR/NCRR NIH HHS/ -- P41-RR05969/RR/NCRR NIH HHS/ -- R01-GM067887/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1369-73. doi: 10.1126/science.1178535. Epub 2009 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center Munich and Center for Integrated Protein Science, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cryoelectron Microscopy ; Dogs ; Image Processing, Computer-Assisted ; Membrane Proteins/*chemistry/*metabolism/ultrastructure ; Models, Molecular ; *Protein Biosynthesis ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; *Protein Transport ; Proteins/chemistry/*metabolism/ultrastructure ; Ribosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 2016-02-04
    Description: Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as ‘movies’ made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired.
    Print ISSN: 0022-0744
    Electronic ISSN: 1477-9986
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...