ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-04-16
    Description: A method involving electron paramagnetic resonance spectroscopy of a site-selectively spin-labeled peripheral membrane protein in the presence and absence of membranes and of a water-soluble spin relaxant (chromium oxalate) has been developed to determine how bee venom phospholipase A2 sits on the membrane. Theory based on the Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens of angstroms) from the spin probe to the membrane. The measurements define the interfacial binding surface of this secreted phospholipase A2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y -- Nielsen, R -- Murray, D -- Hubbell, W L -- Mailer, C -- Robinson, B H -- Gelb, M H -- GM32681/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- P30 ES07033/ES/NIEHS NIH HHS/ -- R01 CA052874/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1925-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Biochemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506941" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/chemistry ; Binding Sites ; Chromates ; Electron Spin Resonance Spectroscopy ; *Glycerophospholipids ; Liposomes ; Membrane Proteins/analysis/*chemistry/genetics/metabolism ; *Membranes, Artificial ; Models, Molecular ; Mutation ; Oxalates ; Phosphatidic Acids ; Phospholipases A/analysis/*chemistry/genetics/metabolism ; Phospholipases A2 ; Spin Labels ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-27
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartz, Thue W -- Hubbell, Wayne L -- R01 EY005216/EY/NEI NIH HHS/ -- R01 EY005216-26/EY/NEI NIH HHS/ -- England -- Nature. 2008 Sep 25;455(7212):473-4. doi: 10.1038/455473a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits/*chemistry/*metabolism ; Models, Molecular ; Protein Conformation ; Rhodopsin/chemistry/metabolism ; Rod Opsins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-06-01
    Description: Transmembrane proteins serve important biological functions, yet precise information on their secondary and tertiary structure is very limited. The boundaries and structures of membrane-embedded domains in integral membrane proteins can be determined by a method based on a combination of site-specific mutagenesis and nitroxide spin labeling. The application to one polypeptide segment in bacteriorhodopsin, a transmembrane chromoprotein that functions as a light-driven proton pump is described. Single cysteine residues were introduced at 18 consecutive positions (residues 125 to 142). Each mutant was reacted with a specific spin label and reconstituted into vesicles that were shown to be functional. The relative collision frequency of each spin label with freely diffusing oxygen and membrane-impermeant chromium oxalate was estimated with power saturation EPR (electron paramagnetic resonance) spectroscopy. The results indicate that residues 129 to 131 form a short water-exposed loop, while residues 132 to 142 are membrane-embedded. The oxygen accessibility for positions 131 to 138 varies with a periodicity of 3.6 residues, thereby providing a striking demonstration of an alpha helix. The orientation of this helical segment with respect to the remainder of the protein was determined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altenbach, C -- Marti, T -- Khorana, H G -- Hubbell, W L -- AI 11479/AI/NIAID NIH HHS/ -- EY05216/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, University of California, Los Angeles 90024-7008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160734" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacteriorhodopsins/genetics ; Cysteine/genetics ; Electron Spin Resonance Spectroscopy ; *Membrane Proteins/genetics ; Molecular Sequence Data ; Mutation ; Oxalates ; Oxalic Acid ; Oxygen ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-02-21
    Description: A class of regulators of eukaryotic gene expression contains a conserved amino acid sequence responsible for protein oligomerization and binding to DNA. This structure consists of an arginine- and lysine-rich basic region followed by a helix-loop-helix motif, which together mediate specific binding to DNA. Peptides were prepared that span this motif in the MyoD protein; in solution, they formed alpha-helical dimers and tetramers. They bound to DNA as dimers and their alpha-helical content increased on binding. Parallel and antiparallel four-helix models of the DNA-bound dimer were constructed. Peptides containing disulfide bonds were engineered to test the correctness of the two models. A disulfide that is compatible with the parallel model promotes specific interaction with DNA, whereas a disulfide compatible with the antiparallel model abolishes specific binding. Electron paramagnetic resonance (EPR) measurements of nitroxide-labeled peptides provided intersubunit distance measurements that also supported the parallel model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anthony-Cahill, S J -- Benfield, P A -- Fairman, R -- Wasserman, Z R -- Brenner, S L -- Stafford, W F 3rd -- Altenbach, C -- Hubbell, W L -- DeGrado, W F -- GM13731/GM/NIGMS NIH HHS/ -- GM14321/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 21;255(5047):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Department, DuPont Merck Pharmaceutical Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1312255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Circular Dichroism ; DNA-Binding Proteins/*chemistry ; Disulfides ; Electron Spin Resonance Spectroscopy ; Enhancer Elements, Genetic ; Gene Expression Regulation ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Regulatory Sequences, Nucleic Acid ; Sequence Alignment ; Transcription Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-08-09
    Description: The diphtheria toxin transmembrane (T) domain was spin-labeled at consecutive residues in a helical segment, TH9. After binding of the T domain to membranes at low pH, the nitroxide side chains generated by spin labeling were measured with respect to their frequency of collision with polar and nonpolar reagents. The data showed that the helical structure of TH9 in solution is conserved, with one face exposed to water and the other to the hydrophobic interior of the bilayer. Measurement of the depth of the nitroxide side chains from the membrane surfaces revealed an incremental change of about 5 angstroms per turn, which is consistent with a transmembrane orientation of an alpha helix. These results indicate that the helix forms the lining of a transmembrane water-filled channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oh, K J -- Zhan, H -- Cui, C -- Hideg, K -- Collier, R J -- Hubbell, W L -- AI-22021/AI/NIAID NIH HHS/ -- AI-22848/AI/NIAID NIH HHS/ -- EY-05216/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):810-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-7008, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670424" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Diphtheria Toxin/*chemistry/genetics ; Edetic Acid/analogs & derivatives ; Electron Spin Resonance Spectroscopy ; Hydrogen-Ion Concentration ; *Lipid Bilayers ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nickel ; Oxygen ; Phospholipids ; *Protein Structure, Secondary ; *Protein Structure, Tertiary ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-11-01
    Description: Conformational changes are thought to underlie the activation of heterotrimeric GTP-binding protein (G protein)-coupled receptors. Such changes in rhodopsin were explored by construction of double cysteine mutants, each containing one cysteine at the cytoplasmic end of helix C and one cysteine at various positions in the cytoplasmic end of helix F. Magnetic dipolar interactions between spin labels attached to these residues revealed their proximity, and changes in their interaction upon rhodopsin light activation suggested a rigid body movement of helices relative to one another. Disulfide cross-linking of the helices prevented activation of transducin, which suggests the importance of this movement for activation of rhodopsin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farrens, D L -- Altenbach, C -- Yang, K -- Hubbell, W L -- Khorana, H G -- EY05216/EY/NEI NIH HHS/ -- EY06465/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):768-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864113" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cysteine/chemistry ; Disulfides/chemistry ; Electron Spin Resonance Spectroscopy ; *Eye Proteins ; G-Protein-Coupled Receptor Kinase 1 ; *Light ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Phenanthrolines ; Protein Kinases/metabolism ; *Protein Structure, Secondary ; Rhodopsin/*chemistry/genetics/metabolism ; Serine Endopeptidases/metabolism ; Spin Labels ; Transducin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-11-26
    Description: Rhodopsin has been selectively spin-labeled near the cytoplasmic termini of helices C and G. Photoactivation with a light flash induces an electron paramagnetic resonance spectral change in the millisecond time domain, coincident with the appearance of the active metarhodopsin II intermediate. The spectral change is consistent with a small movement near the cytoplasmic termination of the C helix and reverses upon formation of the MIII state. These results provide an important link between the optical changes associated with the retinal chromophore and protein conformational states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farahbakhsh, Z T -- Hideg, K -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- EY07026/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Electron Spin Resonance Spectroscopy ; Light ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Rhodopsin/*chemistry ; Spin Labels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-02-12
    Description: To investigate the mechanism of interaction of the toxin colicin E1 with membranes, three cysteine substitution mutants and the wild type of the channel-forming fragment were spin labeled at the unique thiol. Time-resolved interaction of these labeled proteins with phospholipid vesicles was investigated with stopped-flow electron paramagnetic resonance spectroscopy. The fragment interacts with neutral bilayers at low pH, indicating that the interaction is hydrophobic rather than electrostatic. The interaction occurs in at least two distinct steps: (i) rapid adsorption to the surface; and (ii) slow, rate-limiting insertion of the hydrophobic central helices into the membrane interior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Y K -- Levinthal, C -- Levinthal, F -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):960-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382373" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Binding Sites ; Cell Membrane/*metabolism ; Colicins/chemistry/genetics/*metabolism ; Cysteine/genetics ; Electron Spin Resonance Spectroscopy ; Hydrogen-Ion Concentration ; Kinetics ; Lipid Bilayers/metabolism ; *Mutagenesis ; Peptide Fragments/metabolism ; Protein Structure, Secondary ; *Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-10-07
    Description: Bacteriorhodopsin was selectively spin labeled at residues 72, 101, or 105 after replacement of the native amino acids by cysteine. Only the electron paramagnetic resonance spectrum of the label at 101 was time-dependent during the photocycle. The spectral change rose with the decay of the M intermediate and fell with recovery of the ground state. The transient signal is interpreted as the result of movement in the C-D or E-F interhelical loop, or in both, coincident with protonation changes at the key aspartate 96 residue. These results link the optically characterized intermediates with localized conformational changes in bacteriorhodopsin during the photocycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinhoff, H J -- Mollaaghababa, R -- Altenbach, C -- Hideg, K -- Krebs, M -- Khorana, H G -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):105-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biophysik, Ruhr-Universitat Bochum, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939627" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/*chemistry/genetics ; Electron Spin Resonance Spectroscopy ; Light ; Models, Molecular ; Mutagenesis, Site-Directed ; *Protein Conformation ; Protein Structure, Secondary ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-20
    Description: G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein alpha subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dror, Ron O -- Mildorf, Thomas J -- Hilger, Daniel -- Manglik, Aashish -- Borhani, David W -- Arlow, Daniel H -- Philippsen, Ansgar -- Villanueva, Nicolas -- Yang, Zhongyu -- Lerch, Michael T -- Hubbell, Wayne L -- Kobilka, Brian K -- Sunahara, Roger K -- Shaw, David E -- P30EY00331/EY/NEI NIH HHS/ -- R01EY05216/EY/NEI NIH HHS/ -- R01GM083118/GM/NIGMS NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com. ; D. E. Shaw Research, New York, NY 10036, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. ; D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089515" target="_blank"〉PubMed〈/a〉
    Keywords: GTP-Binding Protein alpha Subunits, Gi-Go/*chemistry ; GTP-Binding Protein alpha Subunits, Gs/*chemistry ; Guanine Nucleotide Exchange Factors/*chemistry ; Humans ; Models, Chemical ; Molecular Dynamics Simulation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...