ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-17
    Description: Acetals are molecular substructures that contain two oxygen-carbon single bonds at the same carbon atom, and are used in cells to construct carbohydrates and numerous other molecules. A distinctive subgroup are spiroacetals, acetals joining two rings, which occur in a broad range of biologically active compounds, including small insect pheromones and more complex macrocycles. Despite numerous methods for the catalytic asymmetric formation of other commonly occurring stereocentres, there are few approaches that exclusively target the chiral acetal centre and none for spiroacetals. Here we report the design and synthesis of confined Bronsted acids based on a C(2)-symmetric imidodiphosphoric acid motif, enabling a catalytic enantioselective spiroacetalization reaction. These rationally constructed Bronsted acids possess an extremely sterically demanding chiral microenvironment, with a single catalytically relevant and geometrically constrained bifunctional active site. Our catalyst design is expected to be of broad utility in catalytic asymmetric reactions involving small and structurally or functionally unbiased substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coric, Ilija -- List, Benjamin -- England -- Nature. 2012 Mar 14;483(7389):315-9. doi: 10.1038/nature10932.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mulheim an der Ruhr, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422266" target="_blank"〉PubMed〈/a〉
    Keywords: Acetals/*chemical synthesis/*chemistry ; Animals ; Biological Products/*chemical synthesis/*chemistry/pharmacology ; Catalysis ; Catalytic Domain ; Female ; Male ; Models, Molecular ; Molecular Conformation ; Phosphoric Acids/*chemistry ; Sex Attractants/chemical synthesis/chemistry/pharmacology ; Stereoisomerism ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-30
    Description: Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coric, Ilija -- Mercado, Brandon Q -- Bill, Eckhard -- Vinyard, David J -- Holland, Patrick L -- GM065313/GM/NIGMS NIH HHS/ -- R01 GM065313/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):96-9. doi: 10.1038/nature15246. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA. ; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mulheim an der Ruhr, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416755" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carbon/*chemistry ; Electrons ; Iron/*chemistry ; Ligands ; Molybdoferredoxin/chemistry/metabolism ; Nitrogen/*chemistry ; Nitrogenase/metabolism ; Sulfur/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-07
    Print ISSN: 0078-0421
    Electronic ISSN: 0078-0421
    Topics: Geosciences
    Published by Schweizerbart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...