ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,124)
  • Rats  (1,668)
  • Binding Sites  (486)
  • American Association for the Advancement of Science (AAAS)  (2,124)
  • Blackwell Publishing Ltd
  • Cell Press
  • 1995-1999  (650)
  • 1985-1989  (517)
  • 1980-1984  (723)
  • 1975-1979  (234)
  • 1940-1944
Collection
  • Articles  (2,124)
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (2,124)
  • Blackwell Publishing Ltd
  • Cell Press
  • Springer  (35)
  • Wiley-Blackwell  (1)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The metabotropic glutamate receptors (mGluRs) are widely distributed in the brain and play important roles in synaptic plasticity. Here it is shown that some types of mGluRs are activated not only by glutamate but also by extracellular Ca2+ (Ca2+o). A single amino acid residue was found to determine the sensitivity of mGluRs to Ca2+o. One of the receptors, mGluR1alpha, but not its point mutant with reduced sensitivity to Ca2+o, caused morphological changes when transfected into mammalian cells. Thus, the sensing of Ca2+o by mGluRs may be important in cells under physiological condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Y -- Miyashita, T -- Murata, Y -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1722-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan. ykubo@tmin.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497291" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/ultrastructure ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; CHO Cells ; Calcium/*metabolism/pharmacology ; Cell Size ; Cricetinae ; Cyclic AMP/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glutamic Acid/metabolism/pharmacology ; Molecular Sequence Data ; Oocytes ; Point Mutation ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Rats ; Receptors, Metabotropic Glutamate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-07-17
    Description: During RNA synthesis in the ternary elongation complex, RNA polymerase enzyme holds nucleic acids in three contiguous sites: the double-stranded DNA-binding site (DBS) ahead of the transcription bubble, the RNA-DNA heteroduplex-binding site (HBS), and the RNA-binding site (RBS) upstream of HBS. Photochemical cross-linking allowed mapping of the DNA and RNA contacts to specific positions on the amino acid sequence. Unexpectedly, the same protein regions were found to participate in both DBS and RBS. Thus, DNA entry and RNA exit occur close together in the RNA polymerase molecule, suggesting that the three sites constitute a single unit. The results explain how RNA in the integrated unit RBS-HBS-DBS may stabilize the ternary complex, whereas a hairpin in RNA result in its dissociation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nudler, E -- Gusarov, I -- Avetissova, E -- Kozlov, M -- Goldfarb, A -- GM49242/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):424-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA. evgeny.nudler@med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665887" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA, Bacterial/chemistry/*metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*genetics/metabolism ; Idoxuridine/metabolism ; Models, Genetic ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes/*metabolism ; Protein Binding ; RNA, Bacterial/chemistry/*metabolism ; Templates, Genetic ; *Transcription, Genetic ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-08-07
    Description: Clathrin-mediated endocytosis involves cycles of assembly and disassembly of clathrin coat components and their accessory proteins. Dephosphorylation of rat brain extract was shown to promote the assembly of dynamin 1, synaptojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. Phosphorylation of dynamin 1 and synaptojanin 1 inhibited their binding to amphiphysin, whereas phosphorylation of amphiphysin inhibited its binding to AP-2 and clathrin. Thus, phosphorylation regulates the association and dissociation cycle of the clathrin-based endocytic machinery, and calcium-dependent dephosphorylation of endocytic proteins could prepare nerve terminals for a burst of endocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slepnev, V I -- Ochoa, G C -- Butler, M H -- Grabs, D -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694653" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Protein Complex beta Subunits ; Adaptor Proteins, Vesicular Transport ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Carbazoles/pharmacology ; Chromatography, Affinity ; Clathrin/*metabolism ; Cyclosporine/pharmacology ; Dimerization ; Dynamin I ; Dynamins ; *Endocytosis ; Enzyme Inhibitors/pharmacology ; GTP Phosphohydrolases/*metabolism ; Indole Alkaloids ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/*metabolism ; Phosphoric Monoester Hydrolases/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-28
    Description: Small organic sensor molecules were prepared that bind and signal the presence of unlabeled tripeptides in a sequence-selective manner. Sequence-selective peptide binding is a difficult problem because small peptides are highly flexible and there are no clear rules for designing peptide-binding molecules as there are for the nucleic acids. The signaling system involved the application of fluorescence energy transfer and provided large, real-time fluorescence increases (300 to 500 percent) upon peptide binding. With it, these sensors were sensitive enough to detect unlabeled cognate peptides both in organic solution and in the solid state at low micromolar concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, C T -- Wagner, H -- Still, W C -- New York, N.Y. -- Science. 1998 Feb 6;279(5352):851-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9452382" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Energy Transfer ; Fluorescence ; Microspheres ; Oligopeptides/*analysis/metabolism ; Peptide Library ; Peptides, Cyclic/*chemical synthesis/chemistry/metabolism ; Polystyrenes ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-14
    Description: Differential actions of acetylcholine on the excitability of two subtypes of interneurons in layer V of the rat visual cortex were examined. Acetylcholine excited low-threshold spike (LTS) cells through nicotinic receptors, whereas it elicited hyperpolarization in fast spiking (FS) cells through muscarinic receptors. Axons of LTS cells were mainly distributed vertically to upper layers, and those of FS cells were primarily confined to layer V. Thus, cortical cholinergic activation may reduce some forms of intralaminar inhibition, promote intracolumnar inhibition, and change the direction of information flow within cortical circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, Z -- Huguenard, J R -- Prince, D A -- NS 06477/NS/NINDS NIH HHS/ -- NS 07280/NS/NINDS NIH HHS/ -- NS 12151/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):985-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703513" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*physiology ; Animals ; Hexamethonium/pharmacology ; In Vitro Techniques ; Interneurons/physiology ; Membrane Potentials ; Muscarinic Antagonists/pharmacology ; Nerve Net/*physiology ; *Neural Inhibition ; Nicotinic Antagonists/pharmacology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, Nicotinic/physiology ; Scopolamine Hydrobromide/pharmacology ; Visual Cortex/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-12-05
    Description: Group I introns possess a single active site that catalyzes the two sequential reactions of self-splicing. An RNA comprising the two domains of the Tetrahymena thermophila group I intron catalytic core retains activity, and the 5.0 angstrom crystal structure of this 247-nucleotide ribozyme is now described. Close packing of the two domains forms a shallow cleft capable of binding the short helix that contains the 5' splice site. The helix that provides the binding site for the guanosine substrate deviates significantly from A-form geometry, providing a tight binding pocket. The binding pockets for both the 5' splice site helix and guanosine are formed and oriented in the absence of these substrates. Thus, this large ribozyme is largely preorganized for catalysis, much like a globular protein enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golden, B L -- Gooding, A R -- Podell, E R -- Cech, T R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):259-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA. bgolden@petunia.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Guanosine/metabolism ; Introns ; Magnesium/metabolism ; Manganese/metabolism ; *Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/metabolism ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena thermophila/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-02-21
    Description: CREB binding protein (CBP) functions as an essential coactivator of transcription factors that are inhibited by the adenovirus early gene product E1A. Transcriptional activation by the signal transducer and activator of transcription-1 (STAT1) protein requires the C/H3 domain in CBP, which is the primary target of E1A inhibition. Here it was found that the C/H3 domain is not required for retinoic acid receptor (RAR) function, nor is it involved in E1A inhibition. Instead, E1A inhibits RAR function by preventing the assembly of CBP-nuclear receptor coactivator complexes, revealing differences in required CBP domains for transcriptional activation by RAR and STAT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurokawa, R -- Kalafus, D -- Ogliastro, M H -- Kioussi, C -- Xu, L -- Torchia, J -- Rosenfeld, M G -- Glass, C K -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445474" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/*metabolism/pharmacology ; Animals ; Binding Sites ; CREB-Binding Protein ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/metabolism ; Histone Acetyltransferases ; Humans ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 3 ; Protein Binding ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Tretinoin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-31
    Description: Protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus involves specific uptake into coat protein complex II (COPII)-coated vesicles of secretory and of vesicle targeting (v-SNARE) proteins. Here, two ER to Golgi v-SNAREs, Bet1p and Bos1p, were shown to interact specifically with Sar1p, Sec23p, and Sec24p, components of the COPII coat, in a guanine nucleotide-dependent fashion. Other v-SNAREs, Sec22p and Ykt6p, might interact more weakly with the COPII coat or interact indirectly by binding to Bet1p or Bos1p. The data suggest that transmembrane proteins can be taken up into COPII vesicles by direct interactions with the coat proteins and may play a structural role in the assembly of the COPII coat complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, S -- Schekman, R -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):698-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685263" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; COP-Coated Vesicles ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/*metabolism ; Fungal Proteins/*metabolism ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/*metabolism ; GTPase-Activating Proteins ; Golgi Apparatus/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism/pharmacology ; Membrane Proteins/*metabolism ; *Membrane Transport Proteins ; *Monomeric GTP-Binding Proteins ; Qb-SNARE Proteins ; Qc-SNARE Proteins ; R-SNARE Proteins ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, B J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132, USA. graves@bioscience.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490475" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins/chemistry ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Leucine Zippers ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Transcription Factors/*chemistry/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, M W -- Stiefel, E I -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1842-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA. adams@bmb.uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9874636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carbon Monoxide/chemistry ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Humans ; Hydrogen/*metabolism ; Hydrogenase/*chemistry/*metabolism ; Iron/chemistry ; Ligands ; Oxidation-Reduction ; Pyruvic Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-23
    Description: During telomere replication in yeast, chromosome ends acquire an S-phase-specific overhang of the guanosine-rich strand. Here it is shown that in cells lacking Ku, a heterodimeric protein involved in nonhomologous DNA end joining, these overhangs are present throughout the cell cycle. In vivo cross-linking experiments demonstrated that Ku is bound to telomeric DNA. These results show that Ku plays a direct role in establishing a normal DNA end structure on yeast chromosomes, conceivably by functioning as a terminus-binding factor. Because Ku-mediated DNA end joining involving telomeres would result in chromosome instability, our data also suggest that Ku has a distinct function when bound to telomeres.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gravel, S -- Larrivee, M -- Labrecque, P -- Wellinger, R J -- New York, N.Y. -- Science. 1998 May 1;280(5364):741-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Microbiologie et Infectiologie, Faculte de Medecine, Universite de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Quebec QC J1H 5N4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563951" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, Nuclear ; Binding Sites ; Chromosomes, Fungal/chemistry/*metabolism ; *DNA Helicases ; DNA, Fungal/chemistry/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Fungal Proteins/*metabolism ; G2 Phase ; Genes, Fungal ; Mitosis ; Mutation ; Nuclear Proteins/genetics/*metabolism ; S Phase ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Telomerase/genetics/metabolism ; Telomere/*metabolism ; Temperature ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-09
    Description: Differential access to cocaine self-administration produced two patterns of drug intake in rats. With 1 hour of access per session, drug intake remained low and stable. In contrast, with 6 hours of access, drug intake gradually escalated over days. After escalation, drug consumption was characterized by an increased early drug loading and an upward shift in the cocaine dose-response function, suggesting an increase in hedonic set point. After 1 month of abstinence, escalation of cocaine intake was reinstated to a higher level than before. These findings may provide an animal model for studying the development of excessive drug intake and the basis of addiction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahmed, S H -- Koob, G F -- DA04398/DA/NIDA NIH HHS/ -- DA08467/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):298-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychopharmacology, Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. aserge@sage.scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Addictive ; Cocaine/*administration & dosage ; Cocaine-Related Disorders/*etiology ; Dose-Response Relationship, Drug ; Drug Tolerance ; Male ; Rats ; Rats, Wistar ; Reinforcement (Psychology) ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1998-05-02
    Description: In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, R -- Switzer, C -- Noller, H F -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):286-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535658" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Binding Sites ; Catalysis ; Enzyme Inhibitors/pharmacology ; Escherichia coli ; Nucleic Acid Conformation ; Peptidyl Transferases/antagonists & inhibitors/*metabolism ; Puromycin/analogs & derivatives/chemical synthesis/chemistry/*metabolism ; RNA, Bacterial/chemistry/metabolism ; RNA, Ribosomal, 23S/chemistry/*metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; RNA, Transfer, Phe/chemistry/genetics/*metabolism ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-16
    Description: More than 3 percent of the protein sequences inferred from the Caenorhabditis elegans genome contain sequence motifs characteristic of zinc-binding structural domains, and of these more than half are believed to be sequence-specific DNA-binding proteins. The distribution of these zinc-binding domains among the genomes of various organisms offers insights into the role of zinc-binding proteins in evolution. In addition, the complete genome sequence of C. elegans provides an opportunity to analyze, and perhaps predict, pathways of transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarke, N D -- Berg, J M -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2018-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans/*chemistry/genetics/metabolism ; *Caenorhabditis elegans Proteins ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Evolution, Molecular ; GATA Transcription Factors ; Gene Expression Regulation ; Helminth Proteins/*chemistry/genetics/metabolism ; Membrane Proteins/chemistry/genetics/metabolism ; Receptors, Cell Surface/chemistry/genetics ; Trans-Activators/chemistry/genetics/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mossy fiber synaptic transmission at hippocampal CA3 pyramidal cells and interneurons was compared in rat brain slices to determine whether mossy terminals are functionally equivalent. Tetanic stimulation of mossy fibers induced long-term potentiation in pyramidal neurons but was either without effect or it induced depression at synapses onto interneurons. Unlike transmission onto pyramidal neurons, transmission onto interneurons was not potentiated after adenosine 3',5'-monophosphate (cAMP) activation. Furthermore, metabotropic glutamate receptor depression of transmission onto interneurons did not involve cAMP-dependent pathways. Thus, synaptic terminals arising from a common afferent pathway do not function as a single compartment but are specialized, depending on their postsynaptic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maccaferri, G -- Toth, K -- McBain, C J -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1368-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Neurophysiology, Room 5A72, Building 49, National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda MD 20892-4495, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478900" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; Colforsin/pharmacology ; Cyclic AMP/metabolism ; Cycloleucine/analogs & derivatives/pharmacology ; Cyclopropanes/pharmacology ; Electric Stimulation ; Excitatory Postsynaptic Potentials/drug effects ; Glycine/analogs & derivatives/pharmacology ; Hippocampus/cytology/*physiology ; In Vitro Techniques ; Interneurons/drug effects/*physiology ; *Long-Term Potentiation ; Mossy Fibers, Hippocampal/*physiology ; Pyramidal Cells/drug effects/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/agonists/physiology ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashcroft, F M -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1059-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University Laboratory of Physiology, Oxford OX1 3PT, UK. frances.ashcroft@physiol.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841452" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/*metabolism/pharmacology ; Animals ; Binding Sites ; Cell Membrane/metabolism ; Islets of Langerhans/metabolism ; Models, Biological ; Myocardium/cytology/metabolism ; Phosphatidylinositol 4,5-Diphosphate/chemistry/*metabolism/pharmacology ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Receptors, Drug/chemistry/metabolism ; Sulfonylurea Receptors ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1998-03-21
    Description: Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be a model of learning and memory. Protein tyrosine phosphorylation is necessary to induce LTP. Here, induction of LTP in CA1 pyramidal cells of rats was prevented by blocking the tyrosine kinase Src, and Src activity was increased by stimulation producing LTP. Directly activating Src in the postsynaptic neuron enhanced excitatory synaptic responses, occluding LTP. Src-induced enhancement of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor-mediated synaptic responses required raised intracellular Ca2+ and N-methyl-D-aspartate (NMDA) receptors. Thus, Src activation is necessary and sufficient for inducing LTP and may function by up-regulating NMDA receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Y M -- Roder, J C -- Davidow, J -- Salter, M W -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1363-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular and Medical Genetics, University of Toronto, M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478899" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Electric Stimulation ; Enzyme Activation ; Excitatory Postsynaptic Potentials/drug effects ; Hippocampus/cytology/enzymology/*physiology ; In Vitro Techniques ; *Long-Term Potentiation ; Molecular Sequence Data ; Oligopeptides/pharmacology ; Patch-Clamp Techniques ; Peptide Fragments/pharmacology ; Proto-Oncogene Proteins pp60(c-src)/pharmacology ; Pyramidal Cells/enzymology/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Recombinant Proteins/pharmacology ; Up-Regulation ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9446222" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Cell Division ; Crystallization ; Crystallography/*methods ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; GTP-Binding Proteins/chemistry ; Guanosine Triphosphate/metabolism ; Microtubules/chemistry ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Tubulin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, R F -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):578-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10328734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Electric Stimulation ; Electrodes ; Electrodes, Implanted ; *Electronics ; Electrophysiology ; Humans ; Nerve Net/*physiology ; Nervous System Diseases/*therapy ; Neurons/*physiology ; Rats ; Silicon ; *Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1999-10-09
    Description: The Yersinia pseudotuberculosis invasin protein promotes bacterial entry by binding to host cell integrins with higher affinity than natural substrates such as fibronectin. The 2.3 angstrom crystal structure of the invasin extracellular region reveals five domains that form a 180 angstrom rod with structural similarities to tandem fibronectin type III domains. The integrin-binding surfaces of invasin and fibronectin include similarly located key residues, but in the context of different folds and surface shapes. The structures of invasin and fibronectin provide an example of convergent evolution, in which invasin presents an optimized surface for integrin binding, in comparison with host substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamburger, Z A -- Brown, M S -- Isberg, R R -- Bjorkman, P J -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):291-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514372" target="_blank"〉PubMed〈/a〉
    Keywords: *Adhesins, Bacterial ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Evolution, Molecular ; Fibronectins/chemistry/metabolism ; Hydrogen Bonding ; Integrins/*metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Yersinia pseudotuberculosis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landick, R -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):598-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA. landick@macc.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10328742" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Escherichia coli/enzymology/genetics ; Gene Expression Regulation ; Humans ; Models, Genetic ; Mutation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides, Antisense/chemistry/metabolism ; RNA, Messenger/chemistry/*metabolism ; *Terminator Regions, Genetic ; *Transcription, Genetic ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1826-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology ; Cell Differentiation ; Cell Survival ; Embryo, Mammalian ; Mice ; Neurons/cytology ; Oligodendroglia/cytology ; Rats ; Spinal Cord/cytology/*physiology ; Spinal Cord Injuries/*therapy ; *Stem Cell Transplantation ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1265-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*enzymology ; Brain/*enzymology ; Cloning, Molecular ; Glutamic Acid/metabolism ; Neurons/metabolism ; Racemases and Epimerases/*genetics/metabolism ; Rats ; Receptors, N-Methyl-D-Aspartate/metabolism ; Serine/*biosynthesis/metabolism ; Stereoisomerism ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):14-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9917254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Cells, Cultured ; Dimerization ; Drug Design ; Humans ; Neurons/*metabolism ; Potassium Channels/metabolism ; Rats ; Receptors, GABA-B/*chemistry/*metabolism ; Signal Transduction ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-11-27
    Description: X-ray crystal structures of three species related to the oxidative half of the reaction of the copper-containing quinoprotein amine oxidase from Escherichia coli have been determined. Crystals were freeze-trapped either anaerobically or aerobically after exposure to substrate, and structures were determined to resolutions between 2.1 and 2.4 angstroms. The oxidation state of the quinone cofactor was investigated by single-crystal spectrophotometry. The structures reveal the site of bound dioxygen and the proton transfer pathways involved in oxygen reduction. The quinone cofactor is regenerated from the iminoquinone intermediate by hydrolysis involving Asp383, the catalytic base in the reductive half-reaction. Product aldehyde inhibits the hydrolysis, making release of product the rate-determining step of the reaction in the crystal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilmot, C M -- Hajdu, J -- McPherson, M J -- Knowles, P F -- Phillips, S E -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1724-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576737" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amine Oxidase (Copper-Containing)/*chemistry/*metabolism ; Anaerobiosis ; Aspartic Acid/chemistry/metabolism ; Binding Sites ; Catalysis ; Copper/*metabolism ; Crystallography, X-Ray ; Dihydroxyphenylalanine/*analogs & derivatives/chemistry/metabolism ; Dimerization ; Electrons ; Escherichia coli/enzymology ; Hydrogen Bonding ; Nitric Oxide/metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Phenethylamines/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1999-09-25
    Description: The 7.8 angstrom crystal structure of the 70S ribosome reveals a discrete double-helical bridge (B4) that projects from the 50S subunit, making contact with the 30S subunit. Preliminary modeling studies localized its contact site, near the bottom of the platform, to the binding site for ribosomal protein S15. Directed hydroxyl radical probing from iron(II) tethered to S15 specifically cleaved nucleotides in the 715 loop of domain II of 23S ribosomal RNA, one of the known sites in 23S ribosomal RNA that are footprinted by the 30S subunit. Reconstitution studies show that protection of the 715 loop, but none of the other 30S-dependent protections, is correlated with the presence of S15 in the 30S subunit. The 715 loop is specifically protected by binding free S15 to 50S subunits. Moreover, the previously determined structure of a homologous stem-loop from U2 small nuclear RNA fits closely to the electron density of the bridge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culver, G M -- Cate, J H -- Yusupova, G Z -- Yusupov, M M -- Noller, H F -- 1F32GM18065-01/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2133-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497132" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry ; Hydroxyl Radical ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Bacterial/*chemistry/metabolism ; RNA, Ribosomal, 23S/*chemistry/metabolism ; RNA, Small Nuclear/chemistry/metabolism ; Ribosomal Proteins/chemistry/*metabolism ; Ribosomes/*chemistry/metabolism/ultrastructure ; Thermus thermophilus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1999-06-12
    Description: To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, S H -- Hayashi, Y -- Petralia, R S -- Zaman, S H -- Wenthold, R J -- Svoboda, K -- Malinow, R -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1811-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/*metabolism/ultrastructure ; Electric Stimulation ; Hippocampus/cytology/physiology ; Humans ; Long-Term Potentiation ; *Neuronal Plasticity ; Neurons/*physiology ; Organ Culture Techniques ; Rats ; Receptor Aggregation ; Receptors, AMPA/*metabolism ; Receptors, N-Methyl-D-Aspartate/*physiology ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission ; Tetany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, I A -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1867-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. wilson@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*chemistry/immunology/metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/immunology/metabolism ; CD8-Positive T-Lymphocytes/immunology/metabolism ; Crystallography, X-Ray ; Histocompatibility Antigens Class I/chemistry/immunology/metabolism ; Histocompatibility Antigens Class II/*chemistry/immunology/metabolism ; Mice ; Models, Molecular ; Peptides/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1999-08-28
    Description: Class II transactivator (CIITA) is a global transcriptional coactivator of human leukocyte antigen-D (HLA-D) genes. CIITA contains motifs similar to guanosine triphosphate (GTP)-binding proteins. This report shows that CIITA binds GTP, and mutations in these motifs decrease its GTP-binding and transactivation activity. Substitution of these motifs with analogous sequences from Ras restores CIITA function. CIITA exhibits little GTPase activity, yet mutations in CIITA that confer GTPase activity reduce transcriptional activity. GTP binding by CIITA correlates with nuclear import. Thus, unlike other GTP-binding proteins, CIITA is involved in transcriptional activation that uses GTP binding to facilitate its own nuclear import.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harton, J A -- Cressman, D E -- Chin, K C -- Der, C J -- Ting, J P -- AI29564/AI/NIAID NIH HHS/ -- AI41751/AI/NIAID NIH HHS/ -- AI45580/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1402-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10464099" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Cell Nucleus/*metabolism ; GTP-Binding Proteins/chemistry/genetics/*metabolism ; *Genes, MHC Class II ; Guanosine Triphosphate/*metabolism ; HLA-DR Antigens/genetics ; Humans ; Mutation ; *Nuclear Proteins ; Promoter Regions, Genetic ; Temperature ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1999-11-05
    Description: Glutamatergic neurotransmission is controlled by presynaptic metabotropic glutamate receptors (mGluRs). A subdomain in the intracellular carboxyl-terminal tail of group III mGluRs binds calmodulin and heterotrimeric guanosine triphosphate-binding protein (G protein) betagamma subunits in a mutually exclusive manner. Mutations interfering with calmodulin binding and calmodulin antagonists inhibit G protein-mediated modulation of ionic currents by mGluR 7. Calmodulin antagonists also prevent inhibition of excitatory neurotransmission via presynaptic mGluRs. These results reveal a novel mechanism of presynaptic modulation in which Ca(2+)-calmodulin is required to release G protein betagamma subunits from the C-tail of group III mGluRs in order to mediate glutamatergic autoinhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, V -- El Far, O -- Bofill-Cardona, E -- Nanoff, C -- Freissmuth, M -- Karschin, A -- Airas, J M -- Betz, H -- Boehm, S -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1180-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550060" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Calmodulin/antagonists & inhibitors/*metabolism ; Cells, Cultured ; Dimerization ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GTP-Binding Proteins/*metabolism ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Presynaptic Terminals/metabolism ; Propionates/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/antagonists & inhibitors/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sesterterpenes ; Signal Transduction ; Swine ; *Synaptic Transmission ; Terpenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-30
    Description: The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shtilerman, M -- Lorimer, G H -- Englander, S W -- GM31847/GM/NIGMS NIH HHS/ -- R01 GM031847/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 30;284(5415):822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10221918" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism ; Binding Sites ; Chaperonin 10/chemistry/metabolism/physiology ; Chaperonin 60/chemistry/metabolism/*physiology ; Hydrogen/chemistry/metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Ribulose-Bisphosphate Carboxylase/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-24
    Description: Clathrin-mediated endocytosis is initiated by the recruitment of the clathrin adaptor protein AP-2 to the plasma membrane where the membrane protein synaptotagmin is thought to act as a docking site. AP-2 also interacts with endocytic motifs present in other cargo proteins. Peptides with a tyrosine-based endocytic motif stimulated binding of AP-2 to synaptotagmin and enhanced AP-2 recruitment to the plasma membrane of neuronal and non-neuronal cells. This suggests a mechanism by which nucleation of clathrin-coated pits is stimulated by the loading of cargo proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haucke, V -- De Camilli, P -- CA46128/CA/NCI NIH HHS/ -- NS36252/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10455054" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Proteins, Vesicular Transport ; Animals ; Binding Sites ; CHO Cells ; *Calcium-Binding Proteins ; Cattle ; Cell Membrane/metabolism ; Clathrin/*metabolism ; Coated Pits, Cell-Membrane/*metabolism ; Cricetinae ; *Endocytosis ; Membrane Glycoproteins/chemistry/*metabolism ; Membrane Proteins/*metabolism ; Nerve Tissue Proteins/chemistry/*metabolism ; Neurons/metabolism ; Oligopeptides/chemistry/metabolism/*pharmacology ; Phospholipase D/metabolism ; Protein Binding ; Rats ; Recombinant Fusion Proteins/metabolism ; Synaptic Membranes/*metabolism ; Synaptotagmins ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liljas, A -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2077-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Center for Chemistry and Chemical Engineering, University of Lund, Lund, Sweden. anders.liljas@mbfys.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523206" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Bacterial Proteins/biosynthesis/chemistry ; Binding Sites ; Codon ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Nucleic Acid Conformation ; Peptide Elongation Factors/metabolism ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Ribosomal/chemistry ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/chemistry ; Ribosomes/*chemistry/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):453.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10232993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Separation ; Chick Embryo ; Neural Crest/*cytology/embryology ; Neuroglia/*cytology ; Neurons/*cytology ; Rats ; Regeneration ; Sciatic Nerve/*cytology/embryology ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, L -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1941-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Lund University, Lund, Sweden. Lars.Hederstedt@mikrbiol.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10400536" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacillus subtilis/enzymology ; Binding Sites ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Dimerization ; Electron Transport ; *Energy Metabolism ; Escherichia coli/*enzymology ; Evolution, Molecular ; Fumarates/metabolism ; Mitochondria/enzymology ; Oxidation-Reduction ; Oxygen Consumption ; Protein Conformation ; Protein Structure, Secondary ; Succinate Dehydrogenase/*chemistry/*metabolism ; Succinic Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-15
    Description: The Fos and Jun oncoproteins form dimeric complexes that stimulate transcription of genes containing activator protein-1 regulatory elements. We found, by representational difference analysis, that expression of DNA 5-methylcytosine transferase (dnmt1) in fos-transformed cells is three times the expression in normal fibroblasts and that fos-transformed cells contain about 20 percent more 5-methylcytosine than normal fibroblasts. Transfection of the gene encoding Dnmt1 induced morphological transformation, whereas inhibition of dnmt1 expression or activity resulted in reversion of fos transformation. Inhibition of histone deacetylase, which associates with methylated DNA, also caused reversion. These results suggest that fos may transform cells through alterations in DNA methylation and in histone deacetylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakin, A V -- Curran, T -- P30 CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):387-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888853" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; Acetylation ; Animals ; Cell Size ; *Cell Transformation, Neoplastic ; Cytosine/analogs & derivatives/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics/*metabolism ; DNA Methylation ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation, Neoplastic ; *Genes, fos ; Histone Deacetylase Inhibitors ; Histones/metabolism ; Hydroxamic Acids/pharmacology ; Proto-Oncogene Proteins c-fos/*metabolism ; Rats ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1999-07-10
    Description: In the absence of disease, the vasculature of the mammalian eye is quiescent, in part because of the action of angiogenic inhibitors that prevent vessels from invading the cornea and vitreous. Here, an inhibitor responsible for the avascularity of these ocular compartments is identified as pigment epithelium-derived factor (PEDF), a protein previously shown to have neurotrophic activity. The amount of inhibitory PEDF produced by retinal cells was positively correlated with oxygen concentrations, suggesting that its loss plays a permissive role in ischemia-driven retinal neovascularization. These results suggest that PEDF may be of therapeutic use, especially in retinopathies where pathological neovascularization compromises vision and leads to blindness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, D W -- Volpert, O V -- Gillis, P -- Crawford, S E -- Xu, H -- Benedict, W -- Bouck, N P -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398599" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antibodies/immunology ; Cattle ; Cells, Cultured ; Chemotaxis/drug effects ; Culture Media, Conditioned ; Endothelial Growth Factors/metabolism ; Endothelium, Vascular/cytology/drug effects/physiology ; Eye/blood supply ; *Eye Proteins ; Humans ; Lymphokines/metabolism ; Mice ; Neovascularization, Pathologic/*drug therapy/metabolism/pathology ; Neovascularization, Physiologic/*drug effects ; *Nerve Growth Factors ; Oxygen/physiology ; Proteins/genetics/immunology/*pharmacology/*physiology ; RNA, Messenger/genetics/metabolism ; Rats ; Retina/*metabolism/pathology ; Retinal Neovascularization/*drug therapy ; Retinal Vessels/growth & development ; Serpins/genetics/immunology/*pharmacology/*physiology ; Tumor Cells, Cultured ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1999-08-14
    Description: Isoleucyl-transfer RNA (tRNA) synthetase (IleRS) joins Ile to tRNA(Ile) at its synthetic active site and hydrolyzes incorrectly acylated amino acids at its editing active site. The 2.2 angstrom resolution crystal structure of Staphylococcus aureus IleRS complexed with tRNA(Ile) and Mupirocin shows the acceptor strand of the tRNA(Ile) in the continuously stacked, A-form conformation with the 3' terminal nucleotide in the editing active site. To position the 3' terminus in the synthetic active site, the acceptor strand must adopt the hairpinned conformation seen in tRNA(Gln) complexed with its synthetase. The amino acid editing activity of the IleRS may result from the incorrect products shuttling between the synthetic and editing active sites, which is reminiscent of the editing mechanism of DNA polymerases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silvian, L F -- Wang, J -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1074-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Adenosine Monophosphate/analogs & derivatives/metabolism ; Amino Acids/metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA-Directed DNA Polymerase/metabolism ; Glutamate-tRNA Ligase/chemistry/metabolism ; Isoleucine/metabolism ; Isoleucine-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Mupirocin/chemistry/*metabolism ; Nucleic Acid Conformation ; Oligopeptides/metabolism ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Gln/chemistry/metabolism ; RNA, Transfer, Ile/*chemistry/*metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1999-04-16
    Description: Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stebbins, C E -- Kaelin, W G Jr -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):455-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Cycle Proteins/chemistry/metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; *Ligases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Neoplasms/genetics ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/metabolism ; S-Phase Kinase-Associated Proteins ; Surface Properties ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1999-11-05
    Description: Focal adhesions (FAs) are clustered integrins and associated proteins that mediate cell adhesion and signaling. A green fluorescent protein-beta1 integrin chimera was used to label FAs in living cells. In stationary cells, FAs were highly motile, moving linearly for several plaque lengths toward the cell center. FA motility was independent of cell density and resulted from contraction of associated actin fibers. In migrating cells, FAs were stationary and only moved in the tail. FA motility in stationary cells suggests that cell movement may be regulated by a clutch-like mechanism by which the affinity of integrins to substrate may be altered in response to migratory cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smilenov, L B -- Mikhailov, A -- Pelham, R J -- Marcantonio, E E -- Gundersen, G G -- GM42026/GM/NIGMS NIH HHS/ -- GM44585/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1172-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550057" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/physiology ; Animals ; Antigens, CD29/*metabolism ; *Cell Adhesion ; Cell Count ; Cell Line ; *Cell Movement ; Fibroblasts/*cytology/metabolism ; Fluorescence ; Green Fluorescent Proteins ; Luminescent Proteins ; Mice ; Microscopy, Interference ; Rats ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1999-01-05
    Description: Programmed cell death (apoptosis) occurs during normal development of the central nervous system. However, the mechanisms that determine which neurons will succumb to apoptosis are poorly understood. Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors for only a few hours during late fetal or early neonatal life triggered widespread apoptotic neurodegeneration in the developing rat brain, suggesting that the excitatory neurotransmitter glutamate, acting at NMDA receptors, controls neuronal survival. These findings may have relevance to human neurodevelopmental disorders involving prenatal (drug-abusing mothers) or postnatal (pediatric anesthesia) exposure to drugs that block NMDA receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ikonomidou, C -- Bosch, F -- Miksa, M -- Bittigau, P -- Vockler, J -- Dikranian, K -- Tenkova, T I -- Stefovska, V -- Turski, L -- Olney, J W -- AG 11355/AG/NIA NIH HHS/ -- DA 05072/DA/NIDA NIH HHS/ -- MH 38894/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):70-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Neurology, Charite-Virchow Clinics, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany. hrissanthi.ikonomidou@charite.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain/*cytology/drug effects/embryology/growth & development ; Calcium Channel Blockers/pharmacology ; Dizocilpine Maleate/pharmacology ; Dopamine Antagonists/pharmacology ; Dose-Response Relationship, Drug ; Excitatory Amino Acid Antagonists/pharmacology ; Fetus ; Haloperidol/pharmacology ; Immunohistochemistry ; In Situ Nick-End Labeling ; Microscopy, Electron ; Muscarinic Antagonists/pharmacology ; *Nerve Degeneration ; Neurons/*cytology/drug effects/metabolism ; Quinoxalines/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/*antagonists & inhibitors/metabolism ; Scopolamine Hydrobromide/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-27
    Description: Memories for habits and skills ("implicit or procedural memory") and memories for facts ("explicit or episodic memory") are built up in different brain systems and are vulnerable to different neurodegenerative disorders in humans. So that the striatum-based mechanisms underlying habit formation could be studied, chronic recordings from ensembles of striatal neurons were made with multiple tetrodes as rats learned a T-maze procedural task. Large and widely distributed changes in the neuronal activity patterns occurred in the sensorimotor striatum during behavioral acquisition, culminating in task-related activity emphasizing the beginning and end of the automatized procedure. The new ensemble patterns remained stable during weeks of subsequent performance of the same task. These results suggest that the encoding of action in the sensorimotor striatum undergoes dynamic reorganization as habit learning proceeds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jog, M S -- Kubota, Y -- Connolly, C I -- Hillegaart, V -- Graybiel, A M -- R03 MH57878/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1745-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉London Health Sciences Center, London, Ontario N6A 5A5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576743" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal ; Brain Mapping ; Corpus Striatum/*physiology ; Electrodes, Implanted ; Evoked Potentials ; *Habits ; Locomotion ; *Maze Learning ; Memory/physiology ; Motor Activity ; Neurons/physiology ; Rats ; Reaction Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1999-11-13
    Description: A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Brunet, A -- West, A E -- Datta, S R -- Takasu, M A -- Greenberg, M E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 HD 24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Carrier Proteins/genetics/metabolism ; *Cell Survival ; Cells, Cultured ; Cerebellum/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Kinase 1 ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Mutation ; Neurons/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; *Protein-Serine-Threonine Kinases ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; bcl-Associated Death Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, S J -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1860-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. sjsmith@leland.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206891" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Amino-5-phosphonovalerate/pharmacology ; Action Potentials ; Animals ; Dendrites/*physiology/ultrastructure ; Excitatory Amino Acid Antagonists/pharmacology ; Glutamic Acid/metabolism ; Hippocampus/cytology ; Microscopy, Fluorescence ; Neurons/physiology/ultrastructure ; Pseudopodia/*physiology/ultrastructure ; Rats ; Receptors, N-Methyl-D-Aspartate/*physiology ; Synapses/*physiology/ultrastructure ; Synaptic Membranes/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-19
    Description: The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradke, F -- Dotti, C G -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1931-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Cell Biology Programme, Meyerhofstrasse 1, 69012 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10082468" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism/*physiology ; Animals ; Axons/*physiology/ultrastructure ; *Bacterial Proteins ; Bacterial Toxins/pharmacology ; Bicyclo Compounds, Heterocyclic/pharmacology ; Cell Polarity ; Cells, Cultured ; Cytochalasin D/pharmacology ; GTP Phosphohydrolases/antagonists & inhibitors/metabolism ; Growth Cones/drug effects/*physiology/ultrastructure ; Hippocampus ; Microtubules/physiology/ultrastructure ; Neurites/*physiology/ultrastructure ; Phenotype ; Pseudopodia/drug effects/ultrastructure ; Rats ; Signal Transduction ; Thiazoles/pharmacology ; Thiazolidines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1999-10-03
    Description: In a direct approach to elucidate the origin of long-term depression (LTD), glutamate was applied onto dendrites of neurons in rat neocortical slices. An infrared-guided laser stimulation was used to release glutamate from caged glutamate in the focal spot of an ultraviolet laser. A burst of light flashes caused an LTD-like depression of glutamate receptor responses, which was highly confined to the region of "tetanic" stimulation (〈10 micrometers). A similar depression of glutamate receptor responses was observed during LTD of synaptic transmission. A spatially highly specific postsynaptic mechanism can account for the LTD induced by glutamate release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dodt, H -- Eder, M -- Frick, A -- Zieglgansberger, W -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany. dodt@mpipsykl.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dizocilpine Maleate/pharmacology ; Electric Stimulation ; Excitatory Amino Acid Antagonists/pharmacology ; Excitatory Postsynaptic Potentials ; Glutamates/pharmacology ; Glutamic Acid/metabolism ; In Vitro Techniques ; Infrared Rays ; Lasers ; Microscopy, Video ; Neocortex/cytology/*physiology ; *Neuronal Plasticity ; Patch-Clamp Techniques ; Photolysis ; Pyramidal Cells/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Glutamate/*metabolism ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1999-12-30
    Description: The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, G -- Chen, Y G -- Ozdamar, B -- Gyuricza, C A -- Chong, P A -- Wrana, J L -- Massague, J -- Shi, Y -- CA85171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):92-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615055" target="_blank"〉PubMed〈/a〉
    Keywords: *Activin Receptors, Type I ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Smad2 Protein ; Trans-Activators/*chemistry/genetics/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1998-09-11
    Description: Leptin is a hormone that regulates food intake, and its receptor (OB-Rb) is expressed primarily in the hypothalamus. Here, it is shown that OB-Rb is also expressed in human vasculature and in primary cultures of human endothelial cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In vivo, leptin induced neovascularization in corneas from normal rats but not in corneas from fa/fa Zucker rats, which lack functional leptin receptors. These observations indicate that the vascular endothelium is a target for leptin and suggest a physiological mechanism whereby leptin-induced angiogenesis may facilitate increased energy expenditure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sierra-Honigmann, M R -- Nath, A K -- Murakami, C -- Garcia-Cardena, G -- Papapetropoulos, A -- Sessa, W C -- Madge, L A -- Schechner, J S -- Schwabb, M B -- Polverini, P J -- Flores-Riveros, J R -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA. rocio_sierra-honigmann@qm.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733517" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/analysis/*physiology ; Cells, Cultured ; Corneal Neovascularization ; DNA-Binding Proteins/metabolism ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/chemistry/cytology/*physiology ; Energy Metabolism ; Humans ; Leptin ; Lipid Metabolism ; Lymphokines/pharmacology ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/pharmacology/*physiology ; Rats ; Rats, Zucker ; *Receptors, Cell Surface ; Receptors, Leptin ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1438.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/virology ; Genetic Therapy/*methods ; *Genetic Vectors ; HIV/*genetics/physiology ; Neurons/virology ; Rats ; Retina/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-06
    Description: Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple cell metabolism to electrical activity. Phosphatidylinositol phosphates (PIPs) profoundly antagonized ATP inhibition of KATP channels when applied to inside-out membrane patches. It is proposed that membrane-incorporated PIPs can bind to positive charges in the cytoplasmic region of the channel's Kir6.2 subunit, stabilizing the open state of the channel and antagonizing the inhibitory effect of ATP. The tremendous effect of PIPs on ATP sensitivity suggests that in vivo alterations of membrane PIP levels will have substantial effects on KATP channel activity and hence on the gain of metabolism-excitation coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shyng, S L -- Nichols, C G -- HL45742/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804554" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism/*pharmacology ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Islets of Langerhans/metabolism ; Mutation ; Myocardium/cytology/metabolism ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Phosphatidylinositol Phosphates/*metabolism/pharmacology ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Receptors, Drug/metabolism ; Recombinant Fusion Proteins/metabolism ; Sulfonylurea Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1998-12-18
    Description: Cocaine regulates the transcription factor CREB (adenosine 3', 5'-monophosphate response element binding protein) in rat nucleus accumbens, a brain region that is important for addiction. Overexpression of CREB in this region decreases the rewarding effects of cocaine and makes low doses of the drug aversive. Conversely, overexpression of a dominant-negative mutant CREB increases the rewarding effects of cocaine. Altered transcription of dynorphin likely contributes to these effects: Its expression is increased by overexpression of CREB and decreased by overexpression of mutant CREB. Moreover, blockade of kappa opioid receptors (on which dynorphin acts) antagonizes the negative effect of CREB on cocaine reward. These results identify an intracellular cascade-culminating in gene expression-through which exposure to cocaine modifies subsequent responsiveness to the drug.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlezon, W A Jr -- Thome, J -- Olson, V G -- Lane-Ladd, S B -- Brodkin, E S -- Hiroi, N -- Duman, R S -- Neve, R L -- Nestler, E J -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2272-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT 06508, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/administration & dosage/*pharmacology ; Conditioning (Psychology) ; Cyclic AMP Response Element-Binding Protein/genetics/*metabolism ; Dose-Response Relationship, Drug ; Dynorphins/genetics/metabolism ; Gene Expression ; Gene Expression Regulation ; Gene Transfer Techniques ; Genetic Vectors ; Naltrexone/analogs & derivatives/pharmacology ; Narcotic Antagonists/pharmacology ; Neurons/metabolism ; Nucleus Accumbens/*metabolism ; Point Mutation ; RNA, Messenger/genetics/metabolism ; Rats ; Receptors, Opioid, kappa/antagonists & inhibitors/metabolism ; *Reward ; Simplexvirus/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1998-06-20
    Description: Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, S -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yamashita, E -- Inoue, N -- Yao, M -- Fei, M J -- Libeu, C P -- Mizushima, T -- Yamaguchi, H -- Tomizaki, T -- Tsukihara, T -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1723-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Himeji Institute of Technology and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/chemistry/metabolism ; Azides/metabolism ; Binding Sites ; Carbon Monoxide/metabolism ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/chemistry/metabolism ; Hydrogen-Ion Concentration ; Ligands ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; *Proton Pumps ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, D J -- Evans, P R -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1327-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812899" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Protein Complex 1 ; Adaptor Protein Complex 2 ; *Adaptor Protein Complex 3 ; Adaptor Protein Complex alpha Subunits ; *Adaptor Protein Complex mu Subunits ; Adaptor Proteins, Vesicular Transport ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Endocytosis ; *Glycoproteins ; Humans ; Hydrogen Bonding ; Membrane Glycoproteins/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Sorting Signals/*chemistry/metabolism ; Protein Structure, Secondary ; Receptor, Epidermal Growth Factor/*chemistry/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawler, A -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):515-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9575093" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Nervous System Physiological Phenomena ; Rats ; *Research ; Space Flight ; *Spacecraft ; United States ; United States National Aeronautics and Space Administration ; *Weightlessness
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: Many molecular mechanisms for neural adaptation to stress remain unknown. Expression of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated potassium channels, was measured in rat adrenal chromaffin tissue from normal and hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the proportion of Slo transcripts containing a "STREX" exon. The decrease was prevented by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants produced channels with functional properties associated with enhanced repetitive firing. Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-secreting cells by regulating alternative splicing of Slo messenger RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, J -- McCobb, D P -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):443-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545224" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Medulla/*metabolism ; Adrenocorticotropic Hormone/metabolism/*pharmacology ; *Alternative Splicing ; Amino Acid Sequence ; Animals ; Chromaffin Cells/*metabolism ; Corticosterone/blood/*metabolism ; Dexamethasone/pharmacology ; Epinephrine/secretion ; Exons ; Female ; Hypophysectomy ; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Male ; Molecular Sequence Data ; Oocytes ; Phenylethanolamine N-Methyltransferase/genetics ; Polymerase Chain Reaction ; Potassium Channels/*genetics ; *Potassium Channels, Calcium-Activated ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1998-09-04
    Description: Nerve growth is regulated by attractive and repulsive factors in the nervous system. Microscopic gradients of Collapsin-1/Semaphorin III/D (Sema III) and myelin-associated glycoprotein trigger repulsive turning responses by growth cones of cultured Xenopus spinal neurons; the repulsion can be converted to attraction by pharmacological activation of the guanosine 3',5'-monophosphate (cGMP) and adenosine 3',5'-monophosphate signaling pathways, respectively. Sema III also causes the collapse of cultured rat sensory growth cones, which can be inhibited by activation of the cGMP pathway. Thus cyclic nucleotides can regulate growth cone behaviors and may be targets for designing treatments to alleviate the inhibition of nerve regeneration by repulsive factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, H -- Ming, G -- He, Z -- Lehmann, M -- McKerracher, L -- Tessier-Lavigne, M -- Poo, M -- NS22764/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California at San Diego, La Jolla, CA 92093-0357, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727979" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Calcium/physiology ; Cells, Cultured ; Cyclic AMP/analogs & derivatives/pharmacology/*physiology ; Cyclic GMP/analogs & derivatives/pharmacology/*physiology ; Ganglia, Spinal/cytology ; Glycoproteins/*physiology ; Myelin-Associated Glycoprotein/physiology ; Nerve Growth Factors/*physiology ; Nerve Tissue Proteins/physiology ; Neurites/*physiology ; Neurons/cytology/*physiology ; Neuropilin-1 ; Rats ; Recombinant Proteins ; Semaphorin-3A ; Spinal Cord/cytology ; Thionucleotides/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1998-01-31
    Description: Candidate mammalian odorant receptors were first cloned some 6 years ago. The physiological function of these receptors in initiating transduction in olfactory receptor neurons remains to be established. Here, a recombinant adenovirus was used to drive expression of a particular receptor gene in an increased number of sensory neurons in the rat olfactory epithelium. Electrophysiological recording showed that increased expression of a single gene led to greater sensitivity to a small subset of odorants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, H -- Ivic, L -- Otaki, J M -- Hashimoto, M -- Mikoshiba, K -- Firestein, S -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):237-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9422698" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Aldehydes/metabolism/*pharmacology ; Animals ; Electrophysiology ; Female ; Gene Expression ; Genetic Vectors ; Green Fluorescent Proteins ; Luminescent Proteins/analysis/genetics ; Male ; *Odors ; Olfactory Receptor Neurons/*physiology/virology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, Odorant/genetics/metabolism/*physiology ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1998-12-04
    Description: Transcription of naked DNA in vitro requires the general transcription factors and RNA polymerase II. However, this minimal set of factors is not sufficient for transcription when the DNA template is packaged into chromatin. Here, a factor that facilitates activator-dependent transcription initiation on chromatin templates was purified. This factor, remodeling and spacing factor (RSF), has adenosine triphosphate-dependent nucleosome-remodeling and spacing activities. Polymerases that initiate transcription with RSF can only extend their transcripts in the presence of FACT (facilitates chromatin transcription). Thus, the minimal factor requirements for activator-dependent transcription on chromatin templates in vitro have been defined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉LeRoy, G -- Orphanides, G -- Lane, W S -- Reinberg, D -- GM-37120/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1900-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Division of Nucleic Acid Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836642" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Chromatin/*genetics/metabolism ; Dimerization ; HeLa Cells ; Humans ; Molecular Weight ; Nucleosomes/*metabolism ; RNA Polymerase II/metabolism ; Templates, Genetic ; Transcription Factors/chemistry/isolation & purification/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1998-05-23
    Description: The crystal structure of Bacillus subtilis ribonuclease P protein is reported at 2.6 angstroms resolution. This protein binds to ribonuclease P RNA to form a ribonucleoprotein holoenzyme with optimal catalytic activity. Mutagenesis and biochemical data indicate that an unusual left-handed betaalphabeta crossover connection and a large central cleft in the protein form conserved RNA binding sites; a metal binding loop may comprise a third RNA binding site. The unusual topology is partly shared with ribosomal protein S5 and the ribosomal translocase elongation factor G, which suggests evolution from a common RNA binding ancestor in the primordial translational apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stams, T -- Niranjanakumari, S -- Fierke, C A -- Christianson, D W -- GM55387/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 May 1;280(5364):752-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; *Evolution, Molecular ; Magnesium/metabolism ; Models, Molecular ; Peptide Elongation Factor G ; Peptide Elongation Factors/chemistry ; *Protein Biosynthesis ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Bacterial/*chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonuclease P ; Ribosomal Proteins/chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Trotta, C R -- Abelson, J -- F32 GM188930-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):279-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Mail Code 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallography, X-Ray ; Dimerization ; Endoribonucleases/*chemistry/genetics/metabolism ; *Evolution, Molecular ; HIV Long Terminal Repeat ; Hydrogen Bonding ; Methanococcus/*enzymology/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Archaeal/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1998-04-16
    Description: A method involving electron paramagnetic resonance spectroscopy of a site-selectively spin-labeled peripheral membrane protein in the presence and absence of membranes and of a water-soluble spin relaxant (chromium oxalate) has been developed to determine how bee venom phospholipase A2 sits on the membrane. Theory based on the Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens of angstroms) from the spin probe to the membrane. The measurements define the interfacial binding surface of this secreted phospholipase A2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y -- Nielsen, R -- Murray, D -- Hubbell, W L -- Mailer, C -- Robinson, B H -- Gelb, M H -- GM32681/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- P30 ES07033/ES/NIEHS NIH HHS/ -- R01 CA052874/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1925-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Biochemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506941" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/chemistry ; Binding Sites ; Chromates ; Electron Spin Resonance Spectroscopy ; *Glycerophospholipids ; Liposomes ; Membrane Proteins/analysis/*chemistry/genetics/metabolism ; *Membranes, Artificial ; Models, Molecular ; Mutation ; Oxalates ; Phosphatidic Acids ; Phospholipases A/analysis/*chemistry/genetics/metabolism ; Phospholipases A2 ; Spin Labels ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, R -- Sikorski, R -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1439.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Cyclic GMP/chemistry/*metabolism ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/*metabolism ; Dimerization ; Ion Channel Gating ; Ion Channels/chemistry/*metabolism ; Ligands ; Polyethylene Glycols ; Rats ; Retinal Rod Photoreceptor Cells/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1998-09-11
    Description: Hypertrophic cardiomyopathy (HCM) is an inherited form of heart disease that affects 1 in 500 individuals. Here it is shown that calcineurin, a calcium-regulated phosphatase, plays a critical role in the pathogenesis of HCM. Administration of the calcineurin inhibitors cyclosporin and FK506 prevented disease in mice that were genetically predisposed to develop HCM as a result of aberrant expression of tropomodulin, myosin light chain-2, or fetal beta-tropomyosin in the heart. Cyclosporin had a similar effect in a rat model of pressure-overload hypertrophy. These results suggest that calcineurin inhibitors merit investigation as potential therapeutics for certain forms of human heart disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sussman, M A -- Lim, H W -- Gude, N -- Taigen, T -- Olson, E N -- Robbins, J -- Colbert, M C -- Gualberto, A -- Wieczorek, D F -- Molkentin, J D -- HL58224-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1690-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733519" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; *Calcineurin Inhibitors ; Calcium/metabolism ; *Cardiac Myosins ; Cardiomegaly/metabolism/pathology/*prevention & control ; Cardiomyopathy, Dilated/pathology/*prevention & control ; Cardiomyopathy, Hypertrophic/genetics/metabolism/pathology/*prevention & control ; Carrier Proteins/genetics ; Cyclosporine/*pharmacology ; Female ; Mice ; Mice, Transgenic ; *Microfilament Proteins ; Models, Cardiovascular ; Myocardium/*metabolism/pathology ; Myosin Light Chains/genetics/metabolism ; Rats ; Signal Transduction ; Tacrolimus/*pharmacology ; Tropomodulin ; Tropomyosin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1998-12-04
    Description: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, J W -- Lanzilotta, W N -- Lemon, B J -- Seefeldt, L C -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1853-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA. petersj@cc.usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Cysteine/chemistry ; Histidine/chemistry ; Hydrogen/metabolism ; Hydrogenase/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protons ; Sulfur/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1999-11-24
    Description: Substance P receptor (SPR)-expressing spinal neurons were ablated with the selective cytotoxin substance P-saporin. Loss of these neurons resulted in a reduction of thermal hyperalgesia and mechanical allodynia associated with persistent neuropathic and inflammatory pain states. This loss appeared to be permanent. Responses to mildly painful stimuli and morphine analgesia were unaffected by this treatment. These results identify a target for treating persistent pain and suggest that the small population of SPR-expressing neurons in the dorsal horn of the spinal cord plays a pivotal role in the generation and maintenance of chronic neuropathic and inflammatory pain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nichols, M L -- Allen, B J -- Rogers, S D -- Ghilardi, J R -- Honore, P -- Luger, N M -- Finke, M P -- Li, J -- Lappi, D A -- Simone, D A -- Mantyh, P W -- 23970/PHS HHS/ -- 31223/PHS HHS/ -- DEO 7288/DE/NIDCR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Preventive Sciences, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567262" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dose-Response Relationship, Drug ; Ganglia, Spinal/drug effects/physiology ; *Immunotoxins ; Inflammation/physiopathology ; Ligation ; *N-Glycosyl Hydrolases ; Neuralgia/drug therapy/physiopathology ; Pain/*drug therapy/*physiopathology ; Plant Proteins/administration & dosage/*pharmacology ; Posterior Horn Cells/drug effects/*physiology ; Rats ; Receptors, Neurokinin-1/*metabolism ; Ribosome Inactivating Proteins, Type 1 ; Spinal Nerves ; Substance P/administration & dosage/*pharmacology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1999-04-02
    Description: Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, K -- Meyer, T -- GM-48113/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Department of Pharmacology and Cancer Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102820" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cells, Cultured ; Cytosol/metabolism ; Dendrites/*enzymology ; Electric Stimulation ; Glutamic Acid/pharmacology ; Green Fluorescent Proteins ; Hippocampus/cytology/*enzymology ; Isoenzymes/metabolism ; Luminescent Proteins ; Microscopy, Fluorescence ; Nerve Tissue Proteins/analysis ; Neurons/*enzymology ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Synapses/*enzymology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-09
    Description: For mapping energetic interactions in proteins, a technique was developed that uses evolutionary data for a protein family to measure statistical interactions between amino acid positions. For the PDZ domain family, this analysis predicted a set of energetically coupled positions for a binding site residue that includes unexpected long-range interactions. Mutational studies confirm these predictions, demonstrating that the statistical energy function is a good indicator of thermodynamic coupling in proteins. Sets of interacting residues form connected pathways through the protein fold that may be the basis for efficient energy conduction within proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lockless, S W -- Ranganathan, R -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):295-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514373" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Binding Sites ; Conserved Sequence ; *Evolution, Molecular ; Models, Molecular ; Mutation ; Probability ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment ; Statistics as Topic ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steghaus-Kovac, S -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):650-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10454911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bioethics ; Diffuse Cerebral Sclerosis of Schilder/*therapy ; Embryo, Mammalian/cytology ; Financing, Government ; Germany ; Humans ; Mice ; Myelin Sheath/*physiology ; Oligodendroglia/*cytology/physiology/transplantation ; Rats ; Research Support as Topic ; Spinal Cord ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-03
    Description: Ribozymes use a number of the same catalytic strategies as protein enzymes. However, general base catalysis by a ribozyme has not been demonstrated. In the hepatitis delta virus antigenomic ribozyme, imidazole buffer rescued activity of a mutant with a cytosine-76 (C76) to uracil substitution. In addition, a C76 to adenine substitution reduced the apparent pKa (where Ka is the acid constant) of the self-cleavage reaction by an amount consistent with differences in the pKa values of these two side chains. These results suggest that, in the wild-type ribozyme, C76 acts as a general base. This finding has implications for potential catalytic functions of conserved cytosines and adenines in other ribozymes and in ribonuclear proteins with enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perrotta, A T -- Shih, I -- Been, M D -- GM47322/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):123-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, NC 27710 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506560" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Cytosine/*chemistry/metabolism/pharmacology ; Hepatitis Delta Virus/chemistry/*enzymology ; Hydrogen-Ion Concentration ; Imidazoles/chemistry/*metabolism/pharmacology ; Magnesium Chloride/pharmacology ; Manganese/pharmacology ; Mutagenesis ; Point Mutation ; Protons ; Pyrazoles/pharmacology ; RNA, Catalytic/*chemistry/genetics/*metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, R -- Sikorsky, R -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):434.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites, Antibody ; Biological Availability ; Half-Life ; Immunoglobulin Fab Fragments/*immunology/*metabolism ; Male ; Polyethylene Glycols/*metabolism ; Rats ; Rats, Wistar
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1999-11-13
    Description: The E6AP ubiquitin-protein ligase (E3) mediates the human papillomavirus-induced degradation of the p53 tumor suppressor in cervical cancer and is mutated in Angelman syndrome, a neurological disorder. The crystal structure of the catalytic hect domain of E6AP reveals a bilobal structure with a broad catalytic cleft at the junction of the two lobes. The cleft consists of conserved residues whose mutation interferes with ubiquitin-thioester bond formation and is the site of Angelman syndrome mutations. The crystal structure of the E6AP hect domain bound to the UbcH7 ubiquitin-conjugating enzyme (E2) reveals the determinants of E2-E3 specificity and provides insights into the transfer of ubiquitin from the E2 to the E3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, L -- Kinnucan, E -- Wang, G -- Beaudenon, S -- Howley, P M -- Huibregtse, J M -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1321-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558980" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angelman Syndrome/genetics ; Binding Sites ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry ; Humans ; Ligases/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Substrate Specificity ; Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-10
    Description: Endocytosis is crucial for an array of cellular functions and can occur through several distinct mechanisms with the capacity to internalize anything from small molecules to entire cells. The clathrin-mediated endocytic pathway has recently received considerable attention because of (i) the identification of an array of molecules that orchestrate the assembly of clathrin-coated vesicles and the selection of the vesicle cargo and (ii) the resolution of structures for a number of these proteins. Together, these data provide an initial three-dimensional framework for understanding the clathrin endocytic machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marsh, M -- McMahon, H T -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):215-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, UK. m.marsh@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium-Binding Proteins/chemistry/physiology ; Cell Membrane/ultrastructure ; Clathrin/chemistry/*physiology ; Coated Pits, Cell-Membrane/physiology/ultrastructure ; Coated Vesicles/physiology/ultrastructure ; Dynamins ; *Endocytosis ; GTP Phosphohydrolases/chemistry/physiology ; Membrane Proteins/chemistry/physiology ; Nerve Tissue Proteins/chemistry/physiology ; Phosphoproteins/chemistry/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1999-11-24
    Description: Binding of virus particles to specific host cell surface receptors is known to be an obligatory step in infection even though the molecular basis for these interactions is not well characterized. The crystal structure of the adenovirus fiber knob domain in complex with domain I of its human cellular receptor, coxsackie and adenovirus receptor (CAR), is presented here. Surface-exposed loops on knob contact one face of CAR, forming a high-affinity complex. Topology mismatches between interacting surfaces create interfacial solvent-filled cavities and channels that may be targets for antiviral drug therapy. The structure identifies key determinants of binding specificity, which may suggest ways to modify the tropism of adenovirus-based gene therapy vectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bewley, M C -- Springer, K -- Zhang, Y B -- Freimuth, P -- Flanagan, J M -- 1P41 RR12408-01A1/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1579-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567268" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/chemistry/*metabolism ; Amino Acid Substitution ; Binding Sites ; Capsid/*chemistry/*metabolism ; *Capsid Proteins ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Mutagenesis ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Virus/*chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1999-11-24
    Description: Contraction and relaxation of smooth muscle are regulated by myosin light-chain kinase and myosin phosphatase through phosphorylation and dephosphorylation of myosin light chains. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase Ialpha (cGKIalpha) mediates physiologic relaxation of vascular smooth muscle in response to nitric oxide and cGMP. It is shown here that cGKIalpha is targeted to the smooth muscle cell contractile apparatus by a leucine zipper interaction with the myosin-binding subunit (MBS) of myosin phosphatase. Uncoupling of the cGKIalpha-MBS interaction prevents cGMP-dependent dephosphorylation of myosin light chain, demonstrating that this interaction is essential to the regulation of vascular smooth muscle cell tone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surks, H K -- Mochizuki, N -- Kasai, Y -- Georgescu, S P -- Tang, K M -- Ito, M -- Lincoln, T M -- Mendelsohn, M E -- HL09330/HL/NHLBI NIH HHS/ -- HL55309/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1583-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cardiology Research Institute and Cardiology Division, Department of Medicine, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Histones/metabolism ; Humans ; Isoenzymes/chemistry/metabolism ; Leucine Zippers ; Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth, Vascular/*enzymology/physiology ; Mutagenesis, Site-Directed ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Phosphatase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Phosphorylation ; Precipitin Tests ; Rats ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1999-10-09
    Description: Crystal structures of the Asp96 to Asn mutant of the light-driven proton pump bacteriorhodopsin and its M photointermediate produced by illumination at ambient temperature have been determined to 1.8 and 2.0 angstroms resolution, respectively. The trapped photoproduct corresponds to the late M state in the transport cycle-that is, after proton transfer to Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. Its density map describes displacements of side chains near the retinal induced by its photoisomerization to 13-cis,15-anti and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pKa values (where Ka is the acid constant) of the Schiff base and Asp85. The structural changes detected suggest the means for conserving energy at the active site and for ensuring the directionality of proton translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Schobert, B -- Richter, H T -- Cartailler, J P -- Lanyi, J K -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM56445/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):255-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. hudel@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514362" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ion Transport ; Isomerism ; Light ; Models, Molecular ; Photolysis ; Photons ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Proton Pumps/*chemistry/*metabolism ; Protons ; Retinaldehyde/chemistry/metabolism ; Schiff Bases ; Thermodynamics ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkel, E -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):33-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; Clinical Trials as Topic ; Cloning, Molecular ; *Glucuronidase ; Glycoside Hydrolases/*antagonists & inhibitors/*genetics/isolation & ; purification/metabolism ; Humans ; Mice ; Neoplasm Metastasis/*prevention & control ; Rats ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):508.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10447477" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Diagnostic Imaging ; Light ; Mice ; *Odors ; Olfactory Bulb/*physiology ; Olfactory Receptor Neurons/physiology ; Rats ; Receptors, Odorant/*physiology ; Smell/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1999-07-31
    Description: Adenylyl cyclase (AC) converts adenosine triphosphate (ATP) to cyclic adenosine monophosphate, a ubiquitous second messenger that regulates many cellular functions. Recent structural studies have revealed much about the structure and function of mammalian AC but have not fully defined its active site or catalytic mechanism. Four crystal structures were determined of the catalytic domains of AC in complex with two different ATP analogs and various divalent metal ions. These structures provide a model for the enzyme-substrate complex and conclusively demonstrate that two metal ions bind in the active site. The similarity of the active site of AC to those of DNA polymerases suggests that the enzymes catalyze phosphoryl transfer by the same two-metal-ion mechanism and likely have evolved from a common ancestor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Johnson, R A -- Gosselin, G -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):756-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427002" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/chemistry/genetics/*metabolism ; Animals ; Aspartic Acid/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/metabolism/pharmacology ; Dideoxynucleotides ; Dimerization ; Enzyme Inhibitors/metabolism ; Hydrogen Bonding ; Ligands ; Magnesium/*metabolism ; Manganese/*metabolism ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Folding ; Rats ; Thionucleotides/metabolism/pharmacology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1999-06-18
    Description: In contrast with the prevailing view that most tumors and metastases begin as avascular masses, evidence is presented here that a subset of tumors instead initially grows by coopting existing host vessels. This coopted host vasculature does not immediately undergo angiogenesis to support the tumor but instead regresses, leading to a secondarily avascular tumor and massive tumor cell loss. Ultimately, however, the remaining tumor is rescued by robust angiogenesis at the tumor margin. The expression patterns of the angiogenic antagonist angiopoietin-2 and of pro-angiogenic vascular endothelial growth factor (VEGF) suggest that these proteins may be critical regulators of this balance between vascular regression and growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holash, J -- Maisonpierre, P C -- Compton, D -- Boland, P -- Alexander, C R -- Zagzag, D -- Yancopoulos, G D -- Wiegand, S J -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1994-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373119" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/blood supply/pathology ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Apoptosis ; Blood Vessels/pathology ; Endothelial Growth Factors/genetics/*physiology ; Endothelium, Vascular/pathology/physiology ; Glioblastoma/blood supply/pathology ; Glioma/blood supply/pathology ; In Situ Hybridization ; Lymphokines/genetics/*physiology ; Male ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Inbred C57BL ; Muscle, Smooth, Vascular/pathology/physiology ; Neoplasm Transplantation ; Neoplasms, Experimental/*blood supply/*pathology ; *Neovascularization, Pathologic ; Proteins/genetics/*physiology ; Rats ; Rats, Sprague-Dawley ; Up-Regulation ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mach, B -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Geneva Medical School, Geneva, Switzerland. Bernard.Mach@medecine.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10490413" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Nucleus/metabolism ; DNA-Binding Proteins/metabolism ; GTP-Binding Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; *Genes, MHC Class II ; Guanosine Triphosphate/*metabolism ; Humans ; Lymphocyte Activation ; Mutation ; *Nuclear Proteins ; Promoter Regions, Genetic ; T-Lymphocytes/immunology ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1755-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10391789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/physiology ; Cells, Cultured ; Dendrites/physiology/ultrastructure ; Glutamic Acid/*physiology ; Long-Term Potentiation/*physiology ; Mice ; Neurons/physiology ; Rats ; Receptors, AMPA/*physiology ; Receptors, N-Methyl-D-Aspartate/*physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: Molecular biology studies of olfaction have identified a multigene family of molecular receptors that are likely to be involved in odor transduction mechanisms. However, because previous functional data on peripheral coding were mainly collected from inferior vertebrates, it has been difficult to document the degree of specificity of odor interaction mechanisms. As a matter of fact, studies of the functional expression of olfactory receptors have not demonstrated the low or high specificity of olfactory receptors. In this study, the selectivity of olfactory receptor neurons was investigated in the rat at the cellular level under physiological conditions by unitary extracellular recordings. Individual olfactory receptor neurons were broadly responsive to qualitatively distinct odor compounds. We conclude that peripheral coding is based on activated arrays of olfactory receptor cells with overlapping tuning profiles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duchamp-Viret, P -- Chaput, M A -- Duchamp, A -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2171-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Neurosciences et Systemes Sensoriels, CNRS, UMR, Universite Claude Bernard, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France. pduchamp@olfac.univ-lyon1.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381881" target="_blank"〉PubMed〈/a〉
    Keywords: Acetophenones ; Action Potentials ; Animals ; Anisoles ; Benzaldehydes ; Camphor ; Cyclohexenes ; *Odors ; Olfactory Receptor Neurons/*physiology ; Pentanols ; Rats ; Rats, Wistar ; Receptors, Odorant/genetics/*physiology ; Terpenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-26
    Description: Entry of the bacterium Salmonella typhimurium into host cells requires membrane ruffling and rearrangement of the actin cytoskeleton. Here, it is shown that the bacterial protein SipA plays a critical role in this process. SipA binds directly to actin, decreases its critical concentration, and inhibits depolymerization of actin filaments. These activities result in the spatial localization and more pronounced outward extension of the Salmonella-induced membrane ruffles, thereby facilitating bacterial uptake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, D -- Mooseker, M S -- Galan, J E -- AI30492/AI/NIAID NIH HHS/ -- DK25387/DK/NIDDK NIH HHS/ -- GM52543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2092-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092234" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/genetics/*metabolism ; Antigens, Bacterial/metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Biopolymers ; Cell Membrane/ultrastructure ; HeLa Cells ; Humans ; *Microfilament Proteins ; Microscopy, Fluorescence ; Mutation ; Recombinant Fusion Proteins/metabolism ; Salmonella typhimurium/genetics/metabolism/*pathogenicity ; Signal Transduction ; Vinculin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1999-08-28
    Description: The selenoprotein phospholipid hydroperoxide glutathione peroxidase (PHGPx) changes its physical characteristics and biological functions during sperm maturation. PHGPx exists as a soluble peroxidase in spermatids but persists in mature spermatozoa as an enzymatically inactive, oxidatively cross-linked, insoluble protein. In the midpiece of mature spermatozoa, PHGPx protein represents at least 50 percent of the capsule material that embeds the helix of mitochondria. The role of PHGPx as a structural protein may explain the mechanical instability of the mitochondrial midpiece that is observed in selenium deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ursini, F -- Heim, S -- Kiess, M -- Maiorino, M -- Roveri, A -- Wissing, J -- Flohe, L -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1393-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dipartmento di Chimica Biologica, Universita di Padova, Viale G. Colombo 3, I-35121 Padova, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10464096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electrophoresis, Gel, Two-Dimensional ; Electrophoresis, Polyacrylamide Gel ; Glutathione Peroxidase/chemistry/isolation & purification/*physiology ; Infertility, Male/metabolism ; Male ; Mitochondria/chemistry/enzymology ; Oxidation-Reduction ; Proteins/chemistry/isolation & purification/*physiology ; Rats ; Rats, Wistar ; Selenium/deficiency/*physiology ; Selenoproteins ; Solubility ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spermatids/chemistry/enzymology ; *Spermatogenesis ; Spermatozoa/chemistry/enzymology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1999-05-21
    Description: Modification of cell surface molecules with sialic acid is crucial for their function in many biological processes, including cell adhesion and signal transduction. Uridine diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) is an enzyme that catalyzes an early, rate-limiting step in the sialic acid biosynthetic pathway. UDP-GlcNAc 2-epimerase was found to be a major determinant of cell surface sialylation in human hematopoietic cell lines and a critical regulator of the function of specific cell surface adhesion molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keppler, O T -- Hinderlich, S -- Langner, J -- Schwartz-Albiez, R -- Reutter, W -- Pawlita, M -- New York, N.Y. -- Science. 1999 May 21;284(5418):1372-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Tumor Virology Program, Tumor Immunology Program, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Antigens, CD14/biosynthesis ; Antigens, CD15/biosynthesis ; Antigens, Differentiation, B-Lymphocyte/metabolism ; Carbohydrate Epimerases/genetics/metabolism ; Cell Adhesion Molecules/metabolism ; Cell Membrane/*metabolism ; Culture Media ; *Escherichia coli Proteins ; Glycoconjugates/*metabolism ; HL-60 Cells ; Histocompatibility Antigens Class I/biosynthesis ; Humans ; Lectins/metabolism ; Oligosaccharides/biosynthesis ; Rats ; Sialic Acid Binding Ig-like Lectin 2 ; Sialic Acids/*biosynthesis ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1999-10-09
    Description: Many human diseases are associated with the overproduction of oxygen free radicals that inflict cell damage. A manganese(II) complex with a bis(cyclohexylpyridine)-substituted macrocyclic ligand (M40403) was designed to be a functional mimic of the superoxide dismutase (SOD) enzymes that normally remove these radicals. M40403 had high catalytic SOD activity and was chemically and biologically stable in vivo. Injection of M40403 into rat models of inflammation and ischemia-reperfusion injury protected the animals against tissue damage. Such mimics may result in better clinical therapies for diseases mediated by superoxide radicals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salvemini, D -- Wang, Z Q -- Zweier, J L -- Samouilov, A -- Macarthur, H -- Misko, T P -- Currie, M G -- Cuzzocrea, S -- Sikorski, J A -- Riley, D P -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):304-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MetaPhore Pharmaceuticals, 1910 Innerbelt Business Center Drive, St. Louis, MO 63114, USA. dsalvemini@metaphore.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemical ; synthesis/chemistry/metabolism/*therapeutic use ; Cytoprotection ; Dinoprostone/metabolism ; Dose-Response Relationship, Drug ; Drug Design ; Drug Stability ; Inflammation/*drug therapy ; Interleukin-1/metabolism ; L-Lactate Dehydrogenase/metabolism ; Male ; Manganese ; Molecular Mimicry ; Neutrophils/drug effects ; Organometallic Compounds/chemical synthesis/chemistry/metabolism/*toxicity ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury/*drug therapy ; Splanchnic Circulation ; *Superoxide Dismutase/metabolism ; Superoxides/*metabolism ; Time Factors ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1825-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610568" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticholesteremic Agents/*pharmacology ; Bone Density/*drug effects ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/biosynthesis ; Clinical Trials as Topic ; Female ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/*pharmacology ; Lovastatin/*pharmacology ; Mice ; Osteogenesis/*drug effects ; Osteoporosis/drug therapy ; Rats ; Simvastatin/pharmacology ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1999-11-27
    Description: F0F1, found in mitochondria or bacterial membranes, synthesizes adenosine 5'-triphosphate (ATP) coupling with an electrochemical proton gradient and also reversibly hydrolyzes ATP to form the gradient. An actin filament connected to a c subunit oligomer of F0 was able to rotate by using the energy of ATP hydrolysis. The rotary torque produced by the c subunit oligomer reached about 40 piconewton-nanometers, which is similar to that generated by the gamma subunit in the F1 motor. These results suggest that the gamma and c subunits rotate together during ATP hydrolysis and synthesis. Thus, coupled rotation may be essential for energy coupling between proton transport through F0 and ATP hydrolysis or synthesis in F1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sambongi, Y -- Iko, Y -- Tanabe, M -- Omote, H -- Iwamoto-Kihara, A -- Ueda, I -- Yanagida, T -- Wada, Y -- Futai, M -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1722-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Ibaraki, Osaka 567-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576736" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/metabolism ; Adenosine Triphosphate/*metabolism ; Binding Sites ; Biotinylation ; Energy Transfer ; Enzymes, Immobilized ; Escherichia coli/enzymology ; Hydrolysis ; Molecular Motor Proteins/*chemistry/*metabolism ; Proton-Motive Force ; Proton-Translocating ATPases/*chemistry/*metabolism ; Uncoupling Agents/metabolism/pharmacology ; Venturicidins/pharmacology ; Video Recording
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1999-11-24
    Description: Neurokinin-1 receptor (NK1R) and mu-opioid receptor (muOR) agonists affected respiratory rhythm when injected directly into the preBotzinger Complex (preBotC), the hypothesized site for respiratory rhythmogenesis in mammals. These effects were mediated by actions on preBotC rhythmogenic neurons. The distribution of NK1R+ neurons anatomically defined the preBotC. Type 1 neurons in the preBotC, which have rhythmogenic properties, expressed both NK1Rs and muORs, whereas type 2 neurons expressed only NK1Rs. These findings suggest that the preBotC is a definable anatomic structure with unique physiological function and that a subpopulation of neurons expressing both NK1Rs and muORs generate respiratory rhythm and modulate respiratory frequency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, P A -- Rekling, J C -- Bocchiaro, C M -- Feldman, J L -- HL37941/HL/NHLBI NIH HHS/ -- HL40959/HL/NHLBI NIH HHS/ -- R01 HL040959/HL/NHLBI NIH HHS/ -- R01 HL040959-12/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1566-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of California Los Angeles, Box 951763, Los Angeles, CA 90095-1763, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567264" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology ; Female ; In Vitro Techniques ; Medulla Oblongata/cytology/drug effects/*physiology ; Mice ; Mice, Inbred BALB C ; Neurons/chemistry/drug effects/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-B/analysis/physiology ; Receptors, Neurokinin-1/agonists/analysis/*physiology ; Receptors, Opioid, mu/agonists/analysis/*physiology ; Respiratory Mechanics/drug effects/*physiology ; Substance P/pharmacology ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1999-04-09
    Description: The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H G -- Pathan, N -- Ethell, I M -- Krajewski, S -- Yamaguchi, Y -- Shibasaki, F -- McKeon, F -- Bobo, T -- Franke, T F -- Reed, J C -- AG-1593/AG/NIA NIH HHS/ -- CA-69381/CA/NCI NIH HHS/ -- HD25938/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195903" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Animals ; *Apoptosis ; Calcineurin/genetics/*metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism/pharmacology ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Dimerization ; Enzyme Inhibitors/pharmacology ; Glutamic Acid/pharmacology ; Hippocampus/cytology ; Humans ; Mitochondria/metabolism ; Neurons/cytology/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Transfection ; *Tyrosine 3-Monooxygenase ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1999-06-12
    Description: The editing enzyme double-stranded RNA adenosine deaminase includes a DNA binding domain, Zalpha, which is specific for left-handed Z-DNA. The 2.1 angstrom crystal structure of Zalpha complexed to DNA reveals that the substrate is in the left-handed Z conformation. The contacts between Zalpha and Z-DNA are made primarily with the "zigzag" sugar-phosphate backbone, which provides a basis for the specificity for the Z conformation. A single base contact is observed to guanine in the syn conformation, characteristic of Z-DNA. Intriguingly, the helix-turn-helix motif, frequently used to recognize B-DNA, is used by Zalpha to contact Z-DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartz, T -- Rould, M A -- Lowenhaupt, K -- Herbert, A -- Rich, A -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1841-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364558" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA-Binding Proteins ; Substrate Specificity ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1999-12-03
    Description: Osteoporosis and other diseases of bone loss are a major public health problem. Here it is shown that the statins, drugs widely used for lowering serum cholesterol, also enhance new bone formation in vitro and in rodents. This effect was associated with increased expression of the bone morphogenetic protein-2 (BMP-2) gene in bone cells. Lovastatin and simvastatin increased bone formation when injected subcutaneously over the calvaria of mice and increased cancellous bone volume when orally administered to rats. Thus, in appropriate doses, statins may have therapeutic applications for the treatment of osteoporosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mundy, G -- Garrett, R -- Harris, S -- Chan, J -- Chen, D -- Rossini, G -- Boyce, B -- Zhao, M -- Gutierrez, G -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1946-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉OsteoScreen, 2040 Babcock Road, San Antonio, TX 78229, USA. mundy@uthscsa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*drug effects ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/biosynthesis/genetics/pharmacology ; Cell Line ; Female ; Fibroblast Growth Factor 1 ; Fibroblast Growth Factor 2/pharmacology ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology ; Lovastatin/*pharmacology ; Male ; Mice ; Mice, Inbred ICR ; Organ Culture Techniques ; Osteoblasts/*drug effects/metabolism ; Osteoclasts/drug effects ; Osteogenesis/*drug effects ; Osteoporosis/drug therapy ; Ovariectomy ; Promoter Regions, Genetic/drug effects ; Rats ; Recombinant Proteins/pharmacology ; Simvastatin/*pharmacology ; Skull ; Transfection ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1999-12-22
    Description: Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyzes recycling of ribosomes after one round of protein synthesis. The crystal structure of RRF was determined at 2.55 angstrom resolution. The protein has an unusual fold where domain I is a long three-helix bundle and domain II is a three-layer beta/alpha/beta sandwich. The molecule superimposes almost perfectly with a transfer RNA (tRNA) except that the amino acid-binding 3' end is missing. The mimicry suggests that RRF interacts with the posttermination ribosomal complex in a similar manner to a tRNA, leading to disassembly of the complex. The structural arrangement of this mimicry is entirely different from that of other cases of less pronounced mimicry of tRNA so far described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selmer, M -- Al-Karadaghi, S -- Hirokawa, G -- Kaji, A -- Liljas, A -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, Post Office Box 124, SE-22100 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Elongation Factor G/chemistry ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; RNA, Bacterial/chemistry/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; RNA, Transfer, Phe/chemistry/metabolism ; Ribosomal Proteins ; Ribosomes/*metabolism ; Sequence Alignment ; Thermotoga maritima/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...