ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (67)
  • ASTROPHYSICS
  • Biochemistry and Biotechnology
  • Chemistry
  • Cloning, Molecular
  • EARTH RESOURCES AND REMOTE SENSING
  • Magnetism
  • Physics
  • American Association for the Advancement of Science (AAAS)  (107)
  • 2010-2014  (36)
  • 1980-1984  (71)
  • 1925-1929
  • 2014  (36)
  • 1984  (71)
Collection
Keywords
Publisher
Years
  • 2010-2014  (36)
  • 1980-1984  (71)
  • 1925-1929
Year
  • 1
    Publication Date: 2014-04-12
    Description: Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costa, Liliana M -- Marshall, Eleanor -- Tesfaye, Mesfin -- Silverstein, Kevin A T -- Mori, Masashi -- Umetsu, Yoshitaka -- Otterbach, Sophie L -- Papareddy, Ranjith -- Dickinson, Hugh G -- Boutiller, Kim -- VandenBosch, Kathryn A -- Ohki, Shinya -- Gutierrez-Marcos, Jose F -- BB/F008082/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/L003023/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/L003023/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):168-72. doi: 10.1126/science.1243005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24723605" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*embryology/genetics ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; *Body Patterning ; Endosperm/embryology/genetics ; Flowers/*embryology/genetics ; Gene Duplication ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gene Knockout Techniques ; Interleukin-1 Receptor-Associated Kinases/metabolism ; MAP Kinase Kinase Kinases/metabolism ; Molecular Sequence Data ; Peptides/chemistry/genetics/metabolism ; Seeds/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-23
    Description: Ribonucleotide reductase (RNR) supplies the balanced pools of deoxynucleotide triphosphates (dNTPs) necessary for DNA replication and maintenance of genomic integrity. RNR is subject to allosteric regulatory mechanisms in all eukaryotes, as well as to control by small protein inhibitors Sml1p and Spd1p in budding and fission yeast, respectively. Here, we show that the metazoan protein IRBIT forms a deoxyadenosine triphosphate (dATP)-dependent complex with RNR, which stabilizes dATP in the activity site of RNR and thus inhibits the enzyme. Formation of the RNR-IRBIT complex is regulated through phosphorylation of IRBIT, and ablation of IRBIT expression in HeLa cells causes imbalanced dNTP pools and altered cell cycle progression. We demonstrate a mechanism for RNR regulation in higher eukaryotes that acts by enhancing allosteric RNR inhibition by dATP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnaoutov, Alexei -- Dasso, Mary -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1512-5. doi: 10.1126/science.1251550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. arnaouta@mail.nih.gov. ; Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237103" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalytic Domain ; Deoxyadenine Nucleotides/*metabolism ; HeLa Cells ; Humans ; Immunoprecipitation ; Lectins, C-Type/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Ribonucleotide Reductases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-26
    Description: Using light to silence electrical activity in targeted cells is a major goal of optogenetics. Available optogenetic proteins that directly move ions to achieve silencing are inefficient, pumping only a single ion per photon across the cell membrane rather than allowing many ions per photon to flow through a channel pore. Building on high-resolution crystal-structure analysis, pore vestibule modeling, and structure-guided protein engineering, we designed and characterized a class of channelrhodopsins (originally cation-conducting) converted into chloride-conducting anion channels. These tools enable fast optical inhibition of action potentials and can be engineered to display step-function kinetics for stable inhibition, outlasting light pulses and for orders-of-magnitude-greater light sensitivity of inhibited cells. The resulting family of proteins defines an approach to more physiological, efficient, and sensitive optogenetic inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berndt, Andre -- Lee, Soo Yeun -- Ramakrishnan, Charu -- Deisseroth, Karl -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH075957/MH/NIMH NIH HHS/ -- R01 MH086373/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763591" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CA1 Region, Hippocampal/cytology ; CA3 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neurons/*physiology ; Optogenetics ; Patch-Clamp Techniques ; Protein Engineering ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-22
    Description: The development of cells specialized for water conduction or support is a striking innovation of plants that has enabled them to colonize land. The NAC transcription factors regulate the differentiation of these cells in vascular plants. However, the path by which plants with these cells have evolved from their nonvascular ancestors is unclear. We investigated genes of the moss Physcomitrella patens that encode NAC proteins. Loss-of-function mutants formed abnormal water-conducting and supporting cells, as well as malformed sporophyte cells, and overexpression induced ectopic differentiation of water-conducting-like cells. Our results show conservation of transcriptional regulation and cellular function between moss and Arabidopsis thaliana water-conducting cells. The conserved genetic basis suggests roles for NAC proteins in the adaptation of plants to land.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Bo -- Ohtani, Misato -- Yamaguchi, Masatoshi -- Toyooka, Kiminori -- Wakazaki, Mayumi -- Sato, Mayuko -- Kubo, Minoru -- Nakano, Yoshimi -- Sano, Ryosuke -- Hiwatashi, Yuji -- Murata, Takashi -- Kurata, Tetsuya -- Yoneda, Arata -- Kato, Ko -- Hasebe, Mitsuyasu -- Demura, Taku -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1505-8. doi: 10.1126/science.1248417. Epub 2014 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24652936" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Amino Acid Sequence ; Arabidopsis/genetics/*physiology ; Bryopsida/genetics/*physiology ; *Gene Expression Regulation, Plant ; Genetic Loci ; Genome, Plant ; Molecular Sequence Data ; Plant Proteins/genetics/*physiology ; Plant Stems/growth & development ; Trans-Activators/genetics/*physiology ; Transcription, Genetic ; Water/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-26
    Description: Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, Maude W -- Toda, Yasuka -- Nakagita, Tomoya -- O'Connell, Mary J -- Klasing, Kirk C -- Misaka, Takumi -- Edwards, Scott V -- Liberles, Stephen D -- R01 DC013289/DC/NIDCD NIH HHS/ -- R01DC013289/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):929-33. doi: 10.1126/science.1255097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu. ; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan. ; Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. ; Department of Animal Science, University of California, Davis, Davis, CA 95616, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Evolution, Molecular ; Mice ; Molecular Sequence Data ; Plant Nectar ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/classification/*genetics ; Taste/*physiology ; Taste Perception/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-26
    Description: The hierarchical packaging of eukaryotic chromatin plays a central role in transcriptional regulation and other DNA-related biological processes. Here, we report the 11-angstrom-resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths. The structures show a histone H1-dependent left-handed twist of the repeating tetranucleosomal structural units, within which the four nucleosomes zigzag back and forth with a straight linker DNA. The asymmetric binding and the location of histone H1 in chromatin play a role in the formation of the 30-nanometer fiber. Our results provide mechanistic insights into how nucleosomes compact into higher-order chromatin fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Feng -- Chen, Ping -- Sun, Dapeng -- Wang, Mingzhu -- Dong, Liping -- Liang, Dan -- Xu, Rui-Ming -- Zhu, Ping -- Li, Guohong -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):376-80. doi: 10.1126/science.1251413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/*ultrastructure ; Cryoelectron Microscopy ; DNA/chemistry/*ultrastructure ; Histones/*chemistry/metabolism ; Imaging, Three-Dimensional ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleosomes/*ultrastructure ; Protein Conformation ; Recombinant Proteins/chemistry/metabolism ; Xenopus Proteins/chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-18
    Description: Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, Ryo -- Sumida, Kumiko -- Yoshii, Tomoaki -- Ohyama, Kentaro -- Shinohara, Hidefumi -- Matsubayashi, Yoshikatsu -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):343-6. doi: 10.1126/science.1257800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ; Department of Applied Molecular Biosciences, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. matsu@bio.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Molecular Sequence Data ; Nitrogen/*metabolism ; Peptides/*metabolism ; Plant Roots/genetics/*growth & development/metabolism ; Plant Shoots/genetics/*growth & development/metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-26
    Description: Proteins that cap the ends of the actin filament are essential regulators of cytoskeleton dynamics. Whereas several proteins cap the rapidly growing barbed end, tropomodulin (Tmod) is the only protein known to cap the slowly growing pointed end. The lack of structural information severely limits our understanding of Tmod's capping mechanism. We describe crystal structures of actin complexes with the unstructured amino-terminal and the leucine-rich repeat carboxy-terminal domains of Tmod. The structures and biochemical analysis of structure-inspired mutants showed that one Tmod molecule interacts with three actin subunits at the pointed end, while also contacting two tropomyosin molecules on each side of the filament. We found that Tmod achieves high-affinity binding through several discrete low-affinity interactions, which suggests a mechanism for controlled subunit exchange at the pointed end.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, Jampani Nageswara -- Madasu, Yadaiah -- Dominguez, Roberto -- GM-0080/GM/NIGMS NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. droberto@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061212" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry ; Actins/*chemistry ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Tropomodulin/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-29
    Description: The existence of BRCA1 was proven in 1990 by mapping predisposition to young-onset breast cancer in families to chromosome 17q21. Knowing that such a gene existed and approximately where it lay triggered efforts by public and private groups to clone and sequence it. The press baptized the competition "the race" and reported on it in detail for the next 4 years. BRCA1 was positionally cloned in September 1994. Twenty years later, I reflect on "the race" and its consequences for breast cancer prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Mary-Claire -- R01 CA157744/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1462-5. doi: 10.1126/science.1251900.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24675952" target="_blank"〉PubMed〈/a〉
    Keywords: BRCA1 Protein/*genetics/history ; Breast Neoplasms/*genetics/history ; Chromosome Mapping ; Chromosomes, Human, Pair 17/*genetics ; Cloning, Molecular ; Female ; Genetic Linkage ; History, 20th Century ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-01-18
    Description: Transcription factors (TFs) are key players in evolution. Changes affecting their function can yield novel life forms but may also have deleterious effects. Consequently, gene duplication events that release one gene copy from selective pressure are thought to be the common mechanism by which TFs acquire new activities. Here, we show that LEAFY, a major regulator of flower development and cell division in land plants, underwent changes to its DNA binding specificity, even though plant genomes generally contain a single copy of the LEAFY gene. We examined how these changes occurred at the structural level and identify an intermediate LEAFY form in hornworts that appears to adopt all different specificities. This promiscuous intermediate could have smoothed the evolutionary transitions, thereby allowing LEAFY to evolve new binding specificities while remaining a single-copy gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sayou, Camille -- Monniaux, Marie -- Nanao, Max H -- Moyroud, Edwige -- Brockington, Samuel F -- Thevenon, Emmanuel -- Chahtane, Hicham -- Warthmann, Norman -- Melkonian, Michael -- Zhang, Yong -- Wong, Gane Ka-Shu -- Weigel, Detlef -- Parcy, Francois -- Dumas, Renaud -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):645-8. doi: 10.1126/science.1248229. Epub 2014 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Laboratoire de Physiologie Cellulaire et Vegetale (LPCV), UMR 5168, 38054 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/chemistry/classification/genetics ; DNA, Plant/*chemistry ; DNA-Binding Proteins/*chemistry/classification/*genetics ; Electrophoretic Mobility Shift Assay ; *Evolution, Molecular ; Gene Dosage ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Proteins/*chemistry/classification/*genetics ; Protein Binding/genetics ; Protein Structure, Tertiary ; Species Specificity ; Transcription Factors/chemistry/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2014 May 30;344(6187):954-5. doi: 10.1126/science.344.6187.954.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876470" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Engineering/*instrumentation ; Biomedical Research/*instrumentation ; Brain/*physiology ; Humans ; Neurosciences/economics/*trends ; Physical Phenomena ; Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-07-12
    Description: Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic infection. We compared, for 137 linked transmission pairs, the amino acid sequences encoded by non-envelope genes of viruses in both partners and demonstrate a selection bias for transmission of residues that are predicted to confer increased in vivo fitness on viruses in the newly infected, immunologically naive recipient. Although tempered by transmission risk factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias provides an overall transmission advantage for viral quasispecies that are dominated by viruses with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally reduce viral fitness may lower the overall transmission rates and offer long-term benefits even upon successful transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289910/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289910/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlson, Jonathan M -- Schaefer, Malinda -- Monaco, Daniela C -- Batorsky, Rebecca -- Claiborne, Daniel T -- Prince, Jessica -- Deymier, Martin J -- Ende, Zachary S -- Klatt, Nichole R -- DeZiel, Charles E -- Lin, Tien-Ho -- Peng, Jian -- Seese, Aaron M -- Shapiro, Roger -- Frater, John -- Ndung'u, Thumbi -- Tang, Jianming -- Goepfert, Paul -- Gilmour, Jill -- Price, Matt A -- Kilembe, William -- Heckerman, David -- Goulder, Philip J R -- Allen, Todd M -- Allen, Susan -- Hunter, Eric -- 2P51RR000165-51/RR/NCRR NIH HHS/ -- G108/626/Medical Research Council/United Kingdom -- OD P51OD11132/OD/NIH HHS/ -- P01-AI074415/AI/NIAID NIH HHS/ -- P30 AI050409/AI/NIAID NIH HHS/ -- P51 OD010425/OD/NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- P51RR165/RR/NCRR NIH HHS/ -- R01 AI064060/AI/NIAID NIH HHS/ -- R01 AI64060/AI/NIAID NIH HHS/ -- R37 AI051231/AI/NIAID NIH HHS/ -- R37 AI51231/AI/NIAID NIH HHS/ -- T32 AI007387/AI/NIAID NIH HHS/ -- T32-AI007387/AI/NIAID NIH HHS/ -- U01 AI 66454/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):1254031. doi: 10.1126/science.1254031. Epub 2014 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microsoft Research, Redmond, WA 98052, USA. carlson@microsoft.com ehunte4@emory.edu. ; Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. ; Microsoft Research, Redmond, WA 98052, USA. ; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 7BN, UK. National Institute of Health Research, Oxford Biomedical Research Centre, Oxford OX3 7LE, UK. Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK. ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa. Max Planck Institute for Infection Biology, D-10117 Berlin, Germany. ; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA. ; International AIDS Vaccine Initiative, London SW10 9NH, UK. Imperial College of Science Technology and Medicine, London SW10 9NH, UK. ; International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94105, USA. ; Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. ; Microsoft Research, Los Angeles, CA 98117, USA. ; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK. ; Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA. ; International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Microsoft Research, Los Angeles, CA 98117, USA. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK. ; Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. carlson@microsoft.com ehunte4@emory.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Consensus Sequence ; DNA Mutational Analysis ; Disease Transmission, Infectious/statistics & numerical data ; Female ; HIV Infections/*transmission ; HIV-1/*genetics ; *Heterosexuality ; High-Throughput Nucleotide Sequencing ; Human Immunodeficiency Virus Proteins/genetics ; Humans ; Male ; Models, Statistical ; Molecular Sequence Data ; Point Mutation ; Risk Factors ; *Selection, Genetic ; Viral Load
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cappellini, Enrico -- Collins, Matthew J -- Gilbert, M Thomas P -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1320-2. doi: 10.1126/science.1249274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653025" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Databases, Protein ; Fossils ; Humans ; *Mass Spectrometry/instrumentation/methods ; Mummies ; Proteins/*chemistry/isolation & purification ; Proteolysis ; Proteomics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-11-22
    Description: Chromosome segregation depends on sister chromatid cohesion mediated by cohesin. The cohesin subunits Smc1, Smc3, and Scc1 form tripartite rings that are thought to open at distinct sites to allow entry and exit of DNA. However, direct evidence for the existence of open forms of cohesin is lacking. We found that cohesin's proposed DNA exit gate is formed by interactions between Scc1 and the coiled-coil region of Smc3. Mutation of this interface abolished cohesin's ability to stably associate with chromatin and to mediate cohesion. Electron microscopy revealed that weakening of the Smc3-Scc1 interface resulted in opening of cohesin rings, as did proteolytic cleavage of Scc1. These open forms may resemble intermediate states of cohesin normally generated by the release factor Wapl and the protease separase, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huis in 't Veld, Pim J -- Herzog, Franz -- Ladurner, Rene -- Davidson, Iain F -- Piric, Sabina -- Kreidl, Emanuel -- Bhaskara, Venugopal -- Aebersold, Ruedi -- Peters, Jan-Michael -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):968-72. doi: 10.1126/science.1256904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria. ; Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. Department of Biochemistry, Gene Center, Ludwig-Maximilian University, 81377 Munich, Germany. ; Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria. peters@imp.ac.at.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25414306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Chondroitin Sulfate Proteoglycans/chemistry/genetics/*metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; *Chromosome Segregation ; DNA/*metabolism ; DNA Replication ; Humans ; Mass Spectrometry ; Microscopy, Electron ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/genetics/metabolism ; Separase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-01-11
    Description: It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauli, Andrea -- Norris, Megan L -- Valen, Eivind -- Chew, Guo-Liang -- Gagnon, James A -- Zimmerman, Steven -- Mitchell, Andrew -- Ma, Jiao -- Dubrulle, Julien -- Reyon, Deepak -- Tsai, Shengdar Q -- Joung, J Keith -- Saghatelian, Alan -- Schier, Alexander F -- K99 HD076935/HD/NICHD NIH HHS/ -- R01 GM056211/GM/NIGMS NIH HHS/ -- R01 GM102491/GM/NIGMS NIH HHS/ -- R01 HG005111/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):1248636. doi: 10.1126/science.1248636. Epub 2014 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24407481" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cell Movement ; Chemokine CXCL12/metabolism ; Frameshift Mutation ; Gastrulation/genetics/*physiology ; Molecular Sequence Data ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-10-18
    Description: Small molecules are useful tools for probing the biological function and therapeutic potential of individual proteins, but achieving selectivity is challenging when the target protein shares structural domains with other proteins. The Bromo and Extra-Terminal (BET) proteins have attracted interest because of their roles in transcriptional regulation, epigenetics, and cancer. The BET bromodomains (protein interaction modules that bind acetyl-lysine) have been targeted by potent small-molecule inhibitors, but these inhibitors lack selectivity for individual family members. We developed an ethyl derivative of an existing small-molecule inhibitor, I-BET/JQ1, and showed that it binds leucine/alanine mutant bromodomains with nanomolar affinity and achieves up to 540-fold selectivity relative to wild-type bromodomains. Cell culture studies showed that blockade of the first bromodomain alone is sufficient to displace a specific BET protein, Brd4, from chromatin. Expansion of this approach could help identify the individual roles of single BET proteins in human physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baud, Matthias G J -- Lin-Shiao, Enrique -- Cardote, Teresa -- Tallant, Cynthia -- Pschibul, Annica -- Chan, Kwok-Ho -- Zengerle, Michael -- Garcia, Jordi R -- Kwan, Terence T-L -- Ferguson, Fleur M -- Ciulli, Alessio -- 097945/Z/11/Z/Wellcome Trust/United Kingdom -- 100476/Z/12/Z/Wellcome Trust/United Kingdom -- BB/G023123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J001201/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):638-41. doi: 10.1126/science.1249830. Epub 2014 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. a.ciulli@dundee.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25323695" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azepines/chemistry/pharmacology ; Cell Line, Tumor ; Chromatin/chemistry ; Crystallography, X-Ray ; Humans ; Leucine/genetics ; Models, Molecular ; Molecular Probes/*chemistry ; Mutation ; Nuclear Proteins/antagonists & inhibitors/*chemistry/genetics ; Protein Engineering/*methods ; Protein Structure, Tertiary ; Transcription Factors/antagonists & inhibitors/*chemistry/genetics ; Triazoles/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-03-29
    Description: The cloning of the breast cancer susceptibility genes BRCA1 and BRCA2 nearly two decades ago helped set in motion an avalanche of research exploring how genomic information can be optimally applied to identify and clinically care for individuals with a high risk of developing cancer. Genetic testing for mutations in BRCA1, BRCA2, and other breast cancer susceptibility genes has since proved to be a valuable tool for determining eligibility for enhanced screening and prevention strategies, as well as for identifying patients most likely to benefit from a targeted therapy. Here, we discuss the landscape of inherited mutations and sequence variants in BRCA1 and BRCA2, the complexities of determining disease risk when the pathogenicity of sequence variants is uncertain, and current strategies for clinical management of women who carry BRCA1/2 mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couch, Fergus J -- Nathanson, Katherine L -- Offit, Kenneth -- 3P30CA008748-47/CA/NCI NIH HHS/ -- CA016520/CA/NCI NIH HHS/ -- CA116167/CA/NCI NIH HHS/ -- CA116201/CA/NCI NIH HHS/ -- CA128978/CA/NCI NIH HHS/ -- CA135509/CA/NCI NIH HHS/ -- P50 CA116201/CA/NCI NIH HHS/ -- R01 CA128978/CA/NCI NIH HHS/ -- R01 CA135509/CA/NCI NIH HHS/ -- U01 CA116167/CA/NCI NIH HHS/ -- U01 CA164947/CA/NCI NIH HHS/ -- U01CA164947/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1466-70. doi: 10.1126/science.1251827.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24675953" target="_blank"〉PubMed〈/a〉
    Keywords: BRCA1 Protein/*genetics ; BRCA2 Protein/*genetics ; Breast Neoplasms/*drug therapy/genetics/prevention & control ; Cloning, Molecular ; Female ; *Genetic Predisposition to Disease ; Humans ; Models, Genetic ; Mutation ; *Precision Medicine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-11-22
    Description: Through their association with a kleisin subunit (Scc1), cohesin's Smc1 and Smc3 subunits are thought to form tripartite rings that mediate sister chromatid cohesion. Unlike the structure of Smc1/Smc3 and Smc1/Scc1 interfaces, that of Smc3/Scc1 is not known. Disconnection of this interface is thought to release cohesin from chromosomes in a process regulated by acetylation. We show here that the N-terminal domain of yeast Scc1 contains two alpha helices, forming a four-helix bundle with the coiled coil emerging from Smc3's adenosine triphosphatase head. Mutations affecting this interaction compromise cohesin's association with chromosomes. The interface is far from Smc3 residues, whose acetylation prevents cohesin's dissociation from chromosomes. Cohesin complexes holding chromatids together in vivo do indeed have the configuration of hetero-trimeric rings, and sister DNAs are entrapped within these.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gligoris, Thomas G -- Scheinost, Johanna C -- Burmann, Frank -- Petela, Naomi -- Chan, Kok-Lung -- Uluocak, Pelin -- Beckouet, Frederic -- Gruber, Stephan -- Nasmyth, Kim -- Lowe, Jan -- 091859/Z/10/Z/Wellcome Trust/United Kingdom -- 095514/Wellcome Trust/United Kingdom -- 095514/Z/11/Z/Wellcome Trust/United Kingdom -- C573/A 12386/Cancer Research UK/United Kingdom -- C573/A11625/Medical Research Council/United Kingdom -- MC_U105184326/Medical Research Council/United Kingdom -- U10518432/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):963-7. doi: 10.1126/science.1256917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. ; Max-Planck-Institut fur Biochemie, 82152, Martinsried, Germany. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. Medical Research Council (MRC) Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. Dunn School of Pathology, University of Oxford, Oxford OX1 3RF, UK. ; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK. kim.nasmyth@bioch.ox.ac.uk jyl@mrc-lmb.cam.ac.uk. ; MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK. kim.nasmyth@bioch.ox.ac.uk jyl@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25414305" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry ; Amino Acid Sequence ; Cell Cycle Proteins/*chemistry/genetics ; Chromosomal Proteins, Non-Histone/*chemistry/genetics ; Conserved Sequence ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA/chemistry ; Mutation ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-12-20
    Description: Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perica, Tina -- Kondo, Yasushi -- Tiwari, Sandhya P -- McLaughlin, Stephen H -- Kemplen, Katherine R -- Zhang, Xiuwei -- Steward, Annette -- Reuter, Nathalie -- Clarke, Jane -- Teichmann, Sarah A -- 095195/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1254346. doi: 10.1126/science.1254346.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Department of Molecular Biology, University of Bergen University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. saraht@ebi.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525255" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/*genetics ; Amino Acid Sequence ; Bacillus subtilis/metabolism ; Bacterial Proteins/*chemistry/genetics ; Conserved Sequence ; *Evolution, Molecular ; Ligands ; Mutation ; Pentosyltransferases/*chemistry/genetics ; Protein Binding/genetics ; Protein Conformation ; *Protein Engineering ; Protein Multimerization/*genetics ; Repressor Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-04-20
    Description: Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic beta-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Hiroshi -- Nishizawa, Tomohiro -- Tani, Kazutoshi -- Yamazaki, Yuji -- Tamura, Atsushi -- Ishitani, Ryuichiro -- Dohmae, Naoshi -- Tsukita, Sachiko -- Nureki, Osamu -- Fujiyoshi, Yoshinori -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):304-7. doi: 10.1126/science.1248571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744376" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Claudins/*chemistry ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Static Electricity ; Tight Junctions/*chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-08-16
    Description: Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuryn, Steven -- Ahier, Arnaud -- Portoso, Manuela -- White, Esther Redhouse -- Morin, Marie-Charlotte -- Margueron, Raphael -- Jarriault, Sophie -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):826-9. doi: 10.1126/science.1255885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. ; Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France. ; Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. sophie@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124442" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/*cytology/genetics ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Dedifferentiation ; Cell Nucleus/metabolism/ultrastructure ; *Cell Transdifferentiation ; Digestive System/cytology ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/genetics/*metabolism ; Histones/*metabolism ; Lysine/metabolism ; Methylation ; Models, Biological ; Molecular Sequence Data ; Motor Neurons/*cytology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-17
    Description: Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barber, Matthew F -- Elde, Nels C -- 1F32GM108288/GM/NIGMS NIH HHS/ -- GM090042/GM/NIGMS NIH HHS/ -- R00 GM090042/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1362-6. doi: 10.1126/science.1259329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. nelde@genetics.utah.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504720" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Evolution, Molecular ; Haemophilus influenzae/*metabolism ; Haplorhini/*genetics/immunology/*metabolism ; Humans ; Immunity, Innate ; Models, Molecular ; Molecular Sequence Data ; Neisseria/*metabolism ; Neisseria gonorrhoeae/metabolism ; Neisseria meningitidis/metabolism ; Phylogeny ; Polymorphism, Genetic ; Protein Binding ; Selection, Genetic ; Transferrin/chemistry/*genetics/*metabolism ; Transferrin-Binding Protein A/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-06-21
    Description: Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatziioannou, Theodora -- Del Prete, Gregory Q -- Keele, Brandon F -- Estes, Jacob D -- McNatt, Matthew W -- Bitzegeio, Julia -- Raymond, Alice -- Rodriguez, Anthony -- Schmidt, Fabian -- Mac Trubey, C -- Smedley, Jeremy -- Piatak, Michael Jr -- KewalRamani, Vineet N -- Lifson, Jeffrey D -- Bieniasz, Paul D -- HHSN261200800001E/PHS HHS/ -- R01 AI050111/AI/NIAID NIH HHS/ -- R01 AI078788/AI/NIAID NIH HHS/ -- R01AI078788/AI/NIAID NIH HHS/ -- R01AI50111/AI/NIAID NIH HHS/ -- R37 AI064003/AI/NIAID NIH HHS/ -- R37AI64003/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1401-5. doi: 10.1126/science.1250761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. ; Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. Howard Hughes Medical Institute, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948736" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology/transmission/*virology ; Amino Acid Sequence ; Animals ; Antigens, CD8/immunology ; CD4-Positive T-Lymphocytes/immunology ; *Disease Models, Animal ; HIV-1/genetics/*physiology ; Host-Pathogen Interactions/*immunology ; Human Immunodeficiency Virus Proteins/chemistry/genetics/metabolism ; Lymphocyte Depletion ; Macaca nemestrina/immunology/*virology ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Regulatory and Accessory Proteins/chemistry/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brenner, Sydney -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):262. doi: 10.1126/science.1249912.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436413" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry ; England ; History, 20th Century ; History, 21st Century ; Molecular Biology/*history ; *Nobel Prize ; Sequence Analysis, DNA/*history/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-03-22
    Description: Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morais, Vanessa A -- Haddad, Dominik -- Craessaerts, Katleen -- De Bock, Pieter-Jan -- Swerts, Jef -- Vilain, Sven -- Aerts, Liesbeth -- Overbergh, Lut -- Grunewald, Anne -- Seibler, Philip -- Klein, Christine -- Gevaert, Kris -- Verstreken, Patrik -- De Strooper, Bart -- New York, N.Y. -- Science. 2014 Apr 11;344(6180):203-7. doi: 10.1126/science.1249161. Epub 2014 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉VIB Center for the Biology of Disease, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24652937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/enzymology ; Drosophila Proteins/*metabolism ; Electron Transport Complex I/*metabolism ; Humans ; Liver/enzymology ; Membrane Potential, Mitochondrial/genetics ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; NADH Dehydrogenase/*metabolism ; Parkinson Disease/*enzymology/*genetics ; Phosphorylation/genetics ; Protein Kinases/*genetics ; Proteome ; Serine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-05-17
    Description: Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, Andrew J -- Dai, Wei -- O'Mara, Megan L -- Abankwa, Daniel -- Chhabra, Yash -- Pelekanos, Rebecca A -- Gardon, Olivier -- Tunny, Kathryn A -- Blucher, Kristopher M -- Morton, Craig J -- Parker, Michael W -- Sierecki, Emma -- Gambin, Yann -- Gomez, Guillermo A -- Alexandrov, Kirill -- Wilson, Ian A -- Doxastakis, Manolis -- Mark, Alan E -- Waters, Michael J -- New York, N.Y. -- Science. 2014 May 16;344(6185):1249783. doi: 10.1126/science.1249783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. m.waters@uq.edu.au a.brooks@uq.edu.au. ; Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA. ; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia. ; Scripps Research Institute, La Jolla, CA 92037, USA. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833397" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Cysteine/chemistry ; Enzyme Activation ; HEK293 Cells ; Humans ; Janus Kinase 2/antagonists & inhibitors/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Somatotropin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-02-18
    Description: In this work, we investigate morphological differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta, which has dissected leaves comprising distinct leaflets. With the use of genetics, interspecific gene transfers, and time-lapse imaging, we show that leaflet development requires the REDUCED COMPLEXITY (RCO) homeodomain protein. RCO functions specifically in leaves, where it sculpts developing leaflets by repressing growth at their flanks. RCO evolved in the Brassicaceae family through gene duplication and was lost in A. thaliana, contributing to leaf simplification in this species. Species-specific RCO action with respect to its paralog results from its distinct gene expression pattern in the leaf base. Thus, regulatory evolution coupled with gene duplication and loss generated leaf shape diversity by modifying local growth patterns during organogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vlad, Daniela -- Kierzkowski, Daniel -- Rast, Madlen I -- Vuolo, Francesco -- Dello Ioio, Raffaele -- Galinha, Carla -- Gan, Xiangchao -- Hajheidari, Mohsen -- Hay, Angela -- Smith, Richard S -- Huijser, Peter -- Bailey, C Donovan -- Tsiantis, Miltos -- BB/H006974/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H011455/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):780-3. doi: 10.1126/science.1248384.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531971" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/anatomy & histology/genetics ; Brassicaceae/*anatomy & histology/*genetics ; Chromosome Mapping ; *Evolution, Molecular ; Gene Duplication ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genetic Complementation Test ; Molecular Sequence Data ; Plant Leaves/*anatomy & histology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-03-15
    Description: Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically "reads" alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049228/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049228/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacob, Yannick -- Bergamin, Elisa -- Donoghue, Mark T A -- Mongeon, Vanessa -- LeBlanc, Chantal -- Voigt, Philipp -- Underwood, Charles J -- Brunzelle, Joseph S -- Michaels, Scott D -- Reinberg, Danny -- Couture, Jean-Francois -- Martienssen, Robert A -- BMA-355900/Canadian Institutes of Health Research/Canada -- GM064844/GM/NIGMS NIH HHS/ -- GM067014/GM/NIGMS NIH HHS/ -- GM075060/GM/NIGMS NIH HHS/ -- R01 GM067014/GM/NIGMS NIH HHS/ -- R01 GM075060/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- R37GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1249-53. doi: 10.1126/science.1248357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626927" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/*chemistry/metabolism ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; DNA Replication ; Epigenesis, Genetic ; Gene Expression Regulation, Plant ; Heterochromatin/*metabolism ; Histones/*metabolism ; Methylation ; Methyltransferases/*chemistry/metabolism ; Mitosis ; Molecular Sequence Data ; *Protein Processing, Post-Translational ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-06-28
    Description: Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor alpha-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Herbert, Andrew S -- Kuehne, Ana I -- Wirchnianski, Ariel S -- Soh, Timothy K -- Stubbs, Sarah H -- Janssen, Hans -- Damme, Markus -- Saftig, Paul -- Whelan, Sean P -- Dye, John M -- Brummelkamp, Thijn R -- AI081842/AI/NIAID NIH HHS/ -- AI109740/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI109740/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; Biochemisches Institut, Christian Albrechts-Universitat Kiel, 24118 Kiel, Germany. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Cells, Cultured ; Chickens ; Dystroglycans/genetics/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Lassa Fever/virology ; Lassa virus/*physiology ; Lysosomal-Associated Membrane Protein 1/chemistry/*metabolism ; Lysosomes/metabolism/virology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein Binding ; Receptors, Virus/*metabolism ; Sialyltransferases/metabolism ; Viral Envelope Proteins/*metabolism ; *Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-03-22
    Description: The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane alpha helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaremko, Lukasz -- Jaremko, Mariusz -- Giller, Karin -- Becker, Stefan -- Zweckstetter, Markus -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysikalische Chemie, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; Cholesterol/metabolism ; Hydrophobic and Hydrophilic Interactions ; Isoquinolines/*chemistry/metabolism ; Ligands ; Mice ; Micelles ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, GABA/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-06-07
    Description: Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157056/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157056/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Yu -- Xie, Min -- Chen, Wenbin -- Talbot, Richard -- Maddox, Jillian F -- Faraut, Thomas -- Wu, Chunhua -- Muzny, Donna M -- Li, Yuxiang -- Zhang, Wenguang -- Stanton, Jo-Ann -- Brauning, Rudiger -- Barris, Wesley C -- Hourlier, Thibaut -- Aken, Bronwen L -- Searle, Stephen M J -- Adelson, David L -- Bian, Chao -- Cam, Graham R -- Chen, Yulin -- Cheng, Shifeng -- DeSilva, Udaya -- Dixen, Karen -- Dong, Yang -- Fan, Guangyi -- Franklin, Ian R -- Fu, Shaoyin -- Fuentes-Utrilla, Pablo -- Guan, Rui -- Highland, Margaret A -- Holder, Michael E -- Huang, Guodong -- Ingham, Aaron B -- Jhangiani, Shalini N -- Kalra, Divya -- Kovar, Christie L -- Lee, Sandra L -- Liu, Weiqing -- Liu, Xin -- Lu, Changxin -- Lv, Tian -- Mathew, Tittu -- McWilliam, Sean -- Menzies, Moira -- Pan, Shengkai -- Robelin, David -- Servin, Bertrand -- Townley, David -- Wang, Wenliang -- Wei, Bin -- White, Stephen N -- Yang, Xinhua -- Ye, Chen -- Yue, Yaojing -- Zeng, Peng -- Zhou, Qing -- Hansen, Jacob B -- Kristiansen, Karsten -- Gibbs, Richard A -- Flicek, Paul -- Warkup, Christopher C -- Jones, Huw E -- Oddy, V Hutton -- Nicholas, Frank W -- McEwan, John C -- Kijas, James W -- Wang, Jun -- Worley, Kim C -- Archibald, Alan L -- Cockett, Noelle -- Xu, Xun -- Wang, Wen -- Dalrymple, Brian P -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- BB/1025360/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025360/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025506/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- U54 HG003273/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1168-73. doi: 10.1126/science.1252806.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; Ediburgh Genomics, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK. ; Utah State University, Logan, UT 84322-4815, USA. ; Institut National de la Recherche Agronomique, Laboratoire de Genetique Cellulaire, UMR 444, Castanet-Tolosan F-31326, France. ; Utah State University, Logan, UT 84322-1435, USA. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. ; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. Inner Mongolia Agricultural University, Hohhot 010018, China. Institute of ATCG, Nei Mongol Bio-Information, Hohhot, China. ; Department of Anatomy, University of Otago, Dunedin 9054, New Zealand. ; AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand. ; Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. ; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China. ; Department of Biology, University of Copenhagen, DK-2100 Copenhagen O, Denmark. ; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. ; Inner Mongolia Agricultural University, Hohhot 010018, China. ; U.S. Department of Agriculture Agricultural Research Service Animal Disease Research Unit, Pullman, WA 99164, USA. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA. ; BGI-Shenzhen, Shenzhen 518083, China. Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China. ; Lanzhou Institute of Husbandry and Pharmaceutical Science, Lanzhou, 730050, China. ; Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. ; Biosciences Knowledge Transfer Network, The Roslin Institute, Easter Bush, Midlothian, EH25 9RG, UK. ; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. ; Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia. ; BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Macau 999078, China. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; Utah State University, Logan, UT 84322-1435, USA. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; BGI-Shenzhen, Shenzhen 518083, China. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu. ; Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia. brian.dalrymple@csiro.au wwang@mail.kiz.ac.cn xuxun@genomics.cn alan.archibald@roslin.ed.ac.uk kworley@bcm.edu noelle.cockett@usu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904168" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Fatty Acids, Volatile/metabolism/physiology ; Gene Expression Regulation ; Genome ; Keratins, Hair-Specific/genetics ; Lipid Metabolism/genetics/*physiology ; Molecular Sequence Data ; Phylogeny ; Rumen/metabolism/*physiology ; Sheep, Domestic/classification/*genetics/*metabolism ; Transcriptome ; Wool/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-02-08
    Description: Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jinek, Martin -- Jiang, Fuguo -- Taylor, David W -- Sternberg, Samuel H -- Kaya, Emine -- Ma, Enbo -- Anders, Carolin -- Hauer, Michael -- Zhou, Kaihong -- Lin, Steven -- Kaplan, Matias -- Iavarone, Anthony T -- Charpentier, Emmanuelle -- Nogales, Eva -- Doudna, Jennifer A -- T32 GM066698/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1247997. doi: 10.1126/science.1247997. Epub 2014 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24505130" target="_blank"〉PubMed〈/a〉
    Keywords: Actinomyces/*enzymology ; Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Caspase 9/*chemistry ; Crystallography, X-Ray ; DNA Cleavage ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry ; Streptococcus pyogenes/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-12-06
    Description: Distinct types of CD4(+) T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (T(H)1), T(H)2, and T(H)17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naive T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becattini, Simone -- Latorre, Daniela -- Mele, Federico -- Foglierini, Mathilde -- De Gregorio, Corinne -- Cassotta, Antonino -- Fernandez, Blanca -- Kelderman, Sander -- Schumacher, Ton N -- Corti, Davide -- Lanzavecchia, Antonio -- Sallusto, Federica -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):400-6. doi: 10.1126/science.1260668. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, Bellinzona, Universita della Svizzera Italiana, Lugano, Switzerland. Institute of Microbiology, ETH Zurich, Zurich, Switzerland. ; Institute for Research in Biomedicine, Bellinzona, Universita della Svizzera Italiana, Lugano, Switzerland. ; Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands. ; Institute for Research in Biomedicine, Bellinzona, Universita della Svizzera Italiana, Lugano, Switzerland. federica.sallusto@irb.usi.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477212" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; CD4-Positive T-Lymphocytes/*immunology ; Candida albicans/*immunology ; Cells, Cultured ; Clone Cells ; High-Throughput Nucleotide Sequencing ; Host-Pathogen Interactions/*immunology ; Humans ; *Immunologic Memory ; Lymphocyte Activation ; Molecular Sequence Data ; Mycobacterium tuberculosis/*immunology ; Receptors, Antigen, T-Cell/genetics ; T-Lymphocyte Subsets/*immunology ; Th1 Cells/immunology ; Th17 Cells/immunology ; Th2 Cells/immunology ; Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-12-17
    Description: The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from 〈/=0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Straimer, Judith -- Gnadig, Nina F -- Witkowski, Benoit -- Amaratunga, Chanaki -- Duru, Valentine -- Ramadani, Arba Pramundita -- Dacheux, Melanie -- Khim, Nimol -- Zhang, Lei -- Lam, Stephen -- Gregory, Philip D -- Urnov, Fyodor D -- Mercereau-Puijalon, Odile -- Benoit-Vical, Francoise -- Fairhurst, Rick M -- Menard, Didier -- Fidock, David A -- R01 AI109023/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):428-31. doi: 10.1126/science.1260867. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. ; Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia. ; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination UPR8241, Toulouse, France. Universite de Toulouse, UPS, Institut National Polytechnique de Toulouse, Toulouse, France. ; Sangamo BioSciences, Richmond, CA, USA. ; Institut Pasteur, Parasite Molecular Immunology Unit, Paris, France. ; Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA. df2260@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25502314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antimalarials/*pharmacology ; Artemisinins/*pharmacology ; Cambodia ; Drug Resistance/*genetics ; Genetic Loci ; Humans ; Malaria, Falciparum/drug therapy/parasitology ; Molecular Sequence Data ; Mutation ; Plasmodium falciparum/*drug effects/*genetics ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-07-20
    Description: The iron-carbon monoxide stretching mode and the iron-carbon-oxygen bending mode in carbon monoxide-bound cytochrome oxidase have been assigned at 520 and 578 cm-1, respectively. The frequencies, widths, and intensities of these modes show that the Fe-C-O grouping in carbon monoxide-cytochrome a3 is linear but tilted from the normal to the heme plane; that the iron-histidine bond in both five- and six-coordinate cytochrome a3 is strained; and that the carbon monoxide and the proximal histidine each have characteristic, well-defined orientations in all molecules. These data can account for the binding affinities of carbon monoxide and dioxygen under physiological conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Argade, P V -- Ching, Y C -- Rousseau, D L -- New York, N.Y. -- Science. 1984 Jul 20;225(4659):329-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6330890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Monoxide/metabolism ; Cattle ; Chemical Phenomena ; Chemistry ; Electron Transport Complex IV/*metabolism ; Myoglobin/metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1984-08-31
    Description: A T lymphotropic virus found in patients with the acquired immune deficiency syndrome (AIDS) or lymphadenopathy syndrome has been postulated to be the cause of AIDS. Immunological analysis of this retrovirus and its biological properties suggest that it is a member of the family of human T-lymphotropic retroviruses known as HTLV. Accordingly, it has been named HTLV-III. In the present report it is shown by nucleic acid hybridization that sequences of the genome of HTLV-III are homologous to the structural genes (gag, pol, and env) of both HTLV-I and HTLV-II and to a potential coding region called pX located between the env gene and the long terminal repeating sequence that is unique to the HTLV family of retroviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arya, S K -- Gallo, R C -- Hahn, B H -- Shaw, G M -- Popovic, M -- Salahuddin, S Z -- Wong-Staal, F -- New York, N.Y. -- Science. 1984 Aug 31;225(4665):927-30.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089333" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*microbiology ; Base Sequence ; Cloning, Molecular ; Dna ; DNA, Viral ; Deltaretrovirus/classification/*genetics ; Genes ; *Genes, Viral ; Humans ; *Nucleic Acid Hybridization ; RNA, Viral ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1984-10-19
    Description: A complementary DNA probe corresponding to the beta-chain gene of Ti, the human T lymphocyte receptor, has been molecularly cloned. The chromosomal origin of the Ti beta gene was determined with the complementary DNA by screening a series of 12 cell hybrid (mouse X human) DNA's containing overlapping subsets of human chromosomes. DNA hybridization (Southern) experiments showed that the human Ti beta gene resides on chromosome 7 and is thus not linked to the immunoglobulin loci or to the major histocompatibility locus in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, P E -- Ruddle, F H -- Royer, H D -- Acuto, O -- Reinherz, E L -- AI 21226/AI/NIAID NIH HHS/ -- GM-09966/GM/NIGMS NIH HHS/ -- R0 1 AI 19807/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1984 Oct 19;226(4672):348-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6435246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; *Chromosomes, Human, 6-12 and X ; Cloning, Molecular ; Dna ; *Genes ; Genetic Linkage ; Humans ; Hybrid Cells ; Immunoglobulin kappa-Chains/genetics ; Major Histocompatibility Complex ; Mice ; Nucleic Acid Hybridization ; Receptors, Antigen, T-Cell/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1984-02-24
    Description: The immune response genes of the mouse encode two cell-surface glycoproteins, I-A and I-E, that play critical roles in determining the animal's immune responsiveness. The I-A antigen contains two chains, alpha and beta. A cloned beta-chain gene, I-A beta k, was introduced into B-lymphoma cells that express I-Ad. The transfected gene was successfully expressed on the cell surface of the recipient cells and was functional in stimulating allospecific T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Nun, A -- Glimcher, L H -- Weis, J -- Seidman, J G -- AI18436/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1984 Feb 24;223(4638):825-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6420890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*physiology ; Cloning, Molecular ; Gene Expression Regulation ; *Genes, MHC Class II ; Heterozygote ; Lymphocyte Cooperation ; Lymphoma ; Macromolecular Substances ; Mice ; T-Lymphocytes/physiology ; Transfection ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1984-08-31
    Description: Bromodeoxyuridine (BrdUrd) treatment of the prolactin nonproducing subclone of GH cells (rat pituitary tumor cells) induces amplification of a 20-kilobase DNA fragment including all of the prolactin gene coding sequences. This amplified DNA segment, which is flanked by two unamplified regions, thus designates a unit of BrdUrd-induced amplified sequence. Cloned DNA segments, 10.3 kilobases long, from the 5' end of the rat prolactin gene of BrdUrd-responsive and -nonresponsive cells, were ligated to the thymidine kinase gene of herpes simplex virus type 1 (HSV1TK), and the hybrid DNA was transferred to thymidine kinase-deficient mouse fibroblast cells by transfection. The HSV1TK gene and the rat prolactin gene were amplified together in drug-treated transfectants carrying the hybrid DNA HSV1TK gene and rat prolactin gene of BrdUrd-responsive GH cells. These results suggest that the 10.3-kilobase DNA segment at the 5' end of the rat prolactin gene of BrdUrd-responsive GH cells carries the information for drug-induced gene amplification (amplicon) and that another gene, such as the HSV1TK gene, is also amplified when the latter is placed adjacent to this segment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biswas, D K -- Hartigan, J A -- Pichler, M H -- CA28218/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1984 Aug 31;225(4665):941-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bromodeoxyuridine/*pharmacology ; Cell Line ; Cloning, Molecular ; DNA/*genetics ; DNA, Recombinant ; *Gene Amplification ; Genes, Viral ; Mice ; Prolactin/genetics ; Rats ; Simplexvirus/genetics ; Thymidine Kinase/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-12-07
    Description: The genome of the small human virus serologically associated with erythrocyte aplasia and erythema infectiosum (fifth disease) is shown to be a linear, nonpermuted, single-stranded DNA molecule with self-priming hairpin termini, properties which are characteristic of the genomes of the family Parvoviridae. This human parvovirus chromosome was molecularly cloned into bacterial plasmid vectors and the cloned DNA was used to explore its relatedness to other mammalian parvovirus serotypes by DNA:DNA hybridization. It is not related to the human adeno-associated viruses but does show a distant evolutionary relationship to genomes of the helper-independent parvoviruses of rodents. This strongly suggests that it is an autonomous parvovirus, and as such is the first example of a member of this group of common animal pathogens to cause disease in man.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cotmore, S F -- Tattersall, P -- CA29303/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1984 Dec 7;226(4679):1161-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6095448" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cloning, Molecular ; DNA, Single-Stranded/analysis ; DNA, Viral/*analysis ; DNA-Directed DNA Polymerase ; Dependovirus/genetics ; Escherichia coli/enzymology ; Nucleic Acid Denaturation ; Nucleic Acid Hybridization ; Parvoviridae/*genetics ; Plasmids ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1984-08-10
    Description: The gene for the circumsporozoite (CS) protein of Plasmodium falciparum has been cloned and its nucleotide sequence determined. The gene encodes a protein of 412 amino acids as deduced from the nucleotide sequence. The protein contains 41 tandem repeats of a tetrapeptide, 37 of which are Asn-Ala-Asn-Pro and four of which are Asn-Val-Asp-Pro. Monoclonal antibodies against the CS protein of Plasmodium falciparum were inhibited from binding to the protein by synthetic peptides of the repeat sequence. The CS protein of Plasmodium falciparum and the CS protein of a simian malaria parasite, Plasmodium knowlesi, have two regions of homology, one of which is present on either side of the repeat. One region contains 12 of 13 identical amino acids. Within the nucleotide sequence of this region, 25 of 27 nucleotides are conserved. The conservation of these regions in parasites widely separated in evolution suggests that they may have a function such as binding to liver cells and may represent an invariant target for immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dame, J B -- Williams, J L -- McCutchan, T F -- Weber, J L -- Wirtz, R A -- Hockmeyer, W T -- Maloy, W L -- Haynes, J D -- Schneider, I -- Roberts, D -- New York, N.Y. -- Science. 1984 Aug 10;225(4662):593-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6204383" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/immunology ; Antigens, Surface/*genetics/immunology ; Base Sequence ; Epitopes/genetics ; *Genes ; Humans ; Liver/parasitology ; Malaria/*immunology ; Plasmodium/genetics ; Plasmodium falciparum/*genetics/immunology ; *Protozoan Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1984-08-03
    Description: The nucleotide sequence of a human Blym-1 transforming gene activated in a Burkitt's lymphoma cell line was determined. This sequence predicts a small protein of 58 amino acids that is 33 percent identical to the predicted product of chicken Blym-1, the activated transforming gene of chicken B cell lymphomas. Both the human and chicken Blym-1 genes exhibit significant identity to an amino-terminal region of transferrins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diamond, A -- Devine, J M -- Cooper, G M -- CA 07250/CA/NCI NIH HHS/ -- CA 28946/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1984 Aug 3;225(4661):516-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6330897" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Burkitt Lymphoma/*genetics ; Cell Line ; *Cell Transformation, Neoplastic ; DNA Restriction Enzymes ; Humans ; *Oncogenes ; Structure-Activity Relationship ; Transcription, Genetic ; Transferrin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-04-06
    Description: A complementary DNA clone for an alpha-tubulin has been isolated from a mouse testis complementary DNA library. The untranslated 3' end of this complementary DNA is homologous to two RNA transcripts present in postmeiotic cells of the testis but absent from meiotic cells and from several tissues including brain. The temporal expression of this alpha-tubulin complementary DNA provides evidence for the haploid expression of a mammalian structural gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Distel, R J -- Kleene, K C -- Hecht, N B -- GM 29224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Apr 6;224(4644):68-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6701535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Cloning, Molecular ; DNA/genetics ; Drosophila ; Gene Expression Regulation ; Haploidy ; Male ; Mice ; Nucleic Acid Hybridization ; Rats ; Spermatids/metabolism ; Spermatogenesis ; Spermatozoa/physiology ; Testis/*metabolism ; Tubulin/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1984-02-03
    Description: The nucleotide sequences of the six regions within the normal human cellular locus (c-sis) that correspond to the entire transforming region of the simian sarcoma virus (SSV) genome (v-sis) were determined. The regions are bounded by acceptor and donor splice sites and, except for region 6, resemble exons. Region 6 lacks a 3' donor splice site and terminates -5 base pairs from the 3' v-sis-helper-viral junction. This is consistent with a model proposing that SSV was generated by recombination between proviral DNA of a simian sarcoma associated virus and proto-sis and that introns were spliced out subsequently from a fused viral-sis messenger RNA. This also suggests that the 3' recombination occurred within an exon of the woolly monkey (Lagothrix) genome. The open reading frames predicting the v-sis and c-sis gene products coincide with the stop codon of c-sis located 123 nucleotides into the fifth region of homology. The overall nucleotide homology was 91 percent with substitutions mainly in the third codon positions within the open reading frame and with greatest divergence within the untranslated 3' portion of the sequences. The predicted protein products for v-sis and c-sis are 93 percent homologous. The predicted c-sis gene product is identical in 31 of 31 amino acids to one of the published sequences of platelet-derived growth factor. Thus, c-sis encodes one chain of human platelet-derived growth factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Josephs, S F -- Guo, C -- Ratner, L -- Wong-Staal, F -- New York, N.Y. -- Science. 1984 Feb 3;223(4635):487-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6318322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Transformation, Neoplastic ; Cell Transformation, Viral ; Codon ; *Genes, Viral ; Humans ; *Oncogenes ; Platelet-Derived Growth Factor/*genetics ; RNA Splicing ; RNA, Messenger/genetics ; Recombination, Genetic ; Retroviridae/*genetics ; Sarcoma Virus, Woolly Monkey/*genetics ; Viral Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-01-20
    Description: Peptide synthesis can be used for elucidating the roles of secondary structures in the specificity of hormones, antigens, and toxins. Intermediate sized peptides with these activities assume amphiphilic secondary structures in the presence of membranes. When models are designed to optimize the amphiphilicity of the secondary structure, stronger interactions can be observed with the synthetic peptides than with the naturally occurring analogs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, E T -- Kezdy, F J -- HL-18577/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1984 Jan 20;223(4633):249-55.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6322295" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apolipoprotein A-I ; Apolipoproteins ; Binding Sites ; Calcitonin ; Chemical Phenomena ; Chemistry ; Corticotropin-Releasing Hormone ; Endorphins ; Glucagon ; Growth Hormone-Releasing Hormone ; *Hormones/pharmacology ; Lipoproteins, HDL ; Melitten ; Models, Structural ; *Peptides/chemical synthesis/metabolism/pharmacology ; Protein Conformation ; Structure-Activity Relationship ; beta-Endorphin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1984-12-07
    Description: A cloned fragment of the mycoplasma ribosomal RNA operon was used as a molecular probe for the detection of mycoplasmas in cell cultures. According to the conditions of hybridization, the probe can detect prokaryotes in general or mycoplasmas specifically.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gobel, U B -- Stanbridge, E J -- New York, N.Y. -- Science. 1984 Dec 7;226(4679):1211-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6505688" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; *Culture Techniques ; Genes, Bacterial ; HeLa Cells ; Humans ; Mycoplasma/*genetics/isolation & purification ; Nucleic Acid Hybridization ; RNA, Ribosomal/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-10-19
    Description: Fourier transform mass spectrometry will play an important role in the future because of its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. These features have already found application in gas chromatography-mass spectrometry, multiphoton ionization, laser desorption, and secondary ion mass spectrometry. However, its most notable feature is the ability to store ions. This characteristic, when combined with the others, will allow expeditious study of the interaction of gas-phase ions with both photons (photodissociation) and neutral molecules, and the convenient application of this fundamental information for chemical analysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gross, M L -- Rempel, D L -- 2-8423576/PHS HHS/ -- New York, N.Y. -- Science. 1984 Oct 19;226(4672):261-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6385250" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; *Fourier Analysis ; Ions ; Lasers ; *Mass Spectrometry/instrumentation/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolata, G -- New York, N.Y. -- Science. 1984 Feb 24;223(4638):805.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6695182" target="_blank"〉PubMed〈/a〉
    Keywords: Chorionic Gonadotropin/*genetics ; Cloning, Molecular ; Humans ; Luteinizing Hormone/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1984-10-05
    Description: Antibodies in sera from patients with adult T-cell leukemia-lymphoma or from healthy carriers of type I human T-cell leukemia virus (HTLV) recognize an antigen of approximately 42 kilodaltons (p42) in cell lines infected with HTLV-I. Radiolabel sequence analysis of cyanogen bromide fragments of p42 led to the conclusion that this antigen is encoded in part by LOR, a conserved portion of the "X" region that is flanked by the envelope gene and the 3' long terminal repeat of HTLV-I. It is possible that this novel product mediates the unique transformation properties of the HTLV family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, T H -- Coligan, J E -- Sodroski, J G -- Haseltine, W A -- Salahuddin, S Z -- Wong-Staal, F -- Gallo, R C -- Essex, M -- 2-T32-CA0903/CA/NCI NIH HHS/ -- CA07094/CA/NCI NIH HHS/ -- CA13885/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1984 Oct 5;226(4670):57-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089350" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Viral/*genetics ; Base Sequence ; Cell Line ; Cyanogen Bromide ; Deltaretrovirus/*genetics/immunology ; *Genes, Viral ; Humans ; Peptide Fragments ; Trans-Activators ; Viral Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1984-05-25
    Description: In order to further define the mechanisms by which polypeptide growth factors regulate gene transcription and cellular growth, expression cloning techniques were used to select human epidermal growth factor (EGF) receptor complementary DNA clones. The EGF 3' coding domain shows striking homology to the transforming gene product of avian erythroblastosis virus (v-erbB). Over-expression of EGF receptors in A431 cell lines correlates with increased EGF receptor mRNA levels and amplification (up to 110 times) of the apparently singular EGF receptor gene. There appear to be three cytoplasmic polyadenylated RNA products of EGF receptor gene expression in A431 cells, one of which contains only 5' (EGF binding domain) sequences and is postulated to encode the secreted EGF receptor-related protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, C R -- Chen, W S -- Kruiger, W -- Stolarsky, L S -- Weber, W -- Evans, R M -- Verma, I M -- Gill, G N -- Rosenfeld, M G -- New York, N.Y. -- Science. 1984 May 25;224(4651):843-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6326261" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cloning, Molecular ; DNA/*genetics ; Gene Amplification ; Gene Expression Regulation ; Polymorphism, Genetic ; RNA, Messenger/genetics ; Receptor, Epidermal Growth Factor ; Receptors, Cell Surface/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-08-31
    Description: High-resolution carbon-13 nuclear magnetic resonance (NMR) spectra of enzyme-inhibitor and enzyme-substrate complexes provide detailed structural and stereochemical information on the mechanism of enzyme action. The proteases trypsin and papain are shown to form tetrahedrally coordinated complexes and acyl derivatives with a variety of compounds artificially enriched at the site or sites of interest. These results are compared with the structural information derived from x-ray diffraction. Detailed NMR studies have provided a clearer picture of the ionization state of the residues participating in enzyme-catalyzed processes than other more classical techniques. The dynamics of enzymic catalysis can be observed at sub-zero temperatures by a combination of cryoenzymology and carbon-13 NMR spectroscopy. With these powerful techniques, transient, covalently bound intermediates in enzyme-catalyzed reactions can be detected and their structures rigorously assigned.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackenzie, N E -- Malthouse, J P -- Scott, A I -- New York, N.Y. -- Science. 1984 Aug 31;225(4665):883-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6433481" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carbon Isotopes ; Carboxypeptidases/metabolism ; Carboxypeptidases A ; Catalysis ; Chemical Phenomena ; Chemistry ; Coenzymes/*metabolism ; Endopeptidases/metabolism ; Enzymes/*metabolism ; Freezing ; Fructose-Bisphosphate Aldolase/metabolism ; Magnetic Resonance Spectroscopy ; Papain/metabolism ; Pepsin A/metabolism ; Peptide Hydrolases/*metabolism ; Protease Inhibitors ; Pterins/metabolism ; Pyridoxal Phosphate/metabolism ; Serine Endopeptidases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1984 Feb 24;223(4638):806.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6320370" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Cycle ; Humans ; *Oncogenes ; Receptor, Epidermal Growth Factor ; *Receptors, Cell Surface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-01-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1984 Jan 13;223(4632):152-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6318316" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Hemolytic/blood/*complications ; Anemia, Sickle Cell/blood/*complications ; Child ; Cloning, Molecular ; Erythema/*etiology ; Erythrocytes/microbiology ; Erythropoiesis ; Humans ; Parvoviridae/genetics/immunology/physiology ; Parvoviridae Infections/*complications ; Viral Vaccines ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-03-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maugh, T H 2nd -- New York, N.Y. -- Science. 1984 Mar 9;223(4640):1051-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6695193" target="_blank"〉PubMed〈/a〉
    Keywords: *Air Pollutants ; *Atmosphere ; Carbon Tetrachloride ; Chemical Phenomena ; Chemistry ; *Chlorofluorocarbons, Methane ; Free Radicals ; Nitrogen Dioxide ; Nitrous Oxide ; Oxygen ; *Ozone ; Photochemistry ; Risk ; Singlet Oxygen ; Trichloroethanes ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1984-10-19
    Description: Pyrolysis mass spectrometry in combination with computerized multivariate statistical analysis enables qualitative and quantitative analysis of nonvolatile organic materials containing molecular assemblies of a complexity and size far beyond the capabilities of direct mass spectrometry. The state of the art in pyrolysis mass spectrometry techniques is illustrated through specific applications, including structural determination and quality control of synthetic polymers, quantitative analysis of polymer mixtures, classification and structural characterization of fossil organic matter, and nonsupervised numerical extraction of component patterns from complex biological samples.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meuzelaar, H L -- Windig, W -- Harper, A M -- Huff, S M -- McClennen, W H -- Richards, J M -- New York, N.Y. -- Science. 1984 Oct 19;226(4672):268-74.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6484572" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemical Phenomena ; Biochemistry ; Chemical Phenomena ; Chemistry ; Coal ; Enterobacteriaceae/analysis/isolation & purification ; Hot Temperature ; Mass Spectrometry/*methods ; Polymers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1984-03-23
    Description: A gene for ribonuclease S protein, has been chemically synthesized and cloned. The gene is designed to have 25 specific restriction endonuclease sites spaced at short intervals, permitting its structure to be rapidly modified. This flexibility facilitates tests of hypotheses relating the primary structure of the enzyme to its physical and catalytic behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nambiar, K P -- Stackhouse, J -- Stauffer, D M -- Kennedy, W P -- Eldredge, J K -- Benner, S A -- 1 RO1 GM 30110-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Mar 23;223(4642):1299-301.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6322300" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Cloning, Molecular ; DNA Restriction Enzymes ; Escherichia coli/genetics ; *Genes, Synthetic ; Oligodeoxyribonucleotides/chemical synthesis ; Peptide Fragments/*genetics ; Ribonucleases/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1984-01-06
    Description: The nucleotide sequence of the region of Gardner-Rasheed feline sarcoma virus (GR-FeSV) encoding its primary translation product, p70gag-fgr, has been determined. From the nucleotide sequence, the amino acid sequence of this transforming protein was deduced. Computer analysis indicates that a portion of P70gag-fgr has extensive amino acid sequence homology with actin, a eukaryotic cytoskeletal protein. A second region of P70gag-fgr is closely related to the tyrosine-specific kinase gene family. Thus, the v-fgr oncogene appears to have arisen as a result of recombinational events involving two distinct cellular genes, one coding for a structural protein and the other for a protein kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naharro, G -- Robbins, K C -- Reddy, E P -- New York, N.Y. -- Science. 1984 Jan 6;223(4631):63-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6318314" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/analysis ; Amino Acid Sequence ; Base Sequence ; Computers ; Gene Products, gag ; *Genes, Viral ; *Oncogenes ; Protein Kinases/analysis ; Protein-Tyrosine Kinases ; Recombination, Genetic ; Retroviridae/*genetics ; Sarcoma Viruses, Feline/*genetics ; Viral Proteins/analysis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1984-04-27
    Description: Immunodominant, disulfide-bond independent epitopes recognized by human antibodies to hepatitis B virus (HBV) are located within the 55-residue amino terminal portion (coded for by the pre-S region of HBV DNA) of minor HBV envelope components larger than the major protein constituents encoded by the S gene. A peptide having the sequence of the first 26 amino acids from the amino terminal methionine was synthesized and elicited antibodies (at dilutions of greater than or equal to 1 to 10(5) ) to the HBV envelope. These antibodies can be utilized for diagnostic tests. The immunogenicity of the peptide was substantially increased by covalent attachment to liposomes. The disulfide bond-independent determinants on sequences coded for by the pre-S gene may be more easily mimicked by peptide analogs than "conformational" determinants on the S-gene product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neurath, A R -- Kent, S B -- Strick, N -- 9011/PHS HHS/ -- New York, N.Y. -- Science. 1984 Apr 27;224(4647):392-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6200931" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Epitopes/*analysis/genetics/immunology ; *Genes, Viral ; Hepatitis B Antibodies/biosynthesis ; Hepatitis B Surface Antigens/analysis/genetics/*immunology ; Hepatitis B virus/genetics/*immunology ; Immunization ; Liposomes ; Peptides/chemical synthesis/genetics/*immunology ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1984-08-31
    Description: The splicing of messenger RNA precursors in vitro proceeds through an intermediate that has the 5' end of the intervening sequence joined to a site near the 3' splice site. This lariat structure, which has been characterized for an adenovirus 2 major late transcript, has a branch point, with 2'-5' and 3'-5' phosphodiester bonds emanating from a single adenosine residue. The excised intervening sequence retains the branch site and terminates in a guanosine residue with a 3' hydroxyl group. The phosphate group at the splice junction between the two exons originates from the 3' splice site at the precursor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Padgett, R A -- Konarska, M M -- Grabowski, P J -- Hardy, S F -- Sharp, P A -- P01-CA14051/CA/NCI NIH HHS/ -- P01-CA26717/CA/NCI NIH HHS/ -- R01-GM32467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Aug 31;225(4665):898-903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6206566" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/metabolism ; Base Sequence ; Chemical Phenomena ; Chemistry ; Nucleic Acid Conformation ; Nucleic Acid Precursors/analysis/*metabolism ; Oligoribonucleotides/metabolism ; Phosphates/metabolism ; RNA/analysis/*metabolism ; RNA Precursors ; *RNA Splicing ; RNA, Messenger/analysis/*metabolism ; RNA, Viral/analysis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1984-08-17
    Description: Antisera to a synthetic c-myc peptide and to c-myc antigens synthesized from various portions of the human gene expressed in Escherichia coli were used in order to characterize the protein product of the human c-myc oncogene. Although the deduced molecular weight of the human c-myc protein is 49,000, these antisera precipitate a protein from human cells that migrates in sodium dodecyl sulfate-polyacrylamide gel as if its molecular weight were 65,000. In addition, the mouse c-myc protein, whether synthesized in cells or in a cell-free system directed by pure, synthetic messenger RNA, has analogous properties and is immunoprecipitated by the antiserum to the human c-myc protein. Similar proteins are immunoprecipitated from monkey, rat, hamster, and frog cells, suggesting evolutionary conservation of antigenic structure of the c-myc protein among vertebrates. In addition, and in a manner consistent with the behavior of its messenger RNA, the immunoprecipitable c-myc protein is sharply induced by the action of mitogens on resting human T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Persson, H -- Hennighausen, L -- Taub, R -- DeGrado, W -- Leder, P -- New York, N.Y. -- Science. 1984 Aug 17;225(4663):687-93.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6431612" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Neoplasm/*immunology ; Base Sequence ; *Cell Division ; Chickens ; Cricetinae ; DNA, Neoplasm/genetics ; DNA, Recombinant/metabolism ; Electrophoresis, Polyacrylamide Gel ; Haplorhini ; Humans ; Mice ; Mitogens/pharmacology ; Molecular Weight ; Neoplasm Proteins/genetics/*immunology ; *Oncogenes ; RNA, Messenger/genetics ; Rabbits ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1984-03-23
    Description: Interferon-beta 1 (IFN-beta 1) complementary DNA was used as a hybridization probe to isolate human genomic DNA clones lambda B3 and lambda B4 from a human genomic DNA library. Blot-hybridization procedures and partial nucleotide sequencing revealed that lambda B3 is related to IFN-beta 1 (and more distantly to IFN-alpha 1). Analyses of DNA obtained from a panel of human-rodent somatic cell hybrids that were probed with DNA derived from lambda B3 showed that lambda B3 is on human chromosome 2. Similar experiments indicated that lambda B4 is not on human chromosomes 2, 5, or 9. The finding that DNA related to the IFN-beta 1 gene (and IFN-alpha 1 gene) is dispersed in the human genome raises new questions about the origins of the interferon genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sagar, A D -- Sehgal, P B -- May, L T -- Inouye, M -- Slate, D L -- Shulman, L -- Ruddle, F H -- AI-16262/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1984 Mar 23;223(4642):1312-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6546621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human/*analysis ; Chromosomes, Human, 1-3 ; Chromosomes, Human, 4-5 ; Chromosomes, Human, 6-12 and X ; Cloning, Molecular ; Cricetinae ; DNA/*analysis ; *Genes ; Humans ; Hybrid Cells ; Interferon Type I/*genetics ; Mice ; Nucleic Acid Hybridization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-09-21
    Description: On the basis of an analysis of the human and rat calcitonin genes and of a related gene, alternative RNA processing represents a developmental strategy of the brain to dictate tissue-specific patterns of polypeptide synthesis. This regulation allows the calcitonin gene to generate two messenger RNA's, one encoding the precursor of a novel neuropeptide, referred to as CGRP, which predominates in the brain, and the second encoding the precursor to the hormone calcitonin which predominates in thyroid C cells. The distribution of CGRP in the central and peripheral nervous system and in endocrine and other organ systems suggests potential functions in nociception, ingestive behavior, cardiovascular homeostasis, and mineral metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenfeld, M G -- Amara, S G -- Evans, R M -- New York, N.Y. -- Science. 1984 Sep 21;225(4668):1315-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089345" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Calcitonin/*genetics ; Calcitonin Gene-Related Peptide ; Cloning, Molecular ; DNA/analysis ; DNA Restriction Enzymes ; *Genes ; Nerve Tissue Proteins/*genetics ; Neurons/*metabolism ; Phenotype ; *RNA Processing, Post-Transcriptional ; RNA, Messenger/*genetics ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1984-12-07
    Description: Mouse and human atrial natriuretic factor (ANF) genes have been cloned and their nucleotide sequences determined. Each ANF gene consists of three coding blocks separated by two intervening sequences. The 5' flanking sequences and those encoding proANF are highly conserved between the two species, while the intervening sequences and 3' untranslated regions are not. The conserved sequences 5' of the gene may play an important role in the regulation of ANF gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seidman, C E -- Bloch, K D -- Klein, K A -- Smith, J A -- Seidman, J G -- AI-18436/AI/NIAID NIH HHS/ -- HL-070208/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1984 Dec 7;226(4679):1206-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6542248" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Atrial Natriuretic Factor ; Base Sequence ; Cloning, Molecular ; Gene Expression Regulation ; Genes ; Heart Atria/metabolism ; Humans ; Mice ; Natriuretic Agents ; Protein Precursors/genetics ; Proteins/*genetics ; Receptors, Glucocorticoid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1984-09-21
    Description: The Aplysia neuroendocrine system is a particularly advantageous model for cellular and molecular studies because of the relatively small number and large size of its component neurons. Recombinant DNA techniques have been used to isolate the genes that encode the precursors of peptides expressed in identified neurons of known function. The organization and developmental expression of these genes have been examined in detail. Several of the genes encode precursors of multiple biologically active peptides that are expressed in cells which also contain classical transmitters. These studies, as well as immunohistochemical studies and the use of intracellular recording and voltage clamp techniques are the first steps toward revealing the mechanisms by which neuropeptides govern simple behaviors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheller, R H -- Kaldany, R R -- Kreiner, T -- Mahon, A C -- Nambu, J R -- Schaefer, M -- Taussig, R -- New York, N.Y. -- Science. 1984 Sep 21;225(4668):1300-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6474178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aplysia/*physiology ; Behavior, Animal ; Cloning, Molecular ; DNA, Recombinant/metabolism ; Female ; Ganglia/physiology ; Genes ; Male ; Nerve Tissue Proteins/genetics/*physiology ; *Nervous System Physiological Phenomena ; Neurons/physiology ; Protein Biosynthesis ; Reproduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1984-12-07
    Description: The human T-cell leukemia (lymphotropic) virus type III (HTLV-III) appears to be central to the causation of the acquired immune deficiency syndrome (AIDS). Two full-length integrated proviral DNA forms of HTLV-III have now been cloned and analyzed, and DNA sequences of the virus in cell lines and fresh tissues from patients with AIDS or AIDS-related complex (ARC) have been characterized. The results revealed that (i) HTLV-III is an exogenous human retrovirus, approximately 10 kilobases in length, that lacks nucleic acid sequences derived from normal human DNA; (ii) HTLV-III, unlike HTLV types I and II, shows substantial diversity in its genomic restriction enzyme cleavage pattern; (iii) HTLV-III persists in substantial amounts in cells as unintegrated linear DNA, an uncommon property that has been linked to the cytopathic effects of certain animal retroviruses; and (iv) HTLV-III viral DNA can be detected in low levels in fresh (primary) lymphoid tissue of a minority of patients with AIDS or ARC but appears not to be present in Kaposi's sarcoma tissue. These findings have important implications concerning the biological properties of HTLV-III and the pathophysiology of AIDS and Kaposi's sarcoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, G M -- Hahn, B H -- Arya, S K -- Groopman, J E -- Gallo, R C -- Wong-Staal, F -- New York, N.Y. -- Science. 1984 Dec 7;226(4679):1165-71.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6095449" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*microbiology ; Base Sequence ; Cell Line ; Child ; Cloning, Molecular ; Cytopathogenic Effect, Viral ; DNA Restriction Enzymes/metabolism ; DNA, Viral/*analysis ; Deltaretrovirus/*genetics ; Humans ; Male ; Nucleic Acid Hybridization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-05-11
    Description: The mechanism of lipid peroxidation and the manner in which antioxidants function is reviewed. beta-Carotene is a purported anticancer agent, which is believed by some to have antioxidant action of a radical-trapping type. However, definitive experimental support for such action has been lacking. New experiments in vitro show that beta-carotene belongs to a previously unknown class of biological antioxidants. Specifically, it exhibits good radical-trapping antioxidant behavior only at partial pressures of oxygen significantly less than 150 torr, the pressure of oxygen in normal air. Such low oxygen partial pressures are found in most tissues under physiological conditions. At higher oxygen pressures, beta-carotene loses its antioxidant activity and shows an autocatalytic, prooxidant effect, particularly at relatively high concentrations. Similar oxygen-pressure-dependent behavior may be shown by other compounds containing many conjugated double bonds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burton, G W -- Ingold, K U -- New York, N.Y. -- Science. 1984 May 11;224(4649):569-73.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6710156" target="_blank"〉PubMed〈/a〉
    Keywords: Antioxidants/*metabolism ; Carotenoids/*metabolism ; Chemical Phenomena ; Chemistry ; Free Radicals ; Humans ; Linoleic Acids/metabolism ; *Lipid Metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Partial Pressure ; Peroxides/metabolism ; Tetrahydronaphthalenes/metabolism ; beta Carotene
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-09-21
    Description: The nicotine receptor for the neurotransmitter acetylcholine is an allosteric protein composed of four different subunits assembled in a transmembrane pentamer alpha 2 beta gamma delta. The protein carries two acetylcholine sites at the level of the alpha subunits and contains the ion channel. The complete sequence of the four subunits is known. The membrane-bound protein undergoes conformational transitions that regulate the opening of the ion channel and are affected by various categories of pharmacologically active ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Changeux, J P -- Devillers-Thiery, A -- Chemouilli, P -- New York, N.Y. -- Science. 1984 Sep 21;225(4668):1335-45.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6382611" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Membrane/ultrastructure ; Cloning, Molecular ; DNA/analysis ; Electric Organ/metabolism ; Electrophorus ; Macromolecular Substances ; Protein Conformation ; *Receptors, Nicotinic/genetics/metabolism ; Torpedo
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1984-01-27
    Description: The genetic relationships among molecularly cloned prototype viruses representing all of the major oncovirus genera were investigated by molecular hybridization and nucleotide sequence analysis. One of the major progenitors of the pol genes of such viruses gives rise to mammalian type C viruses and another gives rise to type A, B, D, and avian type C oncoviruses. Evidence of unusual patterns of homology among the env genes of mammalian type C and D oncoviruses illustrates that genetic interactions between their progenitors contributed to the evolution of oncoviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiu, I M -- Callahan, R -- Tronick, S R -- Schlom, J -- Aaronson, S A -- New York, N.Y. -- Science. 1984 Jan 27;223(4634):364-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6197754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avian Sarcoma Viruses/genetics ; Base Sequence ; *Biological Evolution ; Cloning, Molecular ; DNA Restriction Enzymes ; *Genes, Viral ; Nucleic Acid Heteroduplexes ; Nucleic Acid Hybridization ; RNA-Directed DNA Polymerase/*genetics/metabolism ; Recombination, Genetic ; Retroviridae/classification/*genetics ; Viral Envelope Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1984-11-30
    Description: Complementary DNA clones of genes induced by platelet-derived growth factor (PDGF) in BALB/c-3T3 cells were isolated; one such clone contains a domain having nucleotide sequence homology with the third exon of c-fos. This nucleotide sequence homology is reflected in the predicted amino acid sequences of the gene products. Under low stringency conditions, the mouse v-fos gene cross-hybridizes with the PDGF-inducible complementary DNA clone. However, the messenger RNA transcripts of mouse c-fos and the new fos-related gene can be distinguished by gel electrophoresis and by S1 nuclease analysis. Expression of the authentic c-fos gene is induced by PDGF and superinduced by the combination of PDGF and cycloheximide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cochran, B H -- Zullo, J -- Verma, I M -- Stiles, C D -- New York, N.Y. -- Science. 1984 Nov 30;226(4678):1080-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6093261" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; *Cloning, Molecular ; DNA/analysis ; DNA Restriction Enzymes ; DNA Transposable Elements ; Endonucleases ; Genes/drug effects ; Mice ; Mice, Inbred BALB C ; Nucleic Acid Hybridization ; Oncogenes/*drug effects ; Platelet-Derived Growth Factor/*pharmacology ; Single-Strand Specific DNA and RNA Endonucleases ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1984-01-06
    Description: Mammalian cardiac atria have several biologically active peptides that exert profound effects on sodium excretion, urine volume, and smooth muscle tone. In the present study two such peptides of low molecular weight were purified and separated from each other on the basis of differences in charge, hydrophobicity, and biological profile. The first peptide, designated atriopeptin I, exhibits natriuretic and diuretic activity and selectivity relaxes intestinal smooth muscle but not vascular smooth muscle strips. The second peptide, atriopeptin II, is a potent natriuretic and diuretic that relaxes both intestinal and vascular strips. Sequence analysis of atriopeptin I indicates that it is composed of 21 amino acids, of which serine and glycine residues predominate. The amino terminal sequence of atriopeptin II up to residue 21 is the same as that of atriopeptin I, with the addition of the Phe-Arg extension at the carboxyl terminus. Both peptides appear to be derived from a common high molecular weight precursor (designated atriopeptigen); their biological selectivity and potency may be determined by the site of carboxyl terminal cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Currie, M G -- Geller, D M -- Cole, B R -- Siegel, N R -- Fok, K F -- Adams, S P -- Eubanks, S R -- Galluppi, G R -- Needleman, P -- New York, N.Y. -- Science. 1984 Jan 6;223(4631):67-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6419347" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arginine/analysis ; Chromatography, High Pressure Liquid ; Chromatography, Ion Exchange ; Diuresis/drug effects ; Glycine/analysis ; Heart Atria/*analysis ; Muscle Contraction/drug effects ; Muscle, Smooth/drug effects ; Muscle, Smooth, Vascular/drug effects ; Natriuresis/drug effects ; Peptides/analysis/*isolation & purification/pharmacology ; Phenylalanine/analysis ; Rats ; Serine/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1984-08-10
    Description: A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS beta-lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enea, V -- Ellis, J -- Zavala, F -- Arnot, D E -- Asavanich, A -- Masuda, A -- Quakyi, I -- Nussenzweig, R S -- New York, N.Y. -- Science. 1984 Aug 10;225(4662):628-30.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6204384" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/immunology ; Antigens, Surface/*genetics/immunology ; *Cloning, Molecular ; DNA/genetics ; Epitopes/*genetics ; *Genes ; Malaria/immunology ; Plasmodium falciparum/*genetics ; *Protozoan Proteins ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1984-05-25
    Description: A pool of synthetic oligonucleotides was prepared based on the amino terminal amino acid sequence of tetanus toxin. This probe hybridized to plasmid DNA isolated from three toxigenic strains of Clostridium tetani but not to plasmid DNA from a nontoxigenic strain. These results show that the structural gene for the toxin is on the plasmid. The pCL1 plasmid from one of the toxigenic strains spontaneously deleted 22 kilobase pairs of DNA to form pCL2. Strains harboring this deleted plasmid are nontoxigenic. However, the probe mixture hybridized to pCL2, indicating that the DNA encoding the amino terminus of the toxin had not been deleted. Restriction endonuclease cleavage maps of pCL1 and pCL2 were constructed and indicate the approximate location and orientation of the structural gene for tetanus toxin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finn, C W Jr -- Silver, R P -- Habig, W H -- Hardegree, M C -- Zon, G -- Garon, C F -- New York, N.Y. -- Science. 1984 May 25;224(4651):881-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6326263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA Restriction Enzymes ; *Genes ; Nucleic Acid Hybridization ; *Plasmids ; Tetanus Toxin/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1984-09-07
    Description: Treatment of mice with the carcinogen N-methylnitrosourea results in the development of thymic lymphomas with frequent involvement of the N-ras oncogene. The activated mouse N-ras gene was isolated from one of these lymphomas and, by transformation in concert with restriction digestion, a map of the gene was prepared and its approximate boundaries were determined. By means of somatic cell hybrids the normal N-ras gene was found to be unlinked to other members of the ras gene family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrero, I -- Villasante, A -- D'Eustachio, P -- Pellicer, A -- CA-16239/CA/NCI NIH HHS/ -- GM-32105/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Sep 7;225(4666):1041-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic ; Chromosome Mapping ; Cloning, Molecular ; Cricetinae ; DNA Restriction Enzymes ; Deoxyribonuclease EcoRI ; Genetic Linkage ; Hybrid Cells ; Lymphoma/chemically induced/*genetics ; Methylnitrosourea ; Mice ; Mice, Inbred Strains ; *Oncogenes ; Thymus Neoplasms/chemically induced/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1984-09-14
    Description: Mouse tumors induced by gamma radiation are a useful model system for oncogenesis. DNA from such tumors contains an activated K-ras oncogene that can transform NIH 3T3 cells. This report describes the cloning of a fragment of the mouse K-ras oncogene containing the first exon from both a transformant in rat-2 cells and the brain of the same mouse that developed the tumor. Hybrid constructs containing one of the two pieces were made and only the plasmid including the first exon from the transformant gave rise to foci in NIH 3T3 cells. There was only a single base difference (G----A) in the exonic sequence, which changed glycine to aspartic acid in the transformant. By use of a synthetic oligonucleotide the presence of the mutation was demonstrated in the original tumor, ruling out modifications during DNA-mediated gene transfer and indicating that the alteration was present in the thymic lymphoma but absent from other nonmalignant tissue. The results are compatible with gamma radiation being a source of point mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrero, I -- Villasante, A -- Corces, V -- Pellicer, A -- CA-36327/CA/NCI NIH HHS/ -- GM-32036/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Sep 14;225(4667):1159-62.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6474169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cloning, Molecular ; Gamma Rays ; Lymphoma/*genetics ; Mice ; Mutation ; Neoplasms, Radiation-Induced/*genetics ; Nucleic Acid Hybridization ; *Oncogenes ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1984-09-21
    Description: Recombinant DNA technology has provided a vast new source of DNA markers displaying heritable sequence variation in humans. These markers can be used in family studies to identify the chromosomal location of defective genes causing nervous system disorders. The discovery of a DNA marker linked to Huntington's disease has opened new avenues of research into this disorder and may ultimately permit cloning and characterization of the defective gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gusella, J F -- Tanzi, R E -- Anderson, M A -- Hobbs, W -- Gibbons, K -- Raschtchian, R -- Gilliam, T C -- Wallace, M R -- Wexler, N S -- Conneally, P M -- NS16367/NS/NINDS NIH HHS/ -- NS20012/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Sep 21;225(4668):1320-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089346" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Chromosome Mapping ; Cloning, Molecular ; DNA/*genetics ; DNA Restriction Enzymes ; *DNA, Recombinant ; Female ; *Genes ; *Genetic Linkage ; *Genetic Markers ; Genetic Vectors ; Humans ; Huntington Disease/*genetics ; Male ; Mutation ; Pedigree ; Phenotype ; Polymorphism, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1984-11-02
    Description: Cyclophilin, a specific cytosolic binding protein responsible for the concentration of the immunosuppressant cyclosporin A by lymphoid cells, was purified to homogeneity from bovine thymocytes. Cation-exchange high-performance liquid chromatography resolved a major and minor cyclophilin species that bind cyclosporin A with a dissociation constant of about 2 X 10(-7) moles per liter and specific activities of 77 and 67 micrograms per milligram of protein, respectively. Both cyclophilin species have an apparent molecular weight of 15,000, an isoelectric point of 9.6, and nearly identical amino acid compositions. A portion of the NH2-terminal amino acid sequence of the major species was determined. The cyclosporin A-binding activity of cyclophilin is sulfhydryl dependent, unstable at 56 degrees C and at pH 4 or 9.5, and sensitive to trypsin but not to chymotrypsin digestion. Cyclophilin specifically binds a series of cyclosporin analogs in proportion to their activity in a mixed lymphocyte reaction. Isolation of cyclophilin from the cytosol of thymocytes suggests that the immunosuppressive activity of cyclosporin A is mediated by an intracellular mechanism, not by a membrane-associated mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Handschumacher, R E -- Harding, M W -- Rice, J -- Drugge, R J -- Speicher, D W -- New York, N.Y. -- Science. 1984 Nov 2;226(4674):544-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6238408" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/*isolation & purification/metabolism ; Cattle ; Chromatography, High Pressure Liquid ; Cyclosporins/*metabolism ; Electrophoresis, Polyacrylamide Gel ; Humans ; Isoelectric Point ; Kinetics ; Lymphocyte Culture Test, Mixed ; Mice ; Molecular Weight ; Peptidylprolyl Isomerase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-03-16
    Description: Yeast phenylalanine transfer RNA was subjected to a 12-picosecond molecular dynamics simulation. The principal features of the x-ray crystallographic analysis are reproduced, and the amplitudes of atomic displacements appear to be determined by the degree of exposure of the atoms. An analysis of the hydrogen bonds shows a correlation between the average length of a bond and the fluctuation in that length and reveals a rocking motion of bases in Watson-Crick guanine X cytosine base pairs. The in-plane motions of the bases are generally of larger amplitude than the out-of-plane motions, and there are correlations in the motions of adjacent bases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvey, S C -- Prabhakaran, M -- Mao, B -- McCammon, J A -- New York, N.Y. -- Science. 1984 Mar 16;223(4641):1189-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6560785" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; Computers ; Cytosine ; Guanine ; Hydrogen Bonding ; Nucleic Acid Conformation ; *RNA, Fungal ; *RNA, Transfer, Amino Acyl ; Yeasts/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1984-06-08
    Description: Most mitochondrial proteins are encoded in the nucleus and are translated on free cytoplasmic ribosomes as larger precursors containing amino-terminal "leader" sequences, which are removed after the precursors are taken up by mitochondria. We have deduced the complete primary structure of the precursor of a human mitochondrial matrix enzyme, ornithine transcarbamylase (OTC), from the nucleotide sequence of cloned complementary DNA. The amino-terminal leader peptide of OTC is 32 amino acids in length and contains four arginines but no acidic residues. Cleavage of the leader peptide from the "mature" protein occurs between glutamine and asparagine residues. The sequence of mature human OTC resembles that of the subunits of both OTC and aspartate transcarbamylase from Escherichia coli. The biological activity of the cloned OTC complementary DNA was tested by joining it with SV40 (an animal virus) regulatory elements and transfecting cultured HeLa cells, which do not normally express OTC. Both the precursor and mature forms of the OTC subunit were identified; in stable transformants, enzymatic activity was also detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horwich, A L -- Fenton, W A -- Williams, K R -- Kalousek, F -- Kraus, J P -- Doolittle, R F -- Konigsberg, W -- Rosenberg, L E -- AM 09527/AM/NIADDK NIH HHS/ -- AM 12579/AM/NIADDK NIH HHS/ -- GM 31539/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1984 Jun 8;224(4653):1068-74.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6372096" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; DNA, Mitochondrial/*genetics ; DNA, Recombinant/metabolism ; Escherichia coli/enzymology ; HeLa Cells/metabolism ; Humans ; Mitochondria/enzymology ; Ornithine Carbamoyltransferase/*genetics ; Protein Biosynthesis ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1984-11-16
    Description: The guanosine triphosphate-binding proteins (G proteins) found in a variety of tissues transduce signals generated by ligand binding to cell surface receptors into changes in intracellular metabolism. Amino acid sequences of peptides prepared by partial proteolysis of the alpha subunit of a bovine brain G protein and the alpha subunit of rod outer-segment transducin were determined. The two proteins show regions of sequence identity as well as regions of diversity. A portion of the amino-terminal peptide sequence of each protein is highly homologous with the corresponding region in the ras protein (a protooncogene product). These similarities suggest that G proteins and ras proteins may have analogous functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J B -- Simon, M I -- Teplow, D B -- Robishaw, J D -- Gilman, A G -- GM 09731-02/GM/NIGMS NIH HHS/ -- NS 18153/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Nov 16;226(4676):860-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6436980" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; GTP-Binding Proteins/*metabolism ; Neoplasm Proteins/*metabolism ; Oncogenes ; Protein Conformation ; Proto-Oncogene Proteins p21(ras) ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1984-11-16
    Description: Sequence-dependent variations in DNA revealed by x-ray crystallographic studies have suggested that certain DNA-reactive drugs may react preferentially with defined sequences in DNA. Drugs that wind around the helix and reside within one of the grooves of DNA have perhaps the greatest chance of recognizing sequence-dependent features of DNA. The antitumor antibiotic CC-1065 covalently binds through N-3 of adenine and resides within the minor groove of DNA. This drug overlaps with five base pairs for which a high sequence specificity exists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, L H -- Reynolds, V L -- Swenson, D H -- Petzold, G L -- Scahill, T A -- New York, N.Y. -- Science. 1984 Nov 16;226(4676):843-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6494915" target="_blank"〉PubMed〈/a〉
    Keywords: Antibiotics, Antineoplastic/*metabolism ; *Base Sequence ; Binding Sites ; Chemical Phenomena ; Chemistry ; DNA/*metabolism ; *Indoles ; Leucomycins/*metabolism ; Molecular Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1984-11-16
    Description: Evidence was presented earlier that a host-cell receptor for the highly neurotropic rabies virus might be the acetylcholine receptor. The amino acid sequence of the glycoprotein of rabies virus was compared by computer analysis with that of snake venom curaremimetic neurotoxins, potent ligands of the acetylcholine receptor. A statistically significant sequence relation was found between a segment of the rabies glycoprotein and the entire sequence of long neurotoxins. The greatest identity occurs with residues considered most important in neurotoxicity, including those interacting with the acetylcholine binding site of the acetylcholine receptor. Because of the similarity between the glycoprotein and the receptor-binding region of the neurotoxins, this region of the viral glycoprotein may function as a recognition site for the acetylcholine receptor. Direct binding of the rabies virus glycoprotein to the acetylcholine receptor could contribute to the neurotropism of this virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lentz, T L -- Wilson, P T -- Hawrot, E -- Speicher, D W -- GM 32629/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Nov 16;226(4676):847-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6494916" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Glycoproteins/*genetics ; Neurotoxins/*genetics ; Rabies virus/*genetics ; Receptors, Cholinergic/metabolism ; Snake Venoms/*genetics ; Snakes ; Viral Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1984-03-09
    Description: The complete amino acid sequence of rat transforming growth factor type 1 has been determined. This growth factor, obtained from retrovirus-transformed fibroblasts, is structurally and functionally related to mouse epidermal growth factor and human urogastrone. Production of this polypeptide by various neoplastic cells might contribute to the continued expression of the transformed phenotype.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marquardt, H -- Hunkapiller, M W -- Hood, L E -- Todaro, G J -- New York, N.Y. -- Science. 1984 Mar 9;223(4640):1079-82.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6320373" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; *Cell Transformation, Neoplastic ; DNA/biosynthesis ; Epidermal Growth Factor/*metabolism/pharmacology ; Humans ; Idoxuridine/metabolism ; Mice ; Peptide Biosynthesis ; Peptides/*metabolism/pharmacology ; Rats ; Receptor, Epidermal Growth Factor ; Receptors, Cell Surface/metabolism ; Structure-Activity Relationship ; Transforming Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-04-20
    Description: A replication-defective, acute transforming retrovirus (murine sarcoma virus 3611) was isolated from mouse and molecularly cloned. The nucleotide sequence of 1.5 kilobases encompassing the transforming gene (v-raf) was determined. This sequence, which predicts the amino acid sequence of a gag-raf fusion protein, terminates 180 nucleotides from the 3' end of the acquired cellular sequence. Comparison of the predicted amino acid sequence of v-raf with the predicted amino acid sequences of other oncogenes reveals significant homologies to the src family of oncogenes. There is a lack of homology within the sequence of the tyrosine acceptor domain described for the phosphotyrosine kinase members of the src family of transforming proteins. Phylogenetic arrangement of this family of oncogenes suggests that tyrosine-specific phosphorylation may be a recently acquired activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mark, G E -- Rapp, U R -- New York, N.Y. -- Science. 1984 Apr 20;224(4646):285-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6324342" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Biological Evolution ; Cell Transformation, Neoplastic ; Cell Transformation, Viral ; DNA Restriction Enzymes ; Gene Products, gag ; *Genes, Viral ; Mice ; *Oncogenes ; Protein Biosynthesis ; Protein Kinases/metabolism ; Protein-Tyrosine Kinases ; Sarcoma Viruses, Murine/*genetics ; Transcription, Genetic ; Tyrosine/metabolism ; Viral Proteins/analysis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1984 May 25;224(4651):859-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6426056" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Chromosome Mapping ; Cloning, Molecular ; Dna ; *Genes, MHC Class II ; Humans ; Mice ; Receptors, Antigen, T-Cell/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1984 Nov 30;226(4678):1065.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6494924" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Cloning, Molecular ; Genes ; Humans ; Receptors, Antigen, T-Cell/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maugh, T H 2nd -- New York, N.Y. -- Science. 1984 Jan 20;223(4633):269-71.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6608147" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biochemistry/*methods ; Catalysis ; *Cloning, Molecular ; Enzymes/genetics/*metabolism ; Mutation ; Structure-Activity Relationship ; Substrate Specificity ; Tetrahydrofolate Dehydrogenase/metabolism ; Tyrosine-tRNA Ligase/metabolism ; beta-Lactamases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-04-27
    Description: Proteolytic enzymes have many physiological functions, ranging from generalized protein digestion to more specific regulated processes such as the activation of zymogens, blood coagulation and the lysis of fibrin clots, the release of hormones and pharmacologically active peptides from precursor proteins, and the transport of secretory proteins across membranes. They are present in all forms of living organisms. Comparisons of amino acid sequences, three-dimensional structures, and enzymatic reaction mechanisms of proteases indicate that there are distinct families of these proteins. Changes in molecular structure and function have accompanied the evolution of proteolytic enzymes and their inhibitors, each having relatively simple roles in primitive organisms and more diverse and more complex functions in higher organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neurath, H -- GM-15731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Apr 27;224(4647):350-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6369538" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; *Biological Evolution ; Blood Coagulation ; Chemistry, Physical ; Enzyme Activation ; Enzyme Precursors/metabolism ; Genes ; Humans ; Mutation ; *Peptide Hydrolases/analysis/genetics/metabolism ; Peptides/metabolism ; Physicochemical Phenomena ; Protease Inhibitors/analysis/metabolism ; Protein Conformation ; Protein Sorting Signals ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1984-11-09
    Description: Antisera to synthetic peptides representing sequences of both chains of platelet-derived growth factor (PDGF) were used to structurally analyze PDGF isolated from outdated human platelets and PDGF-like proteins in normal and transformed cells. Most PDGF isolated from platelets did not contain the carboxyl portion of PDGF-2 in contrast to p20sis, the major form of p28sis detected in simian sarcoma virus-transformed cells. In addition, higher molecular weight forms of molecules containing PDGF-1 and PDGF-2 sequences were detected in all cell lines tested. These lines were heterogeneous with respect to species, cell type, and transforming agent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niman, H L -- Houghten, R A -- Bowen-Pope, D F -- CA 25803/CA/NCI NIH HHS/ -- HL 18645/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1984 Nov 9;226(4675):701-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6494905" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Electrophoresis, Polyacrylamide Gel ; Humans ; Immune Sera/immunology ; Molecular Weight ; Platelet-Derived Growth Factor/*immunology/isolation & purification ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1984-06-15
    Description: A new class of synthetic antifungal agents, the allylamines , has been developed by modification of naftifine , a topical antimycotic. SF 86-327, the most effective of these compounds so far, is highly active in vitro against a wide range of fungi and exceeds clinical standards in the oral and topical treatment of guinea pig dermatophytoses. SF 86-327 is a powerful specific inhibitor of fungal squalene epoxidase, a key enzyme in sterol biosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petranyi, G -- Ryder, N S -- Stutz, A -- New York, N.Y. -- Science. 1984 Jun 15;224(4654):1239-41.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6547247" target="_blank"〉PubMed〈/a〉
    Keywords: Allylamine/analogs & derivatives/*chemical synthesis/pharmacology ; Amines/*chemical synthesis ; Animals ; Antifungal Agents/*chemical synthesis/pharmacology ; Chemical Phenomena ; Chemistry ; Dermatomycoses/drug therapy ; Fungi/*drug effects/enzymology ; Guinea Pigs ; Naphthalenes/chemical synthesis/pharmacology ; Oxygenases/*antagonists & inhibitors ; Squalene Monooxygenase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1984-03-16
    Description: A basic peptide isolated from pooled human seminal plasma exhibited inhibin-like activity by suppressing pituitary follicle-stimulating hormone secretion in vitro and in vivo. The peptide has been characterized and sequenced, and a 31-amino-acid synthetic replicate showed full biological activity in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramasharma, K -- Sairam, M R -- Seidah, N G -- Chretien, M -- Manjunath, P -- Schiller, P W -- Yamashiro, D -- Li, C H -- New York, N.Y. -- Science. 1984 Mar 16;223(4641):1199-202.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6422553" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; Follicle Stimulating Hormone/secretion ; Gonadotropin-Releasing Hormone/antagonists & inhibitors ; Humans ; Inhibins/*isolation & purification/pharmacology ; Luteinizing Hormone/secretion ; Male ; Mice ; Molecular Weight ; Peptides/chemical synthesis/isolation & purification ; Pituitary Gland/secretion ; *Prostatic Secretory Proteins ; Proteins/chemical synthesis/*isolation & purification/pharmacology ; Rats ; Semen/*analysis ; Seminal Plasma Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1984-11-02
    Description: By recombinant DNA techniques, a disulfide bond was introduced at a specific site in T4 lysozyme, a disulfide-free enzyme. This derivative retained full enzymatic activity and was more stable toward thermal inactivation than the wild-type protein. The derivative, T4 lysozyme (Ile3----Cys), was prepared by substituting a Cys codon for an Ile codon at position 3 in the cloned lysozyme gene by means of oligonucleotide-dependent, site-directed mutagenesis. The new gene was expressed in Escherichia coli under control of the (trp-lac) hybrid tac promoter, and the protein was purified. Mild oxidation generated a disulfide bond between the new Cys3 and Cys97, one of the two unpaired cysteines of the native molecule. Oxidized T4 lysozyme (Ile3----Cys) exhibited specific activity identical to that of the wild-type enzyme when measured at 20 degrees C in a cell-clearing assay. The cross-linked protein was more stable than the wild type during incubation at elevated temperatures as determined by recovered enzymatic activity at 20 degrees C.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, L J -- Wetzel, R -- New York, N.Y. -- Science. 1984 Nov 2;226(4674):555-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6387910" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; DNA, Recombinant/metabolism ; Escherichia coli/enzymology ; *Genetic Engineering ; Kinetics ; Muramidase/*genetics/metabolism ; Protein Denaturation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1984-01-13
    Description: T-cell growth factor (TCGF) or interleukin-2 (IL-2), an immunoregulatory lymphokine, is produced by lectin- or antigen-activated mature T lymphocytes and in a constitutive manner by certain T-cell lymphoma cell lines. By means of a molecular clone of human TCGF and DNA extracted from a panel of somatic cell hybrids (rodent cells X normal human lymphocytes), the TCGF structural gene was identified on human chromosome 4. In situ hybridization of the TCGF clone to human chromosomes resulted in significant labeling of the midportion of the long arm of chromosome 4, indicating that the TCGF gene was located at band q26-28. Genomic DNA from a panel of hybrids prepared with HUT-102 B2 cells was examined with the same molecular clone. In this clone of cells, which produces human T-cell leukemia virus, the TCGF gene was also located on chromosome 4 and was apparently not rearranged. The homologous TCGF locus in the domestic cat was assigned to chromosome B1 by using a somatic cell hybrid panel that segregates cat chromosomes. Linkage studies as well as high-resolution G-trypsin banding indicate that this feline chromosome is partially homologous to human chromosome 4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seigel, L J -- Harper, M E -- Wong-Staal, F -- Gallo, R C -- Nash, W G -- O'Brien, S J -- New York, N.Y. -- Science. 1984 Jan 13;223(4632):175-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6318318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cats/*genetics ; Chromosome Banding ; Chromosome Mapping ; *Chromosomes ; *Chromosomes, Human, 4-5 ; Cloning, Molecular ; Deltaretrovirus ; *Genes ; Genetic Linkage ; Humans ; Hybrid Cells ; Interleukin-2/*genetics ; Nucleic Acid Hybridization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1984-10-05
    Description: The human T-cell leukemia viruses HTLV-I and HTLV-II are unique among the transforming retroviruses of vertebrates in their ability to transform human T cells in vitro and in their close association with human malignancies (T-cell lymphomas and leukemia). Their genomes are relatively simple, containing the genes gag, pol, env, and a 3' region termed "X." This 3' region may be responsible for the transforming potential of the viruses. The existence of proteins encoded by the 3' region has been postulated on the basis of multiple open reading frames. In the present study this region is shown to contain a gene encoding a protein of 40 kilodaltons in HTLV-I and 37 kilodaltons in HTLV-II. It is proposed that these proteins be called, respectively, p40xI and p37xII.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slamon, D J -- Shimotohno, K -- Cline, M J -- Golde, D W -- Chen, I S -- CA 16042/CA/NCI NIH HHS/ -- CA 32737/CA/NCI NIH HHS/ -- RR 00865/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1984 Oct 5;226(4670):61-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089351" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; B-Lymphocytes/microbiology ; Cell Line ; *Cell Transformation, Viral ; Deltaretrovirus/analysis/*genetics/physiology ; *Genes, Viral ; Humans ; Immune Sera ; Molecular Weight ; T-Lymphocytes/*microbiology ; Trans-Activators ; Viral Proteins/genetics/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-06-08
    Description: The effect of a partial pressure of nitrogen of 50 atmospheres (5065 kilopascals ) on the hydrogen evolution reaction of nitrogenase has been investigated. Evolution of hydrogen was not blocked completely by 50 atmospheres of nitrogen in any of four experiments; rather, 27.3 +/- 2.4 percent of the total electron flux through nitrogenase was directed toward production of hydrogen. The ratio of hydrogen evolved to nitrogen fixed was close to 1:1, which implies that hydrogen evolution is obligatory in the fixation of molecular nitrogen by nitrogenase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simpson, F B -- Burris, R H -- AI-00848/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1984 Jun 8;224(4653):1095-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6585956" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; *Hydrogen ; *Nitrogen ; Nitrogen Fixation ; *Nitrogenase ; Partial Pressure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-04-20
    Description: Human epidermoid carcinoma A431 cells in culture produce a soluble 105-kilodalton protein which, by the criteria of epidermal growth factor (EGF) binding, recognition by monoclonal and polyclonal antibodies to the EGF receptor, amino-terminal sequence analysis and carbohydrate content, is related to the cell surface domain of the EGF receptor. The high rate of production and the finding that with biosynthetic labeling the specific activity of this 105-kilodalton protein exceeds that of the intact receptor indicate that it is not derived from membrane-bound mature receptor but is separately produced by the cell. These cells thus separately synthesize an EGF receptor that is inserted into the membrane and an EGF receptor-related protein that is secreted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, W -- Gill, G N -- Spiess, J -- AM13149/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1984 Apr 20;224(4646):294-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6324343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/immunology ; Carbohydrates/analysis ; Carcinoma, Squamous Cell/*metabolism ; Cell Line ; Epidermal Growth Factor/metabolism ; Glycoproteins/analysis/*biosynthesis ; Humans ; Kinetics ; Molecular Weight ; Receptor, Epidermal Growth Factor ; Receptors, Cell Surface/analysis/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1984-06-29
    Description: The gene encoding human interleukin-2 (IL-2) has been cloned from human spleen cells, peripheral blood lymphocytes, and the Jurkat cell line. Nucleotide sequence analysis of the gene revealed that the encoded IL-2 protein has three cysteines located at amino acid residues 58, 105, and 125 of the mature protein. Site-specific mutagenesis procedures were used to modify the IL-2 gene by changing each of the cysteine codons individually to serine codons. Substitution of serine for cysteine residues at either position 58 or 105 of the IL-2 protein substantially reduced biological activity, indicating that the cysteines at these positions are necessary for maintenance of the biologically active conformation and may therefore be linked by a disulfide bridge. The modified IL-2 protein containing a substitution at position 125 retained full biological activity, suggesting that the cysteine at this position is not involved in a disulfide bond and that a free sulfhydryl group at that position is not necessary for receptor binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, A -- Lu, S D -- Mark, D F -- New York, N.Y. -- Science. 1984 Jun 29;224(4656):1431-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6427925" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cysteine/metabolism ; DNA, Recombinant/metabolism ; Escherichia coli/genetics ; Genes ; Humans ; Interleukin-2/*genetics ; *Mutation ; Receptors, Immunologic/metabolism ; Receptors, Interleukin-2 ; Serine/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1984-11-30
    Description: Rearrangement in the c-myb locus of each of four independently derived BALB/c plasmacytoid lymphosarcoma (ABPL's) is due to the insertion of a defective Moloney murine leukemia virus (M-MuLV) into a 1.5-kilobase-pair stretch of cellular DNA at the 5' end of the v-myb-related sequences. This retroviral insertion is associated with abnormal transcription of myb sequences and probably represents a step in the neoplastic transformation of ABPL cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen-Ong, G L -- Potter, M -- Mushinski, J F -- Lavu, S -- Reddy, E P -- New York, N.Y. -- Science. 1984 Nov 30;226(4678):1077-80.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6093260" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosome Deletion ; Cloning, Molecular ; DNA Restriction Enzymes ; DNA Transposable Elements ; *Genes, Viral ; Lymphoma, Non-Hodgkin/genetics/*microbiology ; Mice ; Mice, Inbred BALB C ; Moloney murine leukemia virus/*genetics ; *Mutation ; Nucleic Acid Hybridization ; *Oncogenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1984-08-31
    Description: Human DNA contains many copies of endogenous retroviral sequences. Characterization of molecular clones of these structures reveals the existence of two related families. One family consists of full-length (8.8 kilobases) proviral structures, with typical long terminal repeates (LTR's). The other family consists of structures, which contain only 4.1 kilobases of gag-pol sequences, bounded by a tandem array of imperfect repeats 72 to 76 base pairs in length. Typical LTR sequences that exist as solitary elements in the genome were cloned and characterized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steele, P E -- Rabson, A B -- Bryan, T -- Martin, M A -- New York, N.Y. -- Science. 1984 Aug 31;225(4665):943-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089336" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cloning, Molecular ; DNA/*genetics ; DNA Restriction Enzymes ; DNA, Viral ; *Deoxyribonucleases, Type II Site-Specific ; *Genes, Viral ; Humans ; Nucleic Acid Hybridization ; *Repetitive Sequences, Nucleic Acid ; Retroviridae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...