ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (349)
  • Cloning, Molecular  (268)
  • American Association for the Advancement of Science (AAAS)  (576)
  • American Meteorological Society
  • 1995-1999  (576)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (576)
  • American Meteorological Society
Years
Year
  • 1
    Publication Date: 1998-12-16
    Description: A peripheral membrane protein that is interactive with lymphocytic choriomeningitis virus (LCMV) was purified from cells permissive to infection. Tryptic peptides from this protein were determined to be alpha-dystroglycan (alpha-DG). Several strains of LCMV and other arenaviruses, including Lassa fever virus (LFV), Oliveros, and Mobala, bound to purified alpha-DG protein. Soluble alpha-DG blocked both LCMV and LFV infection. Cells bearing a null mutation of the gene encoding DG were resistant to LCMV infection, and reconstitution of DG expression in null mutant cells restored susceptibility to LCMV infection. Thus, alpha-DG is a cellular receptor for both LCMV and LFV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, W -- Henry, M D -- Borrow, P -- Yamada, H -- Elder, J H -- Ravkov, E V -- Nichol, S T -- Compans, R W -- Campbell, K P -- Oldstone, M B -- AG 00080/AG/NIA NIH HHS/ -- AI 09484/AI/NIAID NIH HHS/ -- DK09712/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2079-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851928" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arenavirus/metabolism ; Cell Line ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; Dystroglycans ; Lassa virus/*metabolism/physiology ; Lymphocytic choriomeningitis virus/*metabolism/physiology ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, Virus/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: The Son of Sevenless (Sos) proteins control receptor-mediated activation of Ras by catalyzing the exchange of guanosine diphosphate for guanosine triphosphate on Ras. The NH2-terminal region of Sos contains a Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. In COS-1 cells, the DH domain of Sos stimulated guanine nucleotide exchange on Rac but not Cdc42 in vitro and in vivo. The tandem DH-PH domain of Sos (DH-PH-Sos) was defective in Rac activation but regained Rac stimulating activity when it was coexpressed with activated Ras. Ras-mediated activation of DH-PH-Sos did not require activation of mitogen-activated protein kinase but it was dependent on activation of phosphoinositide 3-kinase. These results reveal a potential mechanism for coupling of Ras and Rac signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nimnual, A S -- Yatsula, B A -- Bar-Sagi, D -- CA09176/CA/NCI NIH HHS/ -- CA28146/CA/NCI NIH HHS/ -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):560-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438849" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Membrane Proteins/chemistry/*metabolism ; *Mitogen-Activated Protein Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins ; Recombinant Fusion Proteins/metabolism ; Retroviridae Proteins, Oncogenic/chemistry ; Signal Transduction ; Son of Sevenless Proteins ; Transfection ; cdc42 GTP-Binding Protein ; rac GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-28
    Description: Control of the activation of apoptosis is important both in development and in protection against cancer. In the classic genetic model Caenorhabditis elegans, the pro-apoptotic protein CED-4 activates the CED-3 caspase and is inhibited by the Bcl-2-like protein CED-9. Both processes are mediated by protein-protein interaction. Facilitating the proximity of CED-3 zymogen molecules was found to induce caspase activation and cell death. CED-4 protein oligomerized in cells and in vitro. This oligomerization induced CED-3 proximity and competed with CED-4:CED-9 interaction. Mutations that abolished CED-4 oligomerization inactivated its ability to activate CED-3. Thus, the mechanism of control is that CED-3 in CED-3:CED-4 complexes is activated by CED-4 oligomerization, which is inhibited by binding of CED-9 to CED-4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, X -- Chang, H Y -- Baltimore, D -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1355-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721101" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Apoptosis Regulatory Proteins ; Biopolymers ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/*chemistry/genetics/*metabolism ; *Caspases ; Cell Line ; Chemistry, Physical ; Cysteine Endopeptidases/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Enzyme Activation ; Enzyme Precursors/metabolism ; HeLa Cells ; Helminth Proteins/*chemistry/genetics/*metabolism ; Humans ; Mutation ; Oligopeptides/pharmacology ; Physicochemical Phenomena ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Recombinant Fusion Proteins/metabolism ; Tacrolimus/pharmacology ; Transfection ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Mice homozygous for a disrupted allele of the mismatch repair gene Pms2 have a mutator phenotype. When this allele is crossed into quasi-monoclonal (QM) mice, which have a very limited B cell repertoire, homozygotes have fewer somatic mutations at the immunoglobulin heavy chain and lambda chain loci than do heterozygotes or wild-type QM mice. That is, mismatch repair seems to contribute to somatic hypermutation rather than stifling it. It is suggested that at immunoglobulin loci in hypermutable B cells, mismatched base pairs are "corrected" according to the newly synthesized DNA strand, thereby fixing incipient mutations instead of eliminating them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cascalho, M -- Wong, J -- Steinberg, C -- Wabl, M -- 1R01 GM37699/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0670, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469811" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenosine Triphosphatases ; Alleles ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology ; Base Composition ; Base Sequence ; Cloning, Molecular ; Crosses, Genetic ; *DNA Repair ; *DNA Repair Enzymes ; *DNA-Binding Proteins ; Female ; Gene Rearrangement ; *Genes, Immunoglobulin ; Heterozygote ; Immunoglobulin Heavy Chains/chemistry/genetics ; Immunoglobulin Variable Region/chemistry/*genetics ; Immunoglobulin lambda-Chains/chemistry/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Mutation ; Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-12-18
    Description: CTLA-4, a negative regulator of T cell function, was found to associate with the T cell receptor (TCR) complex zeta chain in primary T cells. The association of TCRzeta with CTLA-4, reconstituted in 293 transfectants, was enhanced by p56(lck)-induced tyrosine phosphorylation. Coexpression of the CTLA-4-associated tyrosine phosphatase, SHP-2, resulted in dephosphorylation of TCRzeta bound to CTLA-4 and abolished the p56(lck)-inducible TCRzeta-CTLA-4 interaction. Thus, CTLA-4 inhibits TCR signal transduction by binding to TCRzeta and inhibiting tyrosine phosphorylation after T cell activation. These findings have broad implications for the negative regulation of T cell function and T cell tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, K M -- Chuang, E -- Griffin, M -- Khattri, R -- Hong, D K -- Zhang, W -- Straus, D -- Samelson, L E -- Thompson, C B -- Bluestone, J A -- P01 AI35294-6/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2263-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ben May Institute for Cancer Research, and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856951" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, Differentiation/*metabolism ; CTLA-4 Antigen ; Cell Line ; Cells, Cultured ; Humans ; *Immunoconjugates ; Intracellular Signaling Peptides and Proteins ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Models, Immunological ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/genetics/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; SH2 Domain-Containing Protein Tyrosine Phosphatases ; *Signal Transduction ; T-Lymphocytes/*immunology ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-02-21
    Description: CREB binding protein (CBP) functions as an essential coactivator of transcription factors that are inhibited by the adenovirus early gene product E1A. Transcriptional activation by the signal transducer and activator of transcription-1 (STAT1) protein requires the C/H3 domain in CBP, which is the primary target of E1A inhibition. Here it was found that the C/H3 domain is not required for retinoic acid receptor (RAR) function, nor is it involved in E1A inhibition. Instead, E1A inhibits RAR function by preventing the assembly of CBP-nuclear receptor coactivator complexes, revealing differences in required CBP domains for transcriptional activation by RAR and STAT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurokawa, R -- Kalafus, D -- Ogliastro, M H -- Kioussi, C -- Xu, L -- Torchia, J -- Rosenfeld, M G -- Glass, C K -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445474" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/*metabolism/pharmacology ; Animals ; Binding Sites ; CREB-Binding Protein ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/metabolism ; Histone Acetyltransferases ; Humans ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 3 ; Protein Binding ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Tretinoin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-06-11
    Description: Sickle cell anemia is the most common heritable hematological disease, yet no curative treatment exists for this disorder. Moreover, the intricacies of globin gene expression have made the development of treatments for hemoglobinopathies based on gene therapy difficult. An alternative genetic approach to sickle cell therapy is based on RNA repair. A trans-splicing group I ribozyme was used to alter mutant beta-globin transcripts in erythrocyte precursors derived from peripheral blood from individuals with sickle cell disease. Sickle beta-globin transcripts were converted into messenger RNAs encoding the anti-sickling protein gamma-globin. These results suggest that RNA repair may become a useful approach in the treatment of genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lan, N -- Howrey, R P -- Lee, S W -- Smith, C A -- Sullenger, B A -- HL57606/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1593-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genetic and Cellular Therapies, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616120" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/*blood/therapy ; Cloning, Molecular ; Erythroid Precursor Cells/*metabolism ; Exons ; Fetal Blood ; Genetic Therapy ; Globins/*genetics ; Humans ; Mutation ; Polymerase Chain Reaction ; *RNA Splicing ; RNA, Catalytic/genetics/*metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Transfection ; Uridine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-08-14
    Description: The timing and localization of DNA replication initiation in mammalian cells are heritable traits, but it is not known whether initiation requires specific DNA sequences. A site-specific recombination strategy was used to show that DNA sequences previously identified as replication initiation sites could initiate replication when transferred to new chromosomal locations. An 8-kilobase DNA sequence encompassing the origin of DNA replication in the human beta-globin locus initiated replication in the simian genome. Specific deletions within the globin origin did not initiate replication in these chromosomal sites. These data suggest that initiation of DNA replication in mammalian cells requires specific sequence information and extend the replicon hypothesis to higher eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aladjem, M I -- Rodewald, L W -- Kolman, J L -- Wahl, G M -- CA48405/CA/NCI NIH HHS/ -- GM51104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):1005-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, The Salk Institute, San Diego, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703500" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cercopithecus aethiops ; DNA/genetics ; DNA Nucleotidyltransferases/metabolism ; *DNA Replication ; Gene Targeting ; Globins/*genetics ; Humans ; Integrases/metabolism ; Polymerase Chain Reaction ; *Replication Origin ; S Phase ; Sequence Deletion ; *Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-08-28
    Description: A large protein complex mediates the phosphorylation of the inhibitor of kappaB (IkappaB), which results in the activation of nuclear factor kappaB (NF-kappaB). Two subunits of this complex, IkappaB kinase alpha (IKKalpha) and IkappaB kinase beta (IKKbeta), are required for NF-kappaB activation. Purified recombinant IKKalpha and IKKbeta expressed in insect cells were used to demonstrate that each protein can directly phosphorylate IkappaB proteins. IKKalpha and IKKbeta were found to form both homodimers and heterodimers. Both IKKalpha and IKKbeta phosphorylated IkappaB bound to NF-kappaB more efficiently than they phosphorylated free IkappaB. This result explains how free IkappaB can accumulate in cells in which IKK is still active and thus can contribute to the termination of NF-kappaB activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zandi, E -- Chen, Y -- Karin, M -- AI 43477/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Dimerization ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; Leucine Zippers ; Mutation ; NF-kappa B/antagonists & inhibitors/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Spodoptera ; Transcription Factor RelB ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1998-08-14
    Description: The breast and ovarian cancer susceptibility gene BRCA1 encodes a zinc finger protein of unknown function. Association of the BRCA1 protein with the DNA repair protein Rad51 and changes in the phosphorylation and cellular localization of the protein after exposure to DNA-damaging agents are consistent with a role for BRCA1 in DNA repair. Here, it is shown that mouse embryonic stem cells deficient in BRCA1 are defective in the ability to carry out transcription-coupled repair of oxidative DNA damage, and are hypersensitive to ionizing radiation and hydrogen peroxide. These results suggest that BRCA1 participates, directly or indirectly, in transcription-coupled repair of oxidative DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gowen, L C -- Avrutskaya, A V -- Latour, A M -- Koller, B H -- Leadon, S A -- CA40453/CA/NCI NIH HHS/ -- CA70490/CA/NCI NIH HHS/ -- IP50CA58223/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):1009-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Curriculum in Genetics and Molecular Biology and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703501" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; BRCA1 Protein/genetics/*physiology ; Cell Line ; DNA Damage ; *DNA Repair ; Hydrogen Peroxide ; Mice ; Oxidation-Reduction ; Stem Cells ; Thymine/analogs & derivatives/immunology/metabolism ; Transcription, Genetic ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1998-11-30
    Description: The NPH1 gene of Arabidopsis thaliana encodes a 120-kilodalton serine-threonine protein kinase hypothesized to function as a photoreceptor for phototropism. When expressed in insect cells, the NPH1 protein is phosphorylated in response to blue light irradiation. The biochemical and photochemical properties of the photosensitive protein reflect those of the native protein in microsomal membranes. Recombinant NPH1 noncovalently binds flavin mononucleotide, a likely chromophore for light-dependent autophosphorylation. The fluorescence excitation spectrum of the recombinant protein is similar to the action spectrum for phototropism, consistent with the conclusion that NPH1 is an autophosphorylating flavoprotein photoreceptor mediating phototropic responses in higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christie, J M -- Reymond, P -- Powell, G K -- Bernasconi, P -- Raibekas, A A -- Liscum, E -- Briggs, W R -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1698-701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; Cell Line ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavin Mononucleotide/metabolism ; Flavoproteins/physiology ; Genes, Plant ; Light ; Mutation ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; *Photoreceptor Cells, Invertebrate ; *Phototropism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, G-Protein-Coupled ; Recombinant Proteins/metabolism ; Spectrometry, Fluorescence ; Spodoptera ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1998-01-24
    Description: Gene expression was visualized in single living mammalian cells with beta-lactamase as a reporter that hydrolyzes a substrate loaded intracellularly as a membrane-permeant ester. Each enzyme molecule changed the fluorescence of many substrate molecules from green to blue by disrupting resonance energy transfer. This wavelength shift was detectable by eye or color film in individual cells containing less than 100 beta-lactamase molecules. The robust change in emission ratio reveals quantitative heterogeneity in real-time gene expression, enables clonal selection by flow cytometry, and forms a basis for high-throughput screening of pharmaceutical candidate drugs in living mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zlokarnik, G -- Negulescu, P A -- Knapp, T E -- Mere, L -- Burres, N -- Feng, L -- Whitney, M -- Roemer, K -- Tsien, R Y -- NS27177/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):84-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aurora Biosciences, 11010 Torreyana Road, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation/methods ; Clone Cells/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Drug Evaluation, Preclinical ; Energy Transfer ; Flow Cytometry ; Fluoresceins/metabolism ; Fluorescent Dyes/metabolism ; *Gene Expression ; *Genes, Reporter ; Half-Life ; Humans ; *Lactams ; Muscarinic Agonists/pharmacology ; Muscarinic Antagonists/pharmacology ; NFATC Transcription Factors ; *Nuclear Proteins ; Sensitivity and Specificity ; Spectrometry, Fluorescence ; Transcription Factors/genetics/metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; Umbelliferones/metabolism ; beta-Lactamases/*genetics/metabolism ; beta-Lactams/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):521-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9575097" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Drug Resistance, Microbial/genetics ; Escherichia coli/genetics/pathogenicity ; *Genes, Bacterial ; Integrases/*genetics/metabolism ; *Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Vibrio cholerae/enzymology/*genetics/pathogenicity ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crow, J F -- New York, N.Y. -- Science. 1999 Mar 12;283(5408):1651-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Wisconsin, Madison, WI 53706, USA. jfcrow@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10189318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics/physiology ; Cell Nucleus/metabolism ; Cloning, Molecular ; Drosophila/*genetics/physiology ; *Drosophila Proteins ; *GTPase-Activating Proteins ; *Genes, Insect ; Male ; *Meiosis ; Nuclear Proteins/*genetics/physiology ; Sperm Maturation ; Spermatozoa/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1265-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*enzymology ; Brain/*enzymology ; Cloning, Molecular ; Glutamic Acid/metabolism ; Neurons/metabolism ; Racemases and Epimerases/*genetics/metabolism ; Rats ; Receptors, N-Methyl-D-Aspartate/metabolism ; Serine/*biosynthesis/metabolism ; Stereoisomerism ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1999-11-05
    Description: The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortez, D -- Wang, Y -- Qin, J -- Elledge, S J -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550055" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/*metabolism ; Breast Neoplasms/genetics ; Cell Cycle Proteins ; Cell Line ; *DNA Damage ; *DNA Repair ; DNA, Complementary ; DNA-Binding Proteins ; Female ; Gamma Rays ; Genes, BRCA1 ; Genetic Predisposition to Disease ; HeLa Cells ; Heterozygote ; Humans ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherley, J L -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1676-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523183" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Gene Expression Regulation ; Genetic Vectors ; Operator Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; *Research Design ; Tetracycline/*pharmacology ; Trans-Activators/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1999-08-28
    Description: Class II transactivator (CIITA) is a global transcriptional coactivator of human leukocyte antigen-D (HLA-D) genes. CIITA contains motifs similar to guanosine triphosphate (GTP)-binding proteins. This report shows that CIITA binds GTP, and mutations in these motifs decrease its GTP-binding and transactivation activity. Substitution of these motifs with analogous sequences from Ras restores CIITA function. CIITA exhibits little GTPase activity, yet mutations in CIITA that confer GTPase activity reduce transcriptional activity. GTP binding by CIITA correlates with nuclear import. Thus, unlike other GTP-binding proteins, CIITA is involved in transcriptional activation that uses GTP binding to facilitate its own nuclear import.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harton, J A -- Cressman, D E -- Chin, K C -- Der, C J -- Ting, J P -- AI29564/AI/NIAID NIH HHS/ -- AI41751/AI/NIAID NIH HHS/ -- AI45580/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1402-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10464099" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Cell Nucleus/*metabolism ; GTP-Binding Proteins/chemistry/genetics/*metabolism ; *Genes, MHC Class II ; Guanosine Triphosphate/*metabolism ; HLA-DR Antigens/genetics ; Humans ; Mutation ; *Nuclear Proteins ; Promoter Regions, Genetic ; Temperature ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1999-03-26
    Description: The carboxyl-terminal domain of colicin E5 was shown to inhibit protein synthesis of Escherichia coli. Its target, as revealed through in vivo and in vitro experiments, was not ribosomes as in the case of E3, but the transfer RNAs (tRNAs) for Tyr, His, Asn, and Asp, which contain a modified base, queuine, at the wobble position of each anticodon. The E5 carboxyl-terminal domain hydrolyzed these tRNAs just on the 3' side of this nucleotide. Tight correlation was observed between the toxicity of E5 and the cleavage of intracellular tRNAs of this group, implying that these tRNAs are the primary targets of colicin E5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, T -- Tomita, K -- Ueda, T -- Watanabe, K -- Uozumi, T -- Masaki, H -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2097-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092236" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/*metabolism ; Bacterial Proteins/biosynthesis/genetics/pharmacology ; Base Sequence ; Cloning, Molecular ; Colicins/genetics/*metabolism/pharmacology ; Escherichia coli/drug effects/metabolism ; *Escherichia coli Proteins ; Guanine/analogs & derivatives/analysis ; Molecular Sequence Data ; RNA, Bacterial/chemistry/*metabolism ; RNA, Ribosomal, 16S/metabolism ; RNA, Transfer, Amino Acid-Specific/chemistry/*metabolism ; RNA, Transfer, Asn/chemistry/metabolism ; RNA, Transfer, Asp/chemistry/metabolism ; RNA, Transfer, His/chemistry/metabolism ; RNA, Transfer, Tyr/chemistry/metabolism ; Ribonucleases/genetics/*metabolism/pharmacology ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, V -- Goodenough, D A -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428705" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Channels/metabolism ; Cell Membrane/metabolism/ultrastructure ; Claudins ; Cloning, Molecular ; Humans ; Ion Channels ; Ion Transport ; Kidney Diseases/genetics/*metabolism ; Kidney Tubules/*metabolism/ultrastructure ; Lipid Bilayers/metabolism ; Magnesium/blood/*metabolism ; Magnesium Deficiency/genetics/*metabolism ; Membrane Proteins/genetics/*physiology ; Mutation ; Tight Junctions/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1999-04-09
    Description: Phosphorylation of inhibitor of kappa B (IkappaB) proteins is an important step in the activation of the transcription nuclear factor kappa B (NF-kappaB) and requires two IkappaB kinases, IKK1 (IKKalpha) and IKK2 (IKKbeta). Mice that are devoid of the IKK2 gene had extensive liver damage from apoptosis and died as embryos, but these mice could be rescued by the inactivation of the gene encoding tumor necrosis factor receptor 1. Mouse embryonic fibroblast cells that were isolated from IKK2-/- embryos showed a marked reduction in tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1alpha-induced NF-kappaB activity and an enhanced apoptosis in response to TNF-alpha. IKK1 associated with NF-kappaB essential modulator (IKKgamma/IKKAP1), another component of the IKK complex. These results show that IKK2 is essential for mouse development and cannot be substituted with IKK1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Q -- Van Antwerp, D -- Mercurio, F -- Lee, K F -- Verma, I M -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA. Signal Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Liver/cytology/*embryology ; Mice ; NF-kappa B/metabolism ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factor RelA ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-29
    Description: The protein encoded by the c-MYC proto-oncogene is a transcription factor that can both activate and repress the expression of target genes, but few of its transcriptional targets have been identified. Here, c-MYC is shown to repress the expression of the heavy subunit of the protein ferritin (H-ferritin), which sequesters intracellular iron, and to stimulate the expression of the iron regulatory protein-2 (IRP2), which increases the intracellular iron pool. Down-regulation of the expression of H-ferritin gene was required for cell transformation by c-MYC. These results indicate that c-MYC coordinately regulates genes controlling intracellular iron concentrations and that this function is essential for the control of cell proliferation and transformation by c-MYC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, K J -- Polack, A -- Dalla-Favera, R -- CA-37165/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):676-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncology, Department of Pathology, Columbia University, New York, NY 10032, USA. an.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Line ; Cell Line, Transformed ; Cell Transformation, Neoplastic ; DNA/biosynthesis ; Down-Regulation ; Ferritins/*genetics/metabolism ; *Gene Expression Regulation ; Genes, myc ; Homeostasis ; Iron/*metabolism ; Iron Regulatory Protein 2 ; Iron-Regulatory Proteins ; Iron-Sulfur Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-myc/*physiology ; RNA/metabolism ; RNA-Binding Proteins/*genetics/metabolism ; Receptors, Transferrin/genetics ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1999-09-18
    Description: Antithrombin, a member of the serpin family, functions as an inhibitor of thrombin and other enzymes. Cleavage of the carboxyl-terminal loop of antithrombin induces a conformational change in the molecule. Here it is shown that the cleaved conformation of antithrombin has potent antiangiogenic and antitumor activity in mouse models. The latent form of intact antithrombin, which is similar in conformation to the cleaved molecule, also inhibited angiogenesis and tumor growth. These data provide further evidence that the clotting and fibrinolytic pathways are directly involved in the regulation of angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Reilly, M S -- Pirie-Shepherd, S -- Lane, W S -- Folkman, J -- P01-CA45548/CA/NCI NIH HHS/ -- R01-CA64481/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1926-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Children's Hospital, Departments of Surgery and Cellular Biology, Harvard Microchemistry Facility, 16 Divinity Avenue, Cambridge, MA 02138, USA. oreilly@hub.tch.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/chemistry/isolation & purification/metabolism/*pharmacology ; Antithrombins/chemistry/isolation & purification/metabolism/*pharmacology ; Carcinoma, Small Cell/blood supply/drug therapy ; Cell Line ; Culture Media, Conditioned ; Drug Screening Assays, Antitumor ; Humans ; Lung Neoplasms/blood supply/drug therapy ; Mice ; Mice, SCID ; Neoplasm Transplantation ; Neovascularization, Pathologic/*drug therapy ; Peptide Fragments/chemistry/metabolism/pharmacology ; Protein Conformation ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1999-09-18
    Description: The bacterial pathogen Yersinia uses a type III secretion system to inject several virulence factors into target cells. One of the Yersinia virulence factors, YopJ, was shown to bind directly to the superfamily of MAPK (mitogen-activated protein kinase) kinases (MKKs) blocking both phosphorylation and subsequent activation of the MKKs. These results explain the diverse activities of YopJ in inhibiting the extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38, and nuclear factor kappa B signaling pathways, preventing cytokine synthesis and promoting apoptosis. YopJ-related proteins that are found in a number of bacterial pathogens of animals and plants may function to block MKKs so that host signaling responses can be modulated upon infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orth, K -- Palmer, L E -- Bao, Z Q -- Stewart, S -- Rudolph, A E -- Bliska, J B -- Dixon, J E -- 18024/PHS HHS/ -- AI35175/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1920-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489373" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Calcium-Calmodulin-Dependent Protein Kinases/*antagonists & inhibitors ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/*pharmacology ; HeLa Cells ; Humans ; *MAP Kinase Kinase Kinase 1 ; NF-kappa B/metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Transfection ; Virulence ; Yersinia pseudotuberculosis/genetics/metabolism/pathogenicity/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1999-01-05
    Description: CmPP16 from Cucurbita maxima was cloned and the protein was shown to possess properties similar to those of viral movement proteins. CmPP16 messenger RNA (mRNA) is present in phloem tissue, whereas protein appears confined to sieve elements (SE). Microinjection and grafting studies revealed that CmPP16 moves from cell to cell, mediates the transport of sense and antisense RNA, and moves together with its mRNA into the SE of scion tissue. CmPP16 possesses the characteristics that are likely required to mediate RNA delivery into the long-distance translocation stream. Thus, RNA may move within the phloem as a component of a plant information superhighway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xoconostle-Cazares, B -- Xiang, Y -- Ruiz-Medrano, R -- Wang, H L -- Monzer, J -- Yoo, B C -- McFarland, K C -- Franceschi, V R -- Lucas, W J -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):94-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872750" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cloning, Molecular ; Cucumis sativus ; Cucurbitaceae/genetics/*metabolism ; Microinjections ; Molecular Sequence Data ; Plant Leaves/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Roots/metabolism ; Plant Stems/metabolism ; Plant Viral Movement Proteins ; RNA, Antisense/metabolism ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-07-03
    Description: Epithelia permit selective and regulated flux from apical to basolateral surfaces by transcellular passage through cells or paracellular flux between cells. Tight junctions constitute the barrier to paracellular conductance; however, little is known about the specific molecules that mediate paracellular permeabilities. Renal magnesium ion (Mg2+) resorption occurs predominantly through a paracellular conductance in the thick ascending limb of Henle (TAL). Here, positional cloning has identified a human gene, paracellin-1 (PCLN-1), mutations in which cause renal Mg2+ wasting. PCLN-1 is located in tight junctions of the TAL and is related to the claudin family of tight junction proteins. These findings provide insight into Mg2+ homeostasis, demonstrate the role of a tight junction protein in human disease, and identify an essential component of a selective paracellular conductance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, D B -- Lu, Y -- Choate, K A -- Velazquez, H -- Al-Sabban, E -- Praga, M -- Casari, G -- Bettinelli, A -- Colussi, G -- Rodriguez-Soriano, J -- McCredie, D -- Milford, D -- Sanjad, S -- Lifton, R P -- F.1/Telethon/Italy -- R01DK51696/DK/NIDDK NIH HHS/ -- TGM06S01/Telethon/Italy -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390358" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/urine ; Chromosomes, Human, Pair 3/genetics ; Claudins ; Cloning, Molecular ; Female ; Genes, Recessive ; Homeostasis ; Humans ; Kidney Diseases/*genetics/metabolism ; Kidney Tubules/chemistry ; Loop of Henle/chemistry/*metabolism ; Magnesium/blood/*metabolism ; Magnesium Deficiency/*genetics/metabolism ; Male ; Membrane Proteins/analysis/chemistry/genetics/*physiology ; Molecular Sequence Data ; Mutation ; Pedigree ; Physical Chromosome Mapping ; Tight Junctions/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1999-10-16
    Description: Defensins contribute to host defense by disrupting the cytoplasmic membrane of microorganisms. This report shows that human beta-defensins are also chemotactic for immature dendritic cells and memory T cells. Human beta-defensin was selectively chemotactic for cells stably transfected to express human CCR6, a chemokine receptor preferentially expressed by immature dendritic cells and memory T cells. The beta-defensin-induced chemotaxis was sensitive to pertussis toxin and inhibited by antibodies to CCR6. The binding of iodinated LARC, the chemokine ligand for CCR6, to CCR6-transfected cells was competitively displaced by beta-defensin. Thus, beta-defensins may promote adaptive immune responses by recruiting dendritic and T cells to the site of microbial invasion through interaction with CCR6.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, D -- Chertov, O -- Bykovskaia, S N -- Chen, Q -- Buffo, M J -- Shogan, J -- Anderson, M -- Schroder, J M -- Wang, J M -- Howard, O M -- Oppenheim, J J -- N01-CO-56000/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):525-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunoregulation, Division of Basic Sciences, Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521347" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/immunology ; Binding, Competitive ; Cell Line ; Chemokine CCL20 ; Chemokines, CC/metabolism/pharmacology ; Chemotaxis ; Chemotaxis, Leukocyte ; Defensins ; Dendritic Cells/*immunology ; Humans ; *Immunity, Active ; *Immunity, Innate ; Immunologic Memory ; *Macrophage Inflammatory Proteins ; Pertussis Toxin ; Proteins/pharmacology/*physiology ; Receptors, CCR6 ; Receptors, Chemokine/genetics/*metabolism ; Recombinant Proteins/pharmacology ; T-Lymphocyte Subsets/*immunology ; Transfection ; Virulence Factors, Bordetella/pharmacology ; *beta-Defensins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1999-04-09
    Description: IkappaB [inhibitor of nuclear factor kappaB (NF-kappaB)] kinase (IKK) phosphorylates IkappaB inhibitory proteins, causing their degradation and activation of transcription factor NF-kappaB, a master activator of inflammatory responses. IKK is composed of three subunits-IKKalpha and IKKbeta, which are highly similar protein kinases, and IKKgamma, a regulatory subunit. In mammalian cells, phosphorylation of two sites at the activation loop of IKKbeta was essential for activation of IKK by tumor necrosis factor and interleukin-1. Elimination of equivalent sites in IKKalpha, however, did not interfere with IKK activation. Thus, IKKbeta, not IKKalpha, is the target for proinflammatory stimuli. Once activated, IKKbeta autophosphorylated at a carboxyl-terminal serine cluster. Such phosphorylation decreased IKK activity and may prevent prolonged activation of the inflammatory response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delhase, M -- Hayakawa, M -- Chen, Y -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):309-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195894" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Leucine Zippers ; *MAP Kinase Kinase Kinase 1 ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1999-04-16
    Description: Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stebbins, C E -- Kaelin, W G Jr -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):455-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Cycle Proteins/chemistry/metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; *Ligases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Neoplasms/genetics ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/metabolism ; S-Phase Kinase-Associated Proteins ; Surface Properties ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1999-11-05
    Description: Focal adhesions (FAs) are clustered integrins and associated proteins that mediate cell adhesion and signaling. A green fluorescent protein-beta1 integrin chimera was used to label FAs in living cells. In stationary cells, FAs were highly motile, moving linearly for several plaque lengths toward the cell center. FA motility was independent of cell density and resulted from contraction of associated actin fibers. In migrating cells, FAs were stationary and only moved in the tail. FA motility in stationary cells suggests that cell movement may be regulated by a clutch-like mechanism by which the affinity of integrins to substrate may be altered in response to migratory cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smilenov, L B -- Mikhailov, A -- Pelham, R J -- Marcantonio, E E -- Gundersen, G G -- GM42026/GM/NIGMS NIH HHS/ -- GM44585/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1172-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550057" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/physiology ; Animals ; Antigens, CD29/*metabolism ; *Cell Adhesion ; Cell Count ; Cell Line ; *Cell Movement ; Fibroblasts/*cytology/metabolism ; Fluorescence ; Green Fluorescent Proteins ; Luminescent Proteins ; Mice ; Microscopy, Interference ; Rats ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1999-09-08
    Description: Photoperiodic responses in plants include flowering that is day-length-dependent. Mutations in the Arabidopsis thaliana GIGANTEA (GI) gene cause photoperiod-insensitive flowering and alteration of circadian rhythms. The GI gene encodes a protein containing six putative transmembrane domains. Circadian expression patterns of the GI gene and the clock-associated genes, LHY and CCA1, are altered in gi mutants, showing that GI is required for maintaining circadian amplitude and appropriate period length of these genes. The gi-1 mutation also affects light signaling to the clock, which suggests that GI participates in a feedback loop of the plant circadian system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, D H -- Somers, D E -- Kim, Y S -- Choy, Y H -- Lim, H K -- Soh, M S -- Kim, H J -- Kay, S A -- Nam, H G -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1579-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477524" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/*physiology ; *Arabidopsis Proteins ; *Circadian Rhythm ; Cloning, Molecular ; Crosses, Genetic ; DNA-Binding Proteins/genetics ; Darkness ; Feedback ; Gene Expression Regulation, Plant ; *Genes, Plant ; Light ; Molecular Sequence Data ; Mutation ; Photoperiod ; Plant Leaves/physiology ; Plant Proteins/chemistry/*genetics/physiology ; Plant Structures/physiology ; Sequence Deletion ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1999-07-03
    Description: An estimated 170 million persons worldwide are infected with hepatitis C virus (HCV), a major cause of chronic liver disease. Despite increasing knowledge of genome structure and individual viral proteins, studies on virus replication and pathogenesis have been hampered by the lack of reliable and efficient cell culture systems. A full-length consensus genome was cloned from viral RNA isolated from an infected human liver and used to construct subgenomic selectable replicons. Upon transfection into a human hepatoma cell line, these RNAs were found to replicate to high levels, permitting metabolic radiolabeling of viral RNA and proteins. This work defines the structure of HCV replicons functional in cell culture and provides the basis for a long-sought cellular system that should allow detailed molecular studies of HCV and the development of antiviral drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohmann, V -- Korner, F -- Koch, J -- Herian, U -- Theilmann, L -- Bartenschlager, R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Virology, Johannes-Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390360" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular ; Cloning, Molecular ; Drug Resistance ; *Genome, Viral ; Gentamicins/pharmacology ; Hepacivirus/genetics/*physiology ; Hepatitis C/virology ; Humans ; Liver Neoplasms ; RNA, Viral/*biosynthesis/genetics ; *Replicon ; Transfection ; Tumor Cells, Cultured/*virology ; Viral Nonstructural Proteins/analysis/genetics ; Virus Cultivation ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1999-10-26
    Description: T cell receptor (TCR)-induced apoptosis of thymocytes is mediated by calcium-dependent expression of the steroid receptors Nur77 and Nor1. Nur77 expression is controlled by the transcription factor myocyte enhancer factor 2 (MEF2), but how MEF2 is activated by calcium signaling is still obscure. Cabin1, a calcineurin inhibitor, was found to regulate MEF2. MEF2 was normally sequestered by Cabin1 in a transcriptionally inactive state. TCR engagement led to an increase in intracellular calcium concentration and the dissociation of MEF2 from Cabin1, as a result of competitive binding of activated calmodulin to Cabin1. The interplay between Cabin1, MEF2, and calmodulin defines a distinct signaling pathway from the TCR to the Nur77 promoter during T cell apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youn, H D -- Sun, L -- Prywes, R -- Liu, J O -- GM55783/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):790-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531067" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; *Apoptosis ; Calcineurin/chemistry/genetics/metabolism/pharmacology ; Calcium/metabolism ; *Calcium Signaling ; Calmodulin/metabolism ; Cell Line ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Gene Expression ; Genes, Reporter ; Humans ; Jurkat Cells ; MEF2 Transcription Factors ; Myogenic Regulatory Factors ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Phosphoproteins/chemistry/genetics/metabolism/pharmacology ; Receptors, Antigen, T-Cell/metabolism ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; T-Lymphocytes/*cytology/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1999-05-29
    Description: Inositol 1,4,5-trisphosphate (IP3) is a second messenger that elicits complex spatiotemporal patterns of calcium ion (Ca2+) mobilization and has essential roles in the regulation of many cellular functions. In Madin-Darby canine kidney epithelial cells, green fluorescent protein-tagged pleckstrin homology domain translocated from the plasma membrane to the cytoplasm in response to increased concentration of IP3. The detection of translocation enabled monitoring of IP3 concentration changes within single cells and revealed spatiotemporal dynamics in the concentration of IP3 synchronous with Ca2+ oscillations and intracellular and intercellular IP3 waves that accompanied Ca2+ waves. Such changes in IP3 concentration may be fundamental to Ca2+ signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirose, K -- Kadowaki, S -- Tanabe, M -- Takeshima, H -- Iino, M -- New York, N.Y. -- Science. 1999 May 28;284(5419):1527-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Faculty of Medicine, University of Tokyo and CREST, Japan Science and Technology Corporation, Tokyo 113-8654, Japan. hirose@calcium.cmp.m.u-tokyo.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348740" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Calcium/*metabolism ; *Calcium Signaling ; Cell Line ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Dogs ; Green Fluorescent Proteins ; Inositol 1,4,5-Trisphosphate/*metabolism ; Inositol Phosphates/metabolism ; Isoenzymes/chemistry/metabolism ; Ligands ; Luminescent Proteins ; Microscopy, Confocal ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Phospholipase C delta ; Recombinant Fusion Proteins/metabolism ; Time Factors ; Type C Phospholipases/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1999-07-31
    Description: Many psychotropic drugs interfere with the reuptake of dopamine, norepinephrine, and serotonin. Transport capacity is regulated by kinase-linked pathways, particularly those involving protein kinase C (PKC), resulting in transporter phosphorylation and sequestration. Phosphorylation and sequestration of the serotonin transporter (SERT) were substantially impacted by ligand occupancy. Ligands that can permeate the transporter, such as serotonin or the amphetamines, prevented PKC-dependent SERT phosphorylation. Nontransported SERT antagonists such as cocaine and antidepressants were permissive for SERT phosphorylation but blocked serotonin effects. PKC-dependent SERT sequestration was also blocked by serotonin. These findings reveal activity-dependent modulation of neurotransmitter reuptake and identify previously unknown consequences of amphetamine, cocaine, and antidepressant action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramamoorthy, S -- Blakely, R D -- DA07390/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):763-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Center for Molecular Neuroscience, School of Medicine, Vanderbilt University, Nashville, TN 37232-6420, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427004" target="_blank"〉PubMed〈/a〉
    Keywords: Antidepressive Agents/metabolism/pharmacology ; Biogenic Monoamines/metabolism/pharmacology ; Biotinylation ; Carrier Proteins/antagonists & inhibitors/*metabolism ; Cell Line ; Central Nervous System Agents/metabolism/*pharmacology ; Cocaine/metabolism/pharmacology ; Dextroamphetamine/metabolism/pharmacology ; Enzyme Activation ; Humans ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*metabolism ; *Membrane Transport Proteins ; Models, Biological ; *Nerve Tissue Proteins ; Neurotransmitter Agents/metabolism/*pharmacology ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Kinases/metabolism ; Serotonin/*metabolism/pharmacology ; Serotonin Antagonists/pharmacology ; Serotonin Plasma Membrane Transport Proteins ; Serotonin Uptake Inhibitors/metabolism/pharmacology ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610555" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; Cloning, Molecular ; *Human Growth Hormone/genetics ; *Patents as Topic ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1999-10-09
    Description: Ubiquitination of receptor protein-tyrosine kinases (RPTKs) terminates signaling by marking active receptors for degradation. c-Cbl, an adapter protein for RPTKs, positively regulates RPTK ubiquitination in a manner dependent on its variant SRC homology 2 (SH2) and RING finger domains. Ubiquitin-protein ligases (or E3s) are the components of ubiquitination pathways that recognize target substrates and promote their ligation to ubiquitin. The c-Cbl protein acted as an E3 that can recognize tyrosine-phosphorylated substrates, such as the activated platelet-derived growth factor receptor, through its SH2 domain and that recruits and allosterically activates an E2 ubiquitin-conjugating enzyme through its RING domain. These results reveal an SH2-containing protein that functions as a ubiquitin-protein ligase and thus provide a distinct mechanism for substrate targeting in the ubiquitin system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joazeiro, C A -- Wing, S S -- Huang, H -- Leverson, J D -- Hunter, T -- Liu, Y C -- CA39780/CA/NCI NIH HHS/ -- R01 DK56558/DK/NIDDK NIH HHS/ -- T32CA09523/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute, Molecular Biology and Virology Laboratory, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Humans ; Ligases/chemistry/*metabolism ; Molecular Sequence Data ; Phosphotyrosine/metabolism ; Point Mutation ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Signal Transduction ; *Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1999-01-08
    Description: Cochlear frequency selectivity in lower vertebrates arises in part from electrical tuning intrinsic to the sensory hair cells. The resonant frequency is determined largely by the gating kinetics of calcium-activated potassium (BK) channels encoded by the slo gene. Alternative splicing of slo from chick cochlea generated kinetically distinct BK channels. Combination with accessory beta subunits slowed the gating kinetics of alpha splice variants but preserved relative differences between them. In situ hybridization showed that the beta subunit is preferentially expressed by low-frequency (apical) hair cells in the avian cochlea. Interaction of beta with alpha splice variants could provide the kinetic range needed for electrical tuning of cochlear hair cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramanathan, K -- Michael, T H -- Jiang, G J -- Hiel, H -- Fuchs, P A -- DC00276/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):215-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Hearing Sciences, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880252" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Calcium/metabolism ; Cell Line ; Electrophysiology ; Gene Expression ; Hair Cells, Auditory/*physiology ; Humans ; In Situ Hybridization ; *Ion Channel Gating ; Kinetics ; Large-Conductance Calcium-Activated Potassium Channel beta Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Membrane Potentials ; Patch-Clamp Techniques ; Potassium Channels/genetics/*physiology ; *Potassium Channels, Calcium-Activated ; Quail ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1999-03-19
    Description: In higher plants, organogenesis occurs continuously from self-renewing apical meristems. Arabidopsis thaliana plants with loss-of-function mutations in the CLAVATA (CLV1, 2, and 3) genes have enlarged meristems and generate extra floral organs. Genetic analysis indicates that CLV1, which encodes a receptor kinase, acts with CLV3 to control the balance between meristem cell proliferation and differentiation. CLV3 encodes a small, predicted extracellular protein. CLV3 acts nonautonomously in meristems and is expressed at the meristem surface overlying the CLV1 domain. These proteins may act as a ligand-receptor pair in a signal transduction pathway, coordinating growth between adjacent meristematic regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fletcher, J C -- Brand, U -- Running, M P -- Simon, R -- Meyerowitz, E M -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10082464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*cytology/genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Cell Differentiation ; Cell Division ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; In Situ Hybridization ; Ligands ; Meristem/*cytology/growth & development/metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Shoots/cytology ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Receptor Protein-Tyrosine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1999-07-10
    Description: Drug resistance of pathogens is an increasing problem whose underlying mechanisms are not fully understood. Cellular uptake of the major drugs against Trypanosoma brucei spp., the causative agents of sleeping sickness, is thought to occur through an unusual, so far unidentified adenosine transporter. Saccharomyces cerevisiae was used in a functional screen to clone a gene (TbAT1) from Trypanosoma brucei brucei that encodes a nucleoside transporter. When expressed in yeast, TbAT1 enabled adenosine uptake and conferred susceptibility to melaminophenyl arsenicals. Drug-resistant trypanosomes harbor a defective TbAT1 variant. The molecular identification of the entry route of trypanocides opens the way to approaches for diagnosis and treatment of drug-resistant sleeping sickness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maser, P -- Sutterlin, C -- Kralli, A -- Kaminsky, R -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):242-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Tropical Institute, CH-4002 Basel, Switzerland. Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398598" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Amino Acid Sequence ; Animals ; Arsenicals/metabolism/pharmacology ; Biological Transport ; Carrier Proteins/chemistry/genetics/*metabolism ; Cloning, Molecular ; Drug Resistance/genetics ; Genes, Protozoan ; Membrane Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Nucleoside Transport Proteins ; Nucleosides/metabolism ; Purines/metabolism/pharmacology ; Saccharomyces cerevisiae/genetics ; Substrate Specificity ; Trypanocidal Agents/metabolism/*pharmacology ; Trypanosoma brucei brucei/*drug effects/genetics/*metabolism ; Trypanosomiasis, African/drug therapy/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solter, D -- Gearhart, J -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1468-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Max Planck Institute of Immunology, Freiburg, Germany. solter@immunbio.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206877" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bioethics ; Blastocyst/*cytology ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Cloning, Organism ; Cytoplasm/physiology ; Embryo, Mammalian/cytology ; Humans ; Mice ; Nuclear Transfer Techniques ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1999-10-16
    Description: Analysis of rhesus macaque leukocytes disclosed the presence of an 18-residue macrocyclic, tridisulfide antibiotic peptide in granules of neutrophils and monocytes. The peptide, termed rhesus theta defensin-1 (RTD-1), is microbicidal for bacteria and fungi at low micromolar concentrations. Antibacterial activity of the cyclic peptide was threefold greater than that of an open-chain analog, and the cyclic conformation was required for antimicrobial activity in the presence of 150 millimolar sodium chloride. Biosynthesis of RTD-1 involves the head-to-tail ligation of two alpha-defensin-related nonapeptides, requiring the formation of two new peptide bonds. Thus, host defense cells possess mechanisms for synthesis and granular packaging of macrocyclic antibiotic peptides that are components of the phagocyte antimicrobial armamentarium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Y Q -- Yuan, J -- Osapay, G -- Osapay, K -- Tran, D -- Miller, C J -- Ouellette, A J -- Selsted, M E -- AI22931/AI/NIAID NIH HHS/ -- DK33506/DK/NIDDK NIH HHS/ -- DK44632/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):498-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Medicine, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521339" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents ; Anti-Infective Agents/chemistry/*metabolism/pharmacology ; Bacteria/drug effects ; Cloning, Molecular ; Defensins ; Disulfides/chemistry ; Fungi/drug effects ; Humans ; Leukopoiesis ; Macaca mulatta ; Molecular Sequence Data ; Monocytes/*metabolism ; Neutrophils/*metabolism ; Oligopeptides/chemistry/genetics/metabolism ; Osmolar Concentration ; Peptides, Cyclic/*biosynthesis/chemistry/genetics/pharmacology ; *Protein Biosynthesis ; Protein Conformation ; Protein Precursors/chemistry/genetics/metabolism ; Protein Processing, Post-Translational ; Proteins/chemistry/genetics/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2213.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9890829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Tissue Transplantation ; Cell Differentiation ; Cell Line ; Cell Movement ; Cerebellum/cytology ; Cerebral Ventricles/cytology/embryology ; *Fetal Tissue Transplantation ; Humans ; Mice ; Neuroglia/cytology ; Neurons/cytology ; *Stem Cell Transplantation ; Stem Cells/cytology/enzymology ; beta-N-Acetylhexosaminidases/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1998-08-14
    Description: Transcription factors of the nuclear factor-kappaB/rel (NF-kappaB) family may be important in cell survival by regulating unidentified, anti-apoptotic genes. One such gene that protects cells from apoptosis induced by Fas or tumor necrosis factor type alpha (TNF), IEX-1L, is described here. Its transcription induced by TNF was decreased in cells with defective NF-kappaB activation, rendering them sensitive to TNF-induced apoptosis, which was abolished by transfection with IEX-1L. In support, overexpression of antisense IEX-1L partially blocked TNF-induced expression of IEX-1L and sensitized normal cells to killing. This study demonstrates a key role of IEX-1L in cellular resistance to TNF-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, M X -- Ao, Z -- Prasad, K V -- Wu, R -- Schlossman, S F -- AI12069/AI/NIAID NIH HHS/ -- P30AI28691/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):998-1001.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, and the Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/physiology ; Apoptosis/genetics/*physiology ; Apoptosis Regulatory Proteins ; Cell Line ; Cell Survival ; Cloning, Molecular ; DNA, Antisense/genetics ; Gene Expression Regulation ; Genetic Vectors ; Humans ; Immediate-Early Proteins/genetics/*physiology ; Jurkat Cells ; Membrane Glycoproteins/genetics/*physiology ; Membrane Proteins ; Mice ; NF-kappa B/*physiology ; *Neoplasm Proteins ; Transfection ; Tumor Necrosis Factor-alpha/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-06
    Description: Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple cell metabolism to electrical activity. Phosphatidylinositol phosphates (PIPs) profoundly antagonized ATP inhibition of KATP channels when applied to inside-out membrane patches. It is proposed that membrane-incorporated PIPs can bind to positive charges in the cytoplasmic region of the channel's Kir6.2 subunit, stabilizing the open state of the channel and antagonizing the inhibitory effect of ATP. The tremendous effect of PIPs on ATP sensitivity suggests that in vivo alterations of membrane PIP levels will have substantial effects on KATP channel activity and hence on the gain of metabolism-excitation coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shyng, S L -- Nichols, C G -- HL45742/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804554" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism/*pharmacology ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Islets of Langerhans/metabolism ; Mutation ; Myocardium/cytology/metabolism ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Phosphatidylinositol Phosphates/*metabolism/pharmacology ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Receptors, Drug/metabolism ; Recombinant Fusion Proteins/metabolism ; Sulfonylurea Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1998-09-11
    Description: The p53 tumor suppressor protein is activated and phosphorylated on serine-15 in response to various DNA damaging agents. The gene product mutated in ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction pathway initiated by ionizing radiation. Immunoprecipitated ATM had intrinsic protein kinase activity and phosphorylated p53 on serine-15 in a manganese-dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly enhanced this p53-directed kinase activity of endogenous ATM. These observations, along with the fact that phosphorylation of p53 on serine-15 in response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest that ATM is a protein kinase that phosphorylates p53 in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canman, C E -- Lim, D S -- Cimprich, K A -- Taya, Y -- Tamai, K -- Sakaguchi, K -- Appella, E -- Kastan, M B -- Siliciano, J D -- CA71387/CA/NCI NIH HHS/ -- ES05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins School of Medicine, Oncology Center, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733515" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Enzyme Activation ; Humans ; Lymphocytes/metabolism/radiation effects ; Mutation ; Nuclear Proteins ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/genetics/*metabolism ; *Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; Transfection ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1998-07-17
    Description: Activation of nonreceptor protein tyrosine kinases (PTKs) is essential for T cell receptor (TCR) responsiveness; however, the function of individual PTK substrates is often uncertain. A mutant T cell line was isolated that lacked expression of SLP-76 (SH2 domain-containing leukocyte protein of 76 kilodaltons), a hematopoietically expressed adaptor protein and PTK substrate. SLP-76 was not required for TCR-induced tyrosine phosphorylation of most proteins, but was required for optimal tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), as well as Ras pathway activation. TCR-inducible gene expression was dependent on SLP-76. Thus, coupling of TCR-regulated PTKs to downstream signaling pathways requires SLP-76.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yablonski, D -- Kuhne, M R -- Kadlecek, T -- Weiss, A -- CA72531/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Howard Hughes Medical Institute, Box 0795, University of California, San Francisco, San Francisco, CA 94143-0795, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665884" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Humans ; Inositol Phosphates/metabolism ; Interleukin-2/genetics ; Isoenzymes/*metabolism ; Jurkat Cells ; *Membrane Proteins ; Mitogen-Activated Protein Kinase 1 ; NFATC Transcription Factors ; *Nuclear Proteins ; Phospholipase C gamma ; Phosphoproteins/metabolism/*physiology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/*metabolism ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection ; Type C Phospholipases/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1998-09-22
    Description: The Fas death receptor can activate the Jun NH2-terminal kinase (JNK) pathway through the receptor-associated protein Daxx. Daxx was found to activate the JNK kinase kinase ASK1, and overexpression of a kinase-deficient ASK1 mutant inhibited Fas- and Daxx-induced apoptosis and JNK activation. Fas activation induced Daxx to interact with ASK1, which consequently relieved an inhibitory intramolecular interaction between the amino- and carboxyl-termini of ASK1, activating its kinase activity. The Daxx-ASK1 connection completes a signaling pathway from a cell surface death receptor to kinase cascades that modulate nuclear transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H Y -- Nishitoh, H -- Yang, X -- Ichijo, H -- Baltimore, D -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1860-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743501" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Antigens, CD95/metabolism ; *Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/*metabolism ; Cell Line ; Enzyme Activation ; Humans ; *Intracellular Signaling Peptides and Proteins ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; *Nuclear Proteins ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1998-12-04
    Description: Targeted disruption of the gene encoding MEK kinase 1 (MEKK1), a mitogen-activated protein kinase (MAPK) kinase kinase, defined its function in the regulation of MAPK pathways and cell survival. MEKK1(-/-) embryonic stem cells from mice had lost or altered responses of the c-Jun amino-terminal kinase (JNK) to microtubule disruption and cold stress but activated JNK normally in response to heat shock, anisomycin, and ultraviolet irradiation. Activation of JNK was lost and that of extracellular signal-regulated protein kinase (ERK) was diminished in response to hyperosmolarity and serum factors in MEKK1(-/-) cells. Loss of MEKK1 expression resulted in a greater apoptotic response of cells to hyperosmolarity and microtubule disruption. When activated by specific stresses that alter cell shape and the cytoskeleton, MEKK1 signals to protect cells from apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yujiri, T -- Sather, S -- Fanger, G R -- Johnson, G L -- DK37871/DK/NIDDK NIH HHS/ -- GM30324/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, CO 80206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anisomycin/pharmacology ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Size ; *Cell Survival ; Enzyme Activation ; Gene Targeting ; JNK Mitogen-Activated Protein Kinases ; Lysophospholipids/pharmacology ; *MAP Kinase Kinase 4 ; *MAP Kinase Kinase Kinase 1 ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Nocodazole/pharmacology ; Osmolar Concentration ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/metabolism ; Stem Cells ; Temperature ; Transfection ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1998-06-11
    Description: The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gekakis, N -- Staknis, D -- Nguyen, H B -- Davis, F C -- Wilsbacher, L D -- King, D P -- Takahashi, J S -- Weitz, C J -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1564-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616112" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/genetics/*physiology ; Cloning, Molecular ; Cricetinae ; DNA/metabolism ; Dimerization ; Feedback ; Gene Expression ; Helix-Loop-Helix Motifs ; Male ; Mesocricetus ; Mice ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1998-03-21
    Description: The sphingolipid metabolite sphingosine-1-phosphate (SPP) has been implicated as a second messenger in cell proliferation and survival. However, many of its biological effects are due to binding to unidentified receptors on the cell surface. SPP activated the heterotrimeric guanine nucleotide binding protein (G protein)-coupled orphan receptor EDG-1, originally cloned as Endothelial Differentiation Gene-1. EDG-1 bound SPP with high affinity (dissociation constant = 8.1 nM) and high specificity. Overexpression of EDG-1 induced exaggerated cell-cell aggregation, enhanced expression of cadherins, and formation of well-developed adherens junctions in a manner dependent on SPP and the small guanine nucleotide binding protein Rho.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M J -- Van Brocklyn, J R -- Thangada, S -- Liu, C H -- Hand, A R -- Menzeleev, R -- Spiegel, S -- Hla, T -- DK45659/DK/NIDDK NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL49094/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1552-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488656" target="_blank"〉PubMed〈/a〉
    Keywords: Cadherins/*biosynthesis ; *Cell Aggregation ; Cell Differentiation ; Cell Line ; Cloning, Molecular ; GTP-Binding Proteins/metabolism ; Gene Expression ; Genes, Immediate-Early ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; Intercellular Junctions/*ultrastructure ; Ligands ; *Lysophospholipids ; Mitogen-Activated Protein Kinase 1/metabolism ; Morphogenesis ; Receptors, Cell Surface/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Signal Transduction ; Sphingosine/*analogs & derivatives/metabolism ; Transfection ; rho GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Trotta, C R -- Abelson, J -- F32 GM188930-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):279-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Mail Code 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallography, X-Ray ; Dimerization ; Endoribonucleases/*chemistry/genetics/metabolism ; *Evolution, Molecular ; HIV Long Terminal Repeat ; Hydrogen Bonding ; Methanococcus/*enzymology/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Archaeal/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1998-09-04
    Description: Recruitment of the coactivator, CREB binding protein (CBP), by signal-regulated transcription factors, such as CREB [adenosine 3', 5'-monophosphate (cAMP) response element binding protein], is critical for stimulation of gene expression. The mouse pituitary cell line AtT20 was used to show that the CBP recruitment step (CREB phosphorylation on serine-133) can be uncoupled from CREB/CBP-activated transcription. CBP was found to contain a signal-regulated transcriptional activation domain that is controlled by nuclear calcium and calcium/calmodulin-dependent (CaM) protein kinase IV and by cAMP. Cytoplasmic calcium signals that stimulate the Ras mitogen-activated protein kinase signaling cascade or expression of the activated form of Ras provided the CBP recruitment signal but did not increase CBP activity and failed to activate CREB- and CBP-mediated transcription. These results identify CBP as a signal-regulated transcriptional coactivator and define a regulatory role for nuclear calcium and cAMP in CBP-dependent gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chawla, S -- Hardingham, G E -- Quinn, D R -- Bading, H -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1505-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CREB-Binding Protein ; Calcium/*metabolism ; Calcium Channels/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclic AMP/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Genes, Reporter ; Mice ; Models, Genetic ; Nuclear Proteins/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription, Genetic ; *Transcriptional Activation ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1998-03-21
    Description: The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). The remaining four human APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned. APC7 contains multiple copies of the tetratrico peptide repeat, similar to CDC16, CDC23, and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function, APC2 contains a region that is similar to a sequence in cullins, a family of proteins implicated in the ubiquitination of G1 phase cyclins and cyclin-dependent kinase inhibitors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be distantly related members of a ubiquitin ligase family that targets cell cycle regulators for degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, H -- Peters, J M -- King, R W -- Page, A M -- Hieter, P -- Kirschner, M W -- CA16519/CA/NCI NIH HHS/ -- GM26875-17/GM/NIGMS NIH HHS/ -- GM39023-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469815" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc7 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome ; Cell Cycle/*physiology ; Cell Cycle Proteins/chemistry ; Cloning, Molecular ; *Cullin Proteins ; Helminth Proteins/chemistry ; Humans ; Ligases/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phylogeny ; Proteins/chemistry ; Saccharomyces cerevisiae/chemistry/cytology/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, M -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9565530" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; Chromosomes, Human, Pair 6/genetics ; Cloning, Molecular ; Humans ; *Ligases ; Mutation ; Parkinson Disease/*genetics/metabolism ; Proteins/chemistry/*genetics/physiology ; Substantia Nigra/metabolism ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1998-03-28
    Description: T cells with variable region Vdelta1 gammadelta T cell receptors (TCRs) are distributed throughout the human intestinal epithelium and may function as sentinels that respond to self antigens. The expression of a major histocompatibility complex (MHC) class I-related molecule, MICA, matches this localization. MICA and the closely related MICB were recognized by intestinal epithelial T cells expressing diverse Vdelta1 gammadelta TCRs. These interactions involved the alpha1alpha2 domains of MICA and MICB but were independent of antigen processing. With intestinal epithelial cell lines, the expression and recognition of MICA and MICB could be stress-induced. Thus, these molecules may broadly regulate protective responses by the Vdelta1 gammadelta T cells in the epithelium of the intestinal tract.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groh, V -- Steinle, A -- Bauer, S -- Spies, T -- P01 CA18221/CA/NCI NIH HHS/ -- R01 AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1737-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Avenue North, Seattle, WA 98109, USA. vgroh@fred.fhcrc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497295" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen Presentation ; Carrier Proteins/analysis/*immunology ; Cell Line ; Cytotoxicity, Immunologic ; Heat-Shock Response ; Histocompatibility Antigens Class I/analysis/*immunology ; Hot Temperature ; Humans ; Immunophenotyping ; Intestinal Mucosa/cytology/*immunology ; Ligands ; Receptors, Antigen, T-Cell, gamma-delta/*immunology ; T-Lymphocyte Subsets/*immunology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1998-02-21
    Description: Cellulose, an abundant, crystalline polysaccharide, is central to plant morphogenesis and to many industries. Chemical and ultrastructural analyses together with map-based cloning indicate that the RSW1 locus of Arabidopsis encodes the catalytic subunit of cellulose synthase. The cloned gene complements the rsw1 mutant whose temperature-sensitive allele is changed in one amino acid. The mutant allele causes a specific reduction in cellulose synthesis, accumulation of noncrystalline beta-1,4-glucan, disassembly of cellulose synthase, and widespread morphological abnormalities. Microfibril crystallization may require proper assembly of the RSW1 gene product into synthase complexes whereas glucan biosynthesis per se does not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arioli, T -- Peng, L -- Betzner, A S -- Burn, J -- Wittke, W -- Herth, W -- Camilleri, C -- Hofte, H -- Plazinski, J -- Birch, R -- Cork, A -- Glover, J -- Redmond, J -- Williamson, R E -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):717-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cooperative Research Centre for Plant Science, Australian National University, Post Office Box 475, Canberra, ACT 2601, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/*genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/chemistry/ultrastructure ; Cellulose/*biosynthesis/chemistry/genetics ; Chromosome Mapping ; Cloning, Molecular ; Crystallization ; Freeze Fracturing ; *Genes, Plant ; Genetic Complementation Test ; Glucans/metabolism ; Glucosyltransferases/chemistry/*genetics ; Molecular Sequence Data ; Mutation ; Plant Roots/chemistry/ultrastructure ; Plant Shoots/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: Transforming growth factor-beta (TGF-beta) inhibits cell proliferation, and acquisition of TGF-beta resistance has been linked to tumorigenesis. A genetic screen was performed to identify complementary DNAs that abrogated TGF-beta sensitivity in mink lung epithelial cells. Ectopic expression of murine double minute 2 rescued TGF-beta-induced growth arrest in a p53-independent manner by interference with retinoblastoma susceptibility gene product (Rb)/E2F function. In human breast tumor cells, increased MDM2 expression levels correlated with TGF-beta resistance. Thus, MDM2 may confer TGF-beta resistance in a subset of tumors and may promote tumorigenesis by interference with two independent tumor suppressors, p53 and Rb.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, P -- Dong, P -- Dai, K -- Hannon, G J -- Beach, D -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2270-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856953" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/metabolism/pathology ; *Carrier Proteins ; *Cell Cycle Proteins ; *Cell Division ; Cell Line ; Cell Transformation, Neoplastic ; *DNA-Binding Proteins ; Drug Resistance, Neoplasm ; E2F Transcription Factors ; Gene Expression ; Genes, Retinoblastoma ; Genes, p53 ; Genetic Vectors ; Humans ; Mice ; Mink ; *Nuclear Proteins ; Phosphorylation ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-mdm2 ; Retinoblastoma Protein/metabolism ; Retinoblastoma-Binding Protein 1 ; Signal Transduction ; Transcription Factor DP1 ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transforming Growth Factor beta/*pharmacology/physiology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1999-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hannon, G J -- Sun, P -- Carnero, A -- Xie, L Y -- Maestro, R -- Conklin, D S -- Beach, D -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1129-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10075573" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cloning, Molecular/*methods ; DNA, Complementary ; Gene Expression ; Gene Library ; Genes, p53 ; Genes, ras ; *Genetic Techniques ; Genetic Vectors ; Mammals ; Phenotype ; Proviruses/genetics ; Retroviridae/genetics ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1998-06-11
    Description: The tumor suppressor PTEN is a phosphatase with sequence similarity to the cytoskeletal protein tensin. Here the cellular roles of PTEN were investigated. Overexpression of PTEN inhibited cell migration, whereas antisense PTEN enhanced migration. Integrin-mediated cell spreading and the formation of focal adhesions were down-regulated by wild-type PTEN but not by PTEN with an inactive phosphatase domain. PTEN interacted with the focal adhesion kinase FAK and reduced its tyrosine phosphorylation. Overexpression of FAK partially antagonized the effects of PTEN. Thus, PTEN phosphatase may function as a tumor suppressor by negatively regulating cell interactions with the extracellular matrix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, M -- Gu, J -- Matsumoto, K -- Aota, S -- Parsons, R -- Yamada, K M -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. mtamura@yoda.nidr.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616126" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Cell Line ; *Cell Movement ; Cell Size ; Concanavalin A ; Down-Regulation ; Ecdysone/pharmacology ; Fibronectins ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Genes, Tumor Suppressor ; Humans ; Integrins/physiology ; Mice ; Mutation ; PTEN Phosphohydrolase ; *Phosphoric Monoester Hydrolases ; Phosphorylation ; Polylysine ; Protein Tyrosine Phosphatases/genetics/metabolism/pharmacology/*physiology ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Transfection ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1999-04-24
    Description: Control of cyclin levels is critical for proper cell cycle regulation. In yeast, the stability of the G1 cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1-Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippel-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skowyra, D -- Koepp, D M -- Kamura, T -- Conrad, M N -- Conaway, R C -- Conaway, J W -- Elledge, S J -- Harper, J W -- AG11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- GM54137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Carrier Proteins/chemistry/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclins/*metabolism ; F-Box Proteins ; Fungal Proteins/*metabolism ; Ligases/metabolism ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Ubiquitin-Conjugating Enzymes ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1999-06-18
    Description: Cell walls are crucial for development, signal transduction, and disease resistance in plants. Cell walls are made of cellulose, hemicelluloses, and pectins. Xyloglucan (XG), the principal load-bearing hemicellulose of dicotyledonous plants, has a terminal fucosyl residue. A 60-kilodalton fucosyltransferase (FTase) that adds this residue was purified from pea epicotyls. Peptide sequence information from the pea FTase allowed the cloning of a homologous gene, AtFT1, from Arabidopsis. Antibodies raised against recombinant AtFTase immunoprecipitate FTase enzyme activity from solubilized Arabidopsis membrane proteins, and AtFT1 expressed in mammalian COS cells results in the presence of XG FTase activity in these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perrin, R M -- DeRocher, A E -- Bar-Peled, M -- Zeng, W -- Norambuena, L -- Orellana, A -- Raikhel, N V -- Keegstra, K -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1976-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Michigan State University-Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373113" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*enzymology/genetics ; COS Cells ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Cloning, Molecular ; DNA, Complementary ; Expressed Sequence Tags ; Fucosyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Genes, Plant ; *Glucans ; Molecular Sequence Data ; Peas/*enzymology ; Polysaccharides/*biosynthesis/chemistry ; *Xylans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1999-11-05
    Description: Peptide-major histocompatibility complex protein complexes (pMHCs) on antigen-presenting cells (APCs) are central to T cell activation. Within minutes of peptide-specific T cells interacting with APCs, pMHCs on APCs formed clusters at the site of T cell contact. Thereafter, these clusters were acquired by T cells and internalized through T cell receptor-mediated endocytosis. During this process, T cells became sensitive to peptide-specific lysis by neighboring T cells (fratricide). This form of immunoregulation could explain the "exhaustion" of T cell responses that is induced by high viral loads and may serve to down-regulate immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, J F -- Yang, Y -- Sepulveda, H -- Shi, W -- Hwang, I -- Peterson, P A -- Jackson, M R -- Sprent, J -- Cai, Z -- New York, N.Y. -- Science. 1999 Oct 29;286(5441):952-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉R. W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10542149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drosophila ; *Endocytosis ; Flow Cytometry ; Histocompatibility Antigens/*immunology ; Macromolecular Substances ; Peptides/*immunology ; Receptors, Antigen, T-Cell/*immunology ; Recombinant Fusion Proteins/genetics/immunology ; T-Lymphocytes/*immunology/metabolism ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1999-12-03
    Description: Familial hemophagocytic lymphohistiocytosis (FHL) is a rare, rapidly fatal, autosomal recessive immune disorder characterized by uncontrolled activation of T cells and macrophages and overproduction of inflammatory cytokines. Linkage analyses indicate that FHL is genetically heterogeneous and linked to 9q21.3-22, 10q21-22, or another as yet undefined locus. Sequencing of the coding regions of the perforin gene of eight unrelated 10q21-22-linked FHL patients revealed homozygous nonsense mutations in four patients and missense mutations in the other four patients. Cultured lymphocytes from patients had defective cytotoxic activity, and immunostaining revealed little or no perforin in the granules. Thus, defects in perforin are responsible for 10q21-22-linked FHL. Perforin-based effector systems are, therefore, involved not only in the lysis of abnormal cells but also in the down-regulation of cellular immune activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stepp, S E -- Dufourcq-Lagelouse, R -- Le Deist, F -- Bhawan, S -- Certain, S -- Mathew, P A -- Henter, J I -- Bennett, M -- Fischer, A -- de Saint Basile, G -- Kumar, V -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1957-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and the Graduate Program in Immunology, University of Texas Southwestern Medical School, Dallas, TX 75235, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583959" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Presenting Cells/immunology ; Cell Death ; Cell Line ; Cells, Cultured ; Chromosome Mapping ; Chromosomes, Human, Pair 10/*genetics ; Codon, Terminator ; Cytoplasmic Granules/chemistry ; Cytotoxicity, Immunologic ; Frameshift Mutation ; Genetic Linkage ; Granzymes ; Heterozygote ; Histiocytosis, Non-Langerhans-Cell/*genetics/immunology ; Humans ; Lymphocyte Activation ; Membrane Glycoproteins/analysis/*genetics/physiology ; Mutation, Missense ; Perforin ; Point Mutation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/analysis ; T-Lymphocytes, Cytotoxic/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1999
    Description: The temporal program of gene expression during a model physiological response of human cells, the response of fibroblasts to serum, was explored with a complementary DNA microarray representing about 8600 different human genes. Genes could be clustered into groups on the basis of their temporal patterns of expression in this program. Many features of the transcriptional program appeared to be related to the physiology of wound repair, suggesting that fibroblasts play a larger and richer role in this complex multicellular response than had previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iyer, V R -- Eisen, M B -- Ross, D T -- Schuler, G -- Moore, T -- Lee, J C -- Trent, J M -- Staudt, L M -- Hudson, J Jr -- Boguski, M S -- Lashkari, D -- Shalon, D -- Botstein, D -- Brown, P O -- CA 77097/CA/NCI NIH HHS/ -- HG00450/HG/NHGRI NIH HHS/ -- T32 HG00450/HG/NHGRI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):83-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872747" target="_blank"〉PubMed〈/a〉
    Keywords: *Blood ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Cycle/*genetics ; Cell Line ; Cholesterol/biosynthesis ; Culture Media ; Culture Media, Serum-Free ; Expressed Sequence Tags ; Fibroblasts/cytology/*physiology ; Fluorescent Dyes ; *Gene Expression Regulation ; Genes, Immediate-Early ; Humans ; Oligonucleotide Array Sequence Analysis ; Polymerase Chain Reaction/methods ; Software ; Time Factors ; Transcription Factors/genetics ; *Transcription, Genetic ; Wound Healing/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, J S -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2076-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208-3520, USA. j-takahashi@nwu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523205" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Circadian Rhythm ; Cloning, Molecular ; Dogs ; Homeostasis ; Hypothalamus/metabolism ; Ligands ; Mice ; Mice, Knockout ; Narcolepsy/*genetics/physiopathology ; Neurons/metabolism ; Neuropeptides/metabolism ; Orexin Receptors ; Receptors, G-Protein-Coupled ; Receptors, Neuropeptide/chemistry/*genetics/physiology ; *Sleep/physiology ; Sleep, REM
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1999-07-03
    Description: Most isolates of hepatitis C virus (HCV) infections are resistant to interferon, the only available therapy, but the mechanism underlying this resistance has not been defined. Here it is shown that the HCV envelope protein E2 contains a sequence identical with phosphorylation sites of the interferon-inducible protein kinase PKR and the translation initiation factor eIF2alpha, a target of PKR. E2 inhibited the kinase activity of PKR and blocked its inhibitory effect on protein synthesis and cell growth. This interaction of E2 and PKR may be one mechanism by which HCV circumvents the antiviral effect of interferon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, D R -- Shi, S T -- Romano, P R -- Barber, G N -- Lai, M M -- AI 40038/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Immunology and Howard Hughes Medical Institute, University of Southern California, School of Medicine, Los Angeles, CA 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390359" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chloramphenicol O-Acetyltransferase/biosynthesis ; Drug Resistance, Microbial ; Endoplasmic Reticulum/metabolism ; Enzyme Induction ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; HeLa Cells ; *Hepacivirus/drug effects ; Humans ; Interferon-alpha/*pharmacology ; Phosphorylation ; Protein Biosynthesis ; Recombinant Fusion Proteins/metabolism/pharmacology ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Transfection ; Transformation, Genetic ; Viral Envelope Proteins/chemistry/metabolism/pharmacology/*physiology ; eIF-2 Kinase/*antagonists & inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1999-09-08
    Description: A mevalonate-independent pathway of isoprenoid biosynthesis present in Plasmodium falciparum was shown to represent an effective target for chemotherapy of malaria. This pathway includes 1-deoxy-D-xylulose 5-phosphate (DOXP) as a key metabolite. The presence of two genes encoding the enzymes DOXP synthase and DOXP reductoisomerase suggests that isoprenoid biosynthesis in P. falciparum depends on the DOXP pathway. This pathway is probably located in the apicoplast. The recombinant P. falciparum DOXP reductoisomerase was inhibited by fosmidomycin and its derivative, FR-900098. Both drugs suppressed the in vitro growth of multidrug-resistant P. falciparum strains. After therapy with these drugs, mice infected with the rodent malaria parasite P. vinckei were cured.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jomaa, H -- Wiesner, J -- Sanderbrand, S -- Altincicek, B -- Weidemeyer, C -- Hintz, M -- Turbachova, I -- Eberl, M -- Zeidler, J -- Lichtenthaler, H K -- Soldati, D -- Beck, E -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Academic Hospital Centre, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany. hassan.jomaa@biochemie.med.uni-giessen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477522" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; Antimalarials/*pharmacology ; Cloning, Molecular ; Enzyme Inhibitors/pharmacology ; Fosfomycin/*analogs & derivatives/pharmacology ; Genes, Protozoan ; *Hemiterpenes ; Malaria/*drug therapy/parasitology ; Malaria, Falciparum/drug therapy/parasitology ; Mevalonic Acid/metabolism ; Mice ; Molecular Sequence Data ; Multienzyme Complexes/*antagonists & inhibitors/chemistry/genetics/metabolism ; Organelles/drug effects/metabolism ; Organophosphorus Compounds/metabolism ; Oxidoreductases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Pentosephosphates/*metabolism ; Plasmodium falciparum/*drug effects/genetics/metabolism ; Recombinant Proteins/antagonists & inhibitors/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Terpenes/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1999-07-20
    Description: A phytochrome-like protein called Ppr was discovered in the purple photosynthetic bacterium Rhodospirillum centenum. Ppr has a photoactive yellow protein (PYP) amino-terminal domain, a central domain with similarity to phytochrome, and a carboxyl-terminal histidine kinase domain. Reconstitution experiments demonstrate that Ppr covalently attaches the blue light-absorbing chromophore p-hydroxycinnamic acid and that it has a photocycle that is spectrally similar to, but kinetically slower than, that of PYP. Ppr also regulates chalcone synthase gene expression in response to blue light with autophosphorylation inhibited in vitro by blue light. Phylogenetic analysis demonstrates that R. centenum Ppr may be ancestral to cyanobacterial and plant phytochromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Z -- Swem, L R -- Rushing, B G -- Devanathan, S -- Tollin, G -- Bauer, C E -- GM 40941/GM/NIGMS NIH HHS/ -- R01 GM040941/GM/NIGMS NIH HHS/ -- R01 GM053940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):406-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411503" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics ; Amino Acid Sequence ; Apoproteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/genetics/physiology ; Chemotaxis ; Cloning, Molecular ; Coumaric Acids/metabolism ; Gene Expression Regulation, Bacterial ; Light ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Photoreceptors, Microbial ; Phylogeny ; Phytochrome/*chemistry ; Protein Kinases/metabolism ; Rhodospirillum/*chemistry/genetics/physiology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1999-01-23
    Description: Tumor necrosis factor receptor type 1 (TNF-R1) contains a cytoplasmic death domain that is required for the signaling of TNF activities such as apoptosis and nuclear factor kappa B (NF-kappaB) activation. Normally, these signals are generated only after TNF-induced receptor aggregation. However, TNF-R1 self-associates and signals independently of ligand when overexpressed. This apparent paradox may be explained by silencer of death domains (SODD), a widely expressed approximately 60-kilodalton protein that was found to be associated with the death domain of TNF-R1. TNF treatment released SODD from TNF-R1, permitting the recruitment of proteins such as TRADD and TRAF2 to the active TNF-R1 signaling complex. SODD also interacted with death receptor-3 (DR3), another member of the TNF receptor superfamily. Thus, SODD association may be representative of a general mechanism for preventing spontaneous signaling by death domain-containing receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Y -- Woronicz, J D -- Liu, W -- Goeddel, D V -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):543-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915703" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Antigens, CD/chemistry/genetics/*metabolism ; Apoptosis ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Jurkat Cells ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; Protein Binding ; Proteins/metabolism ; Receptor Aggregation ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Member 25 ; Receptors, Tumor Necrosis Factor, Type I ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; U937 Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: Annotation of large-scale gene sequence data will benefit from comprehensive and consistent application of well-documented, standard analysis methods and from progressive and vigilant efforts to ensure quality and utility and to keep the annotation up to date. However, it is imperative to learn how to apply information derived from functional genomics and proteomics technologies to conceptualize and explain the behaviors of biological systems. Quantitative and dynamical models of systems behaviors will supersede the limited and static forms of single-gene annotation that are now the norm. Molecular biological epistemology will increasingly encompass both teleological and causal explanations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boguski, M S -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):453-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521334" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cloning, Molecular ; *Computational Biology ; Databases, Factual ; *Genetic Techniques ; *Genome ; Genome, Human ; Human Genome Project ; Humans ; Molecular Biology ; *Proteome ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, E -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):465, 467.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9988645" target="_blank"〉PubMed〈/a〉
    Keywords: Advisory Committees ; Bioethics ; Cell Line ; *Embryo Research ; Embryo, Mammalian/*cytology ; Federal Government ; *Government Regulation ; Humans ; National Institutes of Health (U.S.)/economics/*legislation & jurisprudence ; Research ; Research Support as Topic/*legislation & jurisprudence ; *Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkel, E -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):33-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; Clinical Trials as Topic ; Cloning, Molecular ; *Glucuronidase ; Glycoside Hydrolases/*antagonists & inhibitors/*genetics/isolation & ; purification/metabolism ; Humans ; Mice ; Neoplasm Metastasis/*prevention & control ; Rats ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1999-01-29
    Description: The Ras-dependent activation of mitogen-activated protein (MAP) kinase pathways by many receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) requires the activation of Src family tyrosine kinases. Stimulation of beta2 adrenergic receptors resulted in the assembly of a protein complex containing activated c-Src and the receptor. Src recruitment was mediated by beta-arrestin, which functions as an adapter protein, binding both c-Src and the agonist-occupied receptor. beta-Arrestin 1 mutants, impaired either in c-Src binding or in the ability to target receptors to clathrin-coated pits, acted as dominant negative inhibitors of beta2 adrenergic receptor-mediated activation of the MAP kinases Erk1 and Erk2. These data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ferguson, S S -- Daaka, Y -- Miller, W E -- Maudsley, S -- Della Rocca, G J -- Lin, F -- Kawakatsu, H -- Owada, K -- Luttrell, D K -- Caron, M G -- Lefkowitz, R J -- DK02352/DK/NIDDK NIH HHS/ -- DK55524/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):655-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924018" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/metabolism/pharmacology ; Animals ; Arrestins/genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line ; Cell Membrane/metabolism ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; Humans ; Isoproterenol/metabolism/pharmacology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Models, Biological ; Phosphorylation ; Point Mutation ; Precipitin Tests ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; Receptor Cross-Talk ; Receptors, Adrenergic, beta-2/*metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1752-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10391787" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; Cloning, Molecular ; Genetic Vectors ; *Human Growth Hormone/genetics ; Humans ; *Patents as Topic ; Publishing ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1999-05-21
    Description: Bile acids are essential for the solubilization and transport of dietary lipids and are the major products of cholesterol catabolism. Results presented here show that bile acids are physiological ligands for the farnesoid X receptor (FXR), an orphan nuclear receptor. When bound to bile acids, FXR repressed transcription of the gene encoding cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, and activated the gene encoding intestinal bile acid-binding protein, which is a candidate bile acid transporter. These results demonstrate a mechanism by which bile acids transcriptionally regulate their biosynthesis and enterohepatic transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, M -- Okamoto, A Y -- Repa, J J -- Tu, H -- Learned, R M -- Luk, A -- Hull, M V -- Lustig, K D -- Mangelsdorf, D J -- Shan, B -- New York, N.Y. -- Science. 1999 May 21;284(5418):1362-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334992" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/biosynthesis/*metabolism ; Biological Transport ; Carrier Proteins/*genetics/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism ; Cholesterol/metabolism ; Cholesterol 7-alpha-Hydroxylase/*genetics ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation ; Histone Acetyltransferases ; Homeostasis ; Humans ; *Hydroxysteroid Dehydrogenases ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1999-06-05
    Description: We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tortorella, M D -- Burn, T C -- Pratta, M A -- Abbaszade, I -- Hollis, J M -- Liu, R -- Rosenfeld, S A -- Copeland, R A -- Decicco, C P -- Wynn, R -- Rockwell, A -- Yang, F -- Duke, J L -- Solomon, K -- George, H -- Bruckner, R -- Nagase, H -- Itoh, Y -- Ellis, D M -- Ross, H -- Wiswall, B H -- Murphy, K -- Hillman, M C Jr -- Hollis, G F -- Newton, R C -- Magolda, R L -- Trzaskos, J M -- Arner, E C -- New York, N.Y. -- Science. 1999 Jun 4;284(5420):1664-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Inflammatory Diseases Research, DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10356395" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Aggrecans ; Amino Acid Sequence ; Arthritis/drug therapy ; Cartilage/metabolism ; Catalytic Domain ; Cloning, Molecular ; Disintegrins/chemistry/metabolism ; *Extracellular Matrix Proteins ; Humans ; Hydroxamic Acids/pharmacology ; Interleukin-1/pharmacology ; Lectins, C-Type ; Metalloendopeptidases/*chemistry/*genetics/isolation & purification/metabolism ; Molecular Sequence Data ; Procollagen N-Endopeptidase ; Protease Inhibitors/pharmacology ; Protein Sorting Signals ; Proteoglycans/metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1999-04-02
    Description: Leaves of higher plants develop in a sequential manner from the shoot apical meristem. Previously it was determined that perturbed leaf development in maize rough sheath2 (rs2) mutant plants results from ectopic expression of knotted1-like (knox) homeobox genes. Here, the rs2 gene sequence was found to be similar to the Antirrhinum PHANTASTICA (PHAN) gene sequence, which encodes a Myb-like transcription factor. RS2 and PHAN are both required to prevent the accumulation of knox gene products in maize and Antirrhinum leaves, respectively. However, rs2 and phan mutant phenotypes differ, highlighting fundamental differences in monocot and dicot leaf development programs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsiantis, M -- Schneeberger, R -- Golz, J F -- Freeling, M -- Langdale, J A -- GM14578/GM/NIGMS NIH HHS/ -- GM42610/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):154-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3BR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102817" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; DNA-Binding Proteins/chemistry/*genetics ; Down-Regulation ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/*genetics/metabolism ; In Situ Hybridization ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Development ; Plant Leaves/cytology/genetics/*growth & development/metabolism ; Plant Proteins/chemistry/*genetics ; Plants/*genetics/metabolism ; *Proto-Oncogene Proteins c-myb ; Repressor Proteins/chemistry/*genetics/physiology ; Sequence Alignment ; Zea mays/*genetics/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1999-11-27
    Description: Extracellular signals often result in simultaneous activation of both the Raf-MEK-ERK and PI3K-Akt pathways (where ERK is extracellular-regulated kinase, MEK is mitogen-activated protein kinase or ERK kinase, and PI3K is phosphatidylinositol 3-kinase). However, these two signaling pathways were shown to exert opposing effects on muscle cell hypertrophy. Furthermore, the PI3K-Akt pathway was shown to inhibit the Raf-MEK-ERK pathway; this cross-regulation depended on the differentiation state of the cell: Akt activation inhibited the Raf-MEK-ERK pathway in differentiated myotubes, but not in their myoblast precursors. The stage-specific inhibitory action of Akt correlated with its stage-specific ability to form a complex with Raf, suggesting the existence of differentially expressed mediators of an inhibitory Akt-Raf complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rommel, C -- Clarke, B A -- Zimmermann, S -- Nunez, L -- Rossman, R -- Reid, K -- Moelling, K -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1738-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/genetics ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinases/*antagonists & inhibitors/metabolism ; Muscle, Skeletal/*cytology/*metabolism ; Myogenin/genetics ; Phenotype ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-raf/*antagonists & inhibitors/metabolism ; Signal Transduction ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1999-10-26
    Description: Progressive damage to mitochondrial DNA (mtDNA) during life is thought to contribute to aging processes. However, this idea has been difficult to reconcile with the small fraction of mtDNA so far found to be altered. Here, examination of mtDNA revealed high copy point mutations at specific positions in the control region for replication of human fibroblast mtDNA from normal old, but not young, individuals. Furthermore, in longitudinal studies, one or more mutations appeared in an individual only at an advanced age. Some mutations appeared in more than one individual. Most strikingly, a T414G transversion was found, in a generally high proportion (up to 50 percent) of mtDNA molecules, in 8 of 14 individuals above 65 years of age (57 percent) but was absent in 13 younger individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michikawa, Y -- Mazzucchelli, F -- Bresolin, N -- Scarlato, G -- Attardi, G -- AG-12117-03/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):774-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531063" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; Aging/*genetics ; Cell Line ; Child ; Child, Preschool ; DNA Damage ; DNA Repair ; DNA Replication/*genetics ; DNA, Mitochondrial/biosynthesis/chemistry/*genetics ; Fetus ; Fibroblasts ; Humans ; Infant ; Infant, Newborn ; Longitudinal Studies ; Middle Aged ; Mitochondria/*genetics ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes ; *Point Mutation ; Polymerase Chain Reaction ; Pseudogenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-11
    Description: In asexual populations, beneficial mutations that occur in different lineages compete with one another. This phenomenon, known as clonal interference, ensures that those beneficial mutations that do achieve fixation are of large effect. Clonal interference also increases the time between fixations, thereby slowing the adaptation of asexual populations. The effects of clonal interference were measured in the asexual RNA virus vesicular stomatitis virus; rates and average effects of beneficial mutations were quantified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miralles, R -- Gerrish, P J -- Moya, A -- Elena, S F -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1745-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genetica, Universitat de Valencia, Apartado 22085, 46071 Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481012" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; Cell Line ; Confidence Intervals ; Cricetinae ; Gene Frequency ; Genes, Viral ; Likelihood Functions ; Models, Biological ; Models, Statistical ; *Mutation ; Vesicular stomatitis Indiana virus/genetics/*physiology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1999-07-27
    Description: Most organisms have circadian clocks consisting of negative feedback loops of gene regulation that facilitate adaptation to cycles of light and darkness. In this study, CRYPTOCHROME (CRY), a protein involved in circadian photoperception in Drosophila, is shown to block the function of PERIOD/TIMELESS (PER/TIM) heterodimeric complexes in a light-dependent fashion. TIM degradation does not occur under these conditions; thus, TIM degradation is uncoupled from abrogation of its function by light. CRY and TIM are part of the same complex and directly interact in yeast in a light-dependent fashion. PER/TIM and CRY influence the subcellular distribution of these protein complexes, which reside primarily in the nucleus after the perception of a light signal. Thus, CRY acts as a circadian photoreceptor by directly interacting with core components of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceriani, M F -- Darlington, T K -- Staknis, D -- Mas, P -- Petti, A A -- Weitz, C J -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):553-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and NSF Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; Cell Line ; Cell Nucleus/metabolism ; *Circadian Rhythm ; Cryptochromes ; Cytoplasm/metabolism ; Darkness ; Dimerization ; Drosophila ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Green Fluorescent Proteins ; Insect Proteins/genetics/*metabolism ; *Light ; Luminescent Proteins ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Transfection ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1999-12-11
    Description: Neurofibromatosis type 1 (NF1) is a prevalent familial cancer syndrome resulting from germ line mutations in the NF1 tumor suppressor gene. Hallmark features of the disease are the development of benign peripheral nerve sheath tumors (neurofibromas), which can progress to malignancy. Unlike humans, mice that are heterozygous for a mutation in Nf1 do not develop neurofibromas. However, as described here, chimeric mice composed in part of Nf1-/- cells do, which demonstrates that loss of the wild-type Nf1 allele is rate-limiting in tumor formation. In addition, mice that carry linked germ line mutations in Nf1 and p53 develop malignant peripheral nerve sheath tumors (MPNSTs), which supports a cooperative and causal role for p53 mutations in MPNST development. These two mouse models provide the means to address fundamental aspects of disease development and to test therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cichowski, K -- Shih, T S -- Schmitt, E -- Santiago, S -- Reilly, K -- McLaughlin, M E -- Bronson, R T -- Jacks, T -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2172-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Center for Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chimera ; *Disease Models, Animal ; Female ; *Genes, Neurofibromatosis 1 ; Genes, p53 ; Germ-Line Mutation ; Humans ; Loss of Heterozygosity ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Nerve Sheath Neoplasms/*genetics/*pathology ; Nerve Tissue Proteins/analysis/physiology ; Neurofibromatosis 1/*genetics/*pathology ; Neurofibromin 1 ; Proteins/analysis/physiology ; S100 Proteins/analysis ; Schwann Cells/chemistry/ultrastructure ; Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1999-12-11
    Description: Human corneal equivalents comprising the three main layers of the cornea (epithelium, stroma, and endothelium) were constructed. Each cellular layer was fabricated from immortalized human corneal cells that were screened for use on the basis of morphological, biochemical, and electrophysiological similarity to their natural counterparts. The resulting corneal equivalents mimicked human corneas in key physical and physiological functions, including morphology, biochemical marker expression, transparency, ion and fluid transport, and gene expression. Morphological and functional equivalents to human corneas that can be produced in vitro have immediate applications in toxicity and drug efficacy testing, and form the basis for future development of implantable tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffith, M -- Osborne, R -- Munger, R -- Xiong, X -- Doillon, C J -- Laycock, N L -- Hakim, M -- Song, Y -- Watsky, M A -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2169-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Ottawa Eye Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa Hospital-General Campus, Ottawa, Ontario K1H 8L6, Canada. mgriffith@ogh.on.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591651" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Testing Alternatives ; *Biomedical Engineering ; Cell Line ; Cells, Cultured ; Chondroitin Sulfates ; Collagen ; *Cornea/cytology/growth & development/physiology ; Corneal Opacity/chemically induced ; Corneal Stroma/cytology/growth & development/physiology ; Corneal Transplantation ; Cross-Linking Reagents ; *Culture Techniques ; Electrophysiology ; Endothelium, Corneal/cytology/growth & development ; Epithelium, Corneal/cytology/growth & development ; Gene Expression ; Glutaral ; Humans ; Ion Channels ; Ouabain/pharmacology ; Patch-Clamp Techniques ; Sodium Dodecyl Sulfate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1999-07-10
    Description: Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Bloom, O -- Zhang, M -- Vishnubhakat, J M -- Ombrellino, M -- Che, J -- Frazier, A -- Yang, H -- Ivanova, S -- Borovikova, L -- Manogue, K R -- Faist, E -- Abraham, E -- Andersson, J -- Andersson, U -- Molina, P E -- Abumrad, N N -- Sama, A -- Tracey, K J -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Emergency Medicine and Department of Surgery, North Shore University Hospital-New York University School of Medicine, Manhasset, NY 11030, USA. hwang@picower.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteremia/*blood ; Carrier Proteins/genetics/immunology/*metabolism/toxicity ; Cell Line ; Cells, Cultured ; Endotoxemia/*blood ; Endotoxins/blood/*toxicity ; HMGB1 Protein ; High Mobility Group Proteins/genetics/immunology/*metabolism/toxicity ; Humans ; Immune Sera/immunology ; Immunization, Passive ; Interferon-gamma/pharmacology ; Interleukin-1/pharmacology ; Lethal Dose 50 ; Leukocytes, Mononuclear/metabolism ; Lipopolysaccharides/toxicity ; Macrophages/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; RNA, Messenger/genetics/metabolism ; Time Factors ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Phototropism of Arabidopsis thaliana seedlings in response to a blue light source is initiated by nonphototropic hypocotyl 1 (NPH1), a light-activated serine-threonine protein kinase. Mutations in three loci [NPH2, root phototropism 2 (RPT2), and NPH3] disrupt early signaling occurring downstream of the NPH1 photoreceptor. The NPH3 gene, now cloned, encodes a NPH1-interacting protein. NPH3 is a member of a large protein family, apparently specific to higher plants, and may function as an adapter or scaffold protein to bring together the enzymatic components of a NPH1-activated phosphorelay.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Motchoulski, A -- Liscum, E -- New York, N.Y. -- Science. 1999 Oct 29;286(5441):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10542152" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/metabolism ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Phosphoproteins/genetics/*metabolism ; Photoreceptor Cells, Invertebrate/*metabolism ; Phototropism ; Plant Proteins/genetics/*metabolism ; Protein Binding ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1999-04-09
    Description: The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H G -- Pathan, N -- Ethell, I M -- Krajewski, S -- Yamaguchi, Y -- Shibasaki, F -- McKeon, F -- Bobo, T -- Franke, T F -- Reed, J C -- AG-1593/AG/NIA NIH HHS/ -- CA-69381/CA/NCI NIH HHS/ -- HD25938/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195903" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Animals ; *Apoptosis ; Calcineurin/genetics/*metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism/pharmacology ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Dimerization ; Enzyme Inhibitors/pharmacology ; Glutamic Acid/pharmacology ; Hippocampus/cytology ; Humans ; Mitochondria/metabolism ; Neurons/cytology/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Transfection ; *Tyrosine 3-Monooxygenase ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1999-09-11
    Description: Chemotherapy and radiation therapy for cancer often have severe side effects that limit their efficacy. Because these effects are in part determined by p53-mediated apoptosis, temporary suppression of p53 has been suggested as a therapeutic strategy to prevent damage of normal tissues during treatment of p53-deficient tumors. To test this possibility, a small molecule was isolated for its ability to reversibly block p53-dependent transcriptional activation and apoptosis. This compound, pifithrin-alpha, protected mice from the lethal genotoxic stress associated with anticancer treatment without promoting the formation of tumors. Thus, inhibitors of p53 may be useful drugs for reducing the side effects of cancer therapy and other types of stress associated with p53 induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Komarov, P G -- Komarova, E A -- Kondratov, R V -- Christov-Tselkov, K -- Coon, J S -- Chernov, M V -- Gudkov, A V -- CA60730/CA/NCI NIH HHS/ -- CA75179/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1733-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481009" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*adverse effects/pharmacology ; Apoptosis/*drug effects ; Benzothiazoles ; Cell Division/drug effects ; Cell Line ; Cell Nucleus/drug effects/metabolism ; Cytoplasm/drug effects/metabolism ; DNA/biosynthesis ; DNA Damage ; G2 Phase/drug effects ; Gamma Rays/*adverse effects ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Neoplasms/drug therapy/radiotherapy/*therapy ; Radiation Tolerance/*drug effects ; Thiazoles/*pharmacology ; Time Factors ; Toluene/*analogs & derivatives/pharmacology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*antagonists & inhibitors/physiology ; Ultraviolet Rays/adverse effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seeburg, P H -- New York, N.Y. -- Science. 1999 May 28;284(5419):1465-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10383323" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; Cloning, Molecular ; Genetic Vectors ; *Human Growth Hormone ; Humans ; Patents as Topic/*legislation & jurisprudence ; Periodicals as Topic ; Plasmids ; Publishing ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1999-12-03
    Description: Osteoporosis and other diseases of bone loss are a major public health problem. Here it is shown that the statins, drugs widely used for lowering serum cholesterol, also enhance new bone formation in vitro and in rodents. This effect was associated with increased expression of the bone morphogenetic protein-2 (BMP-2) gene in bone cells. Lovastatin and simvastatin increased bone formation when injected subcutaneously over the calvaria of mice and increased cancellous bone volume when orally administered to rats. Thus, in appropriate doses, statins may have therapeutic applications for the treatment of osteoporosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mundy, G -- Garrett, R -- Harris, S -- Chan, J -- Chen, D -- Rossini, G -- Boyce, B -- Zhao, M -- Gutierrez, G -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1946-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉OsteoScreen, 2040 Babcock Road, San Antonio, TX 78229, USA. mundy@uthscsa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*drug effects ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/biosynthesis/genetics/pharmacology ; Cell Line ; Female ; Fibroblast Growth Factor 1 ; Fibroblast Growth Factor 2/pharmacology ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology ; Lovastatin/*pharmacology ; Male ; Mice ; Mice, Inbred ICR ; Organ Culture Techniques ; Osteoblasts/*drug effects/metabolism ; Osteoclasts/drug effects ; Osteogenesis/*drug effects ; Osteoporosis/drug therapy ; Ovariectomy ; Promoter Regions, Genetic/drug effects ; Rats ; Recombinant Proteins/pharmacology ; Simvastatin/*pharmacology ; Skull ; Transfection ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1999-03-26
    Description: Dysregulation of Wnt-beta-catenin signaling disrupts axis formation in vertebrate embryos and underlies multiple human malignancies. The adenomatous polyposis coli (APC) protein, axin, and glycogen synthase kinase 3beta form a Wnt-regulated signaling complex that mediates the phosphorylation-dependent degradation of beta-catenin. A protein phosphatase 2A (PP2A) regulatory subunit, B56, interacted with APC in the yeast two-hybrid system. Expression of B56 reduced the abundance of beta-catenin and inhibited transcription of beta-catenin target genes in mammalian cells and Xenopus embryo explants. The B56-dependent decrease in beta-catenin was blocked by oncogenic mutations in beta-catenin or APC, and by proteasome inhibitors. B56 may direct PP2A to dephosphorylate specific components of the APC-dependent signaling complex and thereby inhibit Wnt signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seeling, J M -- Miller, J R -- Gil, R -- Moon, R T -- White, R -- Virshup, D M -- 3P30CA42014/CA/NCI NIH HHS/ -- R01 CA71074/CA/NCI NIH HHS/ -- T32CA09602/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2089-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092233" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeletal Proteins/genetics/*metabolism ; Down-Regulation ; Genes, Reporter ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Leupeptins/pharmacology ; Multienzyme Complexes/metabolism ; Mutation ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Phosphatase 2 ; Proto-Oncogene Proteins/*metabolism ; *Signal Transduction ; *Trans-Activators ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; Wnt Proteins ; Xenopus ; Xenopus Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1999-01-05
    Description: Recently, GBR1, a seven-transmembrane domain protein with high affinity for gamma-aminobutyric acid (GABA)B receptor antagonists, was identified. Here, a GBR1-related protein, GBR2, was shown to be coexpressed with GBR1 in many brain regions and to interact with it through a short domain in the carboxyl-terminal cytoplasmic tail. Heterologously expressed GBR2 mediated inhibition of adenylyl cyclase; however, inwardly rectifying potassium channels were activated by GABAB receptor agonists only upon coexpression with GBR1 and GBR2. Thus, the interaction of these receptors appears to be crucial for important physiological effects of GABA and provides a mechanism in receptor signaling pathways that involve a heterotrimeric GTP-binding protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuner, R -- Kohr, G -- Grunewald, S -- Eisenhardt, G -- Bach, A -- Kornau, H C -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):74-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BASF-LYNX Bioscience AG, Department of Neuroscience, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872744" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclase Inhibitors ; Amino Acid Sequence ; Animals ; Brain/*metabolism ; Cell Line ; Cyclic AMP/metabolism ; Dimerization ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GABA-B Receptor Agonists ; Humans ; In Situ Hybridization ; Molecular Sequence Data ; Neurons/metabolism ; Potassium/metabolism ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; RNA, Messenger/genetics/metabolism ; Rats ; Receptors, GABA/*chemistry/*metabolism ; Receptors, GABA-B/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1999-01-08
    Description: The role of STAT (signal transducer and activator of transcription) proteins in T cell receptor (TCR) signaling was analyzed. STAT5 became immediately and transiently phosphorylated on tyrosine 694 in response to TCR stimulation. Expression of the protein tyrosine kinase Lck, a key signaling protein in the TCR complex, activated DNA binding of transfected STAT5A and STAT5B to specific STAT inducible elements. The role of Lck in STAT5 activation was confirmed in a Lck-deficient T cell line in which the activation of STAT5 by TCR stimulation was abolished. Expression of Lck induced specific interaction of STAT5 with the subunits of the TCR, indicating that STAT5 may be directly involved in TCR signaling. Stimulation of T cell clones and primary T cell lines also induced the association of STAT5 with the TCR complex. Inhibition of STAT5 function by expression of a dominant negative mutant STAT5 reduced antigen-stimulated proliferation of T cells. Thus, TCR stimulation appears to directly activate STAT5, which may participate in the regulation of gene transcription and T cell proliferation during immunological responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welte, T -- Leitenberg, D -- Dittel, B N -- al-Ramadi, B K -- Xie, B -- Chin, Y E -- Janeway, C A Jr -- Bothwell, A L -- Bottomly, K -- Fu, X Y -- AI34522/AI/NIAID NIH HHS/ -- GM46367/GM/NIGMS NIH HHS/ -- GM55590/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):222-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Antigen-Presenting Cells/immunology ; Antigens/immunology ; Cell Division ; Cell Line ; DNA-Binding Proteins/genetics/*metabolism ; Interferon-gamma/pharmacology ; Interleukin-2/pharmacology ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/genetics/immunology/metabolism ; Mice ; Mice, Transgenic ; *Milk Proteins ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Antigen, T-Cell/genetics/immunology/*metabolism ; STAT5 Transcription Factor ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; Th2 Cells/immunology/metabolism ; Trans-Activators/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1999-06-26
    Description: Ethylene regulates plant growth, development, and responsiveness to a variety of stresses. Cloning of the Arabidopsis EIN2 gene identifies a central component of the ethylene signaling pathway. The amino-terminal integral membrane domain of EIN2 shows similarity to the disease-related Nramp family of metal-ion transporters. Expression of the EIN2 CEND is sufficient to constitutively activate ethylene responses and restores responsiveness to jasmonic acid and paraquat-induced oxygen radicals to mutant plants. EIN2 is thus recognized as a molecular link between previously distinct hormone response pathways. Plants may use a combinatorial mechanism for assessing various stresses by enlisting a common set of signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, J M -- Hirayama, T -- Roman, G -- Nourizadeh, S -- Ecker, J R -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2148-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381874" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/chemistry/genetics/growth & development/*physiology ; *Arabidopsis Proteins ; Carrier Proteins/chemistry ; *Cation Transport Proteins ; Cloning, Molecular ; Cyclopentanes/metabolism/pharmacology ; *Defensins ; Ethylenes/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Complementation Test ; Herbicides/pharmacology ; *Iron-Binding Proteins ; Membrane Proteins/chemistry/genetics/*physiology ; Microsomes/metabolism ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/physiology ; Oxylipins ; Paraquat/pharmacology ; Plant Growth Regulators/*metabolism/pharmacology ; Plant Proteins/chemistry/genetics/*physiology ; Plants, Genetically Modified ; Protein Biosynthesis ; Protein Structure, Secondary ; Receptors, Cell Surface/chemistry/genetics/*physiology ; *Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Human sex chromosomes evolved from autosomes. Nineteen ancestral autosomal genes persist as differentiated homologs on the X and Y chromosomes. The ages of individual X-Y gene pairs (measured by nucleotide divergence) and the locations of their X members on the X chromosome were found to be highly correlated. Age decreased in stepwise fashion from the distal long arm to the distal short arm in at least four "evolutionary strata." Human sex chromosome evolution was probably punctuated by at least four events, each suppressing X-Y recombination in one stratum, without disturbing gene order on the X chromosome. The first event, which marked the beginnings of X-Y differentiation, occurred about 240 to 320 million years ago, shortly after divergence of the mammalian and avian lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lahn, B T -- Page, D C -- HG00257/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 29;286(5441):964-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10542153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromosome Mapping ; *Evolution, Molecular ; Genetic Linkage ; Humans ; Recombination, Genetic ; *X Chromosome ; *Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...