ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (69)
  • *Ecosystem  (54)
  • Nature Publishing Group (NPG)  (123)
  • American Institute of Physics (AIP)
  • Cell Press
  • Wiley-Blackwell
  • 2010-2014  (123)
  • 1985-1989
  • 2014  (123)
Collection
Publisher
Years
  • 2010-2014  (123)
  • 1985-1989
Year
  • 1
    Publication Date: 2014-10-09
    Description: The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 A resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pancera, Marie -- Zhou, Tongqing -- Druz, Aliaksandr -- Georgiev, Ivelin S -- Soto, Cinque -- Gorman, Jason -- Huang, Jinghe -- Acharya, Priyamvada -- Chuang, Gwo-Yu -- Ofek, Gilad -- Stewart-Jones, Guillaume B E -- Stuckey, Jonathan -- Bailer, Robert T -- Joyce, M Gordon -- Louder, Mark K -- Tumba, Nancy -- Yang, Yongping -- Zhang, Baoshan -- Cohen, Myron S -- Haynes, Barton F -- Mascola, John R -- Morris, Lynn -- Munro, James B -- Blanchard, Scott C -- Mothes, Walther -- Connors, Mark -- Kwong, Peter D -- AI0678501/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- P01-GM56550/GM/NIGMS NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R01-GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- R21-AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- ZIA AI005023-13/Intramural NIH HHS/ -- ZIA AI005024-13/Intramural NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa. ; Departments of Medicine, Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, and the Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, North Carolina 27710, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa [2] University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296255" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/immunology ; Cohort Studies ; Crystallography, X-Ray ; Genetic Variation ; Glycosylation ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/*immunology ; HIV Envelope Protein gp41/*chemistry/genetics/*immunology ; HIV Infections/immunology ; Humans ; Immune Evasion ; Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Polysaccharides/chemistry/immunology ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/genetics/immunology ; Structural Homology, Protein ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-28
    Description: The NRT1/PTR family of proton-coupled transporters are responsible for nitrogen assimilation in eukaryotes and bacteria through the uptake of peptides. However, in most plant species members of this family have evolved to transport nitrate as well as additional secondary metabolites and hormones. In response to falling nitrate levels, NRT1.1 is phosphorylated on an intracellular threonine that switches the transporter from a low-affinity to high-affinity state. Here we present both the apo and nitrate-bound crystal structures of Arabidopsis thaliana NRT1.1, which together with in vitro binding and transport data identify a key role for His 356 in nitrate binding. Our data support a model whereby phosphorylation increases structural flexibility and in turn the rate of transport. Comparison with peptide transporters further reveals how the NRT1/PTR family has evolved to recognize diverse nitrogenous ligands, while maintaining elements of a conserved coupling mechanism within this superfamily of nutrient transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982047/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982047/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Joanne L -- Newstead, Simon -- G0900399/Medical Research Council/United Kingdom -- England -- Nature. 2014 Mar 6;507(7490):68-72. doi: 10.1038/nature13116. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; 1] Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK [2] Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572366" target="_blank"〉PubMed〈/a〉
    Keywords: Anion Transport Proteins/*chemistry/*metabolism ; Arabidopsis/*chemistry/metabolism ; Crystallography, X-Ray ; Histidine/chemistry/metabolism ; Ion Transport ; Models, Molecular ; Nitrates/chemistry/*metabolism ; Phosphorylation ; Phosphothreonine/metabolism ; Plant Proteins/*chemistry/*metabolism ; Protein Conformation ; Protons ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-04
    Description: Members of the dynein family, consisting of cytoplasmic and axonemal isoforms, are motors that move towards the minus ends of microtubules. Cytoplasmic dynein-1 (dynein-1) plays roles in mitosis and cellular cargo transport, and is implicated in viral infections and neurodegenerative diseases. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Here we present the crystal structure of the human cytoplasmic dynein-2 motor bound to the ATP-hydrolysis transition state analogue ADP.vanadate. The structure reveals a closure of the motor's ring of six AAA+ domains (ATPases associated with various cellular activites: AAA1-AAA6). This induces a steric clash with the linker, the key element for the generation of movement, driving it into a conformation that is primed to produce force. Ring closure also changes the interface between the stalk and buttress coiled-coil extensions of the motor domain. This drives helix sliding in the stalk which causes the microtubule binding domain at its tip to release from the microtubule. Our structure answers the key questions of how ATP hydrolysis leads to linker remodelling and microtubule affinity regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336856/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336856/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Helgo -- Zalyte, Ruta -- Urnavicius, Linas -- Carter, Andrew P -- 100387/Wellcome Trust/United Kingdom -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- WT100387/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Feb 19;518(7539):435-8. doi: 10.1038/nature14023. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470043" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/analogs & derivatives/metabolism ; Binding Sites ; Crystallography, X-Ray ; *Cytoplasm ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Humans ; Hydrolysis ; Models, Molecular ; Movement ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-05
    Description: ATP-binding cassette (ABC) transporters translocate substrates across cell membranes, using energy harnessed from ATP binding and hydrolysis at their nucleotide-binding domains. ABC exporters are present both in prokaryotes and eukaryotes, with examples implicated in multidrug resistance of pathogens and cancer cells, as well as in many human diseases. TmrAB is a heterodimeric ABC exporter from the thermophilic Gram-negative eubacterium Thermus thermophilus; it is homologous to various multidrug transporters and contains one degenerate site with a non-catalytic residue next to the Walker B motif. Here we report a subnanometre-resolution structure of detergent-solubilized TmrAB in a nucleotide-free, inward-facing conformation by single-particle electron cryomicroscopy. The reconstructions clearly resolve characteristic features of ABC transporters, including helices in the transmembrane domain and nucleotide-binding domains. A cavity in the transmembrane domain is accessible laterally from the cytoplasmic side of the membrane as well as from the cytoplasm, indicating that the transporter lies in an inward-facing open conformation. The two nucleotide-binding domains remain in contact via their carboxy-terminal helices. Furthermore, comparison between our structure and the crystal structures of other ABC transporters suggests a possible trajectory of conformational changes that involves a sliding and rotating motion between the two nucleotide-binding domains during the transition from the inward-facing to outward-facing conformations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, JungMin -- Wu, Shenping -- Tomasiak, Thomas M -- Mergel, Claudia -- Winter, Michael B -- Stiller, Sebastian B -- Robles-Colmanares, Yaneth -- Stroud, Robert M -- Tampe, Robert -- Craik, Charles S -- Cheng, Yifan -- 1P41CA196276-01/CA/NCI NIH HHS/ -- P41 CA196276/CA/NCI NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM073210/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM024485/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- R37GM024485/GM/NIGMS NIH HHS/ -- S10 RR026814/RR/NCRR NIH HHS/ -- S10RR026814/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):396-400. doi: 10.1038/nature13872. Epub 2014 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany. ; 1] Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA [2] Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; 1] Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany [2] Cluster of Excellence - Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363761" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/immunology/*ultrastructure ; Antigens/chemistry/immunology ; Binding Sites ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Models, Molecular ; Nucleotides/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Thermus thermophilus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-21
    Description: Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria, with substrates including polychlorinated biphenyls or dioxins. Reductive dehalogenases form a distinct subfamily of cobalamin (B12)-dependent enzymes that are usually membrane associated and oxygen sensitive, hindering detailed studies. Here we report the characterization of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR (electron paramagnetic resonance) spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-cobalt bond chemistry catalysed by the other cobalamin-dependent subfamilies, we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-cobalt bond formation. This presents a new model in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, Karl A P -- Quezada, Carolina P -- Fisher, Karl -- Dunstan, Mark S -- Collins, Fraser A -- Sjuts, Hanno -- Levy, Colin -- Hay, Sam -- Rigby, Stephen E J -- Leys, David -- BB/H021523/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):513-6. doi: 10.1038/nature13901. Epub 2014 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25327251" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Cobalt/chemistry/metabolism ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; *Halogenation ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases/*chemistry/*metabolism ; Oxygen/metabolism ; Phenols/chemistry/metabolism ; Phyllobacteriaceae/*enzymology ; Protein Conformation ; Solubility ; Vitamin B 12/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gruber, Nicolas -- England -- Nature. 2015 Jan 8;517(7533):148-9. doi: 10.1038/nature14082. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487156" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/metabolism ; Atmosphere/chemistry ; Carbon Dioxide/*analysis ; *Carbon Sequestration ; *Ecosystem ; Human Activities ; *Oceans and Seas ; Photosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-11
    Description: DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 A resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Xue -- Wang, Ling -- Li, Jie -- Ding, Zhanyu -- Xiao, Jianxiong -- Yin, Xiaotong -- He, Shuang -- Shi, Pan -- Dong, Liping -- Li, Guohong -- Tian, Changlin -- Wang, Jiawei -- Cong, Yao -- Xu, Yanhui -- England -- Nature. 2015 Jan 29;517(7536):640-4. doi: 10.1038/nature13899. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China [2] State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China [2] National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China [3] School of Life Sciences, University of Science and Technology of China, Hefei 230026, China. ; 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] University of Chinese Academy of Science, Beijing 100049, China. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China. ; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*antagonists & ; inhibitors/*chemistry/*metabolism ; DNA Methylation ; Enzyme Activation ; Histones/*chemistry/*metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-05
    Description: Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-A crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortega, Manuel A -- Hao, Yue -- Zhang, Qi -- Walker, Mark C -- van der Donk, Wilfred A -- Nair, Satish K -- 5T32-GM070421/GM/NIGMS NIH HHS/ -- F32 GM112284/GM/NIGMS NIH HHS/ -- R01 GM 058822/GM/NIGMS NIH HHS/ -- R01 GM058822/GM/NIGMS NIH HHS/ -- R01 GM079038/GM/NIGMS NIH HHS/ -- S10 RR027109 A/RR/NCRR NIH HHS/ -- T32 GM070421/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):509-12. doi: 10.1038/nature13888. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; 1] Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA [2] Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; 1] Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA [2] Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363770" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/classification/*metabolism ; Bacteriocins/biosynthesis/*metabolism ; Crystallography, X-Ray ; Escherichia coli/genetics ; Glutamic Acid/metabolism ; Hydro-Lyases/*chemistry/classification/*metabolism ; Lactococcus lactis/*enzymology/genetics ; Membrane Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Nisin/biosynthesis/metabolism ; Phylogeny ; Protein Structure, Tertiary ; RNA, Transfer, Glu/genetics/*metabolism ; Serine/metabolism ; Threonine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-30
    Description: The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Neil P -- Bale, Jacob B -- Sheffler, William -- McNamara, Dan E -- Gonen, Shane -- Gonen, Tamir -- Yeates, Todd O -- Baker, David -- T32 GM067555/GM/NIGMS NIH HHS/ -- T32GM067555/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):103-8. doi: 10.1038/nature13404. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2]. ; UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; 1] UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA [2] UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, USA [3] UCLA Molecular Biology Institute, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870237" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Crystallography, X-Ray ; Drug Design ; Models, Molecular ; Nanostructures/*chemistry/ultrastructure ; Protein Subunits/chemistry ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLaren, Jennie R -- England -- Nature. 2014 May 8;509(7499):173-4. doi: 10.1038/509173a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805342" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Carbon Cycle ; *Ecosystem
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-11-07
    Description: Originally conceived to conserve iconic landscapes and wildlife, protected areas are now expected to achieve an increasingly diverse set of conservation, social and economic objectives. The amount of land and sea designated as formally protected has markedly increased over the past century, but there is still a major shortfall in political commitments to enhance the coverage and effectiveness of protected areas. Financial support for protected areas is dwarfed by the benefits that they provide, but these returns depend on effective management. A step change involving increased recognition, funding, planning and enforcement is urgently needed if protected areas are going to fulfil their potential.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watson, James E M -- Dudley, Nigel -- Segan, Daniel B -- Hockings, Marc -- England -- Nature. 2014 Nov 6;515(7525):67-73. doi: 10.1038/nature13947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia. [2] Wildlife Conservation Society, Global Conservation Program, Bronx, New York 10460, USA. [3] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia. [2] Equilibrium Research, 47 The Quays, Cumberland Road, Spike Island, Bristol BS1 6UQ, UK. ; 1] Wildlife Conservation Society, Global Conservation Program, Bronx, New York 10460, USA. [2] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia. [2] UNEP-World Conservation Monitoring Centre, Cambridge CD3 0DL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; Conservation of Natural Resources/economics/legislation & ; jurisprudence/*statistics & numerical data ; Ecology/economics/legislation & jurisprudence/statistics & numerical data ; *Ecosystem ; Federal Government ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-02-11
    Description: The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burrows, Michael T -- Schoeman, David S -- Richardson, Anthony J -- Molinos, Jorge Garcia -- Hoffmann, Ary -- Buckley, Lauren B -- Moore, Pippa J -- Brown, Christopher J -- Bruno, John F -- Duarte, Carlos M -- Halpern, Benjamin S -- Hoegh-Guldberg, Ove -- Kappel, Carrie V -- Kiessling, Wolfgang -- O'Connor, Mary I -- Pandolfi, John M -- Parmesan, Camille -- Sydeman, William J -- Ferrier, Simon -- Williams, Kristen J -- Poloczanska, Elvira S -- England -- Nature. 2014 Mar 27;507(7493):492-5. doi: 10.1038/nature12976. Epub 2014 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK. ; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland QLD 4558, Australia. ; 1] Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia [2] Centre for Applications in Natural Resource Mathematics (CARM), School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Department of Genetics, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia. ; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA. ; 1] Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK [2] Centre for Marine Ecosystems Research, Edith Cowan University, Perth 6027, Australia. ; The Global Change Institute, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia [2] Department of Global Change Research, IMEDEA (UIB-CSIC), Instituto Mediterraneo de Estudios Avanzados, Esporles 07190, Spain [3] Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia. ; 1] Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, USA [2] Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, USA. ; 1] GeoZentrum Nordbayern, Palaoumwelt, Universitat Erlangen-Nurnberg, Loewenichstrasse 28, 91054 Erlangen, Germany [2] Museum fur Naturkunde, Invalidenstr asse 43, 10115 Berlin, Germany. ; Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada. ; School of Biological Sciences, Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Integrative Biology, University of Texas, Austin, Texas 78712, USA [2] Marine Institute, Drake Circus, University of Plymouth, Devon PL4 8AA, UK. ; Farallon Institute for Advanced Ecosystem Research, 101 H Street, Suite Q, Petaluma, California 94952, USA. ; Climate Adaptation Flagship, CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia. ; Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24509712" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Australia ; Biodiversity ; *Climate ; *Climate Change ; *Ecosystem ; *Geographic Mapping ; *Geography ; Models, Theoretical ; Population Dynamics ; Seawater ; Temperature ; Time Factors ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradford, Mark A -- England -- Nature. 2014 Jan 23;505(7484):486-7. doi: 10.1038/nature12849. Epub 2014 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402226" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*metabolism ; *Carbon Cycle ; *Ecosystem ; Mycorrhizae/*metabolism ; Plants/*metabolism/*microbiology ; Soil/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-03-29
    Description: In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence chi (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a chi sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by chi is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different chi-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to chi sequences, and explains how chi recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krajewski, Wojciech W -- Fu, Xin -- Wilkinson, Martin -- Cronin, Nora B -- Dillingham, Mark S -- Wigley, Dale B -- 100401/Wellcome Trust/United Kingdom -- 12799/Cancer Research UK/United Kingdom -- A12799/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Apr 17;508(7496):416-9. doi: 10.1038/nature13037. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK [2] CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK. ; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK. ; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670664" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism ; Bacillus subtilis/*enzymology ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; DNA Helicases/*chemistry/metabolism ; Exodeoxyribonucleases/*chemistry/*metabolism ; Models, Molecular ; Molecular Conformation ; Recombination, Genetic/*genetics ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Metcalfe, Daniel B -- England -- Nature. 2014 May 29;509(7502):566-7. doi: 10.1038/nature13341. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847887" target="_blank"〉PubMed〈/a〉
    Keywords: *Carbon Sequestration ; *Desert Climate ; *Ecosystem
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whorton, Matt -- England -- Nature. 2014 Dec 11;516(7530):176-8. doi: 10.1038/nature13944. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239-3098, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism/pharmacology ; Chloride Channels/*chemistry/*metabolism ; Crystallography, X-Ray
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-05
    Description: NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 A resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steuber, Julia -- Vohl, Georg -- Casutt, Marco S -- Vorburger, Thomas -- Diederichs, Kay -- Fritz, Gunter -- England -- Nature. 2014 Dec 4;516(7529):62-7. doi: 10.1038/nature14003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Garbenstrasse 30, University of Hohenheim, 70599 Stuttgart, Germany. ; 1] Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany [2] Hermann-Staudinger-Graduate school, University of Freiburg, Hebelstrasse 27, 79104 Freiburg, Germany. ; Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany. ; Department of Biology, University of Konstanz, Universitatsstrasse 10, 78457 Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471880" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Flavoproteins/chemistry ; Iron/chemistry ; *Models, Molecular ; NAD(P)H Dehydrogenase (Quinone)/*chemistry ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/*chemistry ; Sodium Channels/chemistry ; Vibrio cholerae/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-08-15
    Description: The pluripotency factor Lin28 inhibits the biogenesis of the let-7 family of mammalian microRNAs. Lin28 is highly expressed in embryonic stem cells and has a fundamental role in regulation of development, glucose metabolism and tissue regeneration. Overexpression of Lin28 is correlated with the onset of numerous cancers, whereas let-7, a tumour suppressor, silences several human oncogenes. Lin28 binds to precursor let-7 (pre-let-7) hairpins, triggering the 3' oligo-uridylation activity of TUT4 and TUT7 (refs 10-12). The oligoU tail added to pre-let-7 serves as a decay signal, as it is rapidly degraded by Dis3l2 (refs 13, 14), a homologue of the catalytic subunit of the RNA exosome. The molecular basis of Lin28-mediated recruitment of TUT4 and TUT7 to pre-let-7 and its subsequent degradation by Dis3l2 is largely unknown. To examine the mechanism of Dis3l2 substrate recognition we determined the structure of mouse Dis3l2 in complex with an oligoU RNA to mimic the uridylated tail of pre-let-7. Three RNA-binding domains form an open funnel on one face of the catalytic domain that allows RNA to navigate a path to the active site different from that of its exosome counterpart. The resulting path reveals an extensive network of uracil-specific interactions spanning the first 12 nucleotides of an oligoU-tailed RNA. We identify three U-specificity zones that explain how Dis3l2 recognizes, binds and processes uridylated pre-let-7 in the final step of the Lin28-let-7 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192074/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192074/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faehnle, Christopher R -- Walleshauser, Jack -- Joshua-Tor, Leemor -- P30 CA045508/CA/NCI NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- T32 GM065094/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):252-6. doi: 10.1038/nature13553. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3]. ; 1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3] Watson School of Biological Science, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA [4]. ; 1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3] Watson School of Biological Science, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA [4] Howard Hughes Medical Institute, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Exoribonucleases/*chemistry/*metabolism ; Exosome Multienzyme Ribonuclease Complex/chemistry ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Models, Molecular ; Oligoribonucleotides/chemistry/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Schizosaccharomyces pombe Proteins/chemistry ; Substrate Specificity ; Uracil Nucleotides/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-02-28
    Description: Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101; however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Ji -- Bankston, John R -- Payandeh, Jian -- Hinds, Thomas R -- Zagotta, William N -- Zheng, Ning -- NS074545/NS/NINDS NIH HHS/ -- R01EY10329/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):73-7. doi: 10.1038/nature13074. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anion Transport Proteins/*chemistry/genetics/metabolism ; Arabidopsis/*chemistry/genetics ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Nitrates/chemistry/metabolism ; Phosphorylation ; Phosphothreonine/chemistry/metabolism ; Plant Proteins/*chemistry/genetics/metabolism ; *Protein Multimerization ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-04-18
    Description: Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 A resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumazaki, Kaoru -- Chiba, Shinobu -- Takemoto, Mizuki -- Furukawa, Arata -- Nishiyama, Ken-ichi -- Sugano, Yasunori -- Mori, Takaharu -- Dohmae, Naoshi -- Hirata, Kunio -- Nakada-Nakura, Yoshiko -- Maturana, Andres D -- Tanaka, Yoshiki -- Mori, Hiroyuki -- Sugita, Yuji -- Arisaka, Fumio -- Ito, Koreaki -- Ishitani, Ryuichiro -- Tsukazaki, Tomoya -- Nureki, Osamu -- England -- Nature. 2014 May 22;509(7501):516-20. doi: 10.1038/nature13167. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan [3]. ; 1] Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan [2]. ; 1] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. ; Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan. ; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan. ; Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. ; Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. ; SR Life Science Instrumentation Unit, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan. ; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. ; Institute for Virus Research, Kyoto University, Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan. ; Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan. ; Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan. ; 1] Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan [2] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739968" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/metabolism ; Bacillus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/chemistry/*metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Chaperones/chemistry/metabolism ; Protein Folding ; Static Electricity ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-08-22
    Description: Cys-loop receptors are neurotransmitter-gated ion channels that are essential mediators of fast chemical neurotransmission and are associated with a large number of neurological diseases and disorders, as well as parasitic infections. Members of this ion channel superfamily mediate excitatory or inhibitory neurotransmission depending on their ligand and ion selectivity. Structural information for Cys-loop receptors comes from several sources including electron microscopic studies of the nicotinic acetylcholine receptor, high-resolution X-ray structures of extracellular domains and X-ray structures of bacterial orthologues. In 2011 our group published structures of the Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in complex with the allosteric partial agonist ivermectin, which provided insights into the structure of a possibly open state of a eukaryotic Cys-loop receptor, the basis for anion selectivity and channel block, and the mechanism by which ivermectin and related molecules stabilize the open state and potentiate neurotransmitter binding. However, there remain unanswered questions about the mechanism of channel opening and closing, the location and nature of the shut ion channel gate, the transitions between the closed/resting, open/activated and closed/desensitized states, and the mechanism by which conformational changes are coupled between the extracellular, orthosteric agonist binding domain and the transmembrane, ion channel domain. Here we present two conformationally distinct structures of C. elegans GluCl in the absence of ivermectin. Structural comparisons reveal a quaternary activation mechanism arising from rigid-body movements between the extracellular and transmembrane domains and a mechanism for modulation of the receptor by phospholipids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Althoff, Thorsten -- Hibbs, Ryan E -- Banerjee, Surajit -- Gouaux, Eric -- F32 NS061404/NS/NINDS NIH HHS/ -- F32NS061404/NS/NINDS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM100400/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 21;512(7514):333-7. doi: 10.1038/nature13669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095-1751, USA (T.A.); Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9111, USA (R.E.H.). [3]. ; NE-CAT/Cornell University, 9700 South Cass Avenue, Building 436 E001, Argonne, Illinois 60439, USA. ; 1] Vollum Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA [2] Howard Hughes Medical Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143115" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Animals ; Apoproteins/*chemistry/metabolism ; Binding Sites ; Binding, Competitive/drug effects ; Caenorhabditis elegans/*chemistry ; Cell Membrane/metabolism ; Chloride Channels/*chemistry/*metabolism ; Crystallography, X-Ray ; Cysteine Loop Ligand-Gated Ion Channel Receptors/*chemistry/*metabolism ; Drug Partial Agonism ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ivermectin/chemistry/metabolism/pharmacology ; Ligands ; Models, Molecular ; Movement/drug effects ; Phosphatidylcholines/chemistry/metabolism/pharmacology ; Protein Binding ; Protein Multimerization/drug effects ; Protein Structure, Tertiary/drug effects ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-06-06
    Description: Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 A resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laganowsky, Arthur -- Reading, Eamonn -- Allison, Timothy M -- Ulmschneider, Martin B -- Degiacomi, Matteo T -- Baldwin, Andrew J -- Robinson, Carol V -- 268851/European Research Council/International -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2014 Jun 5;510(7503):172-5. doi: 10.1038/nature13419.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 5QY, UK [2]. ; Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 5QY, UK. ; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899312" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/metabolism ; Apoproteins/chemistry/metabolism ; Aquaporins/chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Cardiolipins/chemistry/metabolism/pharmacology ; Cation Transport Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry ; Escherichia coli Proteins/chemistry/metabolism ; Ion Channels/chemistry/metabolism ; Lipid Bilayers/chemistry ; Mass Spectrometry ; Membrane Lipids/chemistry/*metabolism/*pharmacology ; Membrane Proteins/*chemistry/*metabolism ; Models, Molecular ; Mycobacterium tuberculosis/chemistry ; Phosphatidylglycerols/chemistry/metabolism/pharmacology ; Protein Conformation/drug effects ; Protein Folding/*drug effects ; Protein Stability/drug effects ; Protein Unfolding/drug effects ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-09-26
    Description: The formation of branched lariat RNA is an evolutionarily conserved feature of splicing reactions for both group II and spliceosomal introns. The lariat is important for the fidelity of 5' splice-site selection and consists of a 2'-5' phosphodiester bond between a bulged adenosine and the 5' end of the intron. To gain insight into this ubiquitous intramolecular linkage, we determined the crystal structure of a eukaryotic group IIB intron in the lariat form at 3.7 A. This revealed that two tandem tetraloop-receptor interactions, eta-eta' and pi-pi', place domain VI in the core to position the lariat bond in the post-catalytic state. On the basis of structural and biochemical data, we propose that pi-pi' is a dynamic interaction that mediates the transition between the two steps of splicing, with eta-eta' serving an ancillary role. The structure also reveals a four-magnesium-ion cluster involved in both catalysis and positioning of the 5' end. Given the evolutionary relationship between group II and nuclear introns, it is likely that this active site configuration exists in the spliceosome as well.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robart, Aaron R -- Chan, Russell T -- Peters, Jessica K -- Rajashankar, Kanagalaghatta R -- Toor, Navtej -- 5R01GM102216/GM/NIGMS NIH HHS/ -- 5T32GM007240/GM/NIGMS NIH HHS/ -- 5T32GM008326/GM/NIGMS NIH HHS/ -- 8P41GM103403-10/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM102216/GM/NIGMS NIH HHS/ -- T32 GM007240/GM/NIGMS NIH HHS/ -- T32 GM008326/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Oct 9;514(7521):193-7. doi: 10.1038/nature13790. Epub 2014 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252982" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Evolution, Molecular ; *Introns/genetics ; Magnesium/metabolism/pharmacology ; Models, Molecular ; *Nucleic Acid Conformation/drug effects ; *Phaeophyta/chemistry/genetics ; RNA Splicing/genetics ; Ribosome Subunits, Large/genetics ; Spliceosomes/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-09-05
    Description: SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 x 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300204/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300204/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Yan -- Tao, Yuyong -- Cheung, Lily S -- Fan, Chao -- Chen, Li-Qing -- Xu, Sophia -- Perry, Kay -- Frommer, Wolf B -- Feng, Liang -- P41 GM103403/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):448-52. doi: 10.1038/nature13670. Epub 2014 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; 1] Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA [2]. ; Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA. ; Department of Biology, Stanford University, Stanford, California 94305, USA. ; NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA. ; 1] Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA [2] Department of Biology, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186729" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/chemistry ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Evolution, Molecular ; Glucose/metabolism ; Leptospira/*chemistry/genetics ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/genetics/metabolism ; Movement ; Protein Conformation ; Protein Multimerization ; Structure-Activity Relationship ; Vibrio/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Witze, Alexandra -- England -- Nature. 2014 Aug 14;512(7513):121-2. doi: 10.1038/512121a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119217" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; California ; *Droughts ; *Ecosystem ; Introduced Species
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mooers, Arne O -- England -- Nature. 2014 May 8;509(7499):171-2. doi: 10.1038/nature13332. Epub 2014 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department and the Human Evolutionary Studies Program, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24776802" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Animals ; *Ecosystem ; *Genetic Speciation ; Songbirds/*classification/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-05-09
    Description: The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Handa, I Tanya -- Aerts, Rien -- Berendse, Frank -- Berg, Matty P -- Bruder, Andreas -- Butenschoen, Olaf -- Chauvet, Eric -- Gessner, Mark O -- Jabiol, Jeremy -- Makkonen, Marika -- McKie, Brendan G -- Malmqvist, Bjorn -- Peeters, Edwin T H M -- Scheu, Stefan -- Schmid, Bernhard -- van Ruijven, Jasper -- Vos, Veronique C A -- Hattenschwiler, Stephan -- England -- Nature. 2014 May 8;509(7499):218-21. doi: 10.1038/nature13247.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919 Route de Mende, 34293 Montpellier, France [2] Departement des Sciences Biologiques, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec H3C 3P8, Canada. ; Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. ; Nature Conservation and Plant Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands. ; 1] Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Dubendorf, Switzerland [2] Institute of Integrative Biology (IBZ), ETH Zurich, 8092 Zurich, Switzerland. ; Georg August University Gottingen, J.F. Blumenbach Institute of Zoology and Anthropology, Berliner Strasse 28, 37073 Gottingen, Germany. ; 1] Universite de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 Route de Narbonne, 31062 Toulouse Cedex, France [2] CNRS, EcoLab, 118 Route de Narbonne, 31062 Toulouse Cedex, France. ; 1] Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Dubendorf, Switzerland [2] Institute of Integrative Biology (IBZ), ETH Zurich, 8092 Zurich, Switzerland [3] Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhutte 2, 16775 Stechlin, Germany [4] Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587 Berlin, Germany. ; 1] Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands [2] Climate Change Programme, Finnish Environment Institute, PO Box 140, 00251 Helsinki, Finland. ; 1] Department of Ecology and Environmental Science, Umea University, 90187 Umea, Sweden [2] Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, PO Box 7050, 75007 Uppsala, Sweden. ; Deceased. ; Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Institute of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. ; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919 Route de Mende, 34293 Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805346" target="_blank"〉PubMed〈/a〉
    Keywords: Arctic Regions ; *Biodiversity ; Carbon/metabolism ; *Carbon Cycle ; *Ecosystem ; Nitrogen/metabolism ; Nitrogen Cycle ; Plants/metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-03-29
    Description: The light-harvesting core antenna (LH1) and the reaction centre (RC) of purple photosynthetic bacteria form a supramolecular complex (LH1-RC) to use sunlight energy in a highly efficient manner. Here we report the first near-atomic structure, to our knowledge, of a LH1-RC complex, namely that of a Ca(2+)-bound complex from Thermochromatium tepidum, which reveals detailed information on the arrangement and interactions of the protein subunits and the cofactors. The RC is surrounded by 16 heterodimers of the LH1 alphabeta-subunit that form a completely closed structure. The Ca(2+) ions are located at the periplasmic side of LH1. Thirty-two bacteriochlorophyll and 16 spirilloxanthin molecules in the LH1 ring form an elliptical assembly. The geometries of the pigment assembly involved in the absorption characteristics of the bacteriochlorophyll in LH1 and excitation energy transfer among the pigments are reported. In addition, possible ubiquinone channels in the closed LH1 complex are proposed based on the atomic structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niwa, Satomi -- Yu, Long-Jiang -- Takeda, Kazuki -- Hirano, Yu -- Kawakami, Tomoaki -- Wang-Otomo, Zheng-Yu -- Miki, Kunio -- England -- Nature. 2014 Apr 10;508(7495):228-32. doi: 10.1038/nature13197. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan [2]. ; 1] Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan [2]. ; Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. ; Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670637" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriochlorophylls/chemistry/metabolism ; Calcium/metabolism ; Chromatiaceae/*chemistry ; Coenzymes/chemistry/metabolism ; Crystallography, X-Ray ; Light-Harvesting Protein Complexes/*chemistry/metabolism ; Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Ubiquinone/metabolism ; Xanthophylls/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-05-23
    Description: Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079543/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079543/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsberg, Kevin J -- Patel, Sanket -- Gibson, Molly K -- Lauber, Christian L -- Knight, Rob -- Fierer, Noah -- Dantas, Gautam -- DP2 DK098089/DK/NIDDK NIH HHS/ -- DP2-DK-098089/DK/NIDDK NIH HHS/ -- GM 007067/GM/NIGMS NIH HHS/ -- T32 GM007067/GM/NIGMS NIH HHS/ -- T32 HG000045/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):612-6. doi: 10.1038/nature13377. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2]. ; 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3]. ; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA. ; 1] Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA [2] Howard Hughes Medical Institute, Boulder, Colorado 80309, USA. ; 1] Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847883" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Anti-Bacterial Agents/pharmacology ; Bacteria/classification/drug effects/*genetics/*isolation & purification ; Drug Resistance, Microbial/drug effects/*genetics ; *Ecosystem ; Fertilizers ; Gene Transfer, Horizontal/genetics ; Genes, Bacterial/drug effects/genetics ; Genome, Bacterial/drug effects/genetics ; Integrases/genetics ; Metagenome/drug effects/*genetics ; Metagenomics ; Models, Genetic ; Molecular Sequence Data ; Nitrogen/metabolism/pharmacology ; Open Reading Frames/genetics ; *Phylogeny ; Poaceae/growth & development ; RNA, Ribosomal, 16S/genetics ; *Soil Microbiology ; Synteny/genetics ; Transposases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Witze, Alexandra -- England -- Nature. 2014 May 29;509(7502):542-3. doi: 10.1038/509542a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870521" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Animals ; Aquatic Organisms ; Arctic Regions ; Ecology/*instrumentation ; *Ecosystem ; *Expeditions ; Ice Cover ; Oceanography/*instrumentation ; *Ships
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-07-22
    Description: Human GPR40 receptor (hGPR40), also known as free fatty-acid receptor 1 (FFAR1), is a G-protein-coupled receptor that binds long-chain free fatty acids to enhance glucose-dependent insulin secretion. Novel treatments for type-2 diabetes mellitus are therefore possible by targeting hGPR40 with partial or full agonists. TAK-875, or fasiglifam, is an orally available, potent and selective partial agonist of hGPR40 receptor, which reached phase III clinical trials for the potential treatment of type-2 diabetes mellitus. Data from clinical studies indicate that TAK-875, which is an ago-allosteric modulator of hGPR40 (ref. 3), demonstrates improved glycaemic control and low hypoglycaemic risk in diabetic patients. Here we report the crystal structure of hGPR40 receptor bound to TAK-875 at 2.3 A resolution. The co-complex structure reveals a unique binding mode of TAK-875 and suggests that entry to the non-canonical binding pocket most probably occurs via the lipid bilayer. The atomic details of the extensive charge network in the ligand binding pocket reveal additional interactions not identified in previous studies and contribute to a clear understanding of TAK-875 binding to the receptor. The hGPR40-TAK-875 structure also provides insights into the plausible binding of multiple ligands to the receptor, which has been observed in radioligand binding and Ca(2+) influx assay studies. Comparison of the transmembrane helix architecture with other G-protein-coupled receptors suggests that the crystallized TAK-875-bound hGPR40 complex is in an inactive-like state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Srivastava, Ankita -- Yano, Jason -- Hirozane, Yoshihiko -- Kefala, Georgia -- Gruswitz, Franz -- Snell, Gyorgy -- Lane, Weston -- Ivetac, Anthony -- Aertgeerts, Kathleen -- Nguyen, Jasmine -- Jennings, Andy -- Okada, Kengo -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 4;513(7516):124-7. doi: 10.1038/nature13494. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Structural Biology and Core Sciences &Technology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, USA [2]. ; Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan. ; Department of Structural Biology and Core Sciences &Technology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, USA. ; 1] Department of Structural Biology and Core Sciences &Technology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, USA [2] Beryllium, Membrane Protein Sciences, 7869 NE Day Road West, Bainbridge Island, Washington 98110, USA (F.G.); Dart Neuroscience, 12278 Scripps Summit Drive, San Diego, California 92131, USA (K.A. and J.N.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043059" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Benzofurans/*chemistry/metabolism/*pharmacology ; Binding Sites ; Crystallography, X-Ray ; Diabetes Mellitus, Type 2/drug therapy ; *Drug Partial Agonism ; Humans ; Ligands ; Lipid Bilayers/metabolism ; Models, Molecular ; Receptors, G-Protein-Coupled/*agonists/*chemistry/metabolism ; Structural Homology, Protein ; Sulfones/*chemistry/metabolism/*pharmacology ; Surface Properties
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-08-22
    Description: Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christner, Brent C -- Priscu, John C -- Achberger, Amanda M -- Barbante, Carlo -- Carter, Sasha P -- Christianson, Knut -- Michaud, Alexander B -- Mikucki, Jill A -- Mitchell, Andrew C -- Skidmore, Mark L -- Vick-Majors, Trista J -- WISSARD Science Team -- England -- Nature. 2014 Aug 21;512(7514):310-3. doi: 10.1038/nature13667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA. ; Department of Land Resources and Environmental Science, Montana State University, Bozeman, Montana 59717, USA. ; Institute for the Dynamics of Environmental Processes - CNR, Venice, and Department of Environmental Sciences, Informatics and Statistics, Ca'Foscari University of Venice, Venice 30123, Italy. ; Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. ; 1] Physics Department, St Olaf College, Northfield, Minnesota 55057, USA [2] Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA (K.C.). ; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA. ; Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK. ; Department of Earth Science, Montana State University, Bozeman, Montana 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143114" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Aquatic Organisms/classification/genetics/*isolation & purification/metabolism ; Archaea/classification/genetics/isolation & purification/metabolism ; Bacteria/classification/genetics/isolation & purification/metabolism ; Carbon/metabolism ; *Ecosystem ; Geologic Sediments/chemistry/microbiology ; *Ice Cover/chemistry ; Lakes/chemistry/*microbiology ; Oceans and Seas ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-06-12
    Description: Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3*U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3*U70 and its A3*U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3*U70, widening the major groove. The geometry difference between G3*U70 and A3*U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3*U70 is oriented to the reactive route that reaches the active site, whereas that of the A3*U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323281/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323281/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naganuma, Masahiro -- Sekine, Shun-ichi -- Chong, Yeeting Esther -- Guo, Min -- Yang, Xiang-Lei -- Gamper, Howard -- Hou, Ya-Ming -- Schimmel, Paul -- Yokoyama, Shigeyuki -- GM015539/GM/NIGMS NIH HHS/ -- GM023562/GM/NIGMS NIH HHS/ -- NS085092/NS/NINDS NIH HHS/ -- R01 GM015539/GM/NIGMS NIH HHS/ -- R01 GM023562/GM/NIGMS NIH HHS/ -- R01 GM100136/GM/NIGMS NIH HHS/ -- R01 NS085092/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):507-11. doi: 10.1038/nature13440. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.). ; The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA. ; 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] The Scripps Florida Research Institute, 130 Scripps Way, 3B3 Jupiter, Florida 33458-5284, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919148" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/analogs & derivatives/chemistry ; Alanine-tRNA Ligase/*chemistry ; Archaeoglobus fulgidus/*enzymology/*genetics ; *Base Pairing ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Kinetics ; Models, Molecular ; RNA, Transfer, Ala/*chemistry/*genetics ; Substrate Specificity ; *Transfer RNA Aminoacylation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-08-15
    Description: Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassaine, Gherici -- Deluz, Cedric -- Grasso, Luigino -- Wyss, Romain -- Tol, Menno B -- Hovius, Ruud -- Graff, Alexandra -- Stahlberg, Henning -- Tomizaki, Takashi -- Desmyter, Aline -- Moreau, Christophe -- Li, Xiao-Dan -- Poitevin, Frederic -- Vogel, Horst -- Nury, Hugues -- England -- Nature. 2014 Aug 21;512(7514):276-81. doi: 10.1038/nature13552. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] [3] Theranyx, 163 Avenue de Luminy, 13288 Marseille, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2]. ; Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland. ; Swiss Light Source, Paul Scherrer Institute, CH-5234 Villigen, Switzerland. ; Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 7257 and Universite Aix-Marseille, F-13288 Marseille, France. ; 1] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [2] CNRS, IBS, F-38000 Grenoble, France [3] CEA, DSV, IBS, F-38000 Grenoble, France. ; Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Unite de Dynamique Structurale des Macromolecules, Institut Pasteur, CNRS UMR3528, F-75015 Paris, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [3] CNRS, IBS, F-38000 Grenoble, France [4] CEA, DSV, IBS, F-38000 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119048" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Agents/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Receptors, Serotonin, 5-HT3/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoehler, Tori M -- Alperin, Marc J -- England -- Nature. 2014 Mar 27;507(7493):436-7. doi: 10.1038/nature13215. Epub 2014 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035, USA. ; Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3300, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670756" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*metabolism ; *Ecosystem ; *Global Warming ; Methane/*metabolism ; *Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-07-22
    Description: In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Eric S -- Bohm, Kerstin -- Lydeard, John R -- Yang, Haidi -- Stadler, Michael B -- Cavadini, Simone -- Nagel, Jane -- Serluca, Fabrizio -- Acker, Vincent -- Lingaraju, Gondichatnahalli M -- Tichkule, Ritesh B -- Schebesta, Michael -- Forrester, William C -- Schirle, Markus -- Hassiepen, Ulrich -- Ottl, Johannes -- Hild, Marc -- Beckwith, Rohan E J -- Harper, J Wade -- Jenkins, Jeremy L -- Thoma, Nicolas H -- AG011085/AG/NIA NIH HHS/ -- R01 AG011085/AG/NIA NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):49-53. doi: 10.1038/nature13527. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland [3] Swiss Institute of Bioinformatics, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043012" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; DNA-Binding Proteins/agonists/antagonists & inhibitors/chemistry/metabolism ; Homeodomain Proteins/metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/agonists/antagonists & inhibitors/chemistry/metabolism ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Structure-Activity Relationship ; Substrate Specificity ; Thalidomide/analogs & derivatives/*chemistry/metabolism ; Transcription Factors/metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-11-07
    Description: Historically, farmers and hunter-gatherers relied directly on ecosystem services, which they both exploited and enjoyed. Urban populations still rely on ecosystems, but prioritize non-ecosystem services (socioeconomic). Population growth and densification increase the scale and change the nature of both ecosystem- and non-ecosystem-service supply and demand, weakening direct feedbacks between ecosystems and societies and potentially pushing social-ecological systems into traps that can lead to collapse. The interacting and mutually reinforcing processes of technological change, population growth and urbanization contribute to over-exploitation of ecosystems through complex feedbacks that have important implications for sustainable resource use.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cumming, Graeme S -- Buerkert, Andreas -- Hoffmann, Ellen M -- Schlecht, Eva -- von Cramon-Taubadel, Stephan -- Tscharntke, Teja -- England -- Nature. 2014 Nov 6;515(7525):50-7. doi: 10.1038/nature13945.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town 7701, South Africa. ; Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, Universitat Kassel, Steinstr. 19, D-37213 Witzenhausen, Germany. ; Animal Husbandry in the Tropics and Subtropics, Universitat Kassel and Georg-August-Universitat Gottingen, Steinstr. 19, D-37213 Witzenhausen, Germany. ; Department of Agricultural Economics and Rural Development, Georg-August-Universitat, Platz der Gottinger Sieben 5, D-37073 Germany. ; Agroecology, Georg-August-Universitat Gottingen, Grisebachstr. 6, D-37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373674" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/statistics & numerical data/*trends ; China ; Conservation of Natural Resources/statistics & numerical data/*trends ; *Ecosystem ; Edible Grain/growth & development ; Feedback ; Human Activities ; Models, Economic ; Niger ; Population Growth ; Sweden ; Urban Population ; Urbanization/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zentelis, Rick -- Lindenmayer, David -- England -- Nature. 2014 Dec 11;516(7530):170. doi: 10.1038/516170a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian National University, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503222" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*statistics & numerical data ; *Ecosystem ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-05-03
    Description: The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5'-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 A resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5'-triphosphate (2MeSATP) at 3.1 A resolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the delta-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jin -- Zhang, Kaihua -- Gao, Zhan-Guo -- Paoletta, Silvia -- Zhang, Dandan -- Han, Gye Won -- Li, Tingting -- Ma, Limin -- Zhang, Wenru -- Muller, Christa E -- Yang, Huaiyu -- Jiang, Hualiang -- Cherezov, Vadim -- Katritch, Vsevolod -- Jacobson, Kenneth A -- Stevens, Raymond C -- Wu, Beili -- Zhao, Qiang -- R01 AI100604/AI/NIAID NIH HHS/ -- R01AI100604/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54GM094618/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):119-22. doi: 10.1038/nature13288.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China [2]. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; PharmaCenter Bonn, University of Bonn, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784220" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/*analogs & derivatives/chemistry/metabolism ; Adenosine Triphosphate/*analogs & derivatives/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Humans ; Ligands ; Models, Molecular ; Niacin/analogs & derivatives/chemistry/metabolism ; Protein Conformation ; Purinergic P2Y Receptor Agonists/*chemistry/metabolism ; Purinergic P2Y Receptor Antagonists/chemistry/metabolism ; Receptors, Purinergic P2Y12/*chemistry/metabolism ; Substrate Specificity ; Sulfonamides/chemistry/metabolism ; Thionucleotides/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-01-28
    Description: H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 A resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal alpha-helix. Finally, analysis of H2A.Z localization in ANP32E(-/-) cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obri, Arnaud -- Ouararhni, Khalid -- Papin, Christophe -- Diebold, Marie-Laure -- Padmanabhan, Kiran -- Marek, Martin -- Stoll, Isabelle -- Roy, Ludovic -- Reilly, Patrick T -- Mak, Tak W -- Dimitrov, Stefan -- Romier, Christophe -- Hamiche, Ali -- England -- Nature. 2014 Jan 30;505(7485):648-53. doi: 10.1038/nature12922. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Departement de Genomique Fonctionnelle et Cancer, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France [2]. ; Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France. ; Equipe labelisee Ligue contre le Cancer, INSERM/Universite Joseph Fourier , Institut Albert Bonniot, U823, Site Sante-BP 170, 38042 Grenoble Cedex 9, France. ; Departement de Genomique Fonctionnelle et Cancer, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC), Universite de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France. ; Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore. ; 1] Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore [2] The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/chemistry/metabolism ; Chromatin/*chemistry/genetics/*metabolism ; Chromatin Immunoprecipitation ; Crystallography, X-Ray ; DNA/genetics/metabolism ; Genome, Human/genetics ; Histones/chemistry/isolation & purification/*metabolism ; Humans ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*metabolism ; Nucleosomes/chemistry/metabolism ; Phosphoproteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-03-29
    Description: P2Y receptors (P2YRs), a family of purinergic G-protein-coupled receptors (GPCRs), are activated by extracellular nucleotides. There are a total of eight distinct functional P2YRs expressed in human, which are subdivided into P2Y1-like receptors and P2Y12-like receptors. Their ligands are generally charged molecules with relatively low bioavailability and stability in vivo, which limits our understanding of this receptor family. P2Y12R regulates platelet activation and thrombus formation, and several antithrombotic drugs targeting P2Y12R--including the prodrugs clopidogrel (Plavix) and prasugrel (Effient) that are metabolized and bind covalently, and the nucleoside analogue ticagrelor (Brilinta) that acts directly on the receptor--have been approved for the prevention of stroke and myocardial infarction. However, limitations of these drugs (for example, a very long half-life of clopidogrel action and a characteristic adverse effect profile of ticagrelor) suggest that there is an unfulfilled medical need for developing a new generation of P2Y12R inhibitors. Here we report the 2.6 A resolution crystal structure of human P2Y12R in complex with a non-nucleotide reversible antagonist, AZD1283. The structure reveals a distinct straight conformation of helix V, which sets P2Y12R apart from all other known class A GPCR structures. With AZD1283 bound, the highly conserved disulphide bridge in GPCRs between helix III and extracellular loop 2 is not observed and appears to be dynamic. Along with the details of the AZD1283-binding site, analysis of the extracellular interface reveals an adjacent ligand-binding region and suggests that both pockets could be required for dinucleotide binding. The structure provides essential insights for the development of improved P2Y12R ligands and allosteric modulators as drug candidates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Kaihua -- Zhang, Jin -- Gao, Zhan-Guo -- Zhang, Dandan -- Zhu, Lan -- Han, Gye Won -- Moss, Steven M -- Paoletta, Silvia -- Kiselev, Evgeny -- Lu, Weizhen -- Fenalti, Gustavo -- Zhang, Wenru -- Muller, Christa E -- Yang, Huaiyu -- Jiang, Hualiang -- Cherezov, Vadim -- Katritch, Vsevolod -- Jacobson, Kenneth A -- Stevens, Raymond C -- Wu, Beili -- Zhao, Qiang -- R01 AI100604/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Z99 DK999999/Intramural NIH HHS/ -- ZIA DK031116-26/Intramural NIH HHS/ -- ZIA DK031126-07/Intramural NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):115-8. doi: 10.1038/nature13083. Epub 2014 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China [2]. ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany. ; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670650" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Disulfides/metabolism ; Fibrinolytic Agents/*chemistry ; Humans ; Ligands ; Models, Molecular ; Molecular Docking Simulation ; Niacin/*analogs & derivatives/chemistry/metabolism ; Protein Conformation ; Purinergic P2Y Receptor Antagonists/chemistry/metabolism ; Receptors, Purinergic P2Y12/*chemistry/metabolism ; Sulfonamides/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-07-22
    Description: The gamma-secretase complex, comprising presenilin 1 (PS1), PEN-2, APH-1 and nicastrin, is a membrane-embedded protease that controls a number of important cellular functions through substrate cleavage. Aberrant cleavage of the amyloid precursor protein (APP) results in aggregation of amyloid-beta, which accumulates in the brain and consequently causes Alzheimer's disease. Here we report the three-dimensional structure of an intact human gamma-secretase complex at 4.5 A resolution, determined by cryo-electron-microscopy single-particle analysis. The gamma-secretase complex comprises a horseshoe-shaped transmembrane domain, which contains 19 transmembrane segments (TMs), and a large extracellular domain (ECD) from nicastrin, which sits immediately above the hollow space formed by the TM horseshoe. Intriguingly, nicastrin ECD is structurally similar to a large family of peptidases exemplified by the glutamate carboxypeptidase PSMA. This structure serves as an important basis for understanding the functional mechanisms of the gamma-secretase complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Peilong -- Bai, Xiao-chen -- Ma, Dan -- Xie, Tian -- Yan, Chuangye -- Sun, Linfeng -- Yang, Guanghui -- Zhao, Yanyu -- Zhou, Rui -- Scheres, Sjors H W -- Shi, Yigong -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2014 Aug 14;512(7513):166-70. doi: 10.1038/nature13567. Epub 2014 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK [2]. ; 1] Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043039" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid Precursor Protein Secretases/*chemistry ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Humans ; *Models, Molecular ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbier, Edward B -- England -- Nature. 2014 Nov 6;515(7525):32-3. doi: 10.1038/515032a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Wyoming, Laramie, Wyoming, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*economics/*statistics & numerical data ; *Ecosystem ; *Models, Economic ; Pilot Projects ; Reproducibility of Results ; Rhizophoraceae ; Thailand ; Wood
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frink, Dale -- England -- Nature. 2014 Oct 16;514(7522):305. doi: 10.1038/514305c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rancho Santa Margarita, California, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25318517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Conservation of Natural Resources/*methods ; *Ecosystem ; Travel/*statistics & numerical data ; Whales/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-06-10
    Description: RNA is arguably the most functionally diverse biological macromolecule. In some cases a single discrete RNA sequence performs multiple roles, and this can be conferred by a complex three-dimensional structure. Such multifunctionality can also be driven or enhanced by the ability of a given RNA to assume different conformational (and therefore functional) states. Despite its biological importance, a detailed structural understanding of the paradigm of RNA structure-driven multifunctionality is lacking. To address this gap it is useful to study examples from single-stranded positive-sense RNA viruses, a prototype being the tRNA-like structure (TLS) found at the 3' end of the turnip yellow mosaic virus (TYMV). This TLS not only acts like a tRNA to drive aminoacylation of the viral genomic (g)RNA, but also interacts with other structures in the 3' untranslated region of the gRNA, contains the promoter for negative-strand synthesis, and influences several infection-critical processes. TLS RNA can provide a glimpse into the structural basis of RNA multifunctionality and plasticity, but for decades its high-resolution structure has remained elusive. Here we present the crystal structure of the complete TYMV TLS to 2.0 A resolution. Globally, the RNA adopts a shape that mimics tRNA, but it uses a very different set of intramolecular interactions to achieve this shape. These interactions also allow the TLS to readily switch conformations. In addition, the TLS structure is 'two faced': one face closely mimics tRNA and drives aminoacylation, the other face diverges from tRNA and enables additional functionality. The TLS is thus structured to perform several functions and interact with diverse binding partners, and we demonstrate its ability to specifically bind to ribosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colussi, Timothy M -- Costantino, David A -- Hammond, John A -- Ruehle, Grant M -- Nix, Jay C -- Kieft, Jeffrey S -- GM081346/GM/NIGMS NIH HHS/ -- GM097333/GM/NIGMS NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- R01 GM081346/GM/NIGMS NIH HHS/ -- R01 GM097333/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):366-9. doi: 10.1038/nature13378. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [3] Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA (T.M.C.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037, USA (J.A.H.). ; 1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; 1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA (T.M.C.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037, USA (J.A.H.). ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909993" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Amino Acyl-tRNA Synthetases/metabolism ; Aminoacylation ; Base Sequence ; Crystallography, X-Ray ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Protein Binding ; RNA Folding ; RNA, Guide/genetics/metabolism ; RNA, Transfer/*chemistry/genetics/metabolism ; RNA, Viral/*chemistry/genetics/*metabolism ; Ribosomes/chemistry/metabolism ; Tymovirus/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-08-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tranter, Martyn -- England -- Nature. 2014 Aug 21;512(7514):256-7. doi: 10.1038/512256a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143107" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/*isolation & purification ; *Ecosystem ; *Ice Cover ; Lakes/*microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-11-28
    Description: Evidence is mounting that the immense diversity of microorganisms and animals that live belowground contributes significantly to shaping aboveground biodiversity and the functioning of terrestrial ecosystems. Our understanding of how this belowground biodiversity is distributed, and how it regulates the structure and functioning of terrestrial ecosystems, is rapidly growing. Evidence also points to soil biodiversity as having a key role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change. Here we review recent progress and propose avenues for further research in this field.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bardgett, Richard D -- van der Putten, Wim H -- England -- Nature. 2014 Nov 27;515(7528):505-11. doi: 10.1038/nature13855.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester M13 9PT, United Kingdom. ; 1] Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands [2] Laboratory of Nematology, Wageningen University, PO Box 8123, 6700 ES Wageningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25428498" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Ecosystem ; Food Chain ; Introduced Species ; Population Dynamics ; Soil Microbiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-02-07
    Description: Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Correia, Bruno E -- Bates, John T -- Loomis, Rebecca J -- Baneyx, Gretchen -- Carrico, Chris -- Jardine, Joseph G -- Rupert, Peter -- Correnti, Colin -- Kalyuzhniy, Oleksandr -- Vittal, Vinayak -- Connell, Mary J -- Stevens, Eric -- Schroeter, Alexandria -- Chen, Man -- Macpherson, Skye -- Serra, Andreia M -- Adachi, Yumiko -- Holmes, Margaret A -- Li, Yuxing -- Klevit, Rachel E -- Graham, Barney S -- Wyatt, Richard T -- Baker, David -- Strong, Roland K -- Crowe, James E Jr -- Johnson, Philip R -- Schief, William R -- 1R01AI102766-01A1/AI/NIAID NIH HHS/ -- 1UM1AI100663/AI/NIAID NIH HHS/ -- 2T32GM007270/GM/NIGMS NIH HHS/ -- 5R21AI088554/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI094419/AI/NIAID NIH HHS/ -- P30 AI036214/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- P30AI36214/AI/NIAID NIH HHS/ -- R01 AI102766/AI/NIAID NIH HHS/ -- R21 AI088554/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32 GM007270/GM/NIGMS NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- U54 AI 005714/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):201-6. doi: 10.1038/nature12966. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] PhD Program in Computational Biology, Instituto Gulbenkian Ciencia and Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal [3] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. ; The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA [2]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA [3] Department of Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499818" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antibodies, Monoclonal/analysis/immunology ; Antibodies, Neutralizing/analysis/immunology ; Antibodies, Viral/analysis/immunology ; Antigens, Viral/chemistry/immunology ; Crystallography, X-Ray ; *Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; Macaca mulatta/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Neutralization Tests ; Protein Conformation ; *Protein Stability ; Respiratory Syncytial Virus Vaccines/*chemistry/*immunology ; Respiratory Syncytial Viruses/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-09-12
    Description: The ribosome is a molecular machine responsible for protein synthesis and a major target for small-molecule inhibitors. Compared to the wealth of structural information available on ribosome-targeting antibiotics in bacteria, our understanding of the binding mode of ribosome inhibitors in eukaryotes is currently limited. Here we used X-ray crystallography to determine 16 high-resolution structures of 80S ribosomes from Saccharomyces cerevisiae in complexes with 12 eukaryote-specific and 4 broad-spectrum inhibitors. All inhibitors were found associated with messenger RNA and transfer RNA binding sites. In combination with kinetic experiments, the structures suggest a model for the action of cycloheximide and lactimidomycin, which explains why lactimidomycin, the larger compound, specifically targets the first elongation cycle. The study defines common principles of targeting and resistance, provides insights into translation inhibitor mode of action and reveals the structural determinants responsible for species selectivity which could guide future drug development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garreau de Loubresse, Nicolas -- Prokhorova, Irina -- Holtkamp, Wolf -- Rodnina, Marina V -- Yusupova, Gulnara -- Yusupov, Marat -- 294312/European Research Council/International -- England -- Nature. 2014 Sep 25;513(7519):517-22. doi: 10.1038/nature13737. Epub 2014 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Universite de Strasbourg, 67404, Illkirch, France. ; Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209664" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites/drug effects ; Crystallography, X-Ray ; Cycloheximide/pharmacology ; Drug Resistance/drug effects ; Eukaryotic Cells/*chemistry/drug effects/enzymology ; Kinetics ; Macrolides/pharmacology ; Models, Molecular ; Molecular Targeted Therapy ; Molecular Weight ; Peptide Chain Elongation, Translational/drug effects ; Peptidyl Transferases/chemistry/metabolism ; Piperidones/pharmacology ; Protein Synthesis Inhibitors/*chemistry/*pharmacology ; RNA, Messenger/genetics/metabolism ; RNA, Transfer/genetics/metabolism ; Ribosome Subunits, Large, Eukaryotic/chemistry/drug effects/metabolism ; Ribosomes/*chemistry/*drug effects/metabolism ; Saccharomyces cerevisiae/*chemistry ; Species Specificity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-11-20
    Description: Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol beta, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freudenthal, Bret D -- Beard, William A -- Perera, Lalith -- Shock, David D -- Kim, Taejin -- Schlick, Tamar -- Wilson, Samuel H -- 1U19CA105010/CA/NCI NIH HHS/ -- U19 CA177547/CA/NCI NIH HHS/ -- Z01-ES050158/ES/NIEHS NIH HHS/ -- Z01-ES050161/ES/NIEHS NIH HHS/ -- ZIA ES050158-18/Intramural NIH HHS/ -- ZIA ES050159-18/Intramural NIH HHS/ -- ZIC-ES043010/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):635-9. doi: 10.1038/nature13886. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, North Carolina 27709-2233, USA. ; 1] Department of Chemistry, New York University, and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 10th Floor Silver Center, 100 Washington Square East, New York, New York 10003, USA [2] Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409153" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/metabolism ; Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; Cytosine/chemistry/metabolism ; Cytotoxins/chemistry/*metabolism/toxicity ; DNA/biosynthesis/chemistry ; *DNA Damage ; DNA Polymerase beta/*chemistry/*metabolism ; DNA Repair ; DNA Replication ; Deoxyguanine Nucleotides/chemistry/*metabolism/*toxicity ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Kinetics ; Models, Molecular ; Molecular Conformation ; *Mutagenesis ; Neoplasms/enzymology/genetics ; Oxidation-Reduction ; Oxidative Stress ; Static Electricity ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-11-11
    Description: The TMEM16 family of proteins, also known as anoctamins, features a remarkable functional diversity. This family contains the long sought-after Ca(2+)-activated chloride channels as well as lipid scramblases and cation channels. Here we present the crystal structure of a TMEM16 family member from the fungus Nectria haematococca that operates as a Ca(2+)-activated lipid scramblase. Each subunit of the homodimeric protein contains ten transmembrane helices and a hydrophilic membrane-traversing cavity that is exposed to the lipid bilayer as a potential site of catalysis. This cavity harbours a conserved Ca(2+)-binding site located within the hydrophobic core of the membrane. Mutations of residues involved in Ca(2+) coordination affect both lipid scrambling in N. haematococca TMEM16 and ion conduction in the Cl(-) channel TMEM16A. The structure reveals the general architecture of the family and its mode of Ca(2+) activation. It also provides insight into potential scrambling mechanisms and serves as a framework to unravel the conduction of ions in certain TMEM16 proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunner, Janine D -- Lim, Novandy K -- Schenck, Stephan -- Duerst, Alessia -- Dutzler, Raimund -- England -- Nature. 2014 Dec 11;516(7530):207-12. doi: 10.1038/nature13984. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites/genetics ; Calcium/chemistry/*metabolism/pharmacology ; Chloride Channels/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ion Transport/drug effects ; Lipid Bilayers/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nectria/*chemistry/enzymology/genetics ; Neoplasm Proteins/chemistry ; Phospholipid Transfer Proteins/*chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-04-30
    Description: Speciation generally involves a three-step process--range expansion, range fragmentation and the development of reproductive isolation between spatially separated populations. Speciation relies on cycling through these three steps and each may limit the rate at which new species form. We estimate phylogenetic relationships among all Himalayan songbirds to ask whether the development of reproductive isolation and ecological competition, both factors that limit range expansions, set an ultimate limit on speciation. Based on a phylogeny for all 358 species distributed along the eastern elevational gradient, here we show that body size and shape differences evolved early in the radiation, with the elevational band occupied by a species evolving later. These results are consistent with competition for niche space limiting species accumulation. Even the elevation dimension seems to be approaching ecological saturation, because the closest relatives both inside the assemblage and elsewhere in the Himalayas are on average separated by more than five million years, which is longer than it generally takes for reproductive isolation to be completed; also, elevational distributions are well explained by resource availability, notably the abundance of arthropods, and not by differences in diversification rates in different elevational zones. Our results imply that speciation rate is ultimately set by niche filling (that is, ecological competition for resources), rather than by the rate of acquisition of reproductive isolation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Price, Trevor D -- Hooper, Daniel M -- Buchanan, Caitlyn D -- Johansson, Ulf S -- Tietze, D Thomas -- Alstrom, Per -- Olsson, Urban -- Ghosh-Harihar, Mousumi -- Ishtiaq, Farah -- Gupta, Sandeep K -- Martens, Jochen -- Harr, Bettina -- Singh, Pratap -- Mohan, Dhananjai -- England -- Nature. 2014 May 8;509(7499):222-5. doi: 10.1038/nature13272. Epub 2014 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2] Department of Zoology, Swedish Museum of Natural History, 10405 Stockholm, Sweden. ; 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2] Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany. ; 1] Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China [2] Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, 75007 Uppsala, Sweden. ; Systematics and Biodiversity, Department of Biology and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden. ; Wildlife Institute of India, PO Box 18, Chandrabani, Dehradun 248001, India. ; Institute of Zoology, Johannes Gutenberg University, Mainz 55099, Germany. ; Max Planck Institute for Evolutionary Biology, August Thienemannstrasse 2, 24306 Plon, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24776798" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Animals ; Body Size ; China ; *Ecosystem ; *Genetic Speciation ; India ; Phylogeny ; Reproduction ; Songbirds/anatomy & histology/*classification/*physiology ; Tibet
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Jane -- England -- Nature. 2014 Oct 30;514(7524):545. doi: 10.1038/514545a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25355338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/growth & development ; China ; *Ecosystem ; *Human Activities ; Oceans and Seas ; Scyphozoa/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-08-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Jane -- England -- Nature. 2014 Aug 21;512(7514):240-1. doi: 10.1038/512240a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143093" target="_blank"〉PubMed〈/a〉
    Keywords: Climate Change/*statistics & numerical data ; Conservation of Natural Resources ; *Ecosystem ; Environmental Pollution/statistics & numerical data ; Human Activities ; Ice Cover ; Temperature ; Tibet ; Urbanization/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-05-09
    Description: Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase alpha (Pol alpha) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a beta-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol alpha and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol alpha and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol alpha and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol alpha to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, Aline C -- Zhou, Jin C -- Perera, Rajika L -- van Deursen, Frederick -- Evrin, Cecile -- Ivanova, Marina E -- Kilkenny, Mairi L -- Renault, Ludovic -- Kjaer, Svend -- Matak-Vinkovic, Dijana -- Labib, Karim -- Costa, Alessandro -- Pellegrini, Luca -- 084279/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Jun 12;510(7504):293-7. doi: 10.1038/nature13234. Epub 2014 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK [2]. ; 1] Clare Hall Laboratories, Cancer Research UK London Research Institute, London EN6 3LD, UK [2]. ; 1] Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK [2] Imperial College, South Kensington, London SW7 2AZ, UK (R.L.P.); Cancer Research UK London Research Institute, London WC2A 3LY, UK (M.E.I.). ; Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK. ; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. ; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK. ; Clare Hall Laboratories, Cancer Research UK London Research Institute, London EN6 3LD, UK. ; Protein purification, Cancer Research UK London Research Institute, London WC2A 3LY, UK. ; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805245" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; DNA Helicases/chemistry/*metabolism/ultrastructure ; DNA Polymerase I/chemistry/*metabolism/ultrastructure ; *DNA Replication ; DNA-Binding Proteins/*chemistry/*metabolism/ultrastructure ; DNA-Directed DNA Polymerase/*chemistry/*metabolism ; Microscopy, Electron ; Minichromosome Maintenance Proteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/*metabolism ; Nuclear Proteins/chemistry/metabolism ; Protein Binding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/ultrastructure ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-03-05
    Description: Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Hong -- Li, Yuanyuan -- Xi, Yuanxin -- Jiang, Shiming -- Stratton, Sabrina -- Peng, Danni -- Tanaka, Kaori -- Ren, Yongfeng -- Xia, Zheng -- Wu, Jun -- Li, Bing -- Barton, Michelle C -- Li, Wei -- Li, Haitao -- Shi, Xiaobing -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 GM090077/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01GM090077/GM/NIGMS NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):263-8. doi: 10.1038/nature13045. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Carrier Proteins/chemistry/*metabolism ; Chromatin/genetics/metabolism ; Co-Repressor Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Disease-Free Survival ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Histones/chemistry/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Oncogenes/genetics ; Prognosis ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*metabolism ; Substrate Specificity ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-06-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Jane -- England -- Nature. 2014 Jun 5;510(7503):16-7. doi: 10.1038/510016a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899283" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Carbon Dioxide/analysis ; Desert Climate ; *Ecosystem ; *Global Warming ; *Models, Theoretical ; Mongolia ; Plants/*metabolism ; Poaceae/metabolism ; Rain ; Temperature ; Trees/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijaard, Erik -- Sheil, Douglas -- Cardillo, Marcel -- England -- Nature. 2014 Dec 4;516(7529):37. doi: 10.1038/516037d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉People and Nature Consulting International, Jakarta, and CIFOR, Indonesia. ; Norwegian University of Life Sciences, As, Norway, and CIFOR, Indonesia. ; Australian National University, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*methods ; *Ecosystem ; *Goals ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-07-06
    Description: Lipopolysaccharide (LPS) is essential for most Gram-negative bacteria and has crucial roles in protection of the bacteria from harsh environments and toxic compounds, including antibiotics. Seven LPS transport proteins (that is, LptA-LptG) form a trans-envelope protein complex responsible for the transport of LPS from the inner membrane to the outer membrane, the mechanism for which is poorly understood. Here we report the first crystal structure of the unique integral membrane LPS translocon LptD-LptE complex. LptD forms a novel 26-stranded beta-barrel, which is to our knowledge the largest beta-barrel reported so far. LptE adopts a roll-like structure located inside the barrel of LptD to form an unprecedented two-protein 'barrel and plug' architecture. The structure, molecular dynamics simulations and functional assays suggest that the hydrophilic O-antigen and the core oligosaccharide of the LPS may pass through the barrel and the lipid A of the LPS may be inserted into the outer leaflet of the outer membrane through a lateral opening between strands beta1 and beta26 of LptD. These findings not only help us to understand important aspects of bacterial outer membrane biogenesis, but also have significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Haohao -- Xiang, Quanju -- Gu, Yinghong -- Wang, Zhongshan -- Paterson, Neil G -- Stansfeld, Phillip J -- He, Chuan -- Zhang, Yizheng -- Wang, Wenjian -- Dong, Changjiang -- 083501/Z/07/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Jul 3;511(7507):52-6. doi: 10.1038/nature13464. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK [2] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK. ; 1] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK [2] Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000, China. ; Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ; 1] Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK [2] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK [3] College of Life Sciences, Sichuan University, Chengdu 610065, China. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; 1] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK [2] School of Electronics and Information, Wuhan Technical College of Communications, No.6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China. ; College of Life Sciences, Sichuan University, Chengdu 610065, China. ; Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990744" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Cell Membrane/chemistry/metabolism ; Cell Wall/chemistry/metabolism ; Crystallography, X-Ray ; Lipopolysaccharides/chemistry/*metabolism ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Salmonella typhimurium/*chemistry/cytology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-07-22
    Description: Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders. Here we report the crystal structure of the transmembrane domain of the human receptor in complex with the negative allosteric modulator, mavoglurant. The structure provides detailed insight into the architecture of the transmembrane domain of class C receptors including the precise location of the allosteric binding site within the transmembrane domain and key micro-switches which regulate receptor signalling. This structure also provides a model for all class C G-protein-coupled receptors and may aid in the design of new small-molecule drugs for the treatment of brain disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dore, Andrew S -- Okrasa, Krzysztof -- Patel, Jayesh C -- Serrano-Vega, Maria -- Bennett, Kirstie -- Cooke, Robert M -- Errey, James C -- Jazayeri, Ali -- Khan, Samir -- Tehan, Ben -- Weir, Malcolm -- Wiggin, Giselle R -- Marshall, Fiona H -- England -- Nature. 2014 Jul 31;511(7511):557-62. doi: 10.1038/nature13396. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK [2]. ; Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25042998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; *Models, Molecular ; Protein Structure, Tertiary ; Receptor, Metabotropic Glutamate 5/*chemistry ; Rhodopsin/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-04-22
    Description: The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Dijun -- Wang, Zhao -- James, Nathan R -- Voss, Jarrod E -- Klimont, Ewa -- Ohene-Agyei, Thelma -- Venter, Henrietta -- Chiu, Wah -- Luisi, Ben F -- 076846/Wellcome Trust/United Kingdom -- 094229/Wellcome Trust/United Kingdom -- P41 GM103832/GM/NIGMS NIH HHS/ -- P41GM103832/GM/NIGMS NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 22;509(7501):512-5. doi: 10.1038/nature13205. Epub 2014 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK. ; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK. ; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24747401" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Carrier Proteins/*chemistry/*metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/*chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins/*chemistry/*metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-08-19
    Description: Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 A and 2.7 A resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kaituo -- Sitsel, Oleg -- Meloni, Gabriele -- Autzen, Henriette Elisabeth -- Andersson, Magnus -- Klymchuk, Tetyana -- Nielsen, Anna Marie -- Rees, Douglas C -- Nissen, Poul -- Gourdon, Pontus -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):518-22. doi: 10.1038/nature13618. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.). [3]. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2]. ; Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. ; Science for Life Laboratory, Department of Theoretical Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, SE-171 21 Solna, Sweden. ; Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132545" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Cadmium/metabolism ; Calcium-Transporting ATPases/chemistry ; Conserved Sequence ; Crystallography, X-Ray ; Lead/metabolism ; Models, Molecular ; Phosphorylation ; Proteolipids/chemistry/metabolism ; Proton-Translocating ATPases/chemistry/metabolism ; Shigella/*enzymology ; Sodium-Potassium-Exchanging ATPase/chemistry ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-07-22
    Description: Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michaletz, Sean T -- Cheng, Dongliang -- Kerkhoff, Andrew J -- Enquist, Brian J -- England -- Nature. 2014 Aug 7;512(7512):39-43. doi: 10.1038/nature13470. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. ; Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Normal University, Ministry of Education, Fuzhou, Fujian Province 350007, China. ; Department of Biology, Kenyon College, Gambier, Ohio 43022, USA. ; 1] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA [2] The Santa Fe Institute, USA, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA [3] The iPlant Collaborative, Thomas W. Keating Bioresearch Building, 1657 East Helen Street, Tucson, Arizona 85721, USA [4] Aspen Center for Environmental Studies, 100 Puppy Smith Street, Aspen, Colorado 81611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043056" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Biomass ; *Climate ; *Ecosystem ; *Internationality ; Plant Development ; Plants/*metabolism ; Rain ; Seasons ; Temperature ; Wood
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moskvitch, Katia -- England -- Nature. 2014 Aug 14;512(7513):122-3. doi: 10.1038/512122a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119218" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms ; *Ecosystem ; Environment ; Hydrothermal Vents ; *Mining ; Oceans and Seas
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-01-10
    Description: The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-beta-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-beta, CUL5 and ELOC. The larger domain (alpha/beta domain) of Vif binds to the same side of CBF-beta as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-beta binding. Interactions of the smaller domain (alpha-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the alpha-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-beta and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Yingying -- Dong, Liyong -- Qiu, Xiaolin -- Wang, Yishu -- Zhang, Bailing -- Liu, Hongnan -- Yu, You -- Zang, Yi -- Yang, Maojun -- Huang, Zhiwei -- England -- Nature. 2014 Jan 9;505(7482):229-33. doi: 10.1038/nature12884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China [2]. ; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402281" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/*chemistry/*metabolism ; Crystallography, X-Ray ; Cullin Proteins/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Stability ; Protein Structure, Tertiary ; Suppressor of Cytokine Signaling Proteins ; Transcription Factors/chemistry/metabolism ; vif Gene Products, Human Immunodeficiency Virus/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-06-10
    Description: Type-A gamma-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human beta3 homopentamer, at 3 A resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows an unexpected structural role for a conserved N-linked glycan. The receptor was crystallized bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitized state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167603/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167603/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Paul S -- Aricescu, A Radu -- 084655/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- MR/L009609/1/Medical Research Council/United Kingdom -- England -- Nature. 2014 Aug 21;512(7514):270-5. doi: 10.1038/nature13293. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909990" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamidines/chemistry/metabolism/pharmacology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Drug Design ; GABA-A Receptor Agonists/chemistry/metabolism/pharmacology ; Genetic Predisposition to Disease ; Glycosylation ; Humans ; Models, Molecular ; Mutation/genetics ; Polysaccharides/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, GABA-A/*chemistry/genetics ; Synaptic Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holmes, Christopher D -- England -- Nature. 2014 Mar 13;507(7491):E1-2. doi: 10.1038/nature13113.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24622206" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/*analysis ; *Ecosystem ; Trees/*chemistry ; Water/*analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-07-22
    Description: Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin-RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn(2+)-dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire approximately 350-kDa human CSN holoenzyme at 3.8 A resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid-CSN-initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal alpha-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingaraju, Gondichatnahalli M -- Bunker, Richard D -- Cavadini, Simone -- Hess, Daniel -- Hassiepen, Ulrich -- Renatus, Martin -- Fischer, Eric S -- Thoma, Nicolas H -- England -- Nature. 2014 Aug 14;512(7513):161-5. doi: 10.1038/nature13566. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, 4003 Basel, Switzerland [3]. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, 4003 Basel, Switzerland. ; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043011" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; *Models, Molecular ; Multiprotein Complexes/*chemistry ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-04-30
    Description: Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an angstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015848/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015848/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takala, Heikki -- Bjorling, Alexander -- Berntsson, Oskar -- Lehtivuori, Heli -- Niebling, Stephan -- Hoernke, Maria -- Kosheleva, Irina -- Henning, Robert -- Menzel, Andreas -- Ihalainen, Janne A -- Westenhoff, Sebastian -- 1R24GM111072/GM/NIGMS NIH HHS/ -- 279944/European Research Council/International -- R24 GM111072/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 8;509(7499):245-8. doi: 10.1038/nature13310. Epub 2014 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Nanoscience Center, Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland [2] Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden [3]. ; 1] Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden [2]. ; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden. ; Nanoscience Center, Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland. ; Center for Advanced Radiation Sources, The University of Chicago, Illinois 60637, USA. ; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24776794" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism/radiation effects ; Binding Sites ; Crystallography, X-Ray ; Deinococcus/*chemistry ; *Light Signal Transduction/radiation effects ; Models, Molecular ; Phytochrome/chemistry/metabolism/radiation effects ; Protein Conformation/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-01-10
    Description: Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Averill, Colin -- Turner, Benjamin L -- Finzi, Adrien C -- England -- Nature. 2014 Jan 23;505(7484):543-5. doi: 10.1038/nature12901. Epub 2014 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, University of Texas at Austin, Austin, Texas 78712, USA. ; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama. ; Department of Biology, Boston University, Boston, Masachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402225" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Silicates/analysis ; Biota/genetics ; Carbon/analysis/*metabolism ; *Carbon Cycle ; *Ecosystem ; Mycorrhizae/classification/enzymology/*metabolism ; Nitrogen/analysis/metabolism ; Plants/*metabolism/*microbiology ; Soil/*chemistry ; Soil Microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nordling, Linda -- England -- Nature. 2014 Oct 2;514(7520):17. doi: 10.1038/nature.2014.16010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25279897" target="_blank"〉PubMed〈/a〉
    Keywords: Cycadophyta/growth & development/*metabolism ; *Ecosystem ; Endangered Species/statistics & numerical data ; Extinction, Biological ; Forensic Sciences/*methods ; Isotopes/analysis ; Reference Standards ; South Africa ; Theft/economics/*prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-04-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harte, John -- England -- Nature. 2014 Apr 24;508(7497):458. doi: 10.1038/508458b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Berkeley, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759404" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecology ; *Ecosystem ; *Models, Biological ; *Nonlinear Dynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-08-27
    Description: Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the anaphase-promoting complex/cyclosome (APC/C), a 13-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome. Because blocking mitotic exit is an effective approach for inducing tumour cell death, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc20 (ref. 5), which forms a co-receptor with the APC/C to recognize substrates containing a destruction box (D-box). Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identify a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-l-arginine methyl ester, a small molecule that blocks the APC/C-Cdc20 interaction. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214887/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214887/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sackton, Katharine L -- Dimova, Nevena -- Zeng, Xing -- Tian, Wei -- Zhang, Mengmeng -- Sackton, Timothy B -- Meaders, Johnathan -- Pfaff, Kathleen L -- Sigoillot, Frederic -- Yu, Hongtao -- Luo, Xuelian -- King, Randall W -- GM066492/GM/NIGMS NIH HHS/ -- GM085004/GM/NIGMS NIH HHS/ -- R01 GM066492/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 30;514(7524):646-9. doi: 10.1038/nature13660. Epub 2014 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA [2]. ; 1] Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA [2] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China (W.T.); Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA (K.L.P.); Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (F.S.). [3]. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA. ; 1] Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA [2] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China (W.T.); Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA (K.L.P.); Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (F.S.). ; 1] Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA [2] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. ; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25156254" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome/*chemistry/*metabolism ; Binding Sites/drug effects ; Carbamates/*pharmacology ; Cdc20 Proteins/chemistry/metabolism ; Cell Death/drug effects ; Crystallography, X-Ray ; Diamines/*pharmacology ; Drug Synergism ; Mitosis/*drug effects ; Protein Binding/drug effects ; Proteolysis/drug effects ; Tosylarginine Methyl Ester/*pharmacology ; Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoekstra, Jon -- Symington, Meg -- Weaver, Chris -- England -- Nature. 2014 Dec 18;516(7531):329. doi: 10.1038/516329b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉World Wildlife Fund, Washington DC, USA. ; WWF-Namibia, Windhoek, Namibia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519122" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*statistics & numerical data ; *Ecosystem ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fraser, Barbara -- England -- Nature. 2014 Oct 2;514(7520):24-6. doi: 10.1038/514024a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25279901" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Animals ; Archaeology ; Caves ; Civilization/history ; Diet/history ; *Ecosystem ; History, Ancient ; Human Migration/*history ; South America
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-10-23
    Description: Bestrophin calcium-activated chloride channels (CaCCs) regulate the flow of chloride and other monovalent anions across cellular membranes in response to intracellular calcium (Ca(2+)) levels. Mutations in bestrophin 1 (BEST1) cause certain eye diseases. Here we present X-ray structures of chicken BEST1-Fab complexes, at 2.85 A resolution, with permeant anions and Ca(2+). Representing, to our knowledge, the first structure of a CaCC, the eukaryotic BEST1 channel, which recapitulates CaCC function in liposomes, is formed from a pentameric assembly of subunits. Ca(2+) binds to the channel's large cytosolic region. A single ion pore, approximately 95 A in length, is located along the central axis and contains at least 15 binding sites for anions. A hydrophobic neck within the pore probably forms the gate. Phenylalanine residues within it may coordinate permeating anions via anion-pi interactions. Conformational changes observed near the 'Ca(2+) clasp' hint at the mechanism of Ca(2+)-dependent gating. Disease-causing mutations are prevalent within the gating apparatus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454446/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454446/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kane Dickson, Veronica -- Pedi, Leanne -- Long, Stephen B -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM110396/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Dec 11;516(7530):213-8. doi: 10.1038/nature13913. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337878" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/analysis/chemistry/*metabolism/pharmacology ; *Chickens ; Chloride Channels/*chemistry/immunology/*metabolism ; Chlorides/chemistry/metabolism ; Crystallography, X-Ray ; Immunoglobulin Fab Fragments/chemistry/immunology ; Ion Channel Gating ; Ion Transport ; Liposomes/chemistry/metabolism ; Models, Molecular ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-03-05
    Description: Ubiquitin (Ub) has important roles in a wide range of intracellular signalling pathways. In the conventional view, ubiquitin alters the signalling activity of the target protein through covalent modification, but accumulating evidence points to the emerging role of non-covalent interaction between ubiquitin and the target. In the innate immune signalling pathway of a viral RNA sensor, RIG-I, both covalent and non-covalent interactions with K63-linked ubiquitin chains (K63-Ubn) were shown to occur in its signalling domain, a tandem caspase activation and recruitment domain (hereafter referred to as 2CARD). Non-covalent binding of K63-Ubn to 2CARD induces its tetramer formation, a requirement for downstream signal activation. Here we report the crystal structure of the tetramer of human RIG-I 2CARD bound by three chains of K63-Ub2. 2CARD assembles into a helical tetramer resembling a 'lock-washer', in which the tetrameric surface serves as a signalling platform for recruitment and activation of the downstream signalling molecule, MAVS. Ubiquitin chains are bound along the outer rim of the helical trajectory, bridging adjacent subunits of 2CARD and stabilizing the 2CARD tetramer. The combination of structural and functional analyses reveals that binding avidity dictates the K63-linkage and chain-length specificity of 2CARD, and that covalent ubiquitin conjugation of 2CARD further stabilizes the Ub-2CARD interaction and thus the 2CARD tetramer. Our work provides unique insights into the novel types of ubiquitin-mediated signal-activation mechanism, and previously unexpected synergism between the covalent and non-covalent ubiquitin interaction modes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peisley, Alys -- Wu, Bin -- Xu, Hui -- Chen, Zhijian J -- Hur, Sun -- R01-GM63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 1;509(7498):110-4. doi: 10.1038/nature13140. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA [2] Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590070" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Caspases/metabolism ; Crystallography, X-Ray ; DEAD-box RNA Helicases/*chemistry/*metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Stability ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA, Viral/analysis/metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barah, Pankaj -- Bhuyan, Kaveri -- England -- Nature. 2014 Nov 6;515(7525):37. doi: 10.1038/515037b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Norwegian University of Science and Technology, Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373667" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Wild ; Bhutan ; Dolphins ; *Ecosystem ; *Endangered Species/trends ; India ; Perissodactyla ; *Power Plants/legislation & jurisprudence ; *Rivers ; Tigers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbier, Edward B -- Moreno-Mateos, David -- Rogers, Alex D -- Aronson, James -- Pendleton, Linwood -- Danovaro, Roberto -- Henry, Lea-Anne -- Morato, Telmo -- Ardron, Jeff -- Van Dover, Cindy L -- England -- Nature. 2014 Jan 23;505(7484):475-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24459714" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa ; Aquatic Organisms ; Atlantic Ocean ; Biodiversity ; *Conservation of Natural Resources/economics/methods/trends ; *Ecology/economics/methods/trends ; *Ecosystem ; Fisheries/economics ; *Oceans and Seas
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Nov 6;515(7525):28-31. doi: 10.1038/515028a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild ; Biodiversity ; Climate Change ; Conservation of Natural Resources/*methods ; Ecology/organization & administration ; *Ecosystem ; Environmental Policy/legislation & jurisprudence ; *Goals ; Government Regulation ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-01-28
    Description: RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH2 with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Lianna M -- Du, Jiamu -- Hale, Christopher J -- Bischof, Sylvain -- Feng, Suhua -- Chodavarapu, Ramakrishna K -- Zhong, Xuehua -- Marson, Giuseppe -- Pellegrini, Matteo -- Segal, David J -- Patel, Dinshaw J -- Jacobsen, Steven E -- F32GM096483-01/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- P30 CA016042/CA/NCI NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):124-8. doi: 10.1038/nature12931. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2]. ; 1] Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2]. ; Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA. ; 1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2] Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA. ; 1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2] Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Genome Center and Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463519" target="_blank"〉PubMed〈/a〉
    Keywords: *Arabidopsis/enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites/genetics ; Biocatalysis ; Chromatin/chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation/genetics ; DNA-Binding Proteins/chemistry/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Flowers/growth & development ; Gene Expression Regulation, Plant ; Gene Silencing ; Genome, Plant/genetics ; Histone-Lysine N-Methyltransferase/*chemistry/*metabolism ; Models, Molecular ; Mutation/genetics ; Phenotype ; Protein Structure, Tertiary ; Protein Transport ; RNA, Plant/biosynthesis/genetics/metabolism ; RNA, Small Interfering/biosynthesis/genetics/metabolism ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-10-25
    Description: Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the delta(13)C signature (10-15 per thousand) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCalley, Carmody K -- Woodcroft, Ben J -- Hodgkins, Suzanne B -- Wehr, Richard A -- Kim, Eun-Hae -- Mondav, Rhiannon -- Crill, Patrick M -- Chanton, Jeffrey P -- Rich, Virginia I -- Tyson, Gene W -- Saleska, Scott R -- England -- Nature. 2014 Oct 23;514(7523):478-81. doi: 10.1038/nature13798.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. ; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia. ; Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, USA. ; Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, USA. ; Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25341787" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Arctic Regions ; Atmosphere/*chemistry ; Carbon Dioxide/metabolism ; *Ecosystem ; *Freezing ; Methane/analysis/*metabolism ; *Soil Microbiology ; Sweden
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-05-23
    Description: The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Nina conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulter, Benjamin -- Frank, David -- Ciais, Philippe -- Myneni, Ranga B -- Andela, Niels -- Bi, Jian -- Broquet, Gregoire -- Canadell, Josep G -- Chevallier, Frederic -- Liu, Yi Y -- Running, Steven W -- Sitch, Stephen -- van der Werf, Guido R -- England -- Nature. 2014 May 29;509(7502):600-3. doi: 10.1038/nature13376. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Montana State University, Institute on Ecosystems and the Department of Ecology, Bozeman, Montana 59717, USA [2] Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191 Gif Sur Yvette, France. ; 1] Swiss Federal Research Institute WSL, Dendroclimatology, Zurcherstrasse 111, Birmensdorf 8903, Switzerland [2] Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland. ; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191 Gif Sur Yvette, France. ; Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, Massachusetts 02215, USA. ; Faculty of Earth and Life Sciences, VU University Amsterdam, 1085 De Boelelaan, 1081HV, Amsterdam, The Netherlands. ; Global Carbon Project, CSIRO, Marine and Atmospheric Research, Canberra, Australian Capital Territory 2601, Australia. ; ARC Centre of Excellence for Climate Systems Science & Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, USA. ; College of Engineering, Computing and Mathematics, University of Exeter, Exeter EX4 4QF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847888" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Australia ; Carbon Dioxide/analysis ; *Carbon Sequestration ; *Desert Climate ; *Ecosystem ; El Nino-Southern Oscillation ; Fires ; Models, Theoretical ; Rain ; Seasons ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-07-22
    Description: The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 A crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310248/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310248/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wasmuth, Elizabeth V -- Januszyk, Kurt -- Lima, Christopher D -- F31 GM097910/GM/NIGMS NIH HHS/ -- F31GM097910/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- P41GM103403/GM/NIGMS NIH HHS/ -- P41GM103473/GM/NIGMS NIH HHS/ -- R01 GM079196/GM/NIGMS NIH HHS/ -- R01GM079196/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 24;511(7510):435-9. doi: 10.1038/nature13406. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA [2] Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA. ; Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA. ; 1] Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1275 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043052" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; Exoribonucleases/metabolism ; Exosome Multienzyme Ribonuclease Complex/*chemistry/*metabolism ; Humans ; Models, Molecular ; Poly A/chemistry/*metabolism ; RNA, Messenger/*chemistry/*metabolism ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-10-31
    Description: The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in many eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys 119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the human Ring1B-Bmi1-UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with several nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215650/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215650/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGinty, Robert K -- Henrici, Ryan C -- Tan, Song -- GM060489-09S1/GM/NIGMS NIH HHS/ -- GM088236/GM/NIGMS NIH HHS/ -- GM111651/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM060489/GM/NIGMS NIH HHS/ -- R01 GM088236/GM/NIGMS NIH HHS/ -- R01 GM111651/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):591-6. doi: 10.1038/nature13890.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Schreyer Honors College, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25355358" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; DNA/chemistry/metabolism ; Histones/chemistry/metabolism ; Humans ; Models, Molecular ; Nucleosomes/*chemistry/*metabolism ; Polycomb Repressive Complex 1/*chemistry/*metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-07-06
    Description: One of the fundamental properties of biological membranes is the asymmetric distribution of membrane lipids. In Gram-negative bacteria, the outer leaflet of the outer membrane is composed predominantly of lipopolysaccharides (LPS). The export of LPS requires seven essential lipopolysaccharide transport (Lpt) proteins to move LPS from the inner membrane, through the periplasm to the surface. Of the seven Lpt proteins, the LptD-LptE complex is responsible for inserting LPS into the external leaflet of the outer membrane. Here we report the crystal structure of the approximately 110-kilodalton membrane protein complex LptD-LptE from Shigella flexneri at 2.4 A resolution. The structure reveals an unprecedented two-protein plug-and-barrel architecture with LptE embedded into a 26-stranded beta-barrel formed by LptD. Importantly, the secondary structures of the first two beta-strands are distorted by two proline residues, weakening their interactions with neighbouring beta-strands and creating a potential portal on the barrel wall that could allow lateral diffusion of LPS into the outer membrane. The crystal structure of the LptD-LptE complex opens the door to new antibiotic strategies targeting the bacterial outer membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiao, Shuai -- Luo, Qingshan -- Zhao, Yan -- Zhang, Xuejun Cai -- Huang, Yihua -- England -- Nature. 2014 Jul 3;511(7507):108-11. doi: 10.1038/nature13484. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Laboratory of Biomacromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100101, China. ; 1] National Laboratory of Biomacromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China. ; National Laboratory of Biomacromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990751" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Biological Transport ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Lipopolysaccharides/chemistry/*metabolism ; Models, Molecular ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; Shigella flexneri/*chemistry/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-09-16
    Description: Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the alpha and gamma classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded beta-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 A(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goyal, Parveen -- Krasteva, Petya V -- Van Gerven, Nani -- Gubellini, Francesca -- Van den Broeck, Imke -- Troupiotis-Tsailaki, Anastassia -- Jonckheere, Wim -- Pehau-Arnaudet, Gerard -- Pinkner, Jerome S -- Chapman, Matthew R -- Hultgren, Scott J -- Howorka, Stefan -- Fronzes, Remi -- Remaut, Han -- R01 A1073847/PHS HHS/ -- R01 AI048689/AI/NIAID NIH HHS/ -- R01 AI073847/AI/NIAID NIH HHS/ -- R01 AI099099/AI/NIAID NIH HHS/ -- R56 AI073847/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 11;516(7530):250-3. doi: 10.1038/nature13768. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium [2] Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; 1] Unite G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France [2] UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Structure et Fonction des Membranes Biologiques (SFMB), Universite Libre de Bruxelles, 1050 Brussels, Belgium. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, Missouri 63110-1010, USA. ; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA. ; Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London WC1H 0AJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219853" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*secretion ; Biofilms ; Cell Membrane ; Crystallography, X-Ray ; Diffusion ; Entropy ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/*chemistry/*metabolism ; Membrane Transport Proteins/metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Conformation ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goymer, Patrick -- England -- Nature. 2014 Nov 6;515(7525):49. doi: 10.1038/515049a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373673" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Biodiversity ; *Conservation of Natural Resources/methods/trends ; *Ecosystem ; Fires ; *Human Activities ; Urbanization ; Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keenan, Trevor F -- Hollinger, David Y -- Bohrer, Gil -- Dragoni, Danilo -- Munger, J William -- Schmid, Hans Peter -- Richardson, Andrew D -- England -- Nature. 2014 Mar 13;507(7491):E2-3. doi: 10.1038/nature13114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia. ; USDA Forest Service, Northern Research Station, Durham, New Hamphire 03824, USA. ; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, USA. ; Department of Geography, Indiana University, Bloomington, Indiana 47405, USA. ; School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. ; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen 82467, Germany. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24622207" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/*analysis ; *Ecosystem ; Trees/*chemistry ; Water/*analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-11-07
    Description: The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moritz, Max A -- Batllori, Enric -- Bradstock, Ross A -- Gill, A Malcolm -- Handmer, John -- Hessburg, Paul F -- Leonard, Justin -- McCaffrey, Sarah -- Odion, Dennis C -- Schoennagel, Tania -- Syphard, Alexandra D -- England -- Nature. 2014 Nov 6;515(7525):58-66. doi: 10.1038/nature13946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Science, Policy, and Management, Division of Ecosystem Sciences, University of California, Berkeley, 130 Mulford Hall, Berkeley, California 94720, USA. ; 1] Department of Environmental Science, Policy, and Management, Division of Ecosystem Sciences, University of California, Berkeley, 130 Mulford Hall, Berkeley, California 94720, USA. [2] Forest Sciences Center of Catalonia &Center for Ecological Research and Forestry Applications, Pujada del Seminari, 28250 Solsona, Spain. ; University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia. ; Australian National University, Canberra, Australian Capital Territory 0200, Australia. ; RMIT University, 124 Little La Trobe Street, Melbourne, Victoria 3000, Australia. ; US Forest Service, 1400 Independence Avenue, SW Washington DC 20250-1111, USA. ; CSIRO, Clayton South, Victoria 3169, Australia. ; University of California, Santa Barbara, Santa Barbara, California 93106, USA. ; University of Colorado, Boulder, Boulder 80309-0450, Colorado, USA. ; Conservation Biology Institute, 136 SW Washington Avenue, Suite 202, Corvallis, Oregon 97333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25373675" target="_blank"〉PubMed〈/a〉
    Keywords: Australia ; Climate Change ; Conservation of Natural Resources ; *Ecosystem ; Environmental Policy ; *Fires/prevention & control/statistics & numerical data ; Forests ; Geography ; Housing ; Human Activities ; Humans ; Mediterranean Region ; Population Density ; Risk Management ; Southwestern United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-02-28
    Description: Tripartite Tc toxin complexes of bacterial pathogens perforate the host membrane and translocate toxic enzymes into the host cell, including in humans. The underlying mechanism is complex but poorly understood. Here we report the first, to our knowledge, high-resolution structures of a TcA subunit in its prepore and pore state and of a complete 1.7 megadalton Tc complex. The structures reveal that, in addition to a translocation channel, TcA forms four receptor-binding sites and a neuraminidase-like region, which are important for its host specificity. pH-induced opening of the shell releases an entropic spring that drives the injection of the TcA channel into the membrane. Binding of TcB/TcC to TcA opens a gate formed by a six-bladed beta-propeller and results in a continuous protein translocation channel, whose architecture and properties suggest a novel mode of protein unfolding and translocation. Our results allow us to understand key steps of infections involving Tc toxins at the molecular level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meusch, Dominic -- Gatsogiannis, Christos -- Efremov, Rouslan G -- Lang, Alexander E -- Hofnagel, Oliver -- Vetter, Ingrid R -- Aktories, Klaus -- Raunser, Stefan -- England -- Nature. 2014 Apr 3;508(7494):61-5. doi: 10.1038/nature13015. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2]. ; Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. ; 1] Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; 1] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany [2] Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Thielallee 63, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572368" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/metabolism ; Bacterial Toxins/*chemistry/*metabolism ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Host Specificity ; Hydrogen-Ion Concentration ; Models, Molecular ; Neuraminidase/chemistry ; Photorhabdus/*chemistry ; Porosity ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport ; Protein Unfolding ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Mar 13;507(7491):139-40.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24627916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources ; *Ecology/standards ; *Ecosystem ; *Models, Biological ; *Nonlinear Dynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-09-26
    Description: The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75 degrees north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carvalhais, Nuno -- Forkel, Matthias -- Khomik, Myroslava -- Bellarby, Jessica -- Jung, Martin -- Migliavacca, Mirco -- Mu, Mingquan -- Saatchi, Sassan -- Santoro, Maurizio -- Thurner, Martin -- Weber, Ulrich -- Ahrens, Bernhard -- Beer, Christian -- Cescatti, Alessandro -- Randerson, James T -- Reichstein, Markus -- England -- Nature. 2014 Oct 9;514(7521):213-7. doi: 10.1038/nature13731. Epub 2014 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] Departamento de Ciencias e Engenharia do Ambiente, DCEA, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. ; Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; 1] Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK [2] Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] Remote Sensing of Environmental Dynamics Lab, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy. ; Department of Earth System Science, University of California Irvine, Irvine, California 92697, USA. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. ; Gamma Remote Sensing, Worbstrasse 225, 3073 Gumligen, Switzerland. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] Department of Applied Environmental Science and Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius vag 8, 10691 Stockholm, Sweden. ; European Commission, Joint Research Centre, Institute for Environment and Sustainability, Climate Risk Management Unit, Via E. Fermi, 2749, I-21027 Ispra, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252980" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Carbon/*metabolism ; *Carbon Cycle ; *Climate ; *Ecosystem ; Feedback ; Hydrology ; Models, Theoretical ; Plants/metabolism ; Rain ; Soil/chemistry ; Temperature ; Time Factors ; Water Cycle
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Axel -- Huete-Perez, Jorge A -- England -- Nature. 2014 Feb 20;506(7488):287-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Conservation of Natural Resources/economics/trends ; *Dissent and Disputes ; Ecology/statistics & numerical data/trends ; *Ecosystem ; *Environmental Monitoring ; Hong Kong ; International Cooperation ; *Models, Economic ; Nicaragua ; Pacific Ocean ; Risk Assessment ; *Transportation/economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-02-21
    Description: Hepatitis C virus (HCV) is a significant public health concern with approximately 160 million people infected worldwide. HCV infection often results in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. No vaccine is available and current therapies are effective against some, but not all, genotypes. HCV is an enveloped virus with two surface glycoproteins (E1 and E2). E2 binds to the host cell through interactions with scavenger receptor class B type I (SR-BI) and CD81, and serves as a target for neutralizing antibodies. Little is known about the molecular mechanism that mediates cell entry and membrane fusion, although E2 is predicted to be a class II viral fusion protein. Here we describe the structure of the E2 core domain in complex with an antigen-binding fragment (Fab) at 2.4 A resolution. The E2 core has a compact, globular domain structure, consisting mostly of beta-strands and random coil with two small alpha-helices. The strands are arranged in two, perpendicular sheets (A and B), which are held together by an extensive hydrophobic core and disulphide bonds. Sheet A has an IgG-like fold that is commonly found in viral and cellular proteins, whereas sheet B represents a novel fold. Solution-based studies demonstrate that the full-length E2 ectodomain has a similar globular architecture and does not undergo significant conformational or oligomeric rearrangements on exposure to low pH. Thus, the IgG-like fold is the only feature that E2 shares with class II membrane fusion proteins. These results provide unprecedented insights into HCV entry and will assist in developing an HCV vaccine and new inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126800/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126800/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, Abdul Ghafoor -- Whidby, Jillian -- Miller, Matthew T -- Scarborough, Hannah -- Zatorski, Alexandra V -- Cygan, Alicja -- Price, Aryn A -- Yost, Samantha A -- Bohannon, Caitlin D -- Jacob, Joshy -- Grakoui, Arash -- Marcotrigiano, Joseph -- AI070101/AI/NIAID NIH HHS/ -- DK083356/DK/NIDDK NIH HHS/ -- P50 GM103368/GM/NIGMS NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- P51 RR000165/RR/NCRR NIH HHS/ -- R01 AI070101/AI/NIAID NIH HHS/ -- R01 AI080659/AI/NIAID NIH HHS/ -- R01 DK083356/DK/NIDDK NIH HHS/ -- RR-00165/RR/NCRR NIH HHS/ -- T32 AI007403/AI/NIAID NIH HHS/ -- T32 AI007610/AI/NIAID NIH HHS/ -- England -- Nature. 2014 May 15;509(7500):381-4. doi: 10.1038/nature13117. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA. ; Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA. ; 1] Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA [2] Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, Georgia 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553139" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Disulfides/chemistry ; Hepacivirus/*chemistry/physiology ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Immunoglobulin G/chemistry ; Models, Molecular ; Protein Folding ; Protein Structure, Tertiary ; Scattering, Small Angle ; Surface Properties ; Viral Envelope Proteins/*chemistry/metabolism ; Viral Fusion Proteins ; Viral Hepatitis Vaccines ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-05-23
    Description: The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 A resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Dong -- Xu, Chao -- Sun, Pengcheng -- Wu, Jianping -- Yan, Chuangye -- Hu, Mingxu -- Yan, Nieng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):121-5. doi: 10.1038/nature13306. Epub 2014 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847886" target="_blank"〉PubMed〈/a〉
    Keywords: Carbohydrate Metabolism, Inborn Errors/genetics ; Crystallography, X-Ray ; Escherichia coli Proteins ; Glucose Transporter Type 1/*chemistry/deficiency/genetics/metabolism ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/deficiency/genetics ; Mutation/genetics ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Symporters
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-01-15
    Description: Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8 A high-resolution crystal structure of the human delta-opioid receptor (delta-OR), revealing the presence and fundamental role of a sodium ion in mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive delta-OR sodium ion site architecture is centrally located in a polar interaction network in the seven-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn 131 to an alanine or a valine augments constitutive beta-arrestin-mediated signalling. Asp95Ala, Asn310Ala and Asn314Ala mutations transform classical delta-opioid antagonists such as naltrindole into potent beta-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signalling, revealing that sodium-coordinating residues act as 'efficacy switches' at a prototypic G-protein-coupled receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931418/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931418/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fenalti, Gustavo -- Giguere, Patrick M -- Katritch, Vsevolod -- Huang, Xi-Ping -- Thompson, Aaron A -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 13;506(7487):191-6. doi: 10.1038/nature12944. Epub 2014 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]. ; 1] National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA [2]. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24413399" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects/genetics ; Allosteric Site/drug effects/genetics ; Arrestins/metabolism ; Asparagine/genetics/metabolism ; Crystallography, X-Ray ; Humans ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Naltrexone/analogs & derivatives/chemistry/metabolism/pharmacology ; Narcotic Antagonists/chemistry/metabolism/pharmacology ; Receptors, Opioid, delta/agonists/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; *Signal Transduction/drug effects ; Sodium/metabolism/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-04-25
    Description: Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes-Fox, Melissa -- Steltzer, Heidi -- Trlica, M J -- McMaster, Gregory S -- Andales, Allan A -- LeCain, Dan R -- Morgan, Jack A -- England -- Nature. 2014 Jun 12;510(7504):259-62. doi: 10.1038/nature13207. Epub 2014 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] USDA-ARS, Soil Plant Nutrient Research Unit and Northern Plains Area, Fort Collins, Colorado 80526, USA [2]. ; 1] Department of Biology, Fort Lewis College, Durango, Colorado 81301, USA [2]. ; Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523, USA. ; USDA-ARS, Agricultural Systems Research Unit and Northern Plains Area, Fort Collins, Colorado 80526, USA. ; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, USA. ; USDA-ARS, Rangeland Resources Research Unit, Fort Collins, Colorado 80526, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759322" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/*metabolism/pharmacology ; Climate ; *Ecosystem ; *Global Warming ; Poaceae/drug effects ; Reproduction ; *Seasons ; Soil/chemistry ; Time Factors ; Water/analysis/metabolism/pharmacology ; Wyoming
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-08-19
    Description: Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wright, Katherine E -- Hjerrild, Kathryn A -- Bartlett, Jonathan -- Douglas, Alexander D -- Jin, Jing -- Brown, Rebecca E -- Illingworth, Joseph J -- Ashfield, Rebecca -- Clemmensen, Stine B -- de Jongh, Willem A -- Draper, Simon J -- Higgins, Matthew K -- 089455/2/09/z/Wellcome Trust/United Kingdom -- 101020/Wellcome Trust/United Kingdom -- 101020/Z/13/Z/Wellcome Trust/United Kingdom -- G1000527/Medical Research Council/United Kingdom -- MR/K025554/1/Medical Research Council/United Kingdom -- England -- Nature. 2014 Nov 20;515(7527):427-30. doi: 10.1038/nature13715. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK. ; ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Alle 1, DK-2970 Horsholm, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132548" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Blocking/*chemistry/immunology ; Antigens, CD147/*chemistry/immunology ; Antigens, Protozoan/chemistry/immunology ; Binding Sites ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; Erythrocytes/*chemistry ; Host-Parasite Interactions/immunology ; Humans ; *Malaria/parasitology ; Models, Molecular ; Plasmodium falciparum/*chemistry/immunology ; Protozoan Proteins/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-02-07
    Description: In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (〉10 years), large (〉100 km(2)), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (〉250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edgar, Graham J -- Stuart-Smith, Rick D -- Willis, Trevor J -- Kininmonth, Stuart -- Baker, Susan C -- Banks, Stuart -- Barrett, Neville S -- Becerro, Mikel A -- Bernard, Anthony T F -- Berkhout, Just -- Buxton, Colin D -- Campbell, Stuart J -- Cooper, Antonia T -- Davey, Marlene -- Edgar, Sophie C -- Forsterra, Gunter -- Galvan, David E -- Irigoyen, Alejo J -- Kushner, David J -- Moura, Rodrigo -- Parnell, P Ed -- Shears, Nick T -- Soler, German -- Strain, Elisabeth M A -- Thomson, Russell J -- England -- Nature. 2014 Feb 13;506(7487):216-20. doi: 10.1038/nature13022. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Marine and Antarctic Studies, University of Tasmania, GPO Box 252-49, Hobart, Tasmania 7001, Australia. ; Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK. ; 1] Institute for Marine and Antarctic Studies, University of Tasmania, GPO Box 252-49, Hobart, Tasmania 7001, Australia [2] Stockholm Resilience Centre, Stockholm University, Kraftriket 2B, SE-106 91 Stockholm, Sweden. ; School of Plant Science, University of Tasmania, GPO Box 252, Hobart, Tasmania 7001, Australia. ; Charles Darwin Foundation, Puerto Ayora, Galapagos, Ecuador. ; The Bites Lab, Natural Products and Agrobiology Institute (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain. ; Elwandle Node, South African Environmental Observation network, Private Bag 1015, Grahamstown 6140, South Africa. ; Wildlife Conservation Society, Indonesia Marine Program, Jalan Atletik No. 8, Bogor Jawa Barat 16151, Indonesia. ; Department of Water, Perth, Western Australia 6000, Australia. ; Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile. ; Centro Nacional Patagonico, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Bvd Brown 2915, 9120 Puerto Madryn, Argentina. ; Channel Islands National Park, United States National Park Service, 1901 Spinnaker Dr., Ventura, California 93001, USA. ; Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil. ; Scripps Institution of Oceanography, UC San Diego, Mail Code 0227, 9500 Gilman Dr., La Jolla, California 92093-0227, USA. ; Leigh Marine Laboratory, University of Auckland, 160 Goat Island Road, Leigh 0985, New Zealand. ; Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Universita di Bologna, Via San Alberto, Ravenna 163-48123, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/physiology ; Biodiversity ; Biomass ; Conservation of Natural Resources/economics/legislation & ; jurisprudence/methods/*statistics & numerical data ; Coral Reefs ; Ecology/economics/legislation & jurisprudence/methods/*statistics & numerical ; data ; *Ecosystem ; Fisheries/legislation & jurisprudence/standards/*statistics & numerical data ; Fishes/*physiology ; Marine Biology/economics/legislation & jurisprudence/methods/statistics & ; numerical data ; Seawater ; Sharks ; Silicon Dioxide ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...