ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-08
    Description: We report that developmental competition between sympathetic neurons for survival is critically dependent on a sensitization process initiated by target innervation and mediated by a series of feedback loops. Target-derived nerve growth factor (NGF) promoted expression of its own receptor TrkA in mouse and rat neurons and prolonged TrkA-mediated signals. NGF also controlled expression of brain-derived neurotrophic factor and neurotrophin-4, which, through the receptor p75, can kill neighboring neurons with low retrograde NGF-TrkA signaling whereas neurons with high NGF-TrkA signaling are protected. Perturbation of any of these feedback loops disrupts the dynamics of competition. We suggest that three target-initiated events are essential for rapid and robust competition between neurons: sensitization, paracrine apoptotic signaling, and protection from such effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deppmann, Christopher D -- Mihalas, Stefan -- Sharma, Nikhil -- Lonze, Bonnie E -- Niebur, Ernst -- Ginty, David D -- EY016281/EY/NEI NIH HHS/ -- F32 NS053187/NS/NINDS NIH HHS/ -- NS053187/NS/NINDS NIH HHS/ -- NS34814/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):369-73. doi: 10.1126/science.1152677. Epub 2008 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Apoptosis ; Brain-Derived Neurotrophic Factor/metabolism ; Cell Survival ; Cells, Cultured ; Computer Simulation ; Feedback, Physiological ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mathematics ; Mice ; *Models, Neurological ; Nerve Growth Factor/*metabolism ; Nerve Growth Factors/metabolism ; Neurons/cytology/*physiology ; Oligonucleotide Array Sequence Analysis ; Rats ; Receptor, trkA/genetics/*metabolism ; Receptors, Nerve Growth Factor/genetics/metabolism ; Signal Transduction ; Superior Cervical Ganglion/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...