ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cells, Cultured  (359)
  • Base Sequence  (322)
  • Genes
  • American Association for the Advancement of Science (AAAS)  (761)
  • Annual Reviews
  • 2005-2009  (329)
  • 1980-1984  (432)
  • 1955-1959
  • 1930-1934
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1217.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16946041" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/genetics/physiology ; Biological Evolution ; DNA, Algal/*genetics ; Genes ; Genetic Variation ; *Genome ; Phytophthora/*genetics/*pathogenicity ; Plant Diseases/microbiology ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-11-18
    Description: Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Revyakin, Andrey -- Liu, Chenyu -- Ebright, Richard H -- Strick, Terence R -- GM41376/GM/NIGMS NIH HHS/ -- R01 GM041376/GM/NIGMS NIH HHS/ -- R01 GM041376-15/GM/NIGMS NIH HHS/ -- R01 GM041376-16/GM/NIGMS NIH HHS/ -- R01 GM041376-17/GM/NIGMS NIH HHS/ -- R01 GM041376-18/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1139-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110577" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biomechanical Phenomena ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; RNA/biosynthesis ; Transcription Initiation Site/physiology ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leslie, Mitch -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1865.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Proteins/*pharmacology ; Bone and Bones/*cytology ; Cell Differentiation ; Cell Lineage ; Cells, Cultured ; Extracellular Matrix ; Myoblasts/cytology ; Rats ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-05-27
    Description: We describe a pathogenetic mechanism underlying a variant form of the inherited blood disorder alpha thalassemia. Association studies of affected individuals from Melanesia localized the disease trait to the telomeric region of human chromosome 16, which includes the alpha-globin gene cluster, but no molecular defects were detected by conventional approaches. After resequencing and using a combination of chromatin immunoprecipitation and expression analysis on a tiled oligonucleotide array, we identified a gain-of-function regulatory single-nucleotide polymorphism (rSNP) in a nongenic region between the alpha-globin genes and their upstream regulatory elements. The rSNP creates a new promoterlike element that interferes with normal activation of all downstream alpha-like globin genes. Thus, our work illustrates a strategy for distinguishing between neutral and functionally important rSNPs, and it also identifies a pathogenetic mechanism that could potentially underlie other genetic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Gobbi, Marco -- Viprakasit, Vip -- Hughes, Jim R -- Fisher, Chris -- Buckle, Veronica J -- Ayyub, Helena -- Gibbons, Richard J -- Vernimmen, Douglas -- Yoshinaga, Yuko -- de Jong, Pieter -- Cheng, Jan-Fang -- Rubin, Edward M -- Wood, William G -- Bowden, Don -- Higgs, Douglas R -- MC_U137961143/Medical Research Council/United Kingdom -- MC_U137961145/Medical Research Council/United Kingdom -- MC_U137961147/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 May 26;312(5777):1215-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728641" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cells, Cultured ; Chromatin Immunoprecipitation ; Chromosomes, Human, Pair 16/*genetics ; Erythroblasts ; GATA1 Transcription Factor/metabolism ; Gene Expression ; Gene Expression Profiling ; Globins/*genetics ; Haplotypes ; Humans ; Melanesia ; Minisatellite Repeats ; Multigene Family ; Oligonucleotide Array Sequence Analysis ; *Polymorphism, Single Nucleotide ; *Promoter Regions, Genetic ; Regulatory Elements, Transcriptional ; Transcription, Genetic ; alpha-Thalassemia/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nathan, Carl -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1874-5; author reply 1874-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Infections/enzymology/*immunology ; Cell Culture Techniques ; Cell Differentiation ; Cells, Cultured ; Humans ; Macrophages/cytology/*enzymology ; Mice ; Nitric Oxide Synthase Type II/biosynthesis/*metabolism ; Tuberculosis/enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-11-11
    Description: The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazantseva, Anastasiya -- Goltsov, Andrey -- Zinchenko, Rena -- Grigorenko, Anastasia P -- Abrukova, Anna V -- Moliaka, Yuri K -- Kirillov, Alexander G -- Guo, Zhiru -- Lyle, Stephen -- Ginter, Evgeny K -- Rogaev, Evgeny I -- K08-AR02179/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095700" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 3/genetics ; Exons ; Female ; Gene Deletion ; Gene Expression ; Genetic Markers ; Hair/*growth & development ; Hair Follicle/enzymology ; Heterozygote ; Homozygote ; Humans ; Hypotrichosis/*genetics ; Lipase/chemistry/*genetics/metabolism ; Lipid Metabolism ; Lod Score ; Male ; Molecular Sequence Data ; Pedigree ; Protein Structure, Tertiary ; Recombination, Genetic ; Retroelements ; Russia ; Tandem Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-07-15
    Description: Inositol 1,4,5-trisphosphate receptors (IP3Rs) release calcium ions, Ca2+, from intracellular stores, but their roles in mediating Ca2+ entry are unclear. IP3 stimulated opening of very few (1.9 +/- 0.2 per cell) Ca2+-permeable channels in whole-cell patch-clamp recording of DT40 chicken or mouse B cells. Activation of the B cell receptor (BCR) in perforated-patch recordings evoked the same response. IP3 failed to stimulate intracellular or plasma membrane (PM) channels in cells lacking IP3R. Expression of IP3R restored both responses. Mutations within the pore affected the conductances of IP3-activated PM and intracellular channels similarly. An impermeant pore mutant abolished BCR-evoked Ca2+ signals, and PM IP3Rs were undetectable. After introduction of an alpha-bungarotoxin binding site near the pore, PM IP3Rs were modulated by extracellular alpha-bungarotoxin. IP(3)Rs are unusual among endoplasmic reticulum proteins in being also functionally expressed at the PM, where very few IP3Rs contribute substantially to the Ca2+ entry evoked by the BCR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dellis, Olivier -- Dedos, Skarlatos G -- Tovey, Stephen C -- Taufiq-Ur-Rahman -- Dubel, Stefan J -- Taylor, Colin W -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):229-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16840702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; Bungarotoxins/metabolism/pharmacology ; Calcium/*metabolism ; Calcium Channels/genetics/*metabolism ; *Calcium Signaling ; Cell Membrane/*metabolism ; Cells, Cultured ; Chickens ; Electric Conductivity ; Endoplasmic Reticulum/metabolism ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol 1,4,5-Trisphosphate Receptors ; *Ion Channel Gating ; Mice ; Nuclear Envelope/metabolism ; Patch-Clamp Techniques ; Point Mutation ; Rats ; Receptors, Antigen, B-Cell/metabolism ; Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Birds ; Databases, Nucleic Acid ; Genetic Variation ; *Genome, Viral ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*pathogenicity ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Ligands ; Poultry ; RNA, Viral/genetics ; Viral Nonstructural Proteins/chemistry/*genetics/metabolism ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, Tetsuya -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):772-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan. thayash@med.miyazaki-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Death ; Cells, Cultured ; Colon/cytology/microbiology ; *DNA Damage ; Escherichia coli/classification/genetics/*pathogenicity/*physiology ; *Genomic Islands ; Humans ; Intestinal Mucosa/cytology/microbiology ; Mutagens/*metabolism ; Peptides/*metabolism ; Polyketide Synthases/genetics/metabolism ; Virulence Factors/*biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-09-02
    Description: Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oomycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oomycete avirulence genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tyler, Brett M -- Tripathy, Sucheta -- Zhang, Xuemin -- Dehal, Paramvir -- Jiang, Rays H Y -- Aerts, Andrea -- Arredondo, Felipe D -- Baxter, Laura -- Bensasson, Douda -- Beynon, Jim L -- Chapman, Jarrod -- Damasceno, Cynthia M B -- Dorrance, Anne E -- Dou, Daolong -- Dickerman, Allan W -- Dubchak, Inna L -- Garbelotto, Matteo -- Gijzen, Mark -- Gordon, Stuart G -- Govers, Francine -- Grunwald, Niklaus J -- Huang, Wayne -- Ivors, Kelly L -- Jones, Richard W -- Kamoun, Sophien -- Krampis, Konstantinos -- Lamour, Kurt H -- Lee, Mi-Kyung -- McDonald, W Hayes -- Medina, Monica -- Meijer, Harold J G -- Nordberg, Eric K -- Maclean, Donald J -- Ospina-Giraldo, Manuel D -- Morris, Paul F -- Phuntumart, Vipaporn -- Putnam, Nicholas H -- Rash, Sam -- Rose, Jocelyn K C -- Sakihama, Yasuko -- Salamov, Asaf A -- Savidor, Alon -- Scheuring, Chantel F -- Smith, Brian M -- Sobral, Bruno W S -- Terry, Astrid -- Torto-Alalibo, Trudy A -- Win, Joe -- Xu, Zhanyou -- Zhang, Hongbin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Boore, Jeffrey L -- BB/C509123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1261-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. bmtyler@vt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16946064" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/genetics/physiology ; *Biological Evolution ; DNA, Algal/*genetics ; Genes ; *Genome ; Hydrolases/genetics/metabolism ; Photosynthesis/genetics ; Phylogeny ; Physical Chromosome Mapping ; Phytophthora/classification/*genetics/*pathogenicity/physiology ; Plant Diseases/microbiology ; Polymorphism, Single Nucleotide ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Symbiosis ; Toxins, Biological/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2006-10-07
    Description: A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagel, Mark -- Venditti, Chris -- Meade, Andrew -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):119-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. m.pagel@rdg.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bayes Theorem ; DNA/*genetics ; DNA, Fungal/genetics ; DNA, Plant/genetics ; *Evolution, Molecular ; Founder Effect ; Fungi/classification/genetics ; *Genetic Speciation ; Genetic Variation ; Likelihood Functions ; Mathematics ; Models, Statistical ; Mutation ; Phylogeny ; Plants/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2006-12-16
    Description: A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Mausmi P -- Baross, John A -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1783-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. mausmi@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/genetics/*isolation & purification/*metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Base Sequence ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Geologic Sediments/microbiology ; *Hot Temperature ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation/genetics ; Nitrogenase/chemistry/*genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/metabolism ; Pacific Ocean ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/*microbiology ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2006-02-18
    Description: In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavell, Steven W -- Cowan, Christopher W -- Kim, Tae-Kyung -- Greer, Paul L -- Lin, Yingxi -- Paradis, Suzanne -- Griffith, Eric C -- Hu, Linda S -- Chen, Chinfei -- Greenberg, Michael E -- AG05870/AG/NIA NIH HHS/ -- HD18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- R01 EY013613/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1008-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Program, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Cells, Cultured ; Cytoskeletal Proteins/genetics ; Dendrites/physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; GTPase-Activating Proteins/genetics ; Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/*physiology ; MEF2 Transcription Factors ; Mutation ; Myogenic Regulatory Factors/genetics/*physiology ; Nerve Tissue Proteins/genetics ; Neurons/*physiology ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; RNA Interference ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Synapses/*physiology ; Synaptic Transmission ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2007-09-08
    Description: We demonstrate the assembly of biohybrid materials from engineered tissues and synthetic polymer thin films. The constructs were built by culturing neonatal rat ventricular cardiomyocytes on polydimethylsiloxane thin films micropatterned with extracellular matrix proteins to promote spatially ordered, two-dimensional myogenesis. The constructs, termed muscular thin films, adopted functional, three-dimensional conformations when released from a thermally sensitive polymer substrate and were designed to perform biomimetic tasks by varying tissue architecture, thin-film shape, and electrical-pacing protocol. These centimeter-scale constructs perform functions as diverse as gripping, pumping, walking, and swimming with fine spatial and temporal control and generating specific forces as high as 4 millinewtons per square millimeter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feinberg, Adam W -- Feigel, Alex -- Shevkoplyas, Sergey S -- Sheehy, Sean -- Whitesides, George M -- Parker, Kevin Kit -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1366-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17823347" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anisotropy ; Cell Culture Techniques ; Cells, Cultured ; Dimethylpolysiloxanes ; Microscopy, Fluorescence ; Motion ; Muscle Contraction ; *Myocardium ; Myocytes, Cardiac ; Rats ; Rats, Sprague-Dawley ; Robotics ; Silicones ; *Tissue Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1229.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16946048" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chloroplasts/*physiology ; Digestive System/anatomy & histology/microbiology ; Digestive System Physiological Phenomena ; Eukaryota/*physiology ; Gastropoda/genetics/microbiology/*physiology ; Genes ; Photosynthesis ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-07-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):27.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Genes ; *Genome ; Genome, Human ; Genomics ; Humans ; Introns ; Sea Anemones/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2006-12-23
    Description: Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Kirkness, Ewen F -- Loh, Yong-Hwee -- Halpern, Aaron L -- Lee, Alison P -- Johnson, Justin -- Dandona, Nidhi -- Viswanathan, Lakshmi D -- Tay, Alice -- Venter, J Craig -- Strausberg, Robert L -- Brenner, Sydney -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673. mcbbv@imcb.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA, Intergenic ; Enhancer Elements, Genetic ; Evolution, Molecular ; Genome ; *Genome, Human ; Humans ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sharks/*genetics ; Takifugu/genetics ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2006-06-24
    Description: Organisms ranging from bacteria to humans synchronize their internal clocks to daily cycles of light and dark. Photic entrainment of the Drosophila clock is mediated by proteasomal degradation of the clock protein TIMELESS (TIM). We have identified mutations in jetlag-a gene coding for an F-box protein with leucine-rich repeats-that result in reduced light sensitivity of the circadian clock. Mutant flies show rhythmic behavior in constant light, reduced phase shifts in response to light pulses, and reduced light-dependent degradation of TIM. Expression of JET along with the circadian photoreceptor cryptochrome (CRY) in cultured S2R cells confers light-dependent degradation onto TIM, thereby reconstituting the acute response + of the circadian clock to light in a cell culture system. Our results suggest that JET is essential for resetting the clock by transmitting light signals from CRY to TIM.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767177/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767177/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koh, Kyunghee -- Zheng, Xiangzhong -- Sehgal, Amita -- NS048471/NS/NINDS NIH HHS/ -- R01 NS048471/NS/NINDS NIH HHS/ -- R01 NS048471-02/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1809-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; *Circadian Rhythm ; Cryptochromes ; Drosophila/chemistry/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/*metabolism/*physiology ; Drosophila melanogaster/chemistry/*genetics/*physiology ; Eye Proteins/metabolism ; F-Box Proteins/chemistry/*genetics/*physiology ; Female ; *Light ; Male ; Models, Biological ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/metabolism ; Transgenes ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-03-31
    Description: Differentiation of hepatic stellate cells (HSCs) to extracellular matrix- and growth factor-producing cells supports liver regeneration through promotion of hepatocyte proliferation. We show that the neurotrophin receptor p75NTR, a tumor necrosis factor receptor superfamily member expressed in HSCs after fibrotic and cirrhotic liver injury in humans, is a regulator of liver repair. In mice, depletion of p75NTR exacerbated liver pathology and inhibited hepatocyte proliferation in vivo. p75NTR-/- HSCs failed to differentiate to myofibroblasts and did not support hepatocyte proliferation. Moreover, inhibition of p75NTR signaling to the small guanosine triphosphatase Rho resulted in impaired HSC differentiation. Our results identify signaling from p75NTR to Rho as a mechanism for the regulation of HSC differentiation to regeneration-promoting cells that support hepatocyte proliferation in the diseased liver.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Passino, Melissa A -- Adams, Ryan A -- Sikorski, Shoana L -- Akassoglou, Katerina -- 5T32-GM07752/GM/NIGMS NIH HHS/ -- NS051470/NS/NINDS NIH HHS/ -- P30-NS047101/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1853-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of California, San Diego (UCSD), La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Disease Progression ; Extracellular Matrix/metabolism ; Fibroblasts/*cytology ; Hepatocyte Growth Factor/metabolism ; Hepatocytes/*cytology ; Liver/*cytology/metabolism/pathology/physiology ; Liver Diseases/metabolism/*pathology ; *Liver Regeneration ; Mice ; Nerve Growth Factor/pharmacology ; Receptors, Nerve Growth Factor/genetics/*metabolism ; Signal Transduction ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flatt, Thomas -- Promislow, Daniel E L -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1255-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA. thomas_flatt@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18033874" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*physiology ; Animals ; Biological Evolution ; Fertility ; Genes ; Humans ; Longevity/genetics ; Mutation ; Reproduction ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-07-07
    Description: The in vivo potential of neural stem cells in the postnatal mouse brain is not known, but because they produce many different types of neurons, they must be either very versatile or very diverse. By specifically targeting stem cells and following their progeny in vivo, we showed that postnatal stem cells in different regions produce different types of neurons, even when heterotopically grafted or grown in culture. This suggests that rather than being plastic and homogeneous, neural stem cells are a restricted and diverse population of progenitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merkle, Florian T -- Mirzadeh, Zaman -- Alvarez-Buylla, Arturo -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):381-4. Epub 2007 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery and Developmental and Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94143-0525, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615304" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology ; Animals ; Animals, Newborn ; Astrocytes/cytology ; Brain/*cytology ; Cell Differentiation ; Cells, Cultured ; Interneurons/cytology ; Lateral Ventricles/cytology ; Mice ; Neuroglia/cytology ; Neurons/*cytology ; Olfactory Bulb/cytology ; Stem Cell Transplantation ; Transplantation, Heterotopic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-11-03
    Description: The limb blastemal cells of an adult salamander regenerate the structures distal to the level of amputation, and the surface protein Prod 1 is a critical determinant of their proximodistal identity. The anterior gradient protein family member nAG is a secreted ligand for Prod 1 and a growth factor for cultured newt blastemal cells. nAG is sequentially expressed after amputation in the regenerating nerve and the wound epidermis-the key tissues of the stem cell niche-and its expression in both locations is abrogated by denervation. The local expression of nAG after electroporation is sufficient to rescue a denervated blastema and regenerate the distal structures. Our analysis brings together the positional identity of the blastema and the classical nerve dependence of limb regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696928/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696928/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Anoop -- Godwin, James W -- Gates, Phillip B -- Garza-Garcia, A Acely -- Brockes, Jeremy P -- G0600229/Medical Research Council/United Kingdom -- G0600229(77696)/Medical Research Council/United Kingdom -- G9537983/Medical Research Council/United Kingdom -- G9537983(56733)/Medical Research Council/United Kingdom -- MC_U117574559/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):772-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975060" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD59/*physiology ; COS Cells ; Cells, Cultured ; Cercopithecus aethiops ; Denervation ; Extremities/innervation ; Glycosylphosphatidylinositols/physiology ; Growth Substances ; Intercellular Signaling Peptides and Proteins/isolation & ; purification/*physiology/secretion ; Ligands ; Mice ; Notophthalmus viridescens ; Peripheral Nerves/*physiology ; Regeneration/*physiology ; Stem Cells/*cytology ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-02-03
    Description: The 66-kilodalton isoform of the growth factor adapter Shc (p66Shc) translates oxidative damage into cell death by acting as reactive oxygen species (ROS) producer within mitochondria. However, the signaling link between cellular stress and mitochondrial proapoptotic activity of p66Shc was not known. We demonstrate that protein kinase C beta, activated by oxidative conditions in the cell, induces phosphorylation of p66Shc and triggers mitochondrial accumulation of the protein after it is recognized by the prolyl isomerase Pin1. Once imported, p66Shc causes alterations of mitochondrial Ca2+ responses and three-dimensional structure, thus inducing apoptosis. These data identify a signaling route that activates an apoptotic inducer shortening the life span and could be a potential target of pharmacological approaches to inhibit aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pinton, Paolo -- Rimessi, Alessandro -- Marchi, Saverio -- Orsini, Francesca -- Migliaccio, Enrica -- Giorgio, Marco -- Contursi, Cristina -- Minucci, Saverio -- Mantovani, Fiamma -- Wieckowski, Mariusz R -- Del Sal, Giannino -- Pelicci, Pier Giuseppe -- Rizzuto, Rosario -- GGP05284/Telethon/Italy -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):659-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrera, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272725" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*metabolism ; Adenosine Triphosphate/metabolism/pharmacology ; Animals ; *Apoptosis ; Calcium/metabolism ; Calcium Signaling ; *Cell Aging ; Cell Survival ; Cells, Cultured ; Cyclosporine/pharmacology ; Hydrogen Peroxide/metabolism/pharmacology ; Mice ; Mitochondria/*metabolism/ultrastructure ; Mutation ; Oxidative Stress ; Peptidylprolyl Isomerase/*metabolism ; Permeability ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/genetics/*metabolism ; Protein Kinase C beta ; Reactive Oxygen Species/metabolism ; Recombinant Fusion Proteins/metabolism ; Shc Signaling Adaptor Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-02-10
    Description: A central issue in the regulation of apoptosis by the Bcl-2 family is whether its BH3-only members initiate apoptosis by directly binding to the essential cell-death mediators Bax and Bak, or whether they can act indirectly, by engaging their pro-survival Bcl-2-like relatives. Contrary to the direct-activation model, we show that Bax and Bak can mediate apoptosis without discernable association with the putative BH3-only activators (Bim, Bid, and Puma), even in cells with no Bim or Bid and reduced Puma. Our results indicate that BH3-only proteins induce apoptosis at least primarily by engaging the multiple pro-survival relatives guarding Bax and Bak.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willis, Simon N -- Fletcher, Jamie I -- Kaufmann, Thomas -- van Delft, Mark F -- Chen, Lin -- Czabotar, Peter E -- Ierino, Helen -- Lee, Erinna F -- Fairlie, W Douglas -- Bouillet, Philippe -- Strasser, Andreas -- Kluck, Ruth M -- Adams, Jerry M -- Huang, David C S -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):856-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Humans ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasm Proteins/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism ; bcl-2 Homologous Antagonist-Killer Protein/metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism ; bcl-Associated Death Protein/metabolism ; bcl-X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-05-26
    Description: The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB(1) cannabinoid receptors (CB(1)Rs) are enriched in the axonal growth cones of gamma-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB(1)R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB(1)Rs, identify endocannabinoids as axon guidance cues and demonstrate that endocannabinoid signaling regulates synaptogenesis and target selection in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berghuis, Paul -- Rajnicek, Ann M -- Morozov, Yury M -- Ross, Ruth A -- Mulder, Jan -- Urban, Gabriella M -- Monory, Krisztina -- Marsicano, Giovanni -- Matteoli, Michela -- Canty, Alison -- Irving, Andrew J -- Katona, Istvan -- Yanagawa, Yuchio -- Rakic, Pasko -- Lutz, Beat -- Mackie, Ken -- Harkany, Tibor -- DA00286/DA/NIDA NIH HHS/ -- DA015916/DA/NIDA NIH HHS/ -- DA11322/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1212-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525344" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Cannabinoid Receptor Modulators/metabolism/*physiology ; Cell Movement ; Cells, Cultured ; Cerebral Cortex/cytology/embryology/ultrastructure ; *Endocannabinoids ; Growth Cones/physiology/ultrasonography ; In Situ Hybridization ; Interneurons/metabolism/*physiology/ultrasonography ; Mice ; Mice, Inbred C57BL ; Microscopy, Confocal ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1/agonists/*physiology ; Signal Transduction ; Stem Cells/metabolism ; Synapses/physiology/ultrasonography ; Xenopus Proteins/physiology ; Xenopus laevis ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-10-20
    Description: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soma, Akiko -- Onodera, Akinori -- Sugahara, Junichi -- Kanai, Akio -- Yachie, Nozomu -- Tomita, Masaru -- Kawamura, Fujio -- Sekine, Yasuhiko -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):450-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947580" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Algal/chemistry/genetics ; *Genes ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Algal/*genetics/metabolism ; RNA, Transfer/*genetics/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Rhodophyta/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-09-22
    Description: Platelets are generated from megakaryocytes (MKs) in mammalian bone marrow (BM) by mechanisms that remain poorly understood. Here we describe the use of multiphoton intravital microscopy in intact BM to visualize platelet generation in mice. MKs were observed as sessile cells that extended dynamic proplatelet-like protrusions into microvessels. These intravascular extensions appeared to be sheared from their transendothelial stems by flowing blood, resulting in the appearance of proplatelets in peripheral blood. In vitro, proplatelet production from differentiating MKs was enhanced by fluid shear. These results confirm the concept of proplatelet formation in vivo and are consistent with the possibility that blood flow-induced hydrodynamic shear stress is a biophysical determinant of thrombopoiesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Junt, Tobias -- Schulze, Harald -- Chen, Zhao -- Massberg, Steffen -- Goerge, Tobias -- Krueger, Andreas -- Wagner, Denisa D -- Graf, Thomas -- Italiano, Joseph E Jr -- Shivdasani, Ramesh A -- von Andrian, Ulrich H -- HL068130/HL/NHLBI NIH HHS/ -- HL56949/HL/NHLBI NIH HHS/ -- HL63143/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1767-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17885137" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins ; Blood Platelets/*cytology ; Bone Marrow/*physiology ; Cells, Cultured ; Luminescent Proteins ; Megakaryocytes/*cytology ; Mice ; Microscopy, Fluorescence, Multiphoton ; Platelet Membrane Glycoprotein IIb ; Shear Strength ; Thrombopoiesis/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Proud, Christopher G -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):926-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Cells, Cultured ; Guanosine Triphosphate/metabolism ; Humans ; Insulin/metabolism ; Models, Biological ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes ; Neuropeptides/*metabolism ; Protein Binding ; Protein Kinases/*metabolism ; Proteins ; *Signal Transduction ; Sirolimus/metabolism/pharmacology ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Protein 1A/metabolism ; Tacrolimus Binding Proteins/antagonists & inhibitors/*metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-07-07
    Description: Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Putnam, Nicholas H -- Srivastava, Mansi -- Hellsten, Uffe -- Dirks, Bill -- Chapman, Jarrod -- Salamov, Asaf -- Terry, Astrid -- Shapiro, Harris -- Lindquist, Erika -- Kapitonov, Vladimir V -- Jurka, Jerzy -- Genikhovich, Grigory -- Grigoriev, Igor V -- Lucas, Susan M -- Steele, Robert E -- Finnerty, John R -- Technau, Ulrich -- Martindale, Mark Q -- Rokhsar, Daniel S -- 5 P41 LM006252-09/LM/NLM NIH HHS/ -- THL007279F/PHS HHS/ -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):86-94.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615350" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cell Adhesion ; Evolution, Molecular ; Genes ; Genetic Linkage ; *Genome ; Genome, Human ; Genomics ; Humans ; Introns ; Metabolic Networks and Pathways ; Multigene Family ; Muscles/physiology ; Nervous System Physiological Phenomena ; Phylogeny ; Sea Anemones/*genetics/metabolism ; Sequence Analysis, DNA ; Signal Transduction ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2007-07-21
    Description: Virally encoded microRNAs (miRNAs) have recently been discovered in herpesviruses. However, their biological roles are mostly unknown. We developed an algorithm for the prediction of miRNA targets and applied it to human cytomegalovirus miRNAs, resulting in the identification of the major histocompatibility complex class I-related chain B (MICB) gene as a top candidate target of hcmv-miR-UL112. MICB is a stress-induced ligand of the natural killer (NK) cell activating receptor NKG2D and is critical for the NK cell killing of virus-infected cells and tumor cells. We show that hcmv-miR-UL112 specifically down-regulates MICB expression during viral infection, leading to decreased binding of NKG2D and reduced killing by NK cells. Our results reveal a miRNA-based immunoevasion mechanism that appears to be exploited by human cytomegalovirus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283197/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283197/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stern-Ginossar, Noam -- Elefant, Naama -- Zimmermann, Albert -- Wolf, Dana G -- Saleh, Nivin -- Biton, Moshe -- Horwitz, Elad -- Prokocimer, Zafnat -- Prichard, Mark -- Hahn, Gabriele -- Goldman-Wohl, Debra -- Greenfield, Caryn -- Yagel, Simcha -- Hengel, Hartmut -- Altuvia, Yael -- Margalit, Hanah -- Mandelboim, Ofer -- N01 AI030049/AI/NIAID NIH HHS/ -- N01 AI30049/AI/NIAID NIH HHS/ -- N01-30049/PHS HHS/ -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):376-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17641203" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Algorithms ; Binding Sites ; Cell Line, Tumor ; Cells, Cultured ; Cytomegalovirus/genetics/*immunology/*pathogenicity ; Cytotoxicity, Immunologic ; Down-Regulation ; Histocompatibility Antigens Class I/*genetics/metabolism ; Humans ; Killer Cells, Natural/immunology ; Ligands ; MicroRNAs/genetics/*metabolism ; NK Cell Lectin-Like Receptor Subfamily K ; RNA, Viral/*metabolism ; Receptors, Immunologic/metabolism ; Receptors, Natural Killer Cell ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-03-03
    Description: IKKepsilon is an IKK (inhibitor of nuclear factor kappaBkinase)-related kinase implicated in virus induction of interferon-beta (IFNbeta). We report that, although mice lacking IKKepsilon produce normal amounts of IFNbeta, they are hypersusceptible to viral infection because of a defect in the IFN signaling pathway. Specifically, a subset of type I IFN-stimulated genes are not activated in the absence of IKKepsilon because the interferon-stimulated gene factor 3 complex (ISGF3) does not bind to promoter elements of the affected genes. We demonstrate that IKKepsilon is activated by IFNbeta and that IKKepsilon directly phosphorylates signal transducer and activator of transcription 1 (STAT1), a component of ISGF3. We conclude that IKKepsilon plays a critical role in the IFN-inducible antiviral transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tenoever, Benjamin R -- Ng, Sze-Ling -- Chua, Mark A -- McWhirter, Sarah M -- Garcia-Sastre, Adolfo -- Maniatis, Tom -- F31 AI056678/AI/NIAID NIH HHS/ -- P01AI058113/AI/NIAID NIH HHS/ -- R01AI46954/AI/NIAID NIH HHS/ -- U19AI62623/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 2;315(5816):1274-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17332413" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/genetics/metabolism ; Animals ; Cells, Cultured ; Dimerization ; *Gene Expression Regulation ; I-kappa B Kinase/genetics/*metabolism ; *Influenza A Virus, H1N1 Subtype/immunology/physiology ; Interferon-Stimulated Gene Factor 3/metabolism ; Interferon-beta/*immunology/metabolism ; Lung/pathology/virology ; Mice ; Mice, Knockout ; Orthomyxoviridae Infections/*immunology/metabolism/pathology/virology ; Phosphorylation ; Promoter Regions, Genetic ; RNA-Binding Proteins ; STAT1 Transcription Factor/metabolism ; STAT2 Transcription Factor/metabolism ; Signal Transduction ; Transcription, Genetic ; Viral Load ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2007-12-08
    Description: It has recently been demonstrated that mouse and human fibroblasts can be reprogrammed into an embryonic stem cell-like state by introducing combinations of four transcription factors. However, the therapeutic potential of such induced pluripotent stem (iPS) cells remained undefined. By using a humanized sickle cell anemia mouse model, we show that mice can be rescued after transplantation with hematopoietic progenitors obtained in vitro from autologous iPS cells. This was achieved after correction of the human sickle hemoglobin allele by gene-specific targeting. Our results provide proof of principle for using transcription factor-induced reprogramming combined with gene and cell therapy for disease treatment in mice. The problems associated with using retroviruses and oncogenes for reprogramming need to be resolved before iPS cells can be considered for human therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanna, Jacob -- Wernig, Marius -- Markoulaki, Styliani -- Sun, Chiao-Wang -- Meissner, Alexander -- Cassady, John P -- Beard, Caroline -- Brambrink, Tobias -- Wu, Li-Chen -- Townes, Tim M -- Jaenisch, Rudolf -- 2-R01-HL057619/HL/NHLBI NIH HHS/ -- 5-R37-CA084198/CA/NCI NIH HHS/ -- 5-RO1-CA087869/CA/NCI NIH HHS/ -- 5-RO1-HDO45022/PHS HHS/ -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1920-3. Epub 2007 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063756" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/blood/physiopathology/*therapy ; Animals ; Cell Differentiation ; Cells, Cultured ; *Cellular Reprogramming ; DNA-Binding Proteins/genetics ; Disease Models, Animal ; Embryonic Stem Cells/cytology ; Erythrocyte Count ; Fibroblasts/*cytology ; Genes, myc ; Globins/genetics ; Hematopoiesis ; *Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology ; Hemoglobin A/analysis ; Hemoglobin, Sickle/analysis ; Humans ; Kidney Concentrating Ability ; Kruppel-Like Transcription Factors/genetics ; Male ; Mice ; Octamer Transcription Factor-3/genetics ; Pluripotent Stem Cells/*cytology ; SOXB1 Transcription Factors ; Trans-Activators/genetics ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2007-04-28
    Description: MicroRNAs are small RNA species involved in biological control at multiple levels. Using genetic deletion and transgenic approaches, we show that the evolutionarily conserved microRNA-155 (miR-155) has an important role in the mammalian immune system, specifically in regulating T helper cell differentiation and the germinal center reaction to produce an optimal T cell-dependent antibody response. miR-155 exerts this control, at least in part, by regulating cytokine production. These results also suggest that individual microRNAs can exert critical control over mammalian differentiation processes in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thai, To-Ha -- Calado, Dinis Pedro -- Casola, Stefano -- Ansel, K Mark -- Xiao, Changchun -- Xue, Yingzi -- Murphy, Andrew -- Frendewey, David -- Valenzuela, David -- Kutok, Jeffery L -- Schmidt-Supprian, Marc -- Rajewsky, Nikolaus -- Yancopoulos, George -- Rao, Anjana -- Rajewsky, Klaus -- AI064345/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):604-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Cell Differentiation ; Cells, Cultured ; Cytokines/biosynthesis ; Germinal Center/*immunology ; Immunoglobulin G/analysis ; Lymphocyte Activation ; Lymphotoxin-alpha/biosynthesis ; Lymphotoxin-beta/biosynthesis ; Mice ; Mice, Knockout ; Mice, Transgenic ; MicroRNAs/genetics/*physiology ; Nitrophenols/immunology ; Peyer's Patches/immunology ; Phenylacetates ; Somatic Hypermutation, Immunoglobulin ; Spleen/immunology ; T-Lymphocytes/cytology/*immunology/metabolism ; Th1 Cells/cytology/immunology ; Th2 Cells/cytology/immunology ; Tumor Necrosis Factor-alpha/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2007-04-28
    Description: One component of the circadian clock in mammals is the Clock-Bmal1 heterodimeric transcription factor. Among its downstream targets, two genes, Cry1 and Cry2, encode inhibitors of the Clock-Bmal1 complex that establish a negative-feedback loop. We found that both Cry1 and Cry2 proteins are ubiquitinated and degraded via the SCF(Fbxl3) ubiquitin ligase complex. This regulation by SCF(Fbxl3) is a prerequisite for the efficient and timely reactivation of Clock-Bmal1 and the consequent expression of Per1 and Per2, two regulators of the circadian clock that display tumor suppressor activity. Silencing of Fbxl3 produced no effect in Cry1-/-;Cry2-/- cells, which shows that Fbxl3 controls clock oscillations by mediating the degradation of CRY proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busino, Luca -- Bassermann, Florian -- Maiolica, Alessio -- Lee, Choogon -- Nolan, Patrick M -- Godinho, Sofia I H -- Draetta, Giulio F -- Pagano, Michele -- MC_U142684172/Medical Research Council/United Kingdom -- MC_U142684173/Medical Research Council/United Kingdom -- MC_U142684175/Medical Research Council/United Kingdom -- R01-GM57587/GM/NIGMS NIH HHS/ -- R21-CA125173/CA/NCI NIH HHS/ -- R37-CA76584/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 11;316(5826):900-4. Epub 2007 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463251" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; CLOCK Proteins ; Cell Cycle Proteins/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm/genetics ; Cryptochromes ; F-Box Proteins/genetics/*metabolism ; Flavoproteins/genetics/*metabolism ; HeLa Cells ; Humans ; Mice ; NIH 3T3 Cells ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; RNA Interference ; SKP Cullin F-Box Protein Ligases/*metabolism ; Trans-Activators/metabolism ; Transcription Factors/genetics/metabolism ; Transfection ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calvert, Paul -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):208-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials and Textiles, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 USA. pcalvert@umassd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932278" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria ; *Cell Communication ; Cell Survival ; Cells, Cultured ; Computer Peripherals ; *Cytological Techniques/instrumentation ; Humans ; *Microbiological Techniques/instrumentation ; Printing/*instrumentation ; *Tissue Engineering ; Yeasts
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sapienza, Carmen -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):46-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fels Institute for Cancer Research and Department of Pathology, Temple University Medical School, 3307 North Broad Street, Philadelphia, PA 19140, USA. sapienza@temple.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonemal Dyneins ; Body Patterning ; Cell Line ; Cells, Cultured ; Chromatids/*physiology ; *Chromosome Segregation ; DNA Replication ; Dyneins/*genetics/*physiology ; Ectoderm/*cytology ; Embryonic Stem Cells/*cytology ; Endoderm/*cytology ; Interphase ; Mice ; Mitosis ; Recombination, Genetic ; Spindle Apparatus/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-05-15
    Description: Hematopoietic stem cells in the bone marrow give rise to lymphoid progenitors, which subsequently differentiate into B and T lymphocytes. Here we show that the proto-oncogene LRF plays an essential role in the B versus T lymphoid cell-fate decision. We demonstrate that LRF is key for instructing early lymphoid progenitors in mice to develop into B lineage cells by repressing T cell-instructive signals produced by the cell-fate signal protein, Notch. We propose a new model for lymphoid lineage commitment, in which LRF acts as a master regulator of the cell's determination of B versus T lineage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Takahiro -- Merghoub, Taha -- Hobbs, Robin M -- Dong, Lin -- Maeda, Manami -- Zakrzewski, Johannes -- van den Brink, Marcel R M -- Zelent, Arthur -- Shigematsu, Hirokazu -- Akashi, Koichi -- Teruya-Feldstein, Julie -- Cattoretti, Giorgio -- Pandolfi, Pier Paolo -- CA-102142/CA/NCI NIH HHS/ -- R01 CA102142/CA/NCI NIH HHS/ -- R01 CA102142-06A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 11;316(5826):860-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17495164" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology/physiology ; Bone Marrow Cells/cytology ; Cell Lineage ; Cells, Cultured ; DNA-Binding Proteins/*genetics/physiology ; Gene Deletion ; Hematopoietic Stem Cells/*cytology/physiology ; *Lymphopoiesis ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Biological ; *Proto-Oncogenes ; Receptors, Notch/*metabolism ; Signal Transduction ; T-Lymphocytes/*cytology/physiology ; Thymus Gland/cytology ; Transcription Factors/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2007-09-01
    Description: MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongpil -- Inoue, Keiichi -- Ishii, Jennifer -- Vanti, William B -- Voronov, Sergey V -- Murchison, Elizabeth -- Hannon, Gregory -- Abeliovich, Asa -- R01 NS064433/NS/NINDS NIH HHS/ -- R01 NS064433-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1220-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia University, College of Physicians and Surgeons 15-403, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Aged ; Aged, 80 and over ; Animals ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Dopamine/*metabolism ; Embryonic Stem Cells ; *Feedback, Physiological ; Female ; Gene Expression Regulation ; Homeodomain Proteins/*metabolism ; Humans ; Locomotion ; Male ; Mesencephalon/cytology/*metabolism ; Mice ; MicroRNAs/*metabolism ; Middle Aged ; Models, Biological ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Rats ; Ribonuclease III/genetics/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2007-01-16
    Description: A major goal of systems biology is to predict the function of biological networks. Although network topologies have been successfully determined in many cases, the quantitative parameters governing these networks generally have not. Measuring affinities of molecular interactions in high-throughput format remains problematic, especially for transient and low-affinity interactions. We describe a high-throughput microfluidic platform that measures such properties on the basis of mechanical trapping of molecular interactions. With this platform we characterized DNA binding energy landscapes for four eukaryotic transcription factors; these landscapes were used to test basic assumptions about transcription factor binding and to predict their in vivo function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maerkl, Sebastian J -- Quake, Stephen R -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):233-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Biophysics Option, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218526" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Computational Biology ; Computer Simulation ; DNA/*metabolism ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; E-Box Elements ; Gene Expression Regulation, Fungal ; Helix-Loop-Helix Motifs ; Humans ; *Microfluidic Analytical Techniques ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Protein Isoforms/metabolism ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; *Systems Biology ; Templates, Genetic ; Thermodynamics ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hebert, Sebastien S -- De Strooper, Bart -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1179-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetics, VIB and KULeuven, Herestraat 49, Leuven, Belgium. bart.destrooper@med.kuleuven.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761871" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Animals ; Brain/physiology/*physiopathology ; Cell Death ; Cell Differentiation ; Cells, Cultured ; Dopamine/*metabolism ; Feedback, Physiological ; Humans ; Mice ; MicroRNAs/genetics/*metabolism ; Neurodegenerative Diseases/genetics/*physiopathology ; Neurons/cytology/metabolism/*physiology ; Parkinson Disease/genetics/*physiopathology ; RNA, Messenger/genetics/metabolism ; Ribonuclease III/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2007-08-04
    Description: Toll-like receptors (TLRs) trigger the production of inflammatory cytokines and shape adaptive and innate immunity to pathogens. We report the identification of B cell leukemia (Bcl)-3 as an essential negative regulator of TLR signaling. By blocking ubiquitination of p50, a member of the nuclear factor (NF)-kappaB family, Bcl-3 stabilizes a p50 complex that inhibits gene transcription. As a consequence, Bcl-3-deficient mice and cells were found to be hypersensitive to TLR activation and unable to control responses to lipopolysaccharides. Thus, p50 ubiquitination blockade by Bcl-3 limits the strength of TLR responses and maintains innate immune homeostasis. These findings indicate that the p50 ubiquitination pathway can be selectively targeted to control deleterious inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carmody, Ruaidhri J -- Ruan, Qingguo -- Palmer, Scott -- Hilliard, Brendan -- Chen, Youhai H -- AI069289/AI/NIAID NIH HHS/ -- AI50059/AI/NIAID NIH HHS/ -- DK070691/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):675-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673665" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; DNA/metabolism ; Female ; Half-Life ; Immune Tolerance ; Immunity, Innate ; Lipopolysaccharides/immunology ; Macrophage Activation ; Macrophages, Peritoneal/*immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B p50 Subunit/*metabolism ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/*metabolism ; *Signal Transduction ; Toll-Like Receptors/*metabolism ; Transcription Factor RelA/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/genetics/metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2007-10-06
    Description: Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes, are essential for chromosome stability. Until now, telomeres have been considered to be transcriptionally silent. We demonstrate that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA molecules are heterogeneous in length, are transcribed from several subtelomeric loci toward chromosome ends, and localize to telomeres. We also show that suppressors with morphogenetic defects in genitalia (SMG) proteins, which are effectors of nonsense-mediated messenger RNA decay, are enriched at telomeres in vivo, negatively regulate TERRA association with chromatin, and protect chromosome ends from telomere loss. Thus, telomeres are actively transcribed into TERRA, and SMG factors represent a molecular link between TERRA regulation and the maintenance of telomere integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azzalin, Claus M -- Reichenbach, Patrick -- Khoriauli, Lela -- Giulotto, Elena -- Lingner, Joachim -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):798-801. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cells, Cultured ; Chromosomes, Human ; Chromosomes, Mammalian ; HeLa Cells ; Humans ; In Situ Hybridization, Fluorescence ; Mice ; Molecular Sequence Data ; Proteins/metabolism ; RNA/*genetics ; Repetitive Sequences, Nucleic Acid ; Telomerase/physiology ; Telomere/*genetics ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2008-03-01
    Description: Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis-dependent long-term enlargement at the level of single spines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218863/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218863/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Jun-Ichi -- Horiike, Yoshihiro -- Matsuzaki, Masanori -- Miyazaki, Takashi -- Ellis-Davies, Graham C R -- Kasai, Haruo -- R01 GM053395/GM/NIGMS NIH HHS/ -- R01 GM053395-12/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1683-7. doi: 10.1126/science.1152864. Epub 2008 Feb 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309046" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain-Derived Neurotrophic Factor/*metabolism/pharmacology ; Cells, Cultured ; Dendritic Spines/*physiology/*ultrastructure ; Glutamic Acid/metabolism ; *Neuronal Plasticity ; Patch-Clamp Techniques ; *Protein Biosynthesis ; Protein Synthesis Inhibitors/pharmacology ; Pyramidal Cells/physiology/ultrastructure ; Rats ; Rats, Sprague-Dawley ; Receptor, trkB/metabolism ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2008-01-26
    Description: We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Daniel G -- Benders, Gwynedd A -- Andrews-Pfannkoch, Cynthia -- Denisova, Evgeniya A -- Baden-Tillson, Holly -- Zaveri, Jayshree -- Stockwell, Timothy B -- Brownley, Anushka -- Thomas, David W -- Algire, Mikkel A -- Merryman, Chuck -- Young, Lei -- Noskov, Vladimir N -- Glass, John I -- Venter, J Craig -- Hutchison, Clyde A 3rd -- Smith, Hamilton O -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1215-20. doi: 10.1126/science.1151721. Epub 2008 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218864" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Bacterial/*chemical synthesis ; DNA, Recombinant ; Escherichia coli/genetics ; Genetic Vectors ; *Genome, Bacterial ; Genomics/*methods ; Mycoplasma genitalium/*genetics ; Oligodeoxyribonucleotides/chemical synthesis ; Plasmids ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics ; Sequence Analysis, DNA ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2008-05-20
    Description: Cannabinoid receptor 1 (CB1R) regulates neuronal differentiation. To understand the logic underlying decision-making in the signaling network controlling CB1R-induced neurite outgrowth, we profiled the activation of several hundred transcription factors after cell stimulation. We assembled an in silico signaling network by connecting CB1R to 23 activated transcription factors. Statistical analyses of this network predicted a role for the breast cancer 1 protein BRCA1 in neuronal differentiation and a new pathway from CB1R through phosphoinositol 3-kinase to the transcription factor paired box 6 (PAX6). Both predictions were experimentally confirmed. Results of transcription factor activation experiments that used pharmacological inhibitors of kinases revealed a network organization of partial OR gates regulating kinases stacked above AND gates that control transcription factors, which together allow for distributed decision-making in CB1R-induced neurite outgrowth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bromberg, Kenneth D -- Ma'ayan, Avi -- Neves, Susana R -- Iyengar, Ravi -- 1 S10 RR0 9145-01/RR/NCRR NIH HHS/ -- 5R24 CA095823-04/CA/NCI NIH HHS/ -- GM072853/GM/NIGMS NIH HHS/ -- GM54508/GM/NIGMS NIH HHS/ -- P50 GM071558/GM/NIGMS NIH HHS/ -- P50 GM071558-01A2/GM/NIGMS NIH HHS/ -- P50 GM071558-01A20007/GM/NIGMS NIH HHS/ -- P50 GM071558-02/GM/NIGMS NIH HHS/ -- P50 GM071558-020007/GM/NIGMS NIH HHS/ -- P50 GM071558-030007/GM/NIGMS NIH HHS/ -- P50-071558/PHS HHS/ -- R01 GM054508/GM/NIGMS NIH HHS/ -- R01 GM054508-21/GM/NIGMS NIH HHS/ -- R01 GM072853/GM/NIGMS NIH HHS/ -- R01 GM072853-04/GM/NIGMS NIH HHS/ -- T32 CA88796/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 May 16;320(5878):903-9. doi: 10.1126/science.1152662.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cell Differentiation ; Cell Line, Tumor ; Cells, Cultured ; Computational Biology ; Computer Simulation ; Eye Proteins/metabolism ; Hippocampus/cytology ; Homeodomain Proteins/metabolism ; Metabolic Networks and Pathways ; Mice ; Neurites/*physiology ; Neurons/*cytology/metabolism ; Paired Box Transcription Factors/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Interaction Mapping ; Rats ; Receptor, Cannabinoid, CB1/*metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; Transcription Factors/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-12-06
    Description: Branching morphogenesis is one of the earliest events essential for the success of metazoans. By branching out and forming cellular or tissue extensions, cells can maximize their surface area and overcome space constraints posed by organ size. Over the past decade, tremendous progress has been made toward understanding the branching mechanisms of various invertebrate and vertebrate organ systems. Despite their distinct origins, morphologies and functions, different cell and tissue types use a remarkably conserved set of tools to undergo branching morphogenesis. Recent studies have shed important light on the basis of molecular conservation in the formation of branched structures in diverse organs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645229/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645229/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Pengfei -- Werb, Zena -- CA057621/CA/NCI NIH HHS/ -- ES012801/ES/NIEHS NIH HHS/ -- R01 CA057621/CA/NCI NIH HHS/ -- R01 CA057621-16A1/CA/NCI NIH HHS/ -- U01 ES012801-06/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1506-9. doi: 10.1126/science.1162783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Program in Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0452, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056977" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/embryology/physiology ; *Body Patterning ; Cell Differentiation ; Epithelium/embryology/physiology ; Genes ; Mesoderm/embryology/physiology ; *Morphogenesis ; Nervous System/embryology ; Neurons/cytology ; *Organogenesis ; Regeneration ; Signal Transduction ; Stem Cells/physiology ; Stromal Cells/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2008-06-07
    Description: In mammals, dosage compensation is achieved by X-chromosome inactivation (XCI) in the female. The noncoding Xist gene initiates silencing of the X chromosome, whereas its antisense partner Tsix blocks silencing. The complementarity of Xist and Tsix RNAs has long suggested a role for RNA interference (RNAi). Here, we report that murine Xist and Tsix form duplexes in vivo. During XCI, the duplexes are processed to small RNAs (sRNAs), most likely on the active X (Xa) in a Dicer-dependent manner. Deleting Dicer compromises sRNA production and derepresses Xist. Furthermore, without Dicer, Xist RNA cannot accumulate and histone 3 lysine 27 trimethylation is blocked on the inactive X (Xi). The defects are partially rescued by truncating Tsix. Thus, XCI and RNAi intersect, down-regulating Xist on Xa and spreading silencing on Xi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, Yuya -- Sun, Bryan K -- Lee, Jeannie T -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jun 6;320(5881):1336-41. doi: 10.1126/science.1157676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital and Howard Hughes Medical Institute, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18535243" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cells, Cultured ; DEAD-box RNA Helicases/genetics/metabolism ; Embryonic Stem Cells ; Endoribonucleases/genetics/metabolism ; Female ; Histones/metabolism ; Male ; Methylation ; Mice ; *RNA Interference ; RNA, Double-Stranded/metabolism ; RNA, Long Noncoding ; RNA, Small Nuclear/metabolism ; RNA, Untranslated/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease III ; X Chromosome/*genetics/metabolism ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: Cadherin-mediated cell adhesion and signaling is essential for metazoan development and yet is absent from all other multicellular organisms. We found cadherin genes at numbers similar to those observed in complex metazoans in one of the closest single-celled relatives of metazoans, the choanoflagellate Monosiga brevicollis. Because the evolution of metazoans from a single-celled ancestor required novel cell adhesion and signaling mechanisms, the discovery of diverse cadherins in choanoflagellates suggests that cadherins may have contributed to metazoan origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abedin, Monika -- King, Nicole -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):946-8. doi: 10.1126/science.1151084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276888" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Cadherins/*chemistry/*genetics/physiology ; Cell Adhesion ; Ciona intestinalis/chemistry ; Cnidaria/chemistry ; Drosophila melanogaster/chemistry ; Eukaryota/*chemistry ; Eukaryotic Cells/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2008-03-08
    Description: Chronic hyperglycemia contributes to the development of diabetes-associated complications. Increases in the concentration of circulating glucose activate the hexosamine biosynthetic pathway (HBP) and promote the O-glycosylation of proteins by O-glycosyl transferase (OGT). We show that OGT triggered hepatic gluconeogenesis through the O-glycosylation of the transducer of regulated cyclic adenosine monophosphate response element-binding protein (CREB) 2 (TORC2 or CRTC2). CRTC2 was O-glycosylated at sites that normally sequester CRTC2 in the cytoplasm through a phosphorylation-dependent mechanism. Decreasing amounts of O-glycosylated CRTC2 by expression of the deglycosylating enzyme O-GlcNAcase blocked effects of glucose on gluconeogenesis, demonstrating the importance of the HBP in the development of glucose intolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dentin, Renaud -- Hedrick, Susan -- Xie, Jianxin -- Yates, John 3rd -- Montminy, Marc -- R01 GM037828/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1402-5. doi: 10.1126/science.1151363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323454" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Blood Glucose/metabolism ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Diabetes Mellitus/metabolism ; *Gluconeogenesis ; Glucose/*metabolism ; Glycosylation ; Glycosyltransferases/metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; RNA Interference ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transcription Factors ; beta-N-Acetylhexosaminidases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2008-03-08
    Description: We report that developmental competition between sympathetic neurons for survival is critically dependent on a sensitization process initiated by target innervation and mediated by a series of feedback loops. Target-derived nerve growth factor (NGF) promoted expression of its own receptor TrkA in mouse and rat neurons and prolonged TrkA-mediated signals. NGF also controlled expression of brain-derived neurotrophic factor and neurotrophin-4, which, through the receptor p75, can kill neighboring neurons with low retrograde NGF-TrkA signaling whereas neurons with high NGF-TrkA signaling are protected. Perturbation of any of these feedback loops disrupts the dynamics of competition. We suggest that three target-initiated events are essential for rapid and robust competition between neurons: sensitization, paracrine apoptotic signaling, and protection from such effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deppmann, Christopher D -- Mihalas, Stefan -- Sharma, Nikhil -- Lonze, Bonnie E -- Niebur, Ernst -- Ginty, David D -- EY016281/EY/NEI NIH HHS/ -- F32 NS053187/NS/NINDS NIH HHS/ -- NS053187/NS/NINDS NIH HHS/ -- NS34814/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):369-73. doi: 10.1126/science.1152677. Epub 2008 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Apoptosis ; Brain-Derived Neurotrophic Factor/metabolism ; Cell Survival ; Cells, Cultured ; Computer Simulation ; Feedback, Physiological ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mathematics ; Mice ; *Models, Neurological ; Nerve Growth Factor/*metabolism ; Nerve Growth Factors/metabolism ; Neurons/cytology/*physiology ; Oligonucleotide Array Sequence Analysis ; Rats ; Receptor, trkA/genetics/*metabolism ; Receptors, Nerve Growth Factor/genetics/metabolism ; Signal Transduction ; Superior Cervical Ganglion/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2008-12-20
    Description: Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Conjugation, Genetic ; DNA, Bacterial/*genetics/metabolism ; Deoxyribonuclease I/genetics/metabolism ; *Gene Silencing ; *Gene Transfer, Horizontal ; Plasmids/genetics ; RNA Splicing ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics ; Staphylococcus Phages/genetics ; Staphylococcus aureus/genetics ; Staphylococcus epidermidis/*genetics ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2008-06-21
    Description: Specialized secretion systems are used by many bacteria to deliver effector proteins into host cells that can either mimic or disrupt the function of eukaryotic factors. We found that the intracellular pathogens Legionella pneumophila and Coxiella burnetii use a type IV secretion system to deliver into eukaryotic cells a large number of different bacterial proteins containing ankyrin repeat homology domains called Anks. The L. pneumophila AnkX protein prevented microtubule-dependent vesicular transport to interfere with fusion of the L. pneumophila-containing vacuole with late endosomes after infection of macrophages, which demonstrates that Ank proteins have effector functions important for bacterial infection of eukaryotic host cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2514061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2514061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Xiaoxiao -- Luhrmann, Anja -- Satoh, Ayano -- Laskowski-Arce, Michelle A -- Roy, Craig R -- AG030101/AG/NIA NIH HHS/ -- AI041699/AI/NIAID NIH HHS/ -- AI064559/AI/NIAID NIH HHS/ -- GM060919/GM/NIGMS NIH HHS/ -- R01 AI041699/AI/NIAID NIH HHS/ -- R01 AI041699-12/AI/NIAID NIH HHS/ -- R01 AI064559/AI/NIAID NIH HHS/ -- R01 AI064559-03/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 20;320(5883):1651-4. doi: 10.1126/science.1158160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18566289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ankyrin Repeat ; Bacterial Proteins/*chemistry/genetics/*metabolism ; CHO Cells ; Cells, Cultured ; Coxiella burnetii/*metabolism/pathogenicity ; Cricetinae ; Cricetulus ; Cyclic AMP/metabolism ; Cytoplasmic Vesicles/metabolism/ultrastructure ; Cytosol/metabolism ; Golgi Apparatus/metabolism ; Humans ; Intracellular Membranes/metabolism ; Legionella pneumophila/*metabolism/pathogenicity ; Microtubules/metabolism ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Vacuoles/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2008-01-19
    Description: Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down alpha-carotene versus beta-carotene branches of the carotenoid pathway. Four natural lcyE polymorphisms explained 58% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harjes, Carlos E -- Rocheford, Torbert R -- Bai, Ling -- Brutnell, Thomas P -- Kandianis, Catherine Bermudez -- Sowinski, Stephen G -- Stapleton, Ann E -- Vallabhaneni, Ratnakar -- Williams, Mark -- Wurtzel, Eleanore T -- Yan, Jianbing -- Buckler, Edward S -- S06-GM08225/GM/NIGMS NIH HHS/ -- SC1 GM081160/GM/NIGMS NIH HHS/ -- SC1 GM081160-01/GM/NIGMS NIH HHS/ -- SC1 GM081160-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):330-3. doi: 10.1126/science.1150255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202289" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breeding ; Carotenoids/*analysis/metabolism ; Crosses, Genetic ; Cryptoxanthins ; Gene Expression Regulation, Plant ; *Genetic Variation ; Haplotypes ; Intramolecular Lyases/*genetics/metabolism ; Molecular Sequence Data ; Mutagenesis ; Nutritive Value ; Polymorphism, Genetic ; Quantitative Trait Loci ; Xanthophylls/analysis/metabolism ; Zea mays/chemistry/enzymology/*genetics ; beta Carotene/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2008-05-24
    Description: Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, Anders F -- Banfield, Jillian F -- New York, N.Y. -- Science. 2008 May 23;320(5879):1047-50. doi: 10.1126/science.1157358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Earth and Planetary Science and Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/*genetics/physiology/*virology ; Archaeal Viruses/genetics/*physiology ; Bacteria/*genetics/*virology ; Bacterial Physiological Phenomena ; Bacteriophages/genetics/*physiology ; Base Sequence ; Biofilms ; DNA, Intergenic ; Ecosystem ; Genome, Archaeal ; Genome, Bacterial ; Genome, Viral ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Thermoplasmales/genetics/physiology/virology ; Viral Proteins/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-12-17
    Description: Cells sense the environment's mechanical stiffness to control their own shape, migration, and fate. To better understand stiffness sensing, we constructed a stochastic model of the "motor-clutch" force transmission system, where molecular clutches link F-actin to the substrate and mechanically resist myosin-driven F-actin retrograde flow. The model predicts two distinct regimes: (i) "frictional slippage," with fast retrograde flow and low traction forces on stiff substrates and (ii) oscillatory "load-and-fail" dynamics, with slower retrograde flow and higher traction forces on soft substrates. We experimentally confirmed these model predictions in embryonic chick forebrain neurons by measuring the nanoscale dynamics of single-growth-cone filopodia. Furthermore, we experimentally observed a model-predicted switch in F-actin dynamics around an elastic modulus of 1 kilopascal. Thus, a motor-clutch system inherently senses and responds to the mechanical stiffness of the local environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, Clarence E -- Odde, David J -- R01-GM-76177/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 12;322(5908):1687-91. doi: 10.1126/science.1163595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074349" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actins/*physiology ; Animals ; Biomechanical Phenomena ; Cell Adhesion ; Cells, Cultured ; Chick Embryo ; Compliance ; Computer Simulation ; Elastic Modulus ; Elasticity ; Growth Cones/*physiology/ultrastructure ; Models, Biological ; Myosin Type II/physiology ; Neurons/physiology ; Pseudopodia/*physiology ; Surface Tension
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silver, R Angus -- Kanichay, Roby T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):183-4. doi: 10.1126/science.1157589.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK. a.silver@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Diffusion ; *Excitatory Postsynaptic Potentials ; Glutamic Acid/*metabolism ; *Neuronal Plasticity ; Rats ; Receptors, AMPA/*metabolism ; Synapses/*physiology ; *Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-26
    Description: The statistical methods applied to the analysis of genomic data do not account for uncertainty in the sequence alignment. Indeed, the alignment is treated as an observation, and all of the subsequent inferences depend on the alignment being correct. This may not have been too problematic for many phylogenetic studies, in which the gene is carefully chosen for, among other things, ease of alignment. However, in a comparative genomics study, the same statistical methods are applied repeatedly on thousands of genes, many of which will be difficult to align. Using genomic data from seven yeast species, we show that uncertainty in the alignment can lead to several problems, including different alignment methods resulting in different conclusions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Karen M -- Suchard, Marc A -- Huelsenbeck, John P -- GM-069801/GM/NIGMS NIH HHS/ -- R01 GM069801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):473-6. doi: 10.1126/science.1151532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218900" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; Evolution, Molecular ; *Genome, Fungal ; *Genomics ; Models, Statistical ; Monte Carlo Method ; Open Reading Frames ; Phylogeny ; Saccharomyces/*genetics ; Selection, Genetic ; Sequence Alignment/*methods ; Software ; Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2008-08-23
    Description: Adenovirus small early region 1a (e1a) protein drives cells into S phase by binding RB family proteins and the closely related histone acetyl transferases p300 and CBP. The interaction with RB proteins displaces them from DNA-bound E2F transcription factors, reversing their repression of cell cycle genes. However, it has been unclear how the e1a interaction with p300 and CBP promotes passage through the cell cycle. We show that this interaction causes a threefold reduction in total cellular histone H3 lysine 18 acetylation (H3K18ac). CBP and p300 are required for acetylation at this site because their knockdown causes specific hypoacetylation at H3K18. SV40 T antigen also induces H3K18 hypoacetylation. Because global hypoacetylation at this site is observed in prostate carcinomas with poor prognosis, this suggests that processes resulting in global H3K18 hypoacetylation may be linked to oncogenic transformation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756290/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756290/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horwitz, Gregory A -- Zhang, Kangling -- McBrian, Matthew A -- Grunstein, Michael -- Kurdistani, Siavash K -- Berk, Arnold J -- CA25235/CA/NCI NIH HHS/ -- R37 CA025235/CA/NCI NIH HHS/ -- R37 CA025235-30/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1084-5. doi: 10.1126/science.1155544.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719283" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Adenovirus E1A Proteins/genetics/*metabolism ; Adenoviruses, Human/*metabolism ; Antigens, Polyomavirus Transforming/metabolism ; CREB-Binding Protein/metabolism ; *Cell Cycle ; Cell Line ; Cell Transformation, Viral ; Cells, Cultured ; HeLa Cells ; Histones/*metabolism ; Humans ; Lysine/metabolism ; Mutation ; p300-CBP Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2008-11-29
    Description: Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease-1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor RORalpha. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668604/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668604/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chopra, Atul R -- Louet, Jean-Francois -- Saha, Pradip -- An, Jie -- Demayo, Franco -- Xu, Jianming -- York, Brian -- Karpen, Saul -- Finegold, Milton -- Moore, David -- Chan, Lawrence -- Newgard, Christopher B -- O'Malley, Bert W -- DK58242/DK/NIDDK NIH HHS/ -- HL51586/HL/NHLBI NIH HHS/ -- P01 DK059820/DK/NIDDK NIH HHS/ -- P01 DK059820-08/DK/NIDDK NIH HHS/ -- P01 DK58398/DK/NIDDK NIH HHS/ -- P01 DK59820/DK/NIDDK NIH HHS/ -- R01 DK056239/DK/NIDDK NIH HHS/ -- R01 DK056239-08/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-07/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 28;322(5906):1395-9. doi: 10.1126/science.1164847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Fasting ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Enzymologic ; Glucose/*metabolism ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/*genetics/metabolism ; Hepatocytes/metabolism ; Kidney/metabolism ; Liver/*metabolism ; Liver Glycogen/metabolism ; Male ; Mice ; Mice, Knockout ; Nuclear Receptor Coactivator 2/genetics/*metabolism ; RNA Interference ; Receptors, Retinoic Acid/metabolism ; Response Elements ; Transcription, Genetic ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2008-04-12
    Description: Initiation of actin polymerization in cells requires nucleation factors. Here we describe an actin-binding protein, leiomodin, that acted as a strong filament nucleator in muscle cells. Leiomodin shared two actin-binding sites with the filament pointed end-capping protein tropomodulin: a flexible N-terminal region and a leucine-rich repeat domain. Leiomodin also contained a C-terminal extension of 150 residues. The smallest fragment with strong nucleation activity included the leucine-rich repeat and C-terminal extension. The N-terminal region enhanced the nucleation activity threefold and recruited tropomyosin, which weakly stimulated nucleation and mediated localization of leiomodin to the middle of muscle sarcomeres. Knocking down leiomodin severely compromised sarcomere assembly in cultured muscle cells, which suggests a role for leiomodin in the nucleation of tropomyosin-decorated filaments in muscles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chereau, David -- Boczkowska, Malgorzata -- Skwarek-Maruszewska, Aneta -- Fujiwara, Ikuko -- Hayes, David B -- Rebowski, Grzegorz -- Lappalainen, Pekka -- Pollard, Thomas D -- Dominguez, Roberto -- GM026338/GM/NIGMS NIH HHS/ -- GM073791/GM/NIGMS NIH HHS/ -- HL086655/HL/NHLBI NIH HHS/ -- P01 HL086655/HL/NHLBI NIH HHS/ -- P01 HL086655-01A10004/HL/NHLBI NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- R01 GM073791-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):239-43. doi: 10.1126/science.1155313.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403713" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Cells, Cultured ; Cytoskeletal Proteins/chemistry/*metabolism ; Humans ; Microfilament Proteins/chemistry/*metabolism ; Molecular Sequence Data ; Muscle Proteins/chemistry/*metabolism ; Myocytes, Cardiac/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Rabbits ; Rats ; Sarcomeres/*metabolism ; Tropomodulin/chemistry ; Tropomyosin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2008-01-12
    Description: Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perillo, Bruno -- Ombra, Maria Neve -- Bertoni, Alessandra -- Cuozzo, Concetta -- Sacchetti, Silvana -- Sasso, Annarita -- Chiariotti, Lorenzo -- Malorni, Antonio -- Abbondanza, Ciro -- Avvedimento, Enrico V -- New York, N.Y. -- Science. 2008 Jan 11;319(5860):202-6. doi: 10.1126/science.1147674.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (C.N.R.), 83100 Avellino, Italy. perillo@unina.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18187655" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cells, Cultured ; Chromatin/metabolism ; DNA/*metabolism ; DNA Damage ; DNA Glycosylases/metabolism ; DNA Repair ; DNA Topoisomerases, Type II/metabolism ; DNA-Binding Proteins/metabolism ; Enhancer Elements, Genetic ; Estradiol/*metabolism ; Estrogen Receptor alpha/metabolism ; *Gene Expression Regulation ; Genes, bcl-2 ; Guanine/analogs & derivatives/metabolism ; Histone Demethylases ; Histones/*metabolism ; Humans ; Hydrogen Peroxide/metabolism ; Lysine/metabolism ; Methylation ; Nucleic Acid Conformation ; Oxidation-Reduction ; Oxidoreductases, N-Demethylating/metabolism ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2008-12-06
    Description: Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repeat domains and document cytogenetic and functional polymorphism for drive within a population of M. guttatus. In conspecific crosses, D had a 58:42 transmission advantage over nondriving alternative alleles. However, individuals homozygous for the driving allele suffered reduced pollen viability. These fitness effects and molecular population genetic data suggest that balancing selection prevents the fixation or loss of D and that selfish chromosomal transmission may affect both individual fitness and population genetic load.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman, Lila -- Saunders, Arpiar -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1559-62. doi: 10.1126/science.1161406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA. lila.fishman@mso.umt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056989" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Biological Evolution ; Centromere/*physiology ; Chromosome Segregation ; Chromosomes, Plant/*physiology ; Crosses, Genetic ; Genetic Markers ; Heterozygote ; Hybridization, Genetic ; Linkage Disequilibrium ; *Meiosis ; Mimulus/*genetics/physiology ; Molecular Sequence Data ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2008-12-06
    Description: As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648820/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648820/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mold, Jeff E -- Michaelsson, Jakob -- Burt, Trevor D -- Muench, Marcus O -- Beckerman, Karen P -- Busch, Michael P -- Lee, Tzong-Hae -- Nixon, Douglas F -- McCune, Joseph M -- AI40312/AI/NIAID NIH HHS/ -- AI68498/AI/NIAID NIH HHS/ -- DP1 OD000329/OD/NIH HHS/ -- DP1 OD000329-01/OD/NIH HHS/ -- DP1 OD000329-02/OD/NIH HHS/ -- DP1 OD000329-03/OD/NIH HHS/ -- DP1 OD000329-04/OD/NIH HHS/ -- HD00850/HD/NICHD NIH HHS/ -- HL083388/HL/NHLBI NIH HHS/ -- OD000329/OD/NIH HHS/ -- R01 HL083388/HL/NHLBI NIH HHS/ -- R01 HL083388-02/HL/NHLBI NIH HHS/ -- R37 AI040312/AI/NIAID NIH HHS/ -- R37 AI040312-09/AI/NIAID NIH HHS/ -- R37 AI040312-10/AI/NIAID NIH HHS/ -- R37 AI040312-11/AI/NIAID NIH HHS/ -- R37 AI040312-12/AI/NIAID NIH HHS/ -- R37 AI040312-13/AI/NIAID NIH HHS/ -- RR024131/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1562-5. doi: 10.1126/science.1164511.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Experimental Medicine, Department of Medicine, University of California at San Francisco (UCSF), San Francisco, CA 94110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056990" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Antigen-Presenting Cells/immunology ; Cells, Cultured ; Child ; Chimerism ; Female ; Fetus/*immunology ; Forkhead Transcription Factors/metabolism ; Gene Expression Profiling ; Humans ; *Immune Tolerance ; Isoantigens/*immunology ; Lymph Nodes/cytology/*immunology ; Lymphocyte Activation ; *Maternal-Fetal Exchange ; Pregnancy ; Self Tolerance ; T-Lymphocytes, Regulatory/*immunology ; Thymus Gland/immunology ; Transforming Growth Factors/genetics/metabolism ; Tumor Necrosis Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strasser, Bruno J -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):537-8. doi: 10.1126/science.1163399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of the History of Medicine, Yale University, New Haven, CT 06520, USA. bruno.strasser@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948528" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Databases, Nucleic Acid/*history/organization & administration ; Editorial Policies ; History, 20th Century ; History, 21st Century ; National Institutes of Health (U.S.)/*history ; National Library of Medicine (U.S.)/history ; Natural History/history ; Publishing ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2008-04-12
    Description: Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A --〉 EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallarda, Benjamin W -- Bonanomi, Dario -- Muller, Daniel -- Brown, Arthur -- Alaynick, William A -- Andrews, Shane E -- Lemke, Greg -- Pfaff, Samuel L -- Marquardt, Till -- NS031249-14A1/NS/NINDS NIH HHS/ -- NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172/NS/NINDS NIH HHS/ -- R01 NS054172-01A2/NS/NINDS NIH HHS/ -- R01 NS054172-02/NS/NINDS NIH HHS/ -- R01 NS054172-03/NS/NINDS NIH HHS/ -- R01 NS054172-04/NS/NINDS NIH HHS/ -- R01 NS054172-05/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):233-6. doi: 10.1126/science.1153758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403711" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Axons/*physiology ; Cells, Cultured ; Coculture Techniques ; Efferent Pathways/physiology ; Electrophysiology ; Ephrins/*metabolism ; Ganglia, Spinal/cytology/physiology ; Growth Cones/physiology ; Ligands ; Mice ; Mice, Transgenic ; Motor Activity ; Motor Neurons/*physiology ; Muscle, Skeletal/innervation ; Mutation ; Neurons, Afferent/*physiology ; Peripheral Nerves/cytology/physiology ; Receptor, EphA3/genetics/*metabolism ; Receptor, EphA4/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2008-07-19
    Description: Cyclic di-guanosine monophosphate (di-GMP) is a circular RNA dinucleotide that functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes, including cell differentiation, conversion between motile and biofilm lifestyles, and virulence gene expression. However, the mechanisms by which cyclic di-GMP regulates gene expression have remained a mystery. We found that cyclic di-GMP in many bacterial species is sensed by a riboswitch class in messenger RNA that controls the expression of genes involved in numerous fundamental cellular processes. A variety of cyclic di-GMP regulons are revealed, including some riboswitches associated with virulence gene expression, pilus formation, and flagellum biosynthesis. In addition, sequences matching the consensus for cyclic di-GMP riboswitches are present in the genome of a bacteriophage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudarsan, N -- Lee, E R -- Weinberg, Z -- Moy, R H -- Kim, J N -- Link, K H -- Breaker, R R -- GM 068819/GM/NIGMS NIH HHS/ -- HV28186/HV/NHLBI NIH HHS/ -- R33 DK07027/DK/NIDDK NIH HHS/ -- RR19895-02/RR/NCRR NIH HHS/ -- T32GM007223/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):411-3. doi: 10.1126/science.1159519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635805" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/*metabolism ; Bacillus cereus/genetics/metabolism ; Bacteria/*genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Clostridium difficile/genetics/metabolism ; Cyclic GMP/*analogs & derivatives/metabolism ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; Regulon ; *Second Messenger Systems ; Vibrio cholerae/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2008-03-29
    Description: The synaptic response waveform, which determines signal integration properties in the brain, depends on the spatiotemporal profile of neurotransmitter in the synaptic cleft. Here, we show that electrophoretic interactions between AMPA receptor-mediated excitatory currents and negatively charged glutamate molecules accelerate the clearance of glutamate from the synaptic cleft, speeding up synaptic responses. This phenomenon is reversed upon depolarization and diminished when intracleft electric fields are weakened through a decrease in the AMPA receptor density. In contrast, the kinetics of receptor-mediated currents evoked by direct application of glutamate are voltage-independent, as are synaptic currents mediated by the electrically neutral neurotransmitter GABA. Voltage-dependent temporal tuning of excitatory synaptic responses may thus contribute to signal integration in neural circuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685065/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685065/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sylantyev, Sergiy -- Savtchenko, Leonid P -- Niu, Yin-Ping -- Ivanov, Anton I -- Jensen, Thomas P -- Kullmann, Dimitri M -- Xiao, Min-Yi -- Rusakov, Dmitri A -- 071179/Wellcome Trust/United Kingdom -- G0400627/Medical Research Council/United Kingdom -- G0400627(71256)/Medical Research Council/United Kingdom -- G0400627(76527)/Medical Research Council/United Kingdom -- G0600368/Medical Research Council/United Kingdom -- G0600368(77987)/Medical Research Council/United Kingdom -- G116/147/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Mar 28;319(5871):1845-9. doi: 10.1126/science.1154330.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369150" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/physiology ; Diffusion ; Dipeptides/pharmacology ; *Excitatory Postsynaptic Potentials ; Glutamic Acid/*metabolism ; Magnesium/pharmacology ; Male ; Monte Carlo Method ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Quinoxalines/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/antagonists & inhibitors/*metabolism ; Receptors, GABA/metabolism ; Synapses/*physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohatgi, Rajat -- Scott, Matthew P -- 1K99CA129174/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jun 27;320(5884):1726-7. doi: 10.1126/science.1160448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18583599" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/genetics/*metabolism ; Cells, Cultured ; Cilia/*metabolism ; Hedgehog Proteins/metabolism ; Kinesin/*metabolism ; Kruppel-Like Transcription Factors/metabolism ; Mice ; Molecular Motor Proteins/metabolism ; Nerve Tissue Proteins/metabolism ; Protein Transport ; RNA Interference ; Receptors, G-Protein-Coupled/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-03-17
    Description: The three-dimensional molecular structure of DNA, specifically the shape of the backbone and grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause differences in protein-binding affinity and phenotype. We developed an algorithm to measure constraint on the basis of similarity of DNA topography among multiple species, using hydroxyl radical cleavage patterns to interrogate the solvent-accessible surface area of DNA. This algorithm found that 12% of bases in the human genome are evolutionarily constrained-double the number detected by nucleotide sequence-based algorithms. Topography-informed constrained regions correlated with functional noncoding elements, including enhancers, better than did regions identified solely on the basis of nucleotide sequence. These results support the idea that the molecular shape of DNA is under selection and can identify evolutionary history.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Stephen C J -- Hansen, Loren -- Abaan, Hatice Ozel -- Tullius, Thomas D -- Margulies, Elliott H -- R01 HG003541/HG/NHGRI NIH HHS/ -- R01 HG003541-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):389-92. doi: 10.1126/science.1169050. Epub 2009 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics Program, Boston University, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286520" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Base Sequence ; Binding Sites ; Conserved Sequence ; DNA/*chemistry/genetics ; Deoxyribonuclease I/metabolism ; Early Growth Response Protein 1/genetics/metabolism ; Evolution, Molecular ; *Genome, Human ; Humans ; Mutant Proteins/metabolism ; Nucleic Acid Conformation ; Phenotype ; Polymorphism, Single Nucleotide ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2009-12-08
    Description: Loss-of-function genetic screens in model organisms have elucidated numerous biological processes, but the diploid genome of mammalian cells has precluded large-scale gene disruption. We used insertional mutagenesis to develop a screening method to generate null alleles in a human cell line haploid for all chromosomes except chromosome 8. Using this approach, we identified host factors essential for infection with influenza and genes encoding important elements of the biosynthetic pathway of diphthamide, which are required for the cytotoxic effects of diphtheria toxin and exotoxin A. We also identified genes needed for the action of cytolethal distending toxin, including a cell-surface protein that interacts with the toxin. This approach has both conceptual and practical parallels with genetic approaches in haploid yeast.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carette, Jan E -- Guimaraes, Carla P -- Varadarajan, Malini -- Park, Annie S -- Wuethrich, Irene -- Godarova, Alzbeta -- Kotecki, Maciej -- Cochran, Brent H -- Spooner, Eric -- Ploegh, Hidde L -- Brummelkamp, Thijn R -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1231-5. doi: 10.1126/science.1178955.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965467" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/metabolism/toxicity ; Adenosine Diphosphate Ribose/metabolism ; Amino Acid Sequence ; Antigens, Bacterial/metabolism/toxicity ; Bacterial Toxins/*metabolism/toxicity ; Biosynthetic Pathways ; Cell Line, Tumor ; Diphtheria Toxin/metabolism/toxicity ; Exotoxins/metabolism/toxicity ; Genes ; *Genetic Testing ; *Haploidy ; Histidine/analogs & derivatives/biosynthesis ; *Host-Pathogen Interactions ; Humans ; Influenza A Virus, H1N1 Subtype/*pathogenicity ; Molecular Sequence Data ; Monosaccharide Transport Proteins/genetics/metabolism ; Mutagenesis, Insertional ; N-Acylneuraminate Cytidylyltransferase/genetics/metabolism ; Peptide Elongation Factor 2/metabolism ; Proteins/chemistry/genetics/metabolism ; Virulence Factors/metabolism/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2009-12-08
    Description: Hepatitis delta virus (HDV) and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) ribozymes form a family of self-cleaving RNAs characterized by a conserved nested double-pseudoknot and minimal sequence conservation. Secondary structure-based searches were used to identify sequences capable of forming this fold, and their self-cleavage activity was confirmed in vitro. Active sequences were uncovered in several marine organisms, two nematodes, an arthropod, a bacterium, and an insect virus, often in multiple sequence families and copies. Sequence searches based on identified ribozymes showed that plants, fungi, and a unicellular eukaryote also harbor the ribozymes. In Anopheles gambiae, the ribozymes were found differentially expressed and self-cleaved at basic developmental stages. Our results indicate that HDV-like ribozymes are abundant in nature and suggest that self-cleaving RNAs may play a variety of biological roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Chiu-Ho T -- Riccitelli, Nathan J -- Ruminski, Dana J -- Luptak, Andrej -- R01 GM094929/GM/NIGMS NIH HHS/ -- R01 GM094929-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):953. doi: 10.1126/science.1178084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/enzymology/*genetics/growth & development ; Base Sequence ; Catalysis ; Eukaryota/enzymology/*genetics ; Expressed Sequence Tags ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2008-11-22
    Description: We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eid, John -- Fehr, Adrian -- Gray, Jeremy -- Luong, Khai -- Lyle, John -- Otto, Geoff -- Peluso, Paul -- Rank, David -- Baybayan, Primo -- Bettman, Brad -- Bibillo, Arkadiusz -- Bjornson, Keith -- Chaudhuri, Bidhan -- Christians, Frederick -- Cicero, Ronald -- Clark, Sonya -- Dalal, Ravindra -- Dewinter, Alex -- Dixon, John -- Foquet, Mathieu -- Gaertner, Alfred -- Hardenbol, Paul -- Heiner, Cheryl -- Hester, Kevin -- Holden, David -- Kearns, Gregory -- Kong, Xiangxu -- Kuse, Ronald -- Lacroix, Yves -- Lin, Steven -- Lundquist, Paul -- Ma, Congcong -- Marks, Patrick -- Maxham, Mark -- Murphy, Devon -- Park, Insil -- Pham, Thang -- Phillips, Michael -- Roy, Joy -- Sebra, Robert -- Shen, Gene -- Sorenson, Jon -- Tomaney, Austin -- Travers, Kevin -- Trulson, Mark -- Vieceli, John -- Wegener, Jeffrey -- Wu, Dawn -- Yang, Alicia -- Zaccarin, Denis -- Zhao, Peter -- Zhong, Frank -- Korlach, Jonas -- Turner, Stephen -- R01HG003710/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):133-8. doi: 10.1126/science.1162986. Epub 2008 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Biosciences, 1505 Adams Drive, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023044" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Consensus Sequence ; DNA/biosynthesis ; DNA, Circular/chemistry ; DNA, Single-Stranded/chemistry ; DNA-Directed DNA Polymerase/*metabolism ; Deoxyribonucleotides/metabolism ; Enzymes, Immobilized ; Fluorescent Dyes ; Kinetics ; Nanostructures ; Sequence Analysis, DNA/*methods ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-07-25
    Description: Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular calcium ion concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Alok S -- Ben-Shahar, Yehuda -- Moninger, Thomas O -- Kline, Joel N -- Welsh, Michael J -- DK54759/DK/NIDDK NIH HHS/ -- HL51670/HL/NHLBI NIH HHS/ -- P01 HL051670/HL/NHLBI NIH HHS/ -- P01 HL051670-15/HL/NHLBI NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- P30 DK054759-109004/DK/NIDDK NIH HHS/ -- P30 DK054759-13/DK/NIDDK NIH HHS/ -- R01 DK051315/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Aug 28;325(5944):1131-4. doi: 10.1126/science.1173869. Epub 2009 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628819" target="_blank"〉PubMed〈/a〉
    Keywords: Bronchi/cytology ; Calcium/metabolism ; Cells, Cultured ; Cilia/metabolism/*physiology ; Epithelial Cells/*metabolism ; Humans ; Monoterpenes/metabolism/pharmacology ; Movement ; Noxae ; Phospholipase C beta/metabolism ; Quaternary Ammonium Compounds/metabolism/pharmacology ; Receptors, G-Protein-Coupled/*metabolism ; Respiratory Mucosa/cytology/*metabolism ; *Signal Transduction ; *Taste ; Trachea/cytology ; Transducin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2009 May 29;324(5931):1136-7. doi: 10.1126/science.324_1136.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478161" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/classification/genetics/*isolation & purification ; Diet ; Digestive System/*microbiology ; Ecology/history ; Genes ; Genes, Bacterial ; Genomics/history ; History, 20th Century ; History, 21st Century ; Humans ; Interdisciplinary Communication ; *Metagenome ; *Microbiology/history ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2009-01-10
    Description: Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the protein's function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wegrzyn, Joanna -- Potla, Ramesh -- Chwae, Yong-Joon -- Sepuri, Naresh B V -- Zhang, Qifang -- Koeck, Thomas -- Derecka, Marta -- Szczepanek, Karol -- Szelag, Magdalena -- Gornicka, Agnieszka -- Moh, Akira -- Moghaddas, Shadi -- Chen, Qun -- Bobbili, Santha -- Cichy, Joanna -- Dulak, Jozef -- Baker, Darren P -- Wolfman, Alan -- Stuehr, Dennis -- Hassan, Medhat O -- Fu, Xin-Yuan -- Avadhani, Narayan -- Drake, Jennifer I -- Fawcett, Paul -- Lesnefsky, Edward J -- Larner, Andrew C -- CA098924/CA/NCI NIH HHS/ -- P01AG15885/AG/NIA NIH HHS/ -- R01 AI059710/AI/NIAID NIH HHS/ -- R01 AI059710-03/AI/NIAID NIH HHS/ -- R01 AI059710-04/AI/NIAID NIH HHS/ -- R01 CA098924/CA/NCI NIH HHS/ -- R01 CA098924-03/CA/NCI NIH HHS/ -- R01 CA098924-04/CA/NCI NIH HHS/ -- R01 CA098924-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):793-7. doi: 10.1126/science.1164551. Epub 2009 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131594" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Respiration ; Cells, Cultured ; Electron Transport Complex I/metabolism ; Electron Transport Complex II/metabolism ; Homeostasis ; Mice ; Mitochondria/*metabolism ; Mitochondria, Heart/metabolism ; Mitochondria, Liver/metabolism ; Mitochondrial Membranes/metabolism ; NADH, NADPH Oxidoreductases/metabolism ; Oxidative Phosphorylation ; Phosphorylation ; Precursor Cells, B-Lymphoid/metabolism ; STAT3 Transcription Factor/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-05-09
    Description: Despite tremendous progress in understanding the nature of the immune system, the full diversity of an organism's antibody repertoire is unknown. We used high-throughput sequencing of the variable domain of the antibody heavy chain from 14 zebrafish to analyze VDJ usage and antibody sequence. Zebrafish were found to use between 50 and 86% of all possible VDJ combinations and shared a similar frequency distribution, with some correlation of VDJ patterns between individuals. Zebrafish antibodies retained a few thousand unique heavy chains that also exhibited a shared frequency distribution. We found evidence of convergence, in which different individuals made the same antibody. This approach provides insight into the breadth of the expressed antibody repertoire and immunological diversity at the level of an individual organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinstein, Joshua A -- Jiang, Ning -- White, Richard A 3rd -- Fisher, Daniel S -- Quake, Stephen R -- DP1 OD000251/OD/NIH HHS/ -- DP1 OD000251-04/OD/NIH HHS/ -- DP1 OD000251-05/OD/NIH HHS/ -- DP1 OD000251-06/OD/NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):807-10. doi: 10.1126/science.1170020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics ; Antibody Diversity ; Base Sequence ; Complementarity Determining Regions/*genetics ; Computational Biology ; Female ; Gene Library ; *Genes, Immunoglobulin Heavy Chain ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin Joining Region/genetics ; Immunoglobulin M/*genetics ; Male ; Molecular Sequence Data ; Recombination, Genetic ; Sequence Analysis, DNA ; VDJ Exons ; Zebrafish/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-03-03
    Description: Plants have distinct RNA polymerase complexes (Pol IV and Pol V) with largely unknown roles in maintaining small RNA-associated gene silencing. Curiously, the eudicot Arabidopsis thaliana is not affected when either function is lost. By use of mutation selection and positional cloning, we showed that the largest subunit of the presumed maize Pol IV is involved in paramutation, an inherited epigenetic change facilitated by an interaction between two alleles, as well as normal maize development. Bioinformatics analyses and nuclear run-on transcription assays indicate that Pol IV does not engage in the efficient RNA synthesis typical of the three major eukaryotic DNA-dependent RNA polymerases. These results indicate that Pol IV employs abnormal RNA polymerase activities to achieve genome-wide silencing and that its absence affects both maize development and heritable epigenetic changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erhard, Karl F Jr -- Stonaker, Jennifer L -- Parkinson, Susan E -- Lim, Jana P -- Hale, Christopher J -- Hollick, Jay B -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1201-5. doi: 10.1126/science.1164508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251626" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Epigenesis, Genetic ; Gene Silencing ; Genes, Plant ; Molecular Sequence Data ; *Mutation ; Phylogeny ; Protein Subunits/chemistry/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Transcription, Genetic ; Zea mays/*enzymology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-05-16
    Description: Sequence preferences of DNA binding proteins are a primary mechanism by which cells interpret the genome. Despite the central importance of these proteins in physiology, development, and evolution, comprehensive DNA binding specificities have been determined experimentally for only a few proteins. Here, we used microarrays containing all 10-base pair sequences to examine the binding specificities of 104 distinct mouse DNA binding proteins representing 22 structural classes. Our results reveal a complex landscape of binding, with virtually every protein analyzed possessing unique preferences. Roughly half of the proteins each recognized multiple distinctly different sequence motifs, challenging our molecular understanding of how proteins interact with their DNA binding sites. This complexity in DNA recognition may be important in gene regulation and in the evolution of transcriptional regulatory networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badis, Gwenael -- Berger, Michael F -- Philippakis, Anthony A -- Talukder, Shaheynoor -- Gehrke, Andrew R -- Jaeger, Savina A -- Chan, Esther T -- Metzler, Genita -- Vedenko, Anastasia -- Chen, Xiaoyu -- Kuznetsov, Hanna -- Wang, Chi-Fong -- Coburn, David -- Newburger, Daniel E -- Morris, Quaid -- Hughes, Timothy R -- Bulyk, Martha L -- R01 HG003985/HG/NHGRI NIH HHS/ -- R01 HG003985-01/HG/NHGRI NIH HHS/ -- R01 HG003985-02/HG/NHGRI NIH HHS/ -- R01 HG003985-03/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Gene Regulatory Networks ; Humans ; Mice ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2009-09-12
    Description: Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition. Although not directly related to its autonomous element, the MITE has less affinity for the transposase than does the autonomous element but lacks a motif repressing transposition in the autonomous element. The MITE contains internal sequences that enhance transposition. These findings suggest that MITEs achieve high transposition activity by scavenging transposases encoded by distantly related and self-restrained autonomous elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Guojun -- Nagel, Dawn Holligan -- Feschotte, Cedric -- Hancock, C Nathan -- Wessler, Susan R -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1391-4. doi: 10.1126/science.1175688.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745152" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA Transposable Elements ; *Genome, Plant ; Inverted Repeat Sequences ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oryza/*genetics/metabolism ; Transposases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-12-08
    Description: Although the nematode Caenorhabditis elegans produces self-fertile hermaphrodites, it descended from a male/female species, so hermaphroditism provides a model for the origin of novel traits. In the related species C. remanei, which has only male and female sexes, lowering the activity of tra-2 by RNA interference created XX animals that made spermatids as well as oocytes, but their spermatids could not activate without the addition of male seminal fluid. However, by lowering the expression of both tra-2 and swm-1, a gene that regulates sperm activation in C. elegans, we produced XX animals with active sperm that were self-fertile. Thus, the evolution of hermaphroditism in Caenorhabditis probably required two steps: a mutation in the sex-determination pathway that caused XX spermatogenesis and a mutation that allowed these spermatids to self-activate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldi, Chris -- Cho, Soochin -- Ellis, Ronald E -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):1002-5. doi: 10.1126/science.1176013.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Caenorhabditis/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Crosses, Genetic ; Disorders of Sex Development/genetics ; Female ; Genes, Helminth ; Germ Cells/physiology ; Male ; Membrane Proteins/genetics/physiology ; Molecular Sequence Data ; *Mutation ; Oogenesis ; Ovulation ; Phylogeny ; Reproduction ; Selection, Genetic ; Sex Determination Processes ; Spermatids/physiology ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-05-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788238/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788238/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rathmell, Jeffrey C -- Newgard, Christopher B -- R01 CA123350/CA/NCI NIH HHS/ -- R01 CA123350-03/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 May 22;324(5930):1021-2. doi: 10.1126/science.1174665.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19460991" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Citrate (pro-S)-Lyase/genetics/*metabolism ; Acetate-CoA Ligase/metabolism ; Acetyl Coenzyme A/*metabolism ; Acetylation ; Animals ; Cell Nucleus/enzymology ; Cells, Cultured ; Chromatin/*metabolism ; Citric Acid/metabolism ; Gene Expression Regulation ; Glucose/*metabolism ; Glycolysis ; Histones/*metabolism ; Humans ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-11-07
    Description: Virtually all of the 560 human proteases are stored as inactive proenyzmes and are strictly regulated. We report the identification and characterization of the first small molecules that directly activate proenzymes, the apoptotic procaspases-3 and -6. It is surprising that these compounds induce autoproteolytic activation by stabilizing a conformation that is both more active and more susceptible to intermolecular proteolysis. These procaspase activators bypass the normal upstream proapoptotic signaling cascades and induce rapid apoptosis in a variety of cell lines. Systematic biochemical and biophysical analyses identified a cluster of mutations in procaspase-3 that resist small-molecule activation both in vitro and in cells. Compounds that induce gain of function are rare, and the activators reported here will enable direct control of the executioner caspases in apoptosis and in cellular differentiation. More generally, these studies presage the discovery of other proenzyme activators to explore fundamental processes of proenzyme activation and their fate-determining roles in biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886848/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886848/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolan, Dennis W -- Zorn, Julie A -- Gray, Daniel C -- Wells, James A -- F32 CA119641/CA/NCI NIH HHS/ -- F32 CA119641-03/CA/NCI NIH HHS/ -- R01 CA136779/CA/NCI NIH HHS/ -- R21 N5057022/PHS HHS/ -- New York, N.Y. -- Science. 2009 Nov 6;326(5954):853-8. doi: 10.1126/science.1177585.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California, San Francisco, Byers Hall, 1700 4th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Benzopyrans/chemistry/*metabolism/pharmacology ; Biocatalysis ; Caspase 3/chemistry/genetics/*metabolism ; Caspase 6/chemistry/genetics/*metabolism ; Caspase Inhibitors ; Catalytic Domain ; Cell Line, Transformed ; Cell Line, Tumor ; Cells, Cultured ; Enzyme Activation ; Enzyme Activators/chemistry/*metabolism/pharmacology ; Enzyme Inhibitors/metabolism/pharmacology ; Enzyme Precursors/antagonists & inhibitors/chemistry/genetics/*metabolism ; Granzymes/metabolism ; Humans ; Imidazoles/chemistry/*metabolism/pharmacology ; Kinetics ; Mice ; Molecular Structure ; Mutagenesis ; Pyridines/chemistry/*metabolism/pharmacology ; Signal Transduction ; Small Molecule Libraries/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-04-11
    Description: Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worden, Alexandra Z -- Lee, Jae-Hyeok -- Mock, Thomas -- Rouze, Pierre -- Simmons, Melinda P -- Aerts, Andrea L -- Allen, Andrew E -- Cuvelier, Marie L -- Derelle, Evelyne -- Everett, Meredith V -- Foulon, Elodie -- Grimwood, Jane -- Gundlach, Heidrun -- Henrissat, Bernard -- Napoli, Carolyn -- McDonald, Sarah M -- Parker, Micaela S -- Rombauts, Stephane -- Salamov, Aasf -- Von Dassow, Peter -- Badger, Jonathan H -- Coutinho, Pedro M -- Demir, Elif -- Dubchak, Inna -- Gentemann, Chelle -- Eikrem, Wenche -- Gready, Jill E -- John, Uwe -- Lanier, William -- Lindquist, Erika A -- Lucas, Susan -- Mayer, Klaus F X -- Moreau, Herve -- Not, Fabrice -- Otillar, Robert -- Panaud, Olivier -- Pangilinan, Jasmyn -- Paulsen, Ian -- Piegu, Benoit -- Poliakov, Aaron -- Robbens, Steven -- Schmutz, Jeremy -- Toulza, Eve -- Wyss, Tania -- Zelensky, Alexander -- Zhou, Kemin -- Armbrust, E Virginia -- Bhattacharya, Debashish -- Goodenough, Ursula W -- Van de Peer, Yves -- Grigoriev, Igor V -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):268-72. doi: 10.1126/science.1167222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 USA. azworden@mbari.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359590" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Biological Evolution ; Chlorophyta/classification/cytology/*genetics/physiology ; DNA Transposable Elements ; Ecosystem ; Gene Expression Regulation ; Genes ; Genetic Variation ; *Genome ; Introns ; Meiosis/genetics ; Molecular Sequence Data ; Oceans and Seas ; Photosynthesis/genetics ; Phylogeny ; Phytoplankton/classification/genetics ; Plants/*genetics ; RNA, Untranslated ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-02-14
    Description: The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947205/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947205/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fontanilla, Dominique -- Johannessen, Molly -- Hajipour, Abdol R -- Cozzi, Nicholas V -- Jackson, Meyer B -- Ruoho, Arnold E -- F31 DA022932/DA/NIDA NIH HHS/ -- NS30016/NS/NINDS NIH HHS/ -- R01 MH065503/MH/NIMH NIH HHS/ -- R01 MH065503-01A1/MH/NIMH NIH HHS/ -- R01 NS030016/NS/NINDS NIH HHS/ -- R01 NS030016-08/NS/NINDS NIH HHS/ -- R01 NS030016-09/NS/NINDS NIH HHS/ -- T32 GM08688/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 13;323(5916):934-7. doi: 10.1126/science.1166127.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19213917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Line ; Cells, Cultured ; Cercopithecus aethiops ; Guinea Pigs ; Hallucinogens/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocardium/metabolism ; N,N-Dimethyltryptamine/*metabolism ; Rats ; Receptors, sigma/agonists/antagonists & inhibitors/*metabolism ; Tryptamines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2009-10-10
    Description: Neurons in the central nervous system (CNS) lose their ability to regenerate early in development, but the underlying mechanisms are unknown. By screening genes developmentally regulated in retinal ganglion cells (RGCs), we identified Kruppel-like factor-4 (KLF4) as a transcriptional repressor of axon growth in RGCs and other CNS neurons. RGCs lacking KLF4 showed increased axon growth both in vitro and after optic nerve injury in vivo. Related KLF family members suppressed or enhanced axon growth to differing extents, and several growth-suppressive KLFs were up-regulated postnatally, whereas growth-enhancing KLFs were down-regulated. Thus, coordinated activities of different KLFs regulate the regenerative capacity of CNS neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Darcie L -- Blackmore, Murray G -- Hu, Ying -- Kaestner, Klaus H -- Bixby, John L -- Lemmon, Vance P -- Goldberg, Jeffrey L -- P30 EY014801/EY/NEI NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-01A2/NS/NINDS NIH HHS/ -- R01 NS061348/NS/NINDS NIH HHS/ -- R01 NS061348-01A2/NS/NINDS NIH HHS/ -- R01 NS061348-02/NS/NINDS NIH HHS/ -- R01 NS061348-03/NS/NINDS NIH HHS/ -- R01 NS061348-04/NS/NINDS NIH HHS/ -- R03 EY016790/EY/NEI NIH HHS/ -- R03 EY016790-01/EY/NEI NIH HHS/ -- R03 EY016790-02/EY/NEI NIH HHS/ -- R03 EY016790-03/EY/NEI NIH HHS/ -- T32 NS007459/NS/NINDS NIH HHS/ -- T32 NS07492/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):298-301. doi: 10.1126/science.1175737.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815778" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cell Count ; Cell Survival ; Cells, Cultured ; Down-Regulation ; Gene Knockout Techniques ; Growth Cones/physiology ; Hippocampus/cytology/physiology ; Kruppel-Like Transcription Factors/genetics/*physiology ; Mice ; Nerve Crush ; Nerve Regeneration ; Neurites/physiology ; Neurons/*physiology ; Optic Nerve Injuries/physiopathology ; Rats ; Retinal Ganglion Cells/cytology/*physiology ; Transcription, Genetic ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1476-7. doi: 10.1126/science.326.5959.1476.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007880" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; CD4-Positive T-Lymphocytes/*immunology/virology ; Female ; Genes ; HIV/immunology/physiology ; HIV Infections/*immunology ; Hemophilia A ; Homosexuality, Male ; Humans ; *Immunity, Innate ; Killer Cells, Natural/immunology ; Lymphocyte Activation ; Male ; Prostitution ; T-Lymphocytes, Regulatory/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-01-20
    Description: Combining biomolecular function with integrated circuit technology could usher in a new era of biologically enabled electronics. A key challenge has been coupling different molecular functions to specific chip locations for communication with the circuit. We used spatially confined electric fields to assemble different populations of DNA-coated nanowires to desired positions with an accuracy that enabled postassembly fabrication of contacts to each individual nanowire, with high yield and without loss of DNA function. This combination of off-chip synthesis and biofunctionalization with high-density, heterogeneous assembly and integration at the individual nanowire level points to new ways of incorporating biological functionality with silicon electronics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrow, Thomas J -- Li, Mingwei -- Kim, Jaekyun -- Mayer, Theresa S -- Keating, Christine D -- R01 EB000268/EB/NIBIB NIH HHS/ -- R01 EB000268-08/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):352. doi: 10.1126/science.1165921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150837" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA/chemistry ; Electricity ; Electronics/*instrumentation/methods ; Nanotechnology/methods ; *Nanowires/chemistry ; Oligodeoxyribonucleotides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...